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Abstract

The blood—brain barrier (BBB) regulates the transport of small
molecules, proteins, and cells between the bloodstream and
the central nervous system (CNS). Brain microvascular
endothelial cells work with other resident brain cell types,
including pericytes, astrocytes, neurons, and microglia, to form
the neurovascular unit (NVU) and maintain BBB integrity. The
restrictive barrier influences the pathogenesis of many CNS
diseases and impedes the delivery of neurotherapeutics into
the CNS. In vitro NVU models enable the discovery of complex
cell—cell interactions involved in human BBB pathophysiology
in diseases including Alzheimer’s disease, Parkinson’s dis-
ease, and viral infections of the brain. In vitro NVU models
have also been deployed to study the delivery of neuro-
therapeutics across the BBB, including small molecule drugs,
monoclonal antibodies, gene therapy vectors, and immune
cells. The high scalability, accessibility, and phenotype fidelity
of in vitro NVU models can facilitate the discovery and devel-
opment of effective neurotherapeutics.
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Abbreviations

BBB, blood—brain barrier; BMECs, brain microvascular endothelial
cells; CNS, central nervous system; NVU, neurovascular unit; AD,
Alzheimer’s disease; PD, Parkinson’s disease; CAR-T, chimeric antigen
receptor T cell; hPSC, human pluripotent stem cell; iPSC, induced
pluripotent stem cell; GBM, glioblastoma; mAb, monoclonal antibody;
RMT, receptor-mediated transcytosis; scFv, single-chain variable

fragment; AAV, Adeno-associated virus; AB, amyloid beta; CAA, cere-
bral amyloid angiopathy.

Introduction

The blood—brain barrier (BBB) is a dynamic interface
that resides between the bloodstream and the central
nervous system (CNS), facilitating CNS homeostasis.
BBB properties are largely a consequence of brain
endothelial cell characteristics that are regulated by
other cellular components of the neurovascular unit
(NVU), including pericytes embedded in the endothe-
lial basement membrane, astrocytes, neurons, and
perivascular macrophages [1]. In healthy individuals,
the BBB plays a pivotal role in protecting the CNS from
toxic substances via passive barriers and active trans-
porters, limiting the transport of many small molecules,
proteins, gene therapy vectors, and cells. However, in
the event of CNS diseases, the BBB not only contributes
to the pathogenesis of multiple CNS diseases but also
continues to provide a significant barrier for the delivery
of many neurotherapeutics. BBB dysfunction has been
shown to play a central role in several CNS diseases,
including multiple sclerosis, epilepsy, and stroke [2].
Although increased BBB permeability has also been
observed in Alzheimer’s disease (AD) and Parkinson’s
disease (PD), the role of the BBB in the pathogenesis of
these neurodegenerative diseases is not yet clear [3,4].
The BBB impedes delivery of neurotherapeutics as a
result of unique properties of brain microvascular
endothelial cells (BMECs). BMECs express tight junc-
tion proteins, which form continuous networks of tight
junction strands between adjacent BMEGs that greatly
reduce the paracellular transport of solutes. When
compared with peripheral endothelial cells, BMECs also
demonstrate lower levels of vesicular trafficking, which
restricts transcellular transport of solutes. The polarized
expression of efflux transporters, including P-glycopro-
tein, breast cancer resistance protein, multidrug resis-
tance proteins, on the luminal (blood) side of BMECs
further reduces the brain penetration of therapeutics
that are substrates of these transporters (Reviewed in
the study reported by Zlokovic [5]).

Recently, the emergence of a suite of new # vitro NVU
models provides researchers with pivotal tools to sys-
tematically study both neurotherapeutic delivery and
disease pathogenesis at the BBB in a well-defined,
scalable fashion. 7In wvitro NVU models are used to
screen for BBB-crossing neurotherapeutics and to
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identify strategies to improve neurotherapeutic trans-
port across the BBB [6]. Incorporation of multiple NVU
cell types in these models allows for simultaneous
screening of BBB penetration and therapeutic
efficacy, and permits elucidation of how different NVU
components regulate molecular transport. Moreover,
given the large species-to-species variation in BMEC
transporter expression profiles, the ability to incorporate
human cells in NVU models can help identify BBB de-
livery strategies that will translate to humans [7]. Iz vitro
NVU models are also used to study the blood-to-brain
and brain-to-blood trafficking of pathogenic sub-
stances, including toxic peptides and viruses, in disease
modeling. Finally, # vitro NVU models can also be
deployed to study the effects of disease-specific muta-
tions on the integrity of the BBB. In this review, we
explore the benefits and challenges of integrating i vitro
NVU models into the discovery of CNS disease mech-
anisms and the development of neurotherapeutic de-
livery methods.

