

ScienceDirect

Current Opinion in Biomedical Engineering

Integrating *in vitro* disease models of the neurovascular unit into discovery and development of neurotherapeutics

Yunfeng Ding¹, Eric V. Shusta^{1,2} and Sean P. Palecek¹

Abstract

The blood-brain barrier (BBB) regulates the transport of small molecules, proteins, and cells between the bloodstream and the central nervous system (CNS). Brain microvascular endothelial cells work with other resident brain cell types, including pericytes, astrocytes, neurons, and microglia, to form the neurovascular unit (NVU) and maintain BBB integrity. The restrictive barrier influences the pathogenesis of many CNS diseases and impedes the delivery of neurotherapeutics into the CNS. In vitro NVU models enable the discovery of complex cell-cell interactions involved in human BBB pathophysiology in diseases including Alzheimer's disease, Parkinson's disease, and viral infections of the brain, In vitro NVU models have also been deployed to study the delivery of neurotherapeutics across the BBB, including small molecule drugs, monoclonal antibodies, gene therapy vectors, and immune cells. The high scalability, accessibility, and phenotype fidelity of in vitro NVU models can facilitate the discovery and development of effective neurotherapeutics.

Addresses

- ¹ Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
- ² Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA

Corresponding authors: Palecek, Sean P (sppalecek@wisc.edu); Shusta, Eric V (eshusta@wisc.edu)

Current Opinion in Biomedical Engineering 2021, 20:100341

This review comes from a themed issue on Molecular & Cellular Eng: Cell and Gene Therapy Manufacturing

Edited by Krishnendu Roy

For complete overview of the section, please refer the article collection - Molecular & Cellular Eng: Cell and Gene Therapy Manufacturing

Received 29 May 2021, revised 16 August 2021, accepted 5 September 2021

https://doi.org/10.1016/j.cobme.2021.100341

2468-4511/© 2021 Elsevier Inc. All rights reserved.

Keywords

Neurovascular unit, Blood-brain barrier, Disease modeling, Neurotherapeutic, Drug delivery.

Abbreviations

BBB, blood-brain barrier; BMECs, brain microvascular endothelial cells; CNS, central nervous system; NVU, neurovascular unit; AD, Alzheimer's disease; PD, Parkinson's disease; CAR-T, chimeric antigen receptor T cell; hPSC, human pluripotent stem cell; iPSC, induced pluripotent stem cell; GBM, glioblastoma; mAb, monoclonal antibody; RMT, receptor-mediated transcytosis; scFv, single-chain variable

fragment; AAV, Adeno-associated virus; A β , amyloid beta; CAA, cerebral amyloid angiopathy.

Introduction

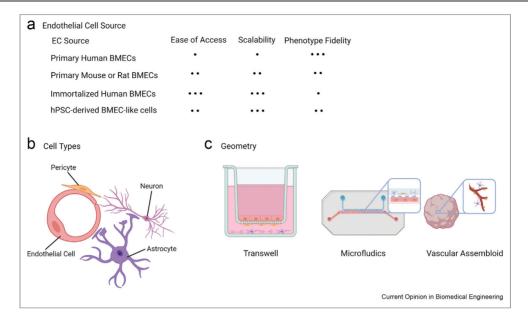
The blood-brain barrier (BBB) is a dynamic interface that resides between the bloodstream and the central nervous system (CNS), facilitating CNS homeostasis. BBB properties are largely a consequence of brain endothelial cell characteristics that are regulated by other cellular components of the neurovascular unit (NVU), including pericytes embedded in the endothelial basement membrane, astrocytes, neurons, and perivascular macrophages [1]. In healthy individuals, the BBB plays a pivotal role in protecting the CNS from toxic substances via passive barriers and active transporters, limiting the transport of many small molecules, proteins, gene therapy vectors, and cells. However, in the event of CNS diseases, the BBB not only contributes to the pathogenesis of multiple CNS diseases but also continues to provide a significant barrier for the delivery of many neurotherapeutics. BBB dysfunction has been shown to play a central role in several CNS diseases, including multiple sclerosis, epilepsy, and stroke [2]. Although increased BBB permeability has also been observed in Alzheimer's disease (AD) and Parkinson's disease (PD), the role of the BBB in the pathogenesis of these neurodegenerative diseases is not yet clear [3,4]. The BBB impedes delivery of neurotherapeutics as a result of unique properties of brain microvascular endothelial cells (BMECs). BMECs express tight junction proteins, which form continuous networks of tight junction strands between adjacent BMECs that greatly reduce the paracellular transport of solutes. When compared with peripheral endothelial cells, BMECs also demonstrate lower levels of vesicular trafficking, which restricts transcellular transport of solutes. The polarized expression of efflux transporters, including P-glycoprotein, breast cancer resistance protein, multidrug resistance proteins, on the luminal (blood) side of BMECs further reduces the brain penetration of therapeutics that are substrates of these transporters (Reviewed in the study reported by Zlokovic [5]).

