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Abstract

Single-cell tools have dramatically transformed the life sci-
ences; concurrently, autologous and allogeneic immune cell
therapies have recently entered the clinic. Here, we discuss
methods, applications, and considerations for single-cell
technologies in the context of immune cell manufacturing.
Molecular heterogeneity can be profiled at the level of the
genome, epigenome, transcriptome, proteome, metabolome,
and antigen receptor repertoire in isolation or tandem through
multiomic approaches. Such data provides a detailed charac-
terization of heterogeneity within cell products and can be
linked to potency readouts and clinical data, with the ultimate
goal of identifying critical quality attributes to predict patient
outcomes. Non-destructive approaches hold promise for
monitoring cell state and analyzing the impacts of genetic
modifications within engineered products. Destructive omics
approaches could be combined with non-destructive technol-
ogies to predict therapeutic potency. These technologies are
poised to redefine cell manufacturing toward rapid, cost-
effective, and high-throughput methods to detect and respond
to dynamic cell states.
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Introduction
Engineered immune cell products are a promising
frontier in cancer immunotherapy, with an explosion

of candidates recently entering clinical trials [1].
Adoptive T cell therapies, including chimeric antigen
receptor (CAR) T cell therapies, have enjoyed
particular success; there are over 800 active CAR T
trials worldwide [2], and 5 products are now approved
in the US [3]. More nascent immune cell products,
including CAR-NK [3] and CAR-Macrophage [4]
cells, as well as fourth-generation T cell products
(e.g., TRUCKS [5]), are also achieving increased in-
terest and momentum in clinical trials. However,
engineered immune cell products remain heteroge-

neous in quality and phenotype, making patient
outcomes difficult to predict. Immune cell hetero-
geneity refers to diversity in characteristics, including
activation, memory acquisition, and exhaustion, which
have historically been defined by protein biomarkers
[6,7]. However, so-called ‘canonical’ subsets don’t
capture all clinically relevant cell states, and indi-
vidual subsets may have functional variation. There-
fore, new approaches are needed to comprehensively
define the cellular and molecular heterogeneity of
engineered immune cell products and determine

which critical quality attributes (CQAs) best predict
potency [8].

In recent years, a parallel explosion of single-cell
technologies has emerged to assay cellular and mo-
lecular characteristics. Given the diversity and plas-
ticity of cellular phenotypes, single-cell assays are a
valuable tool to understand heterogeneous cell popu-
lations at high resolution. While a comprehensive
summary of single-cell technologies [7,9] is beyond
the scope of this article, we highlight tools developed

within the last five years to assay six facets of molec-
ular heterogeneity within immune cells: (1) the
genome, (2) the epigenome, (3) the transcriptome,
(4) the proteome, (5) the metabolome, and (6) the
antigen receptor repertoire (Figure 1, Table 1). We
follow this technology summary with a discussion of
specific considerations and applications in a cell
manufacturing context. For the purposes of this
review, we will focus on therapeutics such as (CAR) T
and Natural Killer (NK) cell therapies.
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Acronyms
CAR Chimeric antigen receptor

CQA Critical quality attribute

NK Natural killer

CRS Cytokine release syndrome

SNP Single nucleotide polymorphism

scDNA-seq Single-cell DNA sequencing

LiRA Linked-read analysis

SCI-seq Single-cell combinatorial indexed sequencing

scATAC-seq Single-cell assay for transposase-accessible chromatin

sequencing

scBS-seq Single-cell bisulfite sequencing

sci-MET Single-cell combinatorial indexing for methylation

analysis

scRNA-seq Single-cell RNA sequencing

TCR Tcell receptor

Th2 T Helper 2

CyTOF Cytometry by time-of-flight

MS Mass spectrometry

NMR Nuclear magnetic resonance

MALDI-MSI Matrix-assisted laser desorption/ionization-mass

spectrometry imaging

T-ATAC-seq Transcript-indexed assay for transposase-accessible

chromatin sequencing

CITE-seq Cellular indexing of transcriptomes and epitopes by

sequencing

REAP-seq RNA expression and protein sequencing assay

PLAYR Proximity ligation assay for RNA

scM&T-seq Single-cell methylome and transcriptome sequencing

sci-CAR Single-cell combinatorial indexing of chromatin

accessibility and mRNA

CRISPR Clustered regularly-interspaced short palindromic

repeats

GVHD Graft-versus-host disease

CRISP-Seq Clustered regularly interspaced short palindromic

(repeats)/(RNA)-sequencing

CROP-Seq CRISPR droplet sequencing

dscATAC-seq Droplet single-cell assay for transposase-accessible

chromatin using sequencing

dsciATAC-seq Droplet single-cell assay with combinatorial indexing

for transposase-accessible chromatin using sequencing;