Neurotherapeutic delivery across the
blood-brain barrier remains a significant
hurdle

Although certain low molecular weight lipophilic mole-
cules that are not substrates for efflux transport can
efficiently cross the BBB and enter the CNS, most other
therapeutics fail to cross the BBB and enter the brain in
therapeutic amounts. Improving brain penetrance of
new biologics and cell therapies to treat CNS
disorders is crucial for their successful clinical imple-
mentation. For example, recent clinical trials evaluating
gene therapy strategies to combat AD and PD all use
invasive delivery strategies, such as intrathecal
(NCT03186989, NCT03976349), intracisternal
(NCT03634007, NCT04127578), and direct intracere-
bral  delivery  (NCT00876863, NCT03065192,
NCT01621581) to bypass the BBB. The lack of an
established human BBB-crossing gene therapy delivery
system could therefore limit the clinical feasibility of
CNS gene therapy. As another example, the BBB has
limited the development of antibody therapies against
CNS disease targets. Although intravenously-infused
anti-amyloid monoclonal antibodies (mAbs) demon-
strate promise in reducing amyloid load in transgenic
AD mouse models, it is not clear whether the thera-
peutic effect can be translated to humans and whether
brain antibody penetrance or the peripheral sink effect
was the mechanism of action [8,9]. The extremely low
level of brain penetrance of most therapeutic antibodies
(~0.01% for the brain/plasma ratio [10]) contributes to
the need for high antibody dosage and the termination
of most AD antibody trials without successful outcomes
[11]. The BBB can also be a significant hurdle in
developing chimeric antigen receptor T cell (CAR-T)
products against brain tumors. Because only a subpop-
ulation of T'cells can cross the BBB, penetrance of CAR-

T products targeting brain tumors largely depends on
BBB inflammation status and BBB disruption at the
tumor sites, leading to variable treatment outcomes
[12,13]. Thus, with the BBB being a key obstacle to the
delivery of many therapeutics, it is essential to integrate
brain penetration strategies into the development of
neurotherapeutics. Meanwhile, the vast differences in
BBB structure and function between healthy and
diseased states call for the integration of both healthy
and diseased NVU models into the neurotherapeutic
development pipeline [2].

Cell sourcing and configurations of
neurovascular unit models

In vitro NVU models differ in the types, sources, and
geometric arrangement of NVU cells incorporated. Pri-
mary human and animal BMECs, immortalized human
BMECs (e.g. human cortical microvessels endothelial
cells/D3 (hCMEC/D3) cell line), and human pluripo-
tent stem cell (hPSC)-derived BMEC-like cells are
common endothelial cell sources. Recently, differences
in gene expression between BMECs of human and other
species have been described. Notably, the expressions of
ATP -binding cassette (ABC) transporters, solute carrier
(SLC) transporters, and several cell surface receptors
were shown to be significantly different in BMECs
isolated from different species (Reviewed in the study
reported by Aday et al. [14]). As these transporters and
surface receptors are involved in molecular trafficking
and efflux activities, developing i vitro NVU models
with human cells is likely to better predict molecular
transport at the human BBB. Each of the endothelial cell
sources has different advantages and disadvantages
related to BBB phenotypes, ease of access, and scal-
ability (Figure 1la). Although BMECs form the main
interface encountered by therapeutics crossing from the
bloodstream into the brain, other NVU cell types,
including pericytes, astrocytes, and neurons, play a
pivotal role in eliciting and regulating BBB characteris-
tics in BMECs. These other NVU cell types are typically
obtained from primary sources or differentiated from
hPSCs. (Figure 1b, Reviewed in the study reported by
Gastfriend et al. [15]).