Recently, the emergence of a suite of new *in vitro* NVU models provides researchers with pivotal tools to systematically study both neurotherapeutic delivery and disease pathogenesis at the BBB in a well-defined, scalable fashion. *In vitro* NVU models are used to screen for BBB-crossing neurotherapeutics and to

identify strategies to improve neurotherapeutic transport across the BBB [6]. Incorporation of multiple NVU cell types in these models allows for simultaneous screening of BBB penetration and therapeutic efficacy, and permits elucidation of how different NVU components regulate molecular transport. Moreover, given the large species-to-species variation in BMEC transporter expression profiles, the ability to incorporate human cells in NVU models can help identify BBB delivery strategies that will translate to humans [7]. *In vitro* NVU models are also used to study the blood-to-brain and brain-to-blood trafficking of pathogenic substances, including toxic peptides and viruses, in disease modeling. Finally, in vitro NVU models can also be deployed to study the effects of disease-specific mutations on the integrity of the BBB. In this review, we explore the benefits and challenges of integrating in vitro NVU models into the discovery of CNS disease mechanisms and the development of neurotherapeutic delivery methods.

Neurotherapeutic delivery across the blood-brain barrier remains a significant hurdle

Although certain low molecular weight lipophilic molecules that are not substrates for efflux transport can efficiently cross the BBB and enter the CNS, most other therapeutics fail to cross the BBB and enter the brain in therapeutic amounts. Improving brain penetrance of new biologics and cell therapies to treat CNS disorders is crucial for their successful clinical implementation. For example, recent clinical trials evaluating gene therapy strategies to combat AD and PD all use invasive delivery strategies, such as intrathecal NCT03976349), (NCT03186989, intracisternal (NCT03634007, NCT04127578), and direct intraceredelivery (NCT00876863, NCT03065192. NCT01621581) to bypass the BBB. The lack of an established human BBB-crossing gene therapy delivery system could therefore limit the clinical feasibility of CNS gene therapy. As another example, the BBB has limited the development of antibody therapies against CNS disease targets. Although intravenously-infused anti-amyloid monoclonal antibodies (mAbs) demonstrate promise in reducing amyloid load in transgenic AD mouse models, it is not clear whether the therapeutic effect can be translated to humans and whether brain antibody penetrance or the peripheral sink effect was the mechanism of action [8,9]. The extremely low level of brain penetrance of most therapeutic antibodies ($\sim 0.01\%$ for the brain/plasma ratio [10]) contributes to the need for high antibody dosage and the termination of most AD antibody trials without successful outcomes [11]. The BBB can also be a significant hurdle in developing chimeric antigen receptor T cell (CAR-T) products against brain tumors. Because only a subpopulation of T cells can cross the BBB, penetrance of CAR-


T products targeting brain tumors largely depends on BBB inflammation status and BBB disruption at the tumor sites, leading to variable treatment outcomes [12,13]. Thus, with the BBB being a key obstacle to the delivery of many therapeutics, it is essential to integrate brain penetration strategies into the development of neurotherapeutics. Meanwhile, the vast differences in BBB structure and function between healthy and diseased states call for the integration of both healthy and diseased NVU models into the neurotherapeutic development pipeline [2].