indrops, indexing droplets

HDST High-definition spatial transcriptomics

scNT-seq New RNA tagging sequencing

SERS Surface-enhanced Raman scattering

EHR Electronic health record
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Cellular and molecular heterogeneity
Genome
To consider heterogeneity, we begin with the genome.
Genomic diversity is a major factor in predictive medi-
cine, particularly for identifying patient-specific
genomic biomarkers to predict outcomes [10]. This
problem is magnified in the context of immune cell
therapies, as a patient’s genetic background informs

both their response to the therapeutic and how the
product itself will behave after manipulation ex vivo.
Genomic predispositions may influence the likelihood
of severe cytokine release syndrome after CAR T cell
therapy, as they can affect a patient’s cytokine secretion
levels [11]. Furthermore, specific mutations occurring
during gene transfer can drive unique in vivo behaviors
for particular CAR T cell clones. One notable case
involved complete remission for a patient in which a
single CAR T cell clone harbored a gene disruption
during viral gene transfer, which combined with the

patient’s background genotype, disrupted both alleles of
the TET2 locus [12]. Loss of TET2 expression caused
the clone to expand to dominate the patient’s CAR T
fraction, demonstrating the impact of a single mutation
on a product’s success. While lucky for the patient in
question, this case highlights the need to monitor
engineered cell products for acquired deleterious mu-
tations, which could cause insertional oncogenesis and
other severe consequences. Tracking genomic modifi-
cations at the single-cell level could therefore be
essential to understand the efficacy and safety of ther-

apeutic products.

Recent advances in single-cell genomic analyses
[13,14] have achieved high coverage, uniform
Current Opinion in Biomedical Engineering 2021, 20:100343
amplification, and successful identification of single
nucleotide polymorphisms while decreasing monetary
cost. Single-cell DNA sequencing (scDNA-seq) ap-

proaches, such as linked-read analysis (LiRA) have
allowed true genomic heterogeneity to be defined at
the single-cell level while avoiding the propagation of
single nucleotide errors during analysis [15]. While
whole-genome sequencing remains costly for routine
use, these technologies are expected to become
increasingly cost-effective and integrate into standard
biomanufacturing workflows [16]. Methods to simul-
taneously profile thousands of cells in parallel
(e.g., single-cell combinatorial indexed sequencing
(SCI-seq) [17]) offer the potential to assess known loci

of interest in engineered cell products while capturing
diversity from a large enough portion of the cell product
to identify expansion events indicative of specific
clones with enhanced proliferation. Such tools could
capture known predictive biomarkers for clinical out-
comes and analyze parameters such as copy number
variation in products featuring integrated transgenes
(e.g., CARTcells). In addition, they could be leveraged
to monitor the effects of genome editors on engineered
immune cell products. For CRISPR-based technolo-
gies, in particular, off-target edits or chromosomal

translocations after multiple edits are a critical
parameter to monitor to ensure patient safety, as well as
unintended on-target modifications (e.g., large on-
target deletions) [18]. Many off-targets can be
predicted in silico or through non-biased whole-genome
assays to profile guide RNA targeting fidelity. scDNA-
seq approaches could therefore be used to more
deeply probe the frequency of off-target edits at
www.sciencedirect.com

www.sciencedirect.com/science/journal/24684511


Figure 1

Cellular and molecular heterogeneity within engineered immune cells. Single-cell omics technologies can be used to characterize the cellular and
molecular heterogeneity of engineered immune cell products by profiling the genome, epigenome, transcriptome, proteome, metabolome, antigen
receptor repertoire, or a combination thereof.
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defined loci, an important step toward ensuring patient
safety.