A simple NVU model is the Transwell model, where
BMECs are seeded onto a semipermeable membrane
which divides the cell culture volume into a brain-
mimicking lower chamber where non-endothelial NVU
cell types are seeded and a blood-mimicking upper
chamber (Figure 1c). The Transwell model provides a
platform for rapidly screening bidirectional transport of
therapeutics across a BMEC monolayer [6]. Because the
Transwell system lacks physiologic flow which has been
shown to affect BBB transport phenotypes, several
microfluidic platforms now exist to incorporate fluid
flow into BBB modeling while still permitting relatively
straightforward assessment of permeability. Typically,
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Figure 1
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Summary of in vitro NVU models. (a) Common BMEC sources for in vitro NVU models and the general characteristics of these cell sources, including
accessibility, scalability, and fidelity of the BBB phenotypes such as barrier formation and similarity of transporter expression profile to that of in vivo human
BMECs, characterized as low (-), medium (-), or high (---). (b) Schematic of a cross-section of a brain capillary, showing the juxtaposition of an endothelial
cell, pericyte, astrocyte, and neuron forming the NVU. (¢) Common configurations of in vitro NVU models, including (i) Transwell model, (ii) microfluidic
model, and (jii) vascular assembloid model. BBB, blood—brain barrier; BMEC, brain microvascular endothelial cells; NVU, neurovascular unit.

BMEC:s are seeded in one microfluidic channel, whereas
other NVU cell types are seeded in a neighboring
channel separated by a hydrogel layer or a semiperme-
able membrane (Reviewed in the study reported by Katt
and Shusta [16]). Although microfluidic models often
incorporate more intimate cell contact and shear stress
modeling than that provided by Transwell systems,
there have also been efforts to better recapitulate the
three-dimensional (3D) arrangement of NVU cell types
in a microfluidic device. Notably, Vatine et al. [17]
assembled hPSC-derived BMEC-like cells into a hollow
vessel-like structure in one channel and seeded hPSC-
derived neural progenitors in a neighboring channel
separated by a laminin-coated, porous flexible PDMS
membrane, highlighting a more accurate NVU
morphology. NVU assembloid models have also been
described recently. For example, a spheroid model with
primary human astrocytes at the core and primary or
immortalized brain endothelial cells and pericytes
encasing the spheroid has been developed to identify
brain-penetrating agents [18]. Moreover, Blanchard
et al. [19] reconstructed a human NVU assembloid
model for disease modeling. Induced pluripotent stem
cell (iIPSC)-derived BMEC-like cells were encapsulated
in Matrigel with pericytes and astrocytes, leading to the
formation of a stable vascular-like network inside the
assembloid. Although assembloid NVU models can
mimic aspects of the iz vivo NVU structure, quantifying
molecular transport in these 3D assembloids can be

significantly more complex than in Transwell or micro-
fluidic models.

In vitro NVU models can facilitate
development of better delivery methods to
cross the blood—-brain barrier

Given the significant hurdle of therapeutic delivery
across the BBB and recent advancements in NVU
modeling, researchers have incorporated iz vitro NVU
models into the identification, development, and anal-
ysis of strategies for molecular and cellular delivery
across the BBB ('Iable 1).

Small molecule drugs

In vitro NVU models are useful for studying mechanisms
of druguptake and transport at the BBB. Theyalso enable
researchers to predict therapeutic penetrance of the BBB
and develop delivery strategies in an 7z vitro model before
moving to animal testing. For example, the blood vessel-
like microfluidic model described in the previous section
was used to determine the relative permeability of
colchicine, retigabine, and levetiracetam, suggesting that
microfluidic NVU models can be used to predict human
CNS drug penetrance [17]. In vitro Transwell NVU
models seeded with iPSC-derived BMEC-like cells have
also been shown to successfully predict permeabilities of
small molecule drugs in several studies [20—22]. In vitro
NVU models can also be used to design BBB-crossing
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Table 1

Development and analysis of neurotherapeutic delivery strategies using in vitro NVU models.