Cell sourcing and configurations of neurovascular unit models

In vitro NVU models differ in the types, sources, and geometric arrangement of NVU cells incorporated. Primary human and animal BMECs, immortalized human BMECs (e.g. human cortical microvessels endothelial cells/D3 (hCMEC/D3) cell line), and human pluripotent stem cell (hPSC)-derived BMEC-like cells are common endothelial cell sources. Recently, differences in gene expression between BMECs of human and other species have been described. Notably, the expressions of ATP-binding cassette (ABC) transporters, solute carrier (SLC) transporters, and several cell surface receptors were shown to be significantly different in BMECs isolated from different species (Reviewed in the study reported by Aday et al. [14]). As these transporters and surface receptors are involved in molecular trafficking and efflux activities, developing in vitro NVU models with human cells is likely to better predict molecular transport at the human BBB. Each of the endothelial cell sources has different advantages and disadvantages related to BBB phenotypes, ease of access, and scalability (Figure 1a). Although BMECs form the main interface encountered by the rapeutics crossing from the bloodstream into the brain, other NVU cell types, including pericytes, astrocytes, and neurons, play a pivotal role in eliciting and regulating BBB characteristics in BMECs. These other NVU cell types are typically obtained from primary sources or differentiated from hPSCs. (Figure 1b, Reviewed in the study reported by Gastfriend et al. [15]).

A simple NVU model is the Transwell model, where BMECs are seeded onto a semipermeable membrane which divides the cell culture volume into a brainmimicking lower chamber where non-endothelial NVU cell types are seeded and a blood-mimicking upper chamber (Figure 1c). The Transwell model provides a platform for rapidly screening bidirectional transport of therapeutics across a BMEC monolayer [6]. Because the Transwell system lacks physiologic flow which has been shown to affect BBB transport phenotypes, several microfluidic platforms now exist to incorporate fluid flow into BBB modeling while still permitting relatively straightforward assessment of permeability. Typically,

Figure 1

Summary of in vitro NVU models. (a) Common BMEC sources for in vitro NVU models and the general characteristics of these cell sources, including accessibility, scalability, and fidelity of the BBB phenotypes such as barrier formation and similarity of transporter expression profile to that of in vivo human BMECs, characterized as low (·), medium (··), or high (···). (b) Schematic of a cross-section of a brain capillary, showing the juxtaposition of an endothelial cell, pericyte, astrocyte, and neuron forming the NVU. (c) Common configurations of in vitro NVU models, including (i) Transwell model, (ii) microfluidic model, and (iii) vascular assembloid model. BBB, blood-brain barrier; BMEC, brain microvascular endothelial cells; NVU, neurovascular unit.

BMECs are seeded in one microfluidic channel, whereas other NVU cell types are seeded in a neighboring channel separated by a hydrogel layer or a semipermeable membrane (Reviewed in the study reported by Katt and Shusta [16]). Although microfluidic models often incorporate more intimate cell contact and shear stress modeling than that provided by Transwell systems, there have also been efforts to better recapitulate the three-dimensional (3D) arrangement of NVU cell types in a microfluidic device. Notably, Vatine et al. [17] assembled hPSC-derived BMEC-like cells into a hollow vessel-like structure in one channel and seeded hPSCderived neural progenitors in a neighboring channel separated by a laminin-coated, porous flexible PDMS membrane, highlighting a more accurate NVU morphology. NVU assembloid models have also been described recently. For example, a spheroid model with primary human astrocytes at the core and primary or immortalized brain endothelial cells and pericytes encasing the spheroid has been developed to identify brain-penetrating agents [18]. Moreover, Blanchard et al. [19] reconstructed a human NVU assembloid model for disease modeling. Induced pluripotent stem cell (iPSC)-derived BMEC-like cells were encapsulated in Matrigel with pericytes and astrocytes, leading to the formation of a stable vascular-like network inside the assembloid. Although assembloid NVU models can mimic aspects of the *in vivo* NVU structure, quantifying molecular transport in these 3D assembloids can be

significantly more complex than in Transwell or microfluidic models.