Certain limitations must be considered when applying

any scDNA-seq approach. In addition to the overall high
cost of whole genome amplification, the amplification
and library preparation process introduces errors and
biases that can be difficult to distinguish from the true
signal. For instance, read counts may be distorted by
preferential amplification of one allele over another.
Entire alleles or sites may also fail to amplify, further
biasing results [14]. Approaches to address these chal-
lenges may be limited to certain genomic features. For
example, LiRA relies on the proximity of heterozygous
germline single nucleotide polymorphisms (SNPs) to

identify acquired single nucleotide variations, while
SCI-seq is designed specifically to identify copy number
variants. Different amplification methods (e.g., PCR-
based vs multiple displacement amplification) can also
be applied in the context of certain genomic features to
balance the need for uniform coverage with high fidelity
amplification [14]. Finally, additional methods are
www.sciencedirect.com
needed to track other forms of genomic variation at the
single-cell level, including insertions and deletions
(indels) and large deletions or translocations [19,20]
produced during gene editing.

Epigenome
After considering underlying genomic diversity, we
move to a level of molecular organization at larger length
scales: the epigenome. The epigenome describes the
collective chemical modifications and proteins that
interact with the human genome to regulate gene
expression, including chromatin state, histone or
nucleotide modifications, and histone variant exchanges
[21]. Epigenetic modifications provide the information
to establish a cell’s functional identity and, therefore,
directly mediate cell plasticity; these modifications have
implications for the potency of heterogeneous engi-

neered immune cell products at varied differentiation
states. Epigenomic footprints have been associated with
immune cell states, including T cell memory [22] and
exhaustion [23,24], which correlate with clinical out-
comes [25,26].
Current Opinion in Biomedical Engineering 2021, 20:100343
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Table 1

Technologies to assay single-cell molecular heterogeneity. We include selected methods developed within the last five years to
profile the genome, epigenome, transcriptome, proteome, metabolome, and antigen receptor repertoire within single cells. While many
omics-based approaches are destructive, there is an increasing trend toward developing non-destructive methods to profile cellular
heterogeneity.

Cellular/Molecular
Characteristic

Technology Destructive? Reference

Genome scDNA-seq Yes Reviewed in (Gawad et al. 2016,
Lähnemann et al. 2020)

LiRA Yes Bohrson et al. 2019
SCI-seq Yes Vitak et al. 2017

Epigenome scATAC-seq Yes Mezger et al. 2018
dscATAC-seq Yes Lareau et al. 2019
dsciATAC-seq Yes Lareau et al. 2019
scBS-seq Yes Clark et al. 2017
sci-MET Yes Mulqueen et al. 2018

Transcriptome Drop-seq Yes Macosko et al. 2015
inDrops Yes Zilionis et al. 2017
Chromium next GEM (30 and 50) Yes Zheng et al. 2017 (10X Genomics)
Spatial transcriptomics Yes Stahl et al. 2016
Slide-Seq Yes Rodriques et al. 2019
HDST Yes Vickovic et al. 2019
scNT-seq Yes Qiu et al. 2019

Proteome CyTOF Yes Gadalla et al. 2019
Spectral flow cytometry Yes Park et al. 2020
Abseq [47] Yes Shahi et al. 2017

Metabolome MALDI-mass spectrometry Yes Dueñas et al. 2017
SERS No Sun et al. 2019
In-cell NMR No Luchinat et al. 2020

Antigen Receptor
Repertoire

T-ATAC-seq Yes Satpathy et al. 2018
Chromium single-cell immune profiling [92] Yes Fritz et al. 2017

Multiomic Approaches CITE-seq (RNA/protein) Yes Stoeckius et al. 2017
REAP-seq (RNA/protein) Yes Peterson et al. 2017
PLAYR (RNA/protein) Yes Frei et al. 2016
scM&T-seq Yes Angermueller et al. 2016
sciCAR Yes Cao et al. 2018
T-ATAC-seq Yes Satpathy et al. 2018

Other non-destructive
approaches

Optical metabolic imaging No Walsh et al. 2020
Holographic microscopy/optical d
iffraction tomography

No Hejna et al. 2017
Nygate et al. 2020
Lee et al. 2020

Nanostraw intracellular sampling No Cao et al. 2017

4 Molecular & Cellular Eng: Cell and Gene Therapy Manufacturing
Recently, single-cell epigenomic technologies have
developed unprecedented throughput and resolution.