Delivery strategy In vitro NVU Major findings References
model
Small molecule drugs Drug only (gabapentin) hCMEC/D3 Gabapentin is a substrate for [51]
the influx transporter LAT1 at
therapeutic concentrations.
Drug only (colchicine, iPSC-derived BMEC-like The model exhibited [17]
retigabine, and cells, 3D microfluidic physiologically relevant
levetiracetam) model transendothelial electrical
resistance and accurately
predicted blood-to-brain
permeability of pharmacologics.
Drug only (atenolol, iPSC-derived BMEC-like iPSC-derived NVU Transwell [20]
cimetidine, prazosin, cells, Transwell model exhibits an in vivo-like
trazodone, caffeine, phenotype. After passing a
hydroxyzine, benchmarking analysis, such
propranolol, donepezil, model can be used to evaluate
memantine, brain permeabilities of drugs.
galantamine, and
rivastigmine)
Drug only (diazepam, iPSC-derived BMEC-like The iPSC-derived NVU [21]
caffeine, ibuprofen, cells, Transwell Transwell model demonstrated
celecoxib, diclofenac, expected drug permeabilities
loratadine, and in vitro and is thus suitable for
rhodamine 123) drug transport studies.
Drug only (befloxatone, iPSC-derived BMEC-like There is a good correlation [22]
flumazenil, raclopride, cells, Transwell between in vitro and in vivo drug
erlotinib, verapamil, brain permeability. An iPSC-
buprenorphine, 2F- derived BBB model can be
A85380-tartrate, integrated into CNS drug
loperamide, screening.
dextromethorphan,
levofloxacin,
sulfasalazine, caffeine,
and taurocholate)
PLGA nanoparticles Mouse brain endothelial Elvitegravir nanoformulation [24]
loaded with elvitegravir cells, Transwell demonstrated an improved
BBB model penetration and an
enhanced HIV-1 suppression in
infected human monocyte-
derived macrophages after
crossing the BBB model.
Liposomes with ApoE- Rat brain endothelial The permeability of a tritiated [23]
derived peptides loaded cells, Transwell curcumin derivative was
with drug enhanced after its entrapment
into ApoE-nanoliposomes.
GBM-targeting peptide- Mouse brain endothelial The GBM-targeting peptide- [25]
conjugated Ferri- cells, Transwell conjugated Ferri-liposome was
liposome loaded with rapidly transported across an
doxorubicin in vitro BBB model and
displayed GBM-specific cellular
uptake and doxorubicin
release.
Monoclonal Apoferritin-conjugated hCMEC/D3, Transwell Apoferritin-conjugated [26]
antibodies monoclonal antibody monoclonal antibody can be
imported by hCMEC/D3 cells
and released on the ‘brain’ side
of the model.
Basigin monoclonal hCMEC/D3, Transwell mAbs binding to the basigin [27]
antibody receptor can internalize into
human brain endothelial cells
and cross the BBB using RMT.
46.1-scFv monoclonal iPSC-derived BMEC-like By screening a nonimmune, [28]

antibody

cells, Transwell

human single-chain variable
fragment (scFv) phage display

Current Opinion in Biomedical Engineering 2021, 20:100341

www.sciencedirect.com


www.sciencedirect.com/science/journal/24684511
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Delivery strategy

In vitro NVU
model

Major findings

References

Adeno-associated virus

Cells

Transferrin receptor
monoclonal antibody

Brain shuttle peptide-
conjugated anti-amyloid
monoclonal antibody

Antibody-triggered RMT

AAV9

AAV-BR1

Shuttle peptide-
enhanced AAV8

CD4+ T cells

CD4+ T cells

Peripheral blood
monocyte-derived
macrophages

CD4+ T cells

hCMEC/D3, Transwell

hCMEC/DS3, Transwell

iPSC-derived BMEC-like
cells, Transwell

Primary human BMEC,
Transwell

hCMEC/D3

hCMEC/D3, Transwell

Hematopoietic stem cell-
derived BLEC model

Mouse brain endothelial
cells bEnd.5

Primary rat brain BMEC

iPSC-derived BMEC-like
cells

library on a human iPSC-
derived BMEC-like cell
Transwell model, antibodies
such as the 46.1-scFv that
exhibited increased transport
across the BBB were identified.
The ability of antibodies to the
transferrin receptor to cross the
BBB was determined by their
relative affinities at different
extracellular and endosomal pH
levels.

Brain shuttle peptide-
conjugated anti-amyloid
antibody had increased
transcellular transport across
the BBB when compared with
the parent antibody.