In vitro NVU models can facilitate development of better delivery methods to cross the blood-brain barrier

Given the significant hurdle of therapeutic delivery across the BBB and recent advancements in NVU modeling, researchers have incorporated in vitro NVU models into the identification, development, and analysis of strategies for molecular and cellular delivery across the BBB (Table 1).

Small molecule drugs

In vitro NVU models are useful for studying mechanisms of drug uptake and transport at the BBB. They also enable researchers to predict therapeutic penetrance of the BBB and develop delivery strategies in an in vitro model before moving to animal testing. For example, the blood vessellike microfluidic model described in the previous section was used to determine the relative permeability of colchicine, retigabine, and levetiracetam, suggesting that microfluidic NVU models can be used to predict human CNS drug penetrance [17]. In vitro Transwell NVU models seeded with iPSC-derived BMEC-like cells have also been shown to successfully predict permeabilities of small molecule drugs in several studies [20–22]. In vitro NVU models can also be used to design BBB-crossing

Development and analysis of neurotherapeutic delivery strategies using in vitro NVU models.						
	Delivery strategy	<i>In vitro</i> NVU model	Major findings	Reference		
Small molecule drugs	Drug only (gabapentin)	hCMEC/D3	Gabapentin is a substrate for the influx transporter LAT1 at therapeutic concentrations.	[51]		
	Drug only (colchicine, retigabine, and levetiracetam)	iPSC-derived BMEC-like cells, 3D microfluidic model	The model exhibited physiologically relevant transendothelial electrical resistance and accurately predicted blood-to-brain permeability of pharmacologics.	[17]		
	Drug only (atenolol, cimetidine, prazosin, trazodone, caffeine, hydroxyzine, propranolol, donepezil, memantine, galantamine, and rivastigmine)	iPSC-derived BMEC-like cells, Transwell	iPSC-derived NVU Transwell model exhibits an <i>in vivo</i> -like phenotype. After passing a benchmarking analysis, such model can be used to evaluate brain permeabilities of drugs.	[20]		
	Drug only (diazepam, caffeine, ibuprofen, celecoxib, diclofenac, loratadine, and rhodamine 123)	iPSC-derived BMEC-like cells, Transwell	The iPSC-derived NVU Transwell model demonstrated expected drug permeabilities in vitro and is thus suitable for drug transport studies.	[21]		
	Drug only (befloxatone, flumazenil, raclopride, erlotinib, verapamil, buprenorphine, 2F-A85380-tartrate, loperamide, dextromethorphan, levofloxacin, sulfasalazine, caffeine, and taurocholate)	iPSC-derived BMEC-like cells, Transwell	There is a good correlation between <i>in vitro</i> and <i>in vivo</i> drug brain permeability. An iPSC-derived BBB model can be integrated into CNS drug screening.	[22]		
	PLGA nanoparticles loaded with elvitegravir	Mouse brain endothelial cells, Transwell	Elvitegravir nanoformulation demonstrated an improved BBB model penetration and an enhanced HIV-1 suppression in infected human monocytederived macrophages after crossing the BBB model.	[24]		
	Liposomes with ApoE- derived peptides loaded with drug	Rat brain endothelial cells, Transwell	The permeability of a tritiated curcumin derivative was enhanced after its entrapment into ApoE-nanoliposomes.	[23]		
	GBM-targeting peptide- conjugated Ferri- liposome loaded with doxorubicin	Mouse brain endothelial cells, Transwell	The GBM-targeting peptide- conjugated Ferri-liposome was rapidly transported across an in vitro BBB model and displayed GBM-specific cellular uptake and doxorubicin release.	[25]		
Monoclonal antibodies	Apoferritin-conjugated monoclonal antibody	hCMEC/D3, Transwell	Apoferritin-conjugated monoclonal antibody can be imported by hCMEC/D3 cells and released on the 'brain' side of the model.	[26]		
	Basigin monoclonal antibody	hCMEC/D3, Transwell	mAbs binding to the basigin receptor can internalize into human brain endothelial cells and cross the BBB using RMT.	[27]		
	46.1-scFv monoclonal antibody	iPSC-derived BMEC-like cells, Transwell	By screening a nonimmune, human single-chain variable fragment (scFv) phage display	[28]		