Commercial systems for assay for transposase-accessible
chromatin using sequencing (scATAC-seq), notably
from 10X Genomics, have recently been widely avail-
able. Lareau et al. [27] described a droplet
microfluidics-based method to perform scATAC-seq on
a massive scale by superloading beads into a conven-
tional droplet-based microfluidic system, enabling
simultaneous profiling of hundreds of thousands of cells.
As with advances in scDNA-seq [17], this dramatic in-
crease in throughput improves the resolution at which
distinct epigenetic states can be detected within a cell

product. Chromatin state data from scATAC-seq can be
corroborated with other assays, such as single-cell
bisulfite sequencing (scBS-seq) or single-cell combina-
torial indexing (sci-MET) for DNAmethylation [28,29].
Single-cell epigenomic analysis has notably been applied
at scale to assess regulatory elements during immune
Current Opinion in Biomedical Engineering 2021, 20:100343
cell development and tumor penetrance [30]; such data
could inform as-yeteundefined cell differentiation

profiles encountered after genetic manipulation during
the manufacturing process and provide key insights into
epigenetic profiles that correlate with patient outcomes.

As with single-cell DNA sequencing approaches,
single-cell epigenomic technologies are limited by
costs, data sparsity, and noise [31]. scATAC-seq, which
relies on DNA accessibility, relies on only two copies of
a given locus per cell. Only 1e10% of expected acces-
sible peaks per cell can generally be expressed in
scATAC-seq datasets, a capture rate far lower than

scRNA-seq approaches that may recover 10e45% of
expressed genes in a given cell [32]. This sparsity can
make it difficult to assess variability between cells and
can complicate the biological interpretation of signifi-
cant features. Open questions include differential
chromatin accessibility between two alleles at a given
www.sciencedirect.com
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locus within a single cell and the total number of open
chromatin regions that can be selected from within a
cell [33]. New tools to increase coverage could address
these questions and may better inform the interpre-
tation of single-cell epigenomic datasets from thera-
peutic cell products.

Transcriptome
Single-cell transcriptomics has emerged as a landmark
technology throughout the biotech field. scRNA-seq
workflows typically involve droplet-based isolation of

single cells, cDNA amplification of the transcriptome,
cDNA barcoding, and sequencing. Common methods
include Drop-seq [34] and InDrops [35], as well as the
commercial 30 and 5’ Chromium Next GEM Solutions
from 10X Genomics [36]. As with scDNA-seq and
scATAC-seq, the scRNA-seq technology landscape is
moving toward high-throughput solutions, including
new modalities featuring spatial [37e39] and temporal
[40] resolution to establish the in situ position or rate of
RNA biogenesis.

scRNA-seq is increasingly being applied in the context
of engineered immune cell therapies in the clinic.
Recently, single-cell transcriptomes for 101,326 single
cells were generated for 12 pediatric patients with acute
lymphoblastic leukemia after in vitro stimulation with
either a CAR-specific antigen or a TCR-mediated acti-
vation control [41]. Notably, activation states after CAR
stimulation were highly heterogeneous, and relapse
events correlated with patients that demonstrated de-
ficiencies in the Th2 compartment of the cell product.
This result highlights the potential for scRNA-seq to

predict clinical outcomes through omics-level assess-
ment of active gene expression within the therapeutic
product. The high cost of scRNA-seq remains a barrier
to use as a routine assay for cell products; however, the
breadth and depth of information about cell state offers
significant advantages in defining the heterogeneity of
the product.

As with other single-cell omics datasets, sparsity remains
a limitation in scRNA-seq approaches, although this can
be addressed, to some extent, by increasing sequencing

depth. Computational methods to ‘impute’ missing
values resulting from data sparsity include model-based
methods to distinguish technical and biological zeros
and data-smoothing to define and adjust ‘similar’ cells to
one another among other approaches [14]. Imputation
can cause inherent biases within a dataset resulting in
false positives, and quantification of error remains a key
challenge within the field [14]. Other open problems
include the development of standardized methods to
identify and annotate cell types, as manual cluster
annotation can be subjective and inconsistent. Cell

atlases [42] are being developed to meet this need,
although they are currently limited by low granularity for
www.sciencedirect.com
some tissue samples. Furthermore, ex vivo engineered
cell products may not always match in vivo-derived
reference maps.