This hPSC-derived in vitro BBB
model discriminated species-
selective antibody-mediated
transcytosis mechanisms and
was predictive of in vivo CNS
exposure of rodent cross-
reactive antibodies.

AAV9 penetrated human BMEC
barriers more effectively than
AAV2 but had reduced
transduction efficiency.
AAV-BR1 was identified as a
capsid variant with high
specificity and high
transduction efficiency for
BMECs.

BBB shuttle peptide-enhanced
AAV8 demonstrated an
increased ability to cross the
BBB and a higher transduction
in the brain after a systematic
administration.

Under non-inflammatory
conditions Th1* and Th1 CD4+
T cells preferentially crossed
the BBB. Under inflammatory
conditions, the migration rate of
all Th subsets across the BBB
was comparable.

The in vitro BBB model
supported T cell adhesion
under static and physiological
flow conditions.

Misfolded tau protein increased
expression of ICAM-1, VCAM-1
and selectins at the
endothelium, facilitating blood-
to-brain cell transmigration.

An iPSC-derived BBB model
that displayed an adhesion
molecule phenotype suitable for
immune cell interaction was
developed.

[52]

[29]

[30]

[39]

[42]

[41]

[13,53]

[54]

[55]

[45]

BBB, blood—brain barrier; BMEC, brain microvascular endothelial cells; CNS, central nervous system; hPSC, human pluripotent stem cell; iPSC, induced

pluripotent stem cell; mAb, monoclonal antibody; NVU, neurovascular unit; 3D, three-dimensional; RMT, receptor-mediated transcytosis.
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nanocarriers. For example, a rat brain endothelial cell-
derived Transwell model was used to show that nano-
liposomes covalently coupled with ApoE-derived pep-
tides have increased blood-to-brain transport of a
tritiated curcumin derivative [23]. Using the bEnd.3
mouse brain endothelial cell line in a Transwell model,
Gong et al. [24] demonstrated an improvement in BBB
penetration of the antiviral drug elvitegravir when using a
poloxamer poly(lactic-co-glycolic acid) nanoformulation.
A similar Transwell model with the addition of glioblas-
toma cells in the ‘brain’ chamber was used to demonstrate
the ability of glioblastoma-targeting peptide-conjugated
Ferri-liposomes to cross the BBB and deliver doxoru-
bicin to glioblastoma cells, leading to suppression of
tumor cell proliferation [25]. This study highlights the
ability to simultaneously test BBB penetration and
analyze therapeutic efficacy in a single # vitro NVU
model.

Monoclonal antibodies

Efforts to increase antibody delivery across the BBB
have focused on fusing therapeutic mAbs to antibody or
peptide moieties that target endogenous BBB trans-
porters, thereby facilitating brain uptake of the conju-
gated therapeutic cargo. [z vitro NVU models are
important for developing and refining such strategies.
Using immortalized human BMECs in a Transwell
configuration, H-ferritin nanoparticles were found to
facilitate the delivery of mAbs across the BBB by
transferrin receptor-mediated transcytosis (RMT) [26].
A similar model revealed that mAbs bound to the basigin
receptor were able to cross the BBB via RMT [27].
Using an iPSC-derived # vitro NVU model, Georgieva
et al. [28] screened a nonimmune, human single-chain
variable fragment phage display library on a human
iPSC-derived BMEC-like cell model and identified an-
tibodies that exhibited increased transport across the
BBB. NVU models may also be used to predict brain
penetration capabilities of therapeutic mAbs fused to
BBB-crossing peptides or bispecific antibodies that can
bind both a therapeutic target and an RMT receptor for
enhanced delivery [29,30]. Notably, a Transwell model
seeded with iPSC-derived BMEC-like cells was found
to be able to accurately predict 7z vivo CNS exposure of
rodent cross-reactive antibodies using # vitro perme-
abilities of these antibodies in the NVU model [30].