	Delivery strategy	<i>In vitro</i> NVU model	Major findings	References
			library on a human iPSC- derived BMEC-like cell Transwell model, antibodies such as the 46.1-scFv that exhibited increased transport across the BBB were identified.	
	Transferrin receptor monoclonal antibody	hCMEC/D3, Transwell	The ability of antibodies to the transferrin receptor to cross the BBB was determined by their relative affinities at different extracellular and endosomal pH levels.	[52]
	Brain shuttle peptide- conjugated anti-amyloid monoclonal antibody	hCMEC/D3, Transwell	Brain shuttle peptide- conjugated anti-amyloid antibody had increased transcellular transport across the BBB when compared with the parent antibody.	[29]
	Antibody-triggered RMT	iPSC-derived BMEC-like cells, Transwell	This hPSC-derived in vitro BBB model discriminated species-selective antibody-mediated transcytosis mechanisms and was predictive of in vivo CNS exposure of rodent cross-reactive antibodies.	[30]
Adeno-associated virus	AAV9	Primary human BMEC, Transwell	AAV9 penetrated human BMEC barriers more effectively than AAV2 but had reduced transduction efficiency.	[39]
	AAV-BR1	hCMEC/D3	AAV-BR1 was identified as a capsid variant with high specificity and high transduction efficiency for BMECs.	[42]
	Shuttle peptide- enhanced AAV8	hCMEC/D3, Transwell	BBB shuttle peptide-enhanced AAV8 demonstrated an increased ability to cross the BBB and a higher transduction in the brain after a systematic administration.	[41]
CD4+ T cells Peripheral bl monocyte-de macrophage:	CD4+ T cells	Hematopoietic stem cell- derived BLEC model	Under non-inflammatory conditions Th1* and Th1 CD4+ T cells preferentially crossed the BBB. Under inflammatory conditions, the migration rate of all Th subsets across the BBB was comparable.	[13,53]
	CD4+ T cells	Mouse brain endothelial cells bEnd.5	The <i>in vitro</i> BBB model supported T cell adhesion under static and physiological flow conditions.	[54]
	Peripheral blood monocyte-derived macrophages	Primary rat brain BMEC	Misfolded tau protein increased expression of ICAM-1, VCAM-1 and selectins at the endothelium, facilitating blood-to-brain cell transmigration.	[55]
	CD4+ T cells	iPSC-derived BMEC-like cells	An iPSC-derived BBB model that displayed an adhesion molecule phenotype suitable for immune cell interaction was developed.	[45]

BBB, blood-brain barrier; BMEC, brain microvascular endothelial cells; CNS, central nervous system; hPSC, human pluripotent stem cell; iPSC, induced pluripotent stem cell; mAb, monoclonal antibody; NVU, neurovascular unit; 3D, three-dimensional; RMT, receptor-mediated transcytosis.

nanocarriers. For example, a rat brain endothelial cellderived Transwell model was used to show that nanoliposomes covalently coupled with ApoE-derived peptides have increased blood-to-brain transport of a tritiated curcumin derivative [23]. Using the bEnd.3 mouse brain endothelial cell line in a Transwell model, Gong et al. [24] demonstrated an improvement in BBB penetration of the antiviral drug elvitegravir when using a poloxamer poly(lactic-co-glycolic acid) nanoformulation. A similar Transwell model with the addition of glioblastoma cells in the 'brain' chamber was used to demonstrate the ability of glioblastoma-targeting peptide-conjugated Ferri-liposomes to cross the BBB and deliver doxorubicin to glioblastoma cells, leading to suppression of tumor cell proliferation [25]. This study highlights the ability to simultaneously test BBB penetration and analyze therapeutic efficacy in a single in vitro NVU model.