Proteome
Single-cell proteomics is rapidly developing in concert
with single-cell epigenomics and transcriptomics to
characterize cell state and function. Flow cytometry has
long been the dominant single-cell immune protein
assay but has historically been limited by the total
number of fluorophores that can be multiplexed

(recently, 17e28 colors [43,44]). Two new technologies
have significantly expanded the capacity to multiplex
flow-based protein detection. The first, time-of-flight
mass cytometry (CyTOF) uses an atomic mass cytom-
eter to detect antibodies conjugated to heavy metal
isotopes, and can simultaneously detect 40þ immuno-
phenotyping markers [45]. A second technology, spec-
tral flow cytometry, recently emerged as an alternative
strategy. While spectral flow relies on fluorophore-
conjugated antibodies for protein detection, individual
fluorescent spectra can be demultiplexed from one

another by capturing the entire emission spectrum
rather than single peaks. This allows colors that tradi-
tionally overlap to be used together, and 40þ marker
panels have been developed for immune cell subsets
[46]. Other multiplexed assays to detect low abundance
molecules include Abseq, a droplet microfluidics-based
tool that relies on DNA barcode-conjugated antibodies
to identify specific proteins [47]. While the throughput
of a given Abseq experiment (10,000 cells) is lower than
flow-based approaches (millions of cells), Abseq can be
used to detect more distinct cell barcodes and could, in

theory, be used to probe the entire proteome. In a cell
manufacturing context, these techniques can be used to
monitor cell ID within the engineered product before
infusion, especially given recent data identifying corre-
lations between specific protein biomarkers for T cell
memory and/or exhaustion, helper T cell subsets, and
clinical outcomes [25,26,41]. Such proteomic studies
are all limited by the availability of different antibodies
and conjugates; hence, these experiments tend to be
restricted to expected phenotypes [9].

Metabolome
While protein-level data are critical for defining cell

subsets, some cell behaviors can be captured most
accurately by assaying for small molecules associated
with various metabolic states. Mass spectrometry (MS)
and nuclear magnetic resonance (NMR) are two domi-
nant approaches to profile metabolites. Single-cell MS
has gained particular popularity in recent years [48].
Analytes are sampled from individual cells via ion-beam
or laser, and high levels of spatial resolution can be
achieved at the subcellular level with methods, such as
3D MALDI-mass spectrometry imaging (MSI) [49].
These analytes can be profiled for lipids, amino acids,
Current Opinion in Biomedical Engineering 2021, 20:100343
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sugars, and other compounds that inform the specific
metabolic programs in use at the time of sampling,
providing insights into the dynamic metabolic behavior
of engineered immune cell products. For instance, many
clinically relevant T cell differentiation states and be-
haviors have specific metabolic footprints, including
activation [50], memory [51,52] and exhaustion [53].
Small molecule metabolomic data can be used to

deconvolute these cell fates, particularly given that even
within an individual population (e.g., effector T cells or
exhausted Tcells), significant metabolic and functional
heterogeneity may exist that can not be easily identified
by protein biomarkers alone [54]. Furthermore, meta-
bolic shifts may actually drive changes in cell state [53];
as such, rapid metabolome feedback could anticipate
changes to cell fate before they are detectable with
other assays. Finally, unbiased single-cell metabolomic
approaches could provide a tool for identifying the
presence of rare clonal populations of elevated potency

[12] and are useful for establishing the overall metabolic
heterogeneity of a given product. Sample preparation
can limit the accuracy of single-cell studies, as the
removal of a cell from its native environment can disrupt
its metabolic profile. This disruption is a particular
challenge for microfluidic-based approaches. Further-
more, single-cell metabolic studies are complicated by
signal sensitivity, as the input material cannot be
amplified easily, in contrast to DNA- and RNA-based
omic studies [55].