Adeno-associated virus

The ability to engineer recombinant adeno-associated
virus (AAV) particles to deliver genes that encode
therapeutic proteins has made AAV vectors the safest
and the most popular option for gene therapies [31].
The search for an AAV vector that efficiently crosses the
BBB and transduces target CNS populations after
intravenous (IV) administration is an ongoing challenge.
Deverman et al. [32] reported that AAV-PHP.B, an AAV
variant selected via Cre-dependent AAV targeted

evolution, can cross the BBB and transduce adult mouse
CNS cells efficiently after IV injection. Subsequently,
LY6A was identified to be the receptor on BMECs
responsible for AAV-PHP.B transport [33,34]. Although
this vector has shown promising results for delivery of
therapeutic genes to treat genetic CNS disease in
mouse models [35,36], AAV-PHPB only transits the
BBB in a selected subset of mice strains and fails to
significantly transduce rhesus CNS cells after IV injec-
tion [37,38]. Thus, the field is still seeking AAV variants
that efficiently cross the human BBB. Iz vizro NVU
models using human BMECs may enable efforts to
identify and engineer AAV vectors for human BBB
transport. For example, AAV9 was found to traffic
through a primary human BMEC Transwell model more
efficiently than AAV2 in one study [39,40]. Zhang et al.
[41] found that AAVS8, when fused to a transferrin
receptor-binding  shuttle  peptide, demonstrated
increased transcytosis across an hCMEC/D3-seeded
Transwell model. BMECs themselves may also be a
target for gene therapy. AAV-BR1, an AAV2 mutant
identified in an # vive screening of random ligand li-
braries displayed on AAV capsids, can selectively trans-
duce mouse brain endothelial cells 7 vivo and the
hCMEC/D3 human immortalized BMEC line # vitro
[42]. Given the large species-to-species differences of
BMEC transporter expression profiles, performing
screening in human cell-based 7 vitro NVU models
could lead to newly engineered AAV capsids with human
BBB-crossing capabilities [7].

Immune cells

With the emergence of engineered immune cell prod-
ucts against cancers, the development of CAR-T and
other cellular immunotherapies to treat brain tumors is
underway [43]. However, the transmigration of
immune cells across the BBB is highly limited in
healthy individuals but can occur under inflammatory
conditions associated with CNS disease or injury [44].
Transwell-based NVU models with immune cells
seeded in the apical chamber have been used to model
immune cell transmigration across the BBB, leading to
new knowledge on the mechanism of immune cell
trafficking at the BBB. Notably, Nishihara et al. [13]
found that Thl and Th* subsets of CD4+ T cells
preferentially crossed the endothelial monolayer in a
human 7 vitro NVU model under non-inflammatory
conditions. Furthermore, the recent development of an
hPSC-derived NVU model for immune cell interaction
studies allows for the combination of hPSC-derived
BMEC-like cells and autologous immune cells in a
single 2 vitro NVU model, highlighting the possibility
for patient-specific disease modeling [45]. As cell-
based therapies advance to treat CNS disorders,
m vitro NVU models will play an important part in
engineering strategies to direct the cells to the appro-
priate CNS compartments.
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Uses of in vitro NVU models to study CNS disease pathogenesis.