Monoclonal antibodies

Efforts to increase antibody delivery across the BBB have focused on fusing therapeutic mAbs to antibody or peptide moieties that target endogenous BBB transporters, thereby facilitating brain uptake of the conjugated therapeutic cargo. In vitro NVU models are important for developing and refining such strategies. Using immortalized human BMECs in a Transwell configuration, H-ferritin nanoparticles were found to facilitate the delivery of mAbs across the BBB by transferrin receptor-mediated transcytosis (RMT) [26]. A similar model revealed that mAbs bound to the basigin receptor were able to cross the BBB via RMT [27]. Using an iPSC-derived in vitro NVU model, Georgieva et al. [28] screened a nonimmune, human single-chain variable fragment phage display library on a human iPSC-derived BMEC-like cell model and identified antibodies that exhibited increased transport across the BBB. NVU models may also be used to predict brain penetration capabilities of therapeutic mAbs fused to BBB-crossing peptides or bispecific antibodies that can bind both a therapeutic target and an RMT receptor for enhanced delivery [29,30]. Notably, a Transwell model seeded with iPSC-derived BMEC-like cells was found to be able to accurately predict in vivo CNS exposure of rodent cross-reactive antibodies using in vitro permeabilities of these antibodies in the NVU model [30].

Adeno-associated virus

The ability to engineer recombinant adeno-associated virus (AAV) particles to deliver genes that encode therapeutic proteins has made AAV vectors the safest and the most popular option for gene therapies [31]. The search for an AAV vector that efficiently crosses the BBB and transduces target CNS populations after intravenous (IV) administration is an ongoing challenge. Deverman et al. [32] reported that AAV-PHP.B, an AAV variant selected via Cre-dependent AAV targeted

evolution, can cross the BBB and transduce adult mouse CNS cells efficiently after IV injection. Subsequently, LY6A was identified to be the receptor on BMECs responsible for AAV-PHP.B transport [33,34]. Although this vector has shown promising results for delivery of therapeutic genes to treat genetic CNS disease in mouse models [35,36], AAV-PHP.B only transits the BBB in a selected subset of mice strains and fails to significantly transduce rhesus CNS cells after IV injection [37,38]. Thus, the field is still seeking AAV variants that efficiently cross the human BBB. In vitro NVU models using human BMECs may enable efforts to identify and engineer AAV vectors for human BBB transport. For example, AAV9 was found to traffic through a primary human BMEC Transwell model more efficiently than AAV2 in one study [39,40]. Zhang et al. [41] found that AAV8, when fused to a transferrin receptor-binding shuttle peptide, demonstrated increased transcytosis across an hCMEC/D3-seeded Transwell model. BMECs themselves may also be a target for gene therapy. AAV-BR1, an AAV2 mutant identified in an in vivo screening of random ligand libraries displayed on AAV capsids, can selectively transduce mouse brain endothelial cells in vivo and the hCMEC/D3 human immortalized BMEC line in vitro [42]. Given the large species-to-species differences of BMEC transporter expression profiles, performing screening in human cell-based in vitro NVU models could lead to newly engineered AAV capsids with human BBB-crossing capabilities [7].

Immune cells

With the emergence of engineered immune cell products against cancers, the development of CAR-T and other cellular immunotherapies to treat brain tumors is underway [43]. However, the transmigration of immune cells across the BBB is highly limited in healthy individuals but can occur under inflammatory conditions associated with CNS disease or injury [44]. Transwell-based NVU models with immune cells seeded in the apical chamber have been used to model immune cell transmigration across the BBB, leading to new knowledge on the mechanism of immune cell trafficking at the BBB. Notably, Nishihara et al. [13] found that Th1 and Th* subsets of CD4+ T cells preferentially crossed the endothelial monolayer in a human *in vitro* NVU model under non-inflammatory conditions. Furthermore, the recent development of an hPSC-derived NVU model for immune cell interaction studies allows for the combination of hPSC-derived BMEC-like cells and autologous immune cells in a single in vitro NVU model, highlighting the possibility for patient-specific disease modeling [45]. As cellbased therapies advance to treat CNS disorders, in vitro NVU models will play an important part in engineering strategies to direct the cells to the appropriate CNS compartments.

