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Abstract
As an emerging technology, therapeutic cell manufacturing
faces major challenges in three aspects, knowledge gap,
regulations, and case-to-case variability. Among all variability
sources, donor-to-donor variability is intrinsic to therapeutic
cell manufacturing and can be very large. A few recent articles
have addressed this variability, but enormous research op-
portunities remain. In this opinion article, we focus on the
donor-to-donor variability and point out a new sub-field in the
data analysis research, adaptive data analysis, as a potential
solution to minimize the donor-to-donor variability. An adaptive
data analysis framework adapts to each case and provides
case-specific instructions on the manufacturing process. We
present and discuss three specific adaptive data analysis ap-
proaches, including multi-task learning, Bayesian latent vari-
able modeling, and representation learning. These modeling
techniques may provide valuable solutions to challenging data
analysis problems in cell manufacturing where large variabil-
ities exist.
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Introduction
Standardized mass production has enabled high-
throughput pharmaceutical manufacturing in the past
century, bringing trustworthy and affordable medicines
www.sciencedirect.com
to countless homes and families. However, limitations of
conventional standardization started to surface as med-
ical technologies advanced in the past few decades. Cell
therapies are revolutionary technologies that treat dis-
eases in a substantially different way than traditional
pharmaceutics. Instead of chemical compounds, cell
therapies treat patients with living cells. Current cell
therapies mainly include stem cell therapies and
immune cell therapies [1e3]. These cells may be
genetically edited and thus possess abilities that the
original cells of the patient lack and need. For example,

chimeric antigen receptor T cells, genetically edited
using the patient’s original Tcells, can recognize cancer
cells and lead the immune system to eradicate them [4].
The new technologies bring possibilities to treat dis-
eases that other therapies cannot treat effectively.
However, the cell and gene therapies have inherited
case-to-case variability that is difficult to standardize.

The challenge associated with the case-to-case vari-
ability in cell therapies is twofold, variability in patients
and variability in the raw materials, that is, donor cells.

The difference in individual patients is not new to
conventional medicine. Doctors may adjust the type
and dosage of medicine to accommodate each patient’s
conditions, for example, gender, age, weight, allergies,
and medical history. Such considerations and adjust-
ments may also apply to cell therapies but cell thera-
pies require more. Alien living cells can have dramatic
effects on the human body, such as severe immune
rejection. A thorough inspection of the patient’s
immune system is necessary to ensure safe and effec-
tive cell therapy.

Unlike compound-based conventional medicines, cell
therapies use living cells as raw materials and final
products. Those living cells may come from a healthy
donor, referred to as allogeneic, or they may come from
the very same patient, referred to as autologous. For
either allogeneic or autologous cell therapy, its raw ma-
terials come from a human body, which may vary
significantly in viability, metabolic level, and many other
aspects that impact the manufacturing process [5e8].
Data analysis in therapeutic cell
manufacturing
Humans have learned to use cells to make bread, yogurt,
and alcoholic beverages centuries ago, even though their
makers may not have the slightest idea about cells. Yeast
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and lactic acid bacteria are very adaptable and can even
alter the environment in their favor. However, ex vivo
human cells, without the protection of a human body,
are sensitive to the environment and vulnerable to at-
tacks from other microorganisms. Thus, therapeutic cell
manufacturing is complicated and requires more than a
profound understanding of cells. To successfully grow
human cells massively in an artificial environment,

deliberate monitoring and control of the manufacturing
process parameters are essential [9].

Key challenges
As an emerging technology, therapeutic cell
manufacturing is facing several challenges. First, knowl-
edge and technology gaps hinder a seamless transition of
therapeutic cell manufacturing from the lab scale to a full
commercial scale. Life sciences have made significant
progress in the past century, but there are still more
unknowns than knowns. Furthermore, the current regu-
lations for traditional pharmaceuticals are a challenge for
this new medical paradigm. Unlike traditional synthetic
pharmaceuticals, cell therapies’ quality control and pro-

cess control data only represent a small proportion of the
product characteristics. A practical regulatory approach
for advanced cell therapies is in grave need. Some pro-
tocols for therapeutic cell manufacturing have partially
overcome the challenges above, and, as a result, the cell
products have entered the market [10e12]. However,
these protocols alone are insufficient for the production
to scale and make the products accessible and affordable
to those who need the treatment.