Disease In vitro NVU Model Major findings References
Alzheimer’s disease Microfluidic NVU model with the hCMEC/D3 and BBB dysfunctions were present in AD models, [46]
control or AD ReN human neural progenitor cell including increased permeability, reduced tight
cells junction protein expression, increased MMP2 and
reactive oxygen species, and deposition of
amyloid at the vascular endothelium.
Isogenic APOE3 and APOE4 iPSC-derived Dysregulation of calcineurin—NFAT signaling and [19]
vascular organoid model APOE in pericyte-like mural cells induced
APOE4-associated pathology.
Three-dimensional bioengineered vessel NVU ApoE and HDL synergized to facilitate Ap [56]
model transport across the endothelial cell barrier.
ApoE4 was less efficient than ApoE2 in promoting
AB transport.
iPSC-derived Transwell NVU model AP and neuroinflammation signals increased IgG [57]
uptake and transport in the model.
Mouse brain endothelial cell Transwell model AB+.42 induced tight junction damage and BBB [58]
leakage in the bEnd.3 Transwell model. RAGE
played an important role in the process.
Primary mouse brain capillary endothelial cell Basolateral recombinant ApoJ and apical ApoA1 [59]
Transwell model facilitated the transport of basolateral AB4_49 in
this model.
Rat brain microvascular endothelial cells Exposure to Af,s.35 disrupted tight junctions, [60]
increased BBB permeability, decreased cell
viability in this model.
hCMEC/D3 Transwell model hCMEC/D3 cells had limited utility in studying A [61]
trafficking owing to the low barrier tightness of this
model.
Parkinson’s disease Microfluidic NVU model with iPSC-dopaminergic a-synuclein fibril treatment induced key aspects of [48]
neurons, iPSC-derived BMEC-like cells, and Parkinson’s disease phenotypes, including
primary human astrocytes, microglia, and accumulation of pSer129-aSyn, mitochondrial
pericytes impairment, neuroinflammation, and increased
BBB permeability.
hCMEC/D3 Transwell model a-synuclein preformed fibrils impaired tight [47]
junction protein expression in endothelial cells.
Rat cerebral microvessel endothelial cells and C6 PD drug FLZ was effluxed by P-gp in rat cerebral [62]
astroglial cells Transwell model microvessel endothelial cells.
Primary rat brain endothelial cells and pericytes Pericytes were more sensitive to monomeric a- [63]
Transwell model synuclein than endothelial cells regarding release
of inflammatory cytokines and MMP-9 in this
model.
Viral infection Microfluidic NVU model with hCMEC/D3 cells SARS-CoV-2 spike protein S1 triggered a [49]
proinflammatory response and promotes loss of
barrier integrity in this model.
iPSC-pericyte-like-cell-containing cortical Pericyte-like cells integrated into the cortical [64]
organoid organoid were infected with SARS-CoV-2 and
served as viral replication hubs.
hCMEC/D3 Transwell model Zika virus infected hCMEC/D3 cells without [65]
disrupting BBB permeability and tight junction
protein expression, and the virus was
subsequently released on the brain side.
iPSC-derived Transwell NVU model Zika virus infected iPSC-derived BMEC-like cells [50]
without disrupting BBB permeability and tight
junction protein expression and was
subsequently released on the brain side.
Primary human brain microvascular endothelial West Nile virus infected primary human BMECs, [66]

cells Transwell model

leading to increased permeability, increased
leukocyte adhesion, and transmigration across
the in vitro model.

AP, beta-amyloid; BBB, blood—brain barrier; BMEC, brain microvascular endothelial cell; CNS, central nervous system; iPSC, induced pluripotent stem cell;
NVU, neurovascular unit; P-gp, P glycoprotein; APOE3, apolipoprotein E isoform £3; APOE4, apolipoprotein E isoform e4; MMP2, matrix metalloproteinase-
2; 1gG, immunoglobulin G; RAGE, receptor for advanced glycation endproducts; Apod, apolipoprotein J; ApoA1, apolipoprotein A1; hCMEC/D3, human
cortical microvessels endothelial cells/D3; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Using in vitro neurovascular unit disease
models to study central nervous system
disease pathogenesis

NVU dysfunction has been implicated in the patho-
genesis of numerous CNS diseases, including AD, PD,
and viral infection [2]. Iz vitro NVU models can be
purposed for disease modeling, helping to elucidate
molecular mechanisms underlying the role of the BBB in
these CNS diseases, and facilitating the development of
new neurotherapeutics (Table 2).

Alzheimer’s disease

AD is a neurodegenerative disease with amyloid beta
(AB) deposition in the CNS being one of the most sig-
nificant pathological hallmarks. Although BBB dysfunc-
tion can be observed in patients with AD, there is not a
consensus about whether it contributes to early AD
pathogenesis. The construction of a 3D microfluidic
NVU model incorporating hCMEC/D3 cells and control
or AD ReN human neural progenitor cells revealed that
AD neural progenitor cells were sufficient to induce
increased BBB permeability, decreased expression of
tight junction proteins, and deposition of AP at the
endothelium, successfully recapitulating the BBB
damage of AD i vitro [46]. Recently, Blanchard et al.
constructed a vascular assembloid model for cerebral
amyloid angiopathy, a disease sharing the amyloid
deposition pathology with AD, using isogenic APOFES3 or
APOE4 human iPSC-derived BMEC-like cells, mural
cells, and astrocytes. Increased AP deposition was
identified in assembloids containing APOFE4 mural cells.
The vascular assembloid model recapitulates amyloid
pathologies of cerebral amyloid angiopathy  witro,
indicating that the NVU in AD is affected by the APOE4
allele that carries higher AD risk and that the NVU
might play a role in APOFE4-linked AD pathogenesis
[19].