Table 2

Uses of in vitro NVU models to stud	y CNS disease pathogenesis.
-------------------------------------	-----------------------------

Disease	In vitro NVU Model	Major findings	References
Alzheimer's disease	Microfluidic NVU model with the hCMEC/D3 and control or AD ReN human neural progenitor cell cells	BBB dysfunctions were present in AD models, including increased permeability, reduced tight junction protein expression, increased MMP2 and reactive oxygen species, and deposition of amyloid at the vascular endothelium.	[46]
	Isogenic APOE3 and APOE4 iPSC-derived vascular organoid model	Dysregulation of calcineurin—NFAT signaling and APOE in pericyte-like mural cells induced APOE4-associated pathology.	[19]
	Three-dimensional bioengineered vessel NVU model	ApoE and HDL synergized to facilitate Aβ transport across the endothelial cell barrier. ApoE4 was less efficient than ApoE2 in promoting Aβ transport.	[56]
	iPSC-derived Transwell NVU model	Aβ and neuroinflammation signals increased IgG uptake and transport in the model.	[57]
	Mouse brain endothelial cell Transwell model	$A\beta_{1-42}$ induced tight junction damage and BBB leakage in the bEnd.3 Transwell model. RAGE played an important role in the process.	[58]
	Primary mouse brain capillary endothelial cell Transwell model	Basolateral recombinant ApoJ and apical ApoA1 facilitated the transport of basolateral $A\beta_{1-40}$ in this model.	[59]
	Rat brain microvascular endothelial cells	Exposure to $A\beta_{25-35}$ disrupted tight junctions, increased BBB permeability, decreased cell viability in this model.	[60]
	hCMEC/D3 Transwell model	hCMEC/D3 cells had limited utility in studying A β trafficking owing to the low barrier tightness of this model.	[61]
Parkinson's disease	Microfluidic NVU model with iPSC-dopaminergic neurons, iPSC-derived BMEC-like cells, and primary human astrocytes, microglia, and pericytes	α-synuclein fibril treatment induced key aspects of Parkinson's disease phenotypes, including accumulation of pSer129-αSyn, mitochondrial impairment, neuroinflammation, and increased BBB permeability.	[48]
	hCMEC/D3 Transwell model	α-synuclein preformed fibrils impaired tight junction protein expression in endothelial cells.	[47]
	Rat cerebral microvessel endothelial cells and C6 astroglial cells Transwell model	PD drug FLZ was effluxed by P-gp in rat cerebral microvessel endothelial cells.	[62]
	Primary rat brain endothelial cells and pericytes Transwell model	Pericytes were more sensitive to monomeric α- synuclein than endothelial cells regarding release of inflammatory cytokines and MMP-9 in this model.	[63]
Viral infection	Microfluidic NVU model with hCMEC/D3 cells	SARS-CoV-2 spike protein S1 triggered a proinflammatory response and promotes loss of barrier integrity in this model.	[49]
	iPSC-pericyte-like-cell-containing cortical organoid	Pericyte-like cells integrated into the cortical organoid were infected with SARS-CoV-2 and served as viral replication hubs.	[64]
	hCMEC/D3 Transwell model	Zika virus infected hCMEC/D3 cells without disrupting BBB permeability and tight junction protein expression, and the virus was subsequently released on the brain side.	[65]
	iPSC-derived Transwell NVU model	Zika virus infected iPSC-derived BMEC-like cells without disrupting BBB permeability and tight junction protein expression and was subsequently released on the brain side.	[50]
	Primary human brain microvascular endothelial cells Transwell model	West Nile virus infected primary human BMECs, leading to increased permeability, increased leukocyte adhesion, and transmigration across the <i>in vitro</i> model.	[66]

Aß, beta-amyloid; BBB, blood-brain barrier; BMEC, brain microvascular endothelial cell; CNS, central nervous system; iPSC, induced pluripotent stem cell; NVU, neurovascular unit; P-gp, P glycoprotein; APOE3, apolipoprotein E isoform ε3; APOE4, apolipoprotein E isoform ε4; MMP2, matrix metalloproteinase-2; IgG, immunoglobulin G; RAGE, receptor for advanced glycation endproducts; ApoJ, apolipoprotein J; ApoA1, apolipoprotein A1; hCMEC/D3, human cortical microvessels endothelial cells/D3; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Using in vitro neurovascular unit disease models to study central nervous system disease pathogenesis

NVU dysfunction has been implicated in the pathogenesis of numerous CNS diseases, including AD, PD, and viral infection [2]. In vitro NVU models can be purposed for disease modeling, helping to elucidate molecular mechanisms underlying the role of the BBB in these CNS diseases, and facilitating the development of new neurotherapeutics (Table 2).