Data analysis is a promising research field that may

provide practical solutions to the challenges mentioned
previously. For the knowledge gap in fundamental sci-
ences, data analysis has proven to be effective [13,14].
For manufacturing processes with vast variability, data
analysis can potentially identify the underlying patterns.
Data analysis also helps quantify and standardize the
manufacturing processes, supporting the approval pro-
cess by regulatory authorities.

Donor-to-donor variability
Variability is omnipresent in cell manufacturing.
Different starting materials [15], culture media [16],
and operator measurement [17] are all factors that lead

to case-to-case variability. These variabilities bring
challenges in cell manufacturing, especially process
monitoring and process control. Among these variabil-
ities, the donor-to-donor variability is intrinsic to ther-
apeutic cell manufacturing because the starting
materials of the manufacturing process may have to
come from different donors [8]. It differentiates thera-
peutic cell manufacturing from conventional pharma-
ceutical manufacturing processes. The intrinsic
variability in the starting materials further complicates
the challenges mentioned in Section 2.1.
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Quantification is one plausible way to address donor-to-
donor variability partially. A recent article quantified the
variability between cell culture processes using cells
from different donors [15]. The results from the study
show that donor-to-donor variability can be significant,
but its impact on the final product is limited to some
extent, given its magnitude. However, because this
method does not reduce the variability itself, it may be

insufficient for quality control when the donor-to-donor
variability is enormous.

Donor-to-donor variability is governed by underlying
patterns rather than random noise, which leads to a more
promising approach than quantification alone. Cells
collected from each donor bring unique features, such as
viability, morphology, and metabolic level. These char-
acteristics can sometimes be grouped by the pheno-
types/haplotypes, which in adaptive data analysis may
serve as a method to reduce the solution space. If the

manufacturing process adapts to these features for each
donor, the donor-to-donor variability can be reduced,
resulting in more standardized cell products, which are
safer for the patients and easier to get approval from
regulators. Adaptive data analysis can identify the un-
derlying patterns in massive data and render the
manufacturing process adaptive to different donors
(Figure 1).

Process monitoring: critical quality attributes and
critical process parameters
Process monitoring is vital for any manufacturing process
and more so in therapeutic cell manufacturing because
living cells are complex, delicate, and difficult to

inspect. To ensure the quality of cell therapy products,
manufacturers must monitor critical quality attributes
(CQAs) that reflect the condition and quality of the
cells in culture. Typical CQAs for cell manufacturing
include cell count and morphology, signaling molecules
(cytokines), and concentrations in nutrients and
byproducts. Critical process parameters (CPPs), the
parameters that can impact CQAs, also need to be
monitored for feedback control. Many CPPs need
careful monitoring and controlling in therapeutic cell
manufacturing, such as temperature, CO2 concentra-

tion, nutrition, and time to harvest.

Most CQAs and CPPs in cell manufacturing are not
directly observable and rely on indirect measurement
[18,19]. Data analysis can help establish a model that
describes the connection between sensor readings,
CQAs, and CPPs. For example, the electric impedance
of a cell culture system is considered an indicator of
viable cell count (VCC). VCC impacts impedance
readings, but the exact relationship is difficult to derive
theoretically. With the help of data analysis, an optimal

relationship can be found and thus enable more effec-
tive VCC monitoring [20,21]. Sometimes the data
www.sciencedirect.com
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Figure 1

Adaptive data analysis is a promising approach to address intrinsic donor-to-donor variability. By incorporating donor-specific features, adaptive data
analysis helps the cell manufacturing process adapt to different starting materials.
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analysis programs process multiple sensor readings
together. These programs are commonly referred to as
soft sensors, which have shown excellent performance in
bioprocessing [22].