Antigen receptor repertoire
In the context of immune cell therapies, a deep un-
derstanding of the varied effects of the antigen receptor
repertoire is critical. This is significant both for treat-
ments that rely on the activity of specific antigen re-
ceptors (e.g., adoptive T cell therapies [56]) and for
engineered products with integrated synthetic re-
ceptors (e.g., CAR T cells). For therapeutics relying on
endogenous TCRs, single-cell profiling has the obvious
use of defining the repertoire of antigen receptors pre-
sent within a given cell population. However, even in
therapeutics that do not rely on TCRs for tumor

targeting, antigen receptor information can provide in-
sights into the functionality of the product. For instance,
an open question in the field asks about interactions
between endogenous T cell receptors (TCRs) and
CARs, particularly the dynamics of memory formation
and T cell differentiation triggered by either TCR or
CAR-specific antigen stimulation [57,58]. The antigen
receptor repertoire also provides a unique tool to un-
derstand the fate and behaviors of specific immune cell
clones. While tracking cell fate often relies on invasive
tools (e.g., genomically-integrated cellular DNA barc-

odes [59]) to identify parent/daughter cells, the antigen
receptor repertoire offers a unique way to identify cells
within a population that originate from a parent clone.
This can be carried out either with a receptor-specific
Current Opinion in Biomedical Engineering 2021, 20:100343
antibody or through sequencing to identify mRNA
transcripts associated with specific TCRs [7]. Satpathy
et al. [60] developed T-ATAC-seq to link epigenomic
signatures with the TCR repertoire by combining
scATAC-seq with single-cell RNA amplification of the
TRA and TRB loci to capture TCR sequences. This
technique can currently profile only 96 cells per chip
and is therefore limited in its ability to detect rare Tcell

clones. Further advances in throughput will be needed
to fully leverage the potential for this technology to link
TCR-based lineage tracing to the epigenome. Com-
mercial solutions have also been developed to capture
the antigen repertoire with transcriptomic data by
sequencing mRNAs from the 5’ end in tandem with
TCR-specific primers to amplify those transcripts
separately [53]. These technologies offer important
advances to probe the effects of varied T cell receptors
on cell phenotype and tease apart heterogeneity asso-
ciated with clonal populations.

Multiomic integration
While the aforementioned techniques focus predomi-

nantly on the analysis of a single type of molecule, the
field is rapidly moving toward approaches that integrate
two or more types of molecular information, providing a
more comprehensive and unbiased snapshot of cellular
behavior [7]. These techniques include tools to simul-
taneously study the proteome/transcriptome (e.g.,
CITE-seq [61], REAP-seq [62], and PLAYR [63]), the
transcriptome/epigenome (e.g., scM&Tseq [64] and
sciCAR [65]), and the epigenome/antigen receptor
repertoire (e.g., T-ATAC-seq [60]). Multiomic ap-
proaches afford the capacity to track protein biomarkers

for specific immune cell compartments while simulta-
neously deconvoluting heterogeneity within these ‘ca-
nonical’ subsets. In addition, some key biomarkers
include splice isoforms such as CD45RA and CD45RO,
which have traditionally been used to distinguish naive,
memory, and effector T cell phenotypes. These dis-
tinctions are lost in most transcriptomic assays but
retained in single-cell protein/RNA workflows, which
can inform gene expression heterogeneity that would be
lost with protein-only studies. For instance, Corselli
et al. [66] identified plasticity in exhaustion and acti-

vation phenotypes within in vitro-stimulated T cell
populations by combining molecular cytometry (Abseq)
with targeted RNA profiling, highlighting the potential
for combinatorial approaches to classify cell subsets
within immune cell products.
Defining and monitoring quality attributes
CQAs are needed to define and standardize character-
istics of immune cell products that effectively and
consistently predict clinical success [8,67]. This task is
quite challenging, given the incredible diversity and
plasticity of cell types within a single product, not to
mention between patients. Previously, we discussed
www.sciencedirect.com
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mostly destructive methods to measure characteristics
of immune cells; however, there is an increasing focus on
the development of non-destructive single-cell tools to
assay cell behavior. These tools are useful because they
(1) are noninvasive and generally label-free and there-
fore less likely to perturb cell state, (2) can provide
spatiotemporal resolution into dynamic processes within
individual cells, and (3) leave assayed cells intact.

Technologies with these capabilities are positioned to
provide insights into cell functionality that can be used
to monitor and provide real-time feedback to inform
manufacturing.