Parkinson’s disease

PD is a neurodegenerative disease with the abnormal
accumulation and aggregation of a-synuclein in the CNS
being one of the most significant pathological hallmarks.
Recently, researchers found that BBB leakage can be
observed among PD patients [4]. In an hCMEC/D3
Transwell model, a-synuclein preformed fibrils reduced
the expression of tight junction proteins ZO-1 and
occludin in the hCMEC/D3 cells, suggesting that BBB
damage could be a result of PD pathologies [47].
Notably, Pediaditakis et al. assembled a microfluidic
NVU model containing human iPSC-derived dopami-
nergic neurons, human iPSC-derived BMEC-like cells,
and human primary brain astrocytes, microglia, and
pericytes. Exposure of the model to a-synuclein fibrils
induced key PD phenotypes in this model, including
accumulation of pSer129-0.Syn, neuroinflammation, and
increased BBB permeability [48]. This multicellular
model recapitulated o-synuclein toxicity in multiple

NVU cell types and demonstrated that o-synuclein can
directly disrupt the BBB.

Viral infection

Most pathogens fail to cross the BBB. However, viruses
such as SARS-CoV-2, Zika virus, and West Nile virus
have been reported to infect neural cells and cause
neuropathologies. The mechanisms these viruses use to
enter the CNS remain unknown, with BBB penetration
being one likely route. In a microfluidic-based NVU
model containing hCMEC/D3 cells, SARS-CoV-2 spike
protein S1 triggered a pro-inflammatory response and
promoted loss of endothelial barrier integrity [49]. The
model recapitulated the response of the NVU to luminal
SARS-CoV-2 exposure, potentially explaining the
observation of neurological complications in a subset
of patients with COVID-19. Moreover, by exposing
iPSC-derived BMEC-like cells in a Transwell NVU
model to Zika virus in the luminal ‘blood’ chamber, it
was found that Zika virus infected iPSC-derived
BMEC-like cells without disrupting BBB permeability
and tight junction protein expression, and the virus was
subsequently released into the ‘brain’ side [50]. This
model helped elucidate the mechanism by which Zika
virus crosses the BBB and gains access to the CNS.

Conclusions and future directions

The emergence of i vitro NVU models provides a
platform that enables and accelerates BBB screening,
design, and optimization components of neuro-
therapeutic development. Improved NVU models,
particularly those of human origin, can be powerful
complementary tools for modeling the effects of disease
on the BBB. A variety of i vitro NVU models exist, with
different cell types, cell sources, and model configura-
tions. The choice of the appropriate i viero NVU model
depends on the application. As human BBB model fi-
delity improves, we anticipate more applications inte-
grating 7 vitro human NVU models into the discovery
and development process of neurotherapeutics. For
example, the use of human 7 vitro NVU models enables
screening of neurotherapeutic delivery strategies,
including BBB-crossing peptide-decorated liposomes,
bispecific mAbs targeting both the NVU for delivery and
the CNS target for therapeutics, and engineered AAV
capsids that are able to cross the BBB and transduce
neurons and astrocytes. We also anticipate a broader
application of 7 vitro NVU models to study CNS disease
pathogenesis. For example, by assembling 7z vizro models
using NVU cell types differentiated from patient-
specific control and disease human iPSC lines, re-
searchers can study disease pathogenesis in a personal-
ized fashion. Given the species differences in both
transport at the BBB and CNS disease mechanisms, the
incorporation of human cells into # vitro NVU models is
of particular importance. In the future,  vitro NVU
models may also be incorporated into the manufacturing

Current Opinion in Biomedical Engineering 2021, 20:100341

www.sciencedirect.com


www.sciencedirect.com/science/journal/24684511

process of neurotherapeutics, enabling measurement of
BBB permeability as a release criterion in the quality
control process. We envision that given the relatively low
cost and complexity of some of the i vitro NVU models,
samples of BBB-crossing therapeutics could be tested
for penetrance in these models to ensure efficacy and
minimize batch-to-batch variability.
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