Process control
Combined with process monitoring and data analysis,

process control is essential to establish a robust closed-
loop control system in manufacturing processes.
Because of the complexity of bioprocesses of living cells,
process control in therapeutic cell manufacturing is
particularly challenging. In therapeutic cell
manufacturing, the cell culturing process can be
controlled by adjusting CPPs [23]. To ensure that CPPs
are moving in a desirable direction, a good understand-
ing of the effects CPPs have on CQAs is essential. These
effects can be complicated and may need many rounds
of trial and error before arriving at a desirable protocol.

Data analysis can help understand these effects in two
ways (1) to improve its validity by learning a model to
describe the effects [24], and (2) to expedite the trial-
and-error process by optimizing the design of experi-
ments to reduce the number of needed experiments, for
example, by fractional factorial designs, to reach a robust
understanding of the relationship between CQAs and
CPPs [3].
www.sciencedirect.com
Data analysis
Most modeling and monitoring tasks in cell
manufacturing can be represented as a standard super-
vised learning problem. More specifically, for process
control,wehave input variables xi, denoting the collection
of CPPs for the ith experiment. Meanwhile, we denote yi
the corresponding CQAs of interest, for example, VCC.

The goal of data analysis is to find an inputeoutput rela-
tionship yð ,Þ that best fits the dataset fxi; yigni¼1:

yi ¼ yðxiÞ þ ei (1)

Here, ei is the measurement error of ith experiment

often assumed independently and identically drawn
from some pre-specified distribution. Thanks to the
development of machine learning, there are R/Python
packages available. Many of them also leverage cloud
computing platforms, including Amazon AWS and
Microsoft Azura.
Adaptive data analysis
The modeling method in Section 2 introduces an
assumption that the whole data set fxi; yigni¼1 is governed
by the same underlying relationship yð ,Þ. As discussed
Current Opinion in Biomedical Engineering 2021, 20:100351
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Table 1

Pros and cons for the three proposed adaptive data analysis
methods.

Methods Advantage Disadvantage

Multi-task learning Easy to implement for
complex data

Require many
donors

Bayesian latent
variable model

Provide uncertainty
quantification

High computational
cost

Representation
learning

Easy to leverage
patient’s records

Difficult to interpret
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earlier, this assumption is often invalid in cell
manufacturing applications because of the vast difference
in the initial culturing material from different donors.

To this end, we believe a future direction would be
adaptive models to the specific donor, thereby achieving
better monitoring procedures and higher quality cell
products. We call this ‘adaptive data analysis.’ More

specifically, using the same notation in Section 2, we
model the collected dataset fxi; yigni¼1 via different
models ykð ,Þ:

yi ¼ ykðxiÞ þ ei (2)

Here, note that we use k ¼ 1;/;K to denote different
donors and i ¼ 1;/; n to denote n > K data points
collected from the K donors. Furthermore, let nk denote
the amount of data from donor k, and obviously n ¼
n1 þ/þ nK .

One naı̈ve work-around is to fit separate models, ykð ,Þ
for the donor k using the data from the specific donor, via
similar methods reviewed in Section 2 [25]. However,
this strategy may not be helpful in many applications for
two reasons. First, the amount of data nkcorresponding
to the donor k might be smaller than the dimension of
the input data, leading to poor predictive performance.
Second and perhaps more importantly, in future appli-
cations, we will use our model for the new donors,
denoted as, say kþ 1, whose inputeoutput relationship
ykþ1ð ,Þ is yet to be obtained.

One way to address the above issues is to rewrite the
model (Equation (2)) via an additional variable sk:

yi ¼ ykðxiÞþ ei ¼ gðxi; skÞ þ ei (3)

Here, the sk is donor-specific features, that is, a collec-
tion of the donor’s information to differentiate him/her
from other donors best. Intuitively speaking, sk can
reflect the historical disease status, age, and even the
genetic material of the donor k.