Many non-destructive methods are well-suited to deep
learning approaches to classify cells [68e70], and these
data could potentially integrate with insights into CQAs
from destructive methods to identify and even select for
highly potent cells within the product. For instance,
Walsh et al. describe the use of non-destructive optical

imaging to classify T cell activation by measuring
endogenous autofluorescent properties of two metabolic
coenzymes, NADH and FAD, to describe their relative
concentrations and binding state within the cell,
thereby providing a ‘metabolic fingerprint’ that can be
used to classify T cell activation and memory. Other
tools to non-destructively capture metabolic informa-
tion include single-cell Raman spectroscopy [71,72] and
single-cell NMR spectroscopy, which can integrate into
a bioreactor design for real-time in-cell NMR [73].
Additional methods for non-destructive single-cell

analysis of cell behavior include optics-based tools, such
as holographic microscopy [74,75] and optical diffraction
tomography [70], which has been applied in the context
of CAR T cells to study immunological synapse dy-
namics. Finally, non-destructive nanostraw intracellular
sampling allows for longitudinal cell monitoring at the
subcellular level [76]. Together, these tools offer sig-
nificant promise to transform cell manufacturing para-
digms toward real-time, single-cell analyses during
manufacture that measure and respond to cellular het-
erogeneity at unprecedented levels.

To fully realize the potential of single-cell datasets to
define biologically and clinically relevant CQAs, machine
learning approaches have gained ground as tools to iden-
tify relevant signals for potency, toxicity, and other rele-
vant cell behaviors from massive omics datasets. Single-
cell omics datasets are ideally suited to machine learning
approaches for CQA discovery, given their high dimen-
sionality. Such tools require effective training datasets,
such as tissue samples from patients who did or did not
successfully respond to therapy, or batches of cells with
known in vitro measures of potency and other relevant

phenotypes. These tools can subsequently be used to
identify features of significance that predict desirable cell
states, with the goal of definingmanufacturing CQAs that
can predict therapeutic success. There is potential also to
apply machine learning approaches to electronic health
www.sciencedirect.com
records to further link cell quality to single-cell molecular
profiles, and ultimately, patient outcomes [77].
Monitoring genome modifications
Gene transfer itself is a source of heterogeneity, as all
methods are inefficient or imprecise to some extent.
Genome modifications may be targeted, as in precise
CRISPR/Cas9 engineering strategies [18,78], or untar-
geted, as is the case for most virally-transduced cells
with integrated CAR transgenes [79]. A key consider-
ation for any single-cell workflow involving a gene-
edited product is the ability to identify said edits within

individual cells, to (1) distinguish edited versus uned-
ited cells and (2) classify the edit sequence and locus.
Virally-manufactured CAR T cells can have significant
heterogeneity in CAR copy number and CAR integra-
tion sites, two features that affect the functionality of
individual cells and which should be monitored and
controlled where possible. Studies have already indi-
cated the potential for CRISPR-edited CAR T cells to
achieve elevated potency [80]; as these therapeutics
enter the clinic [18], we expect to see a focus on
profiling and characterizing the dynamic effects of gene

edits on the product. These considerations are also
highly relevant in the context of allogeneic cell-based
therapies, which generally require disruption of the
TRAC and B2M loci to avoid graft-versus-host dis-
ease [81]. To verify the safety and purity of gene-edited
allogeneic products, selection and monitoring strategies
are required to confirm that all cells within the product
have the desired edit. Single-cell methods could greatly
augment these workflows.

To date, although new methods to link genotypes to

transcriptional phenotypes are gaining speed, strategies
for tracking CRISPR and other gene-edits within single-
cell datasets are nascent [82]. In the case of integrated
transgenes with adequate sequence diversity relative to
the human genome, gene-edited cells can be tracked by
aligning scRNA-seq sequence reads to a custom refer-
ence genome featuring an added sequence for the
transgene of interest [83]. Other notable methods to
link genotype to phenotype include Perturb-seq
[84,85], CRISP-seq [86], and CROP-seq [87] to iden-
tify cells featuring specific guide RNAs. These methods

are limited in a clinical context as they (a) require
lentiviral integration of barcoded guide RNAs to identify
gene-edited cells and (b) do not provide sequence-
specific information about mutations. We expect sig-
nificant development in this area, as gene-editing
workflows integrate with multiomic single-cell strate-
gies to analyze gene-edited cell products.
Human clinical trial data
The end goal of many studies in this field is to inform
clinical treatment. Datasets from clinical studies
emerging over the last decade highlight the potential
Current Opinion in Biomedical Engineering 2021, 20:100343