The key idea behind the proposed adaptive model
(Equation (3)) is that we use a donor-specific variable sk
to exploit the specific aspect of different donors while
using a universal model gð ,Þ to explore the similarity of
the whole population to ensure a reasonable data
amount for mining. While a latent variable sk is intro-
duced, it may not lead to overfitting. This is because we
can now use all data for model fitting rather than nK data
for the patient k:

Now suppose we have two donors, A and B. For simplicity,

we suppose A and B are twins while having different
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lifestyles and dietary habits. As a result, their cells behave
differently in ex vivo culturing processes. Adaptive data
analysis allows the manufacturer to process the massive
donor-specific data collected from the two donors and
their cells and arrive at different culturing protocols for
each, e.g., different glucose levels and harvest time. The
protocols are optimized for each donor to ensure high
product quality, for example, cell count and viability, and

all protocols are also optimized as a whole to ensure
consistency between different batches.

We present three approaches (Table 1) to adopting the
adaptive model (Equation (3)) in therapeutic cell
manufacturing, with inspiration from the modern ma-
chine learning literature.

Multi-task learning
The first category of approaches uses the multi-task
learning methods in the machine learning literature
[26,27], which directly works on Equation (2). Here,
each ‘task’ is to learn the model ykð ,Þ for the patient k:
The key idea of multi-task learning methods is to

assume a particular connection between the different
tasks ykð ,Þ and then try to learn them together with the
whole data set.

The simplest way to implement the multi-task learning
idea is described in the following [28]. We first assume
each donor is the same (i.e. the problem goes back to
Equation (1)) and use a neural network to parametrize
yð ,Þ. With this assumption, we can use the complete
data fxi; yigni¼1 to train the neural network and obtain a
model byð ,Þ. Then, for the specific donor k, we will use

the corresponding small data of size nk to fine-tune this
byð ,Þ and obtain bykð ,Þ. Note that in practice, we would
select neural network architecture according to the total
data size n. For effective fine-tuning, we often fix most
of the neural network parameters and only change a
small subset (e.g. the last layer).

Some more sophisticated multi-task learning methods
in the literature may be promising in practical cell
manufacturing cases. For example, the model-agnostic
meta-learning method can scale to an extensive data
www.sciencedirect.com
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set incorporating complex patient information [29];
cross-stitch networks are explicitly developed for image
inputs, including computed tomography images of the
donor and the microscopic cell images [30]; Hawkes
relational meta-learning method can capture and
leverage the underlying mixed-community patterns of
the donors [31]; there are also non-neuralebased
models for better interpretability and provide uncer-

tainty quantification [32e34]. It is noteworthy that
most of those methods require many tasks, which means
hundreds or thousands of donors in therapeutic cell
manufacturing cases, which may pose a challenge to
research in small laboratories.

Bayesian latent variable model
The second category of approaches is Bayesian latent
variable models. Note that the critical challenge in
Equation (3) is that the feature for the donor sk can be
complicated and high-dimensional. Therefore, we
introduce latent variables lk ¼ lðskÞ and lk is a much
lower-dimensional variable, that is, 1D or 2D, in prac-
tice. With latent variable lk, we can rewrite the model

(3) in the following hierartical Bayesian flavor and assign
some priors:

lð , Þwpl ; gð , Þwpg ; eiwpe; lk ¼ lðskÞ; yi ¼ gðxi; lkÞ þ ei

Here, pl ;pg ;pe denote the priors of different model
aspects, specified according to prior knowledge. For
functions lð ,Þ and gð ,Þ, one can assume some para-
metric form similar to Bayesian linear regression [35] or
directly use nonparametric priors, for example, Gaussian
process [36]. For error ei, a typical way is to assume they
are independently drawn from a zero-mean Gaussian
distribution. Finally, the parameter estimation can be
conducted via the maximum a posteriori method for
efficiency or Markov chain Monte Carlo methods for a
complete account of uncertainty [37].

We would like to highlight one work in the literature
that adopts this idea [21]. In this work, the authors
model the donor-specific features as a calibration
parameter for the uniqueness of the donor. They then
use multiple biosensors to infer the underlying calibra-
tion parameter for the donor. Finally, they use the esti-
mated model to recover the viable cell concentration for
cell manufacturing monitoring and scale-up.

The advantage of the Bayesian latent variable model for

cell manufacturing applications is twofold. First, it can
naturally provide the quantification of uncertainty
associated with the prediction. In biomedical applica-
tions, this uncertainty quantification can be as impor-
tant as the prediction itself. Second, the latent value lk
provides information of different donors, which also
www.sciencedirect.com
applies to downstream applications, including matching
the donor with donees.

There are also implications related to the Bayesian
latent variable models. First, the Markov chain Monte
Carlo method for parameter estimation is well-known
for its high computational cost. This is particularly
true when the latent dimension is high, that is, we have

rich historical information of each donor. Therefore,
many recent works leverage a more scalable expectation
propagation [38] or variational inference methods [39].
In this way, the parameter estimation time can be
reduced to less than 1 h, which is acceptable compared
with days of culturing practice. Second, those methods
require proper prior specifications to achieve a reliable
model estimation. Such a prior specification usually le-
verages the domain-specific knowledge, and it might not
be easy as the knowledge is often lacking in cell
manufacturing applications. If no prior knowledge is

available, normal distributions can be used.
Representation learning
Another approach is deep representation learning

[40,41], which can also be viewed as a deep learning
extension of the Bayesian latent variable model
discussed earlier. Similarly, the idea is to find some
variables lk ¼ lðskÞ for each donor. However, instead of
using a hierartical Bayesian model, the representation
learning method seeks to find the embedding by
constructing an additional learning task. This additional
learning task often leverages the patient’s pathological
features and historical disease records. Intuitively
speaking, when conducting learning of this task, we can
group the similar donors close together and separate

those not similar. This additional learning task should be
constructed on a case-by-case basis, with the available
information of the donors at hand.

A straightforward way for a new task is to cluster the
donors into J different groups, using the age, race, and
also the historical disease course of the donors. We can
then assign the same variables lk ¼ ej for the donors in
the group j, where ej ¼ ½0;/; 0; 1; 0;/; 0� is one of the
basis vectors of the J-dim space. In this way, the in-
group distances are always zero, while the between-

group distances are
ffiffiffi
2

p
.

Some more sophisticated representation learning
methods in the literature may also apply to cell
manufacturing. For example, generative adversarial
networks can be used to extract information from images
[42], generative invertible networks can further provide
a bidirectional mapping that appears to preserve path-
ological meaning [43], and some works mask a part of
each datum and use the remaining input to predict the
masked value [44].
Current Opinion in Biomedical Engineering 2021, 20:100351
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Conclusion
Donor-to-donor variability is intrinsic in therapeutic cell

manufacturing and an inevitable challenge. Recent
research has partially addressed this challenge, which is
plausible but insufficient. An emerging sub-field in data
analysis research d adaptive data analysis d can be a
potentially effective solution. An adaptive data analysis
framework can adapt to the inherent variability and
provide case- or patient-specific guidelines for the
manufacturing process. The key idea of adaptive data
analysis is to use specific models for each donor. Multi-
task learning, Bayesian latent variable modeling, and
representation learning are three potent candidates for

finding donor-specific models. Multi-task learning as-
sumes a particular connection between the different
models and treats those models together as a whole
learning task. Bayesian latent variable modeling tries to
simplify the relationship between the donor-specific
models by finding latent variables. Representation
learning extends Bayesian latent variable learning with
an additional learning task that groups similar donors.
These adaptive data analysis methods can potentially
improve the robustness and scalability of therapeutic
cell manufacturing processes. In conclusion, adaptive

data analysis with applications to therapeutic cell
manufacturing is a promising research direction full of
opportunities and in urgent need.
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