www.sciencedirect.com/science/journal/24684511


Figure 2

Integrating multiomic and non-destructive single-cell assays to identify critical quality attributes and predict the potency of engineered
immune cell therapies. (i) Engineered immune cell products are heterogeneous and reflect dynamic and plastic processes that determine cell
behavior. (ii) Single-cell omics-based assays are used to identify the breadth of molecular heterogeneity within engineered cell products, which could
inform clinically relevant cell states. (iii) In vitro and in vivo potency assays provide pre-clinical potency indicators that can be linked to single-cell omics
datasets to predict signatures associated with potency. (iv) Clinical data can be linked with molecular information captured from the infusion product and
from patient samples collected during and after treatment to establish signatures associated with positive and negative patient outcomes. (v) Single-cell
signatures captured by label-free, non-destructive assays can be used to predict the potency of individual cells within a product and could integrate into
biomanufacturing workflows for real-time, in-line sensing of dynamic cellular processes.
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for single-cell technologies to enhance the predictive
potential for individual therapeutics. For instance, Bai
et al. [41] studied the infusion products of 12 pediatric
Current Opinion in Biomedical Engineering 2021, 20:100343
patients with leukemia upon CAR antigen-specific
stimulation in vitro and demonstrated heterogeneity
in activation and T-cell memory subsets that predicted
www.sciencedirect.com
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patient outcomes. In another study, Li et al. [88]
leveraged scRNA-seq to evaluate CAR T cells from a
patient with primary plasma cell leukemia from both
the pre-infusion product and in vivo samples captured
at the peak and remission phases of treatment,
demonstrating distinct cell states for each phase. In a
third approach, Parker et al. [89] leveraged scRNA-seq
datasets from the human brain to identify a population

of mural cells that express CD19, the target antigen for
several patients who experienced severe or fatal
neurotoxicity because of cerebral edema after therapy.
Mural cells surround the endothelium and protect the
bloodebrain barrier; thus, we see an example of how
scRNA-seq can be used to pinpoint the mechanism by
which treatment likely caused an adverse response.
These and other examples highlight the potential for
single-cell approaches to tackle challenges associated
with cellular heterogeneity within both product and
patient to better understand the dynamics of remission

and relapse.
Outlook
In addition to the recent expansion of methods to profile
various classes of biomolecules at the single-cell level,

there has been a similar explosion of analysis techniques
to accompany these datasets. The sheer scope of new
analytical techniques requires parallel efforts to sys-
tematically benchmark these methods against one
another to determine their relative use and limitations.
Such methods require baseline datasets with clear,
validated qualities d for instance, defined cell types
and expected genomic composition, which can produce
a chicken-and-egg problem. Several such datasets have
been generated by mixing known and well-characterized
cell lines at specific ratios with spike-in controls to
simulate biological noiset [90]. Further efforts in this

area could provide additional metrics to measure the
quality of various analytical tools, standardize data QC
pipelines, annotate cell types, and integrate data across
multiple experiments, among other tasks. In silico sim-
ulations can also be applied to benchmark data analysis
tools using defined, ground-truth model datasets [14].
Benchmarking efforts could assist with the challenge of
integrating data across multiomic efforts, which are
currently mostly limited to two classes of biomolecules
at a time. New methods will be needed to combine
three or more classes of biological information for indi-

vidual cells.

In sum, various technologies have now been developed
to profile the cellular and molecular heterogeneity of
single cells. Important considerations for their use in
cell manufacturing contexts include defining CQAs for
cell potency, tracking gene edits within engineered
cell populations, and informing clinical applications
(Figure 2). We expect a trend toward the use of single-
cell methods to identify and even select for highly
www.sciencedirect.com
potent cells within products, perhaps ultimately
allowing smaller and safer dosages of cells to achieve
equal or better patient outcomes. These methods may
reveal new engineering targets and strategies to drive
cells toward desirable states before infusion
(e.g., central memory T cells with increased persis-
tence in vivo). While routine use of single-cell tech-
nologies will need to balance with high costs in an

already expensive treatment paradigm [91], we expect
the field to move in this direction as assay costs
decrease and predictive insights for specific patient
outcomes improve. Many methods may ultimately
integrate directly into cell manufacturing workflows
through in-line sensing, as their use becomes standard.
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