Alzheimer's disease

AD is a neurodegenerative disease with amyloid beta (Aβ) deposition in the CNS being one of the most significant pathological hallmarks. Although BBB dysfunction can be observed in patients with AD, there is not a consensus about whether it contributes to early AD pathogenesis. The construction of a 3D microfluidic NVU model incorporating hCMEC/D3 cells and control or AD ReN human neural progenitor cells revealed that AD neural progenitor cells were sufficient to induce increased BBB permeability, decreased expression of tight junction proteins, and deposition of A\beta at the endothelium, successfully recapitulating the BBB damage of AD in vitro [46]. Recently, Blanchard et al. constructed a vascular assembloid model for cerebral amyloid angiopathy, a disease sharing the amyloid deposition pathology with AD, using isogenic APOE3 or APOE4 human iPSC-derived BMEC-like cells, mural cells, and astrocytes. Increased AB deposition was identified in assembloids containing APOE4 mural cells. The vascular assembloid model recapitulates amyloid pathologies of cerebral amyloid angiopathy in vitro, indicating that the NVU in AD is affected by the APOE4 allele that carries higher AD risk and that the NVU might play a role in APOE4-linked AD pathogenesis [19].

Parkinson's disease

PD is a neurodegenerative disease with the abnormal accumulation and aggregation of α-synuclein in the CNS being one of the most significant pathological hallmarks. Recently, researchers found that BBB leakage can be observed among PD patients [4]. In an hCMEC/D3 Transwell model, α-synuclein preformed fibrils reduced the expression of tight junction proteins ZO-1 and occludin in the hCMEC/D3 cells, suggesting that BBB damage could be a result of PD pathologies [47]. Notably, Pediaditakis et al. assembled a microfluidic NVU model containing human iPSC-derived dopaminergic neurons, human iPSC-derived BMEC-like cells, and human primary brain astrocytes, microglia, and pericytes. Exposure of the model to α-synuclein fibrils induced key PD phenotypes in this model, including accumulation of pSer129-αSyn, neuroinflammation, and increased BBB permeability [48]. This multicellular model recapitulated α-synuclein toxicity in multiple

NVU cell types and demonstrated that α-synuclein can directly disrupt the BBB.

Viral infection

Most pathogens fail to cross the BBB. However, viruses such as SARS-CoV-2, Zika virus, and West Nile virus have been reported to infect neural cells and cause neuropathologies. The mechanisms these viruses use to enter the CNS remain unknown, with BBB penetration being one likely route. In a microfluidic-based NVU model containing hCMEC/D3 cells, SARS-CoV-2 spike protein S1 triggered a pro-inflammatory response and promoted loss of endothelial barrier integrity [49]. The model recapitulated the response of the NVU to luminal SARS-CoV-2 exposure, potentially explaining the observation of neurological complications in a subset of patients with COVID-19. Moreover, by exposing iPSC-derived BMEC-like cells in a Transwell NVU model to Zika virus in the luminal 'blood' chamber, it was found that Zika virus infected iPSC-derived BMEC-like cells without disrupting BBB permeability and tight junction protein expression, and the virus was subsequently released into the 'brain' side [50]. This model helped elucidate the mechanism by which Zika virus crosses the BBB and gains access to the CNS.

Conclusions and future directions

The emergence of in vitro NVU models provides a platform that enables and accelerates BBB screening, design, and optimization components of neurotherapeutic development. Improved NVU models, particularly those of human origin, can be powerful complementary tools for modeling the effects of disease on the BBB. A variety of in vitro NVU models exist, with different cell types, cell sources, and model configurations. The choice of the appropriate in vitro NVU model depends on the application. As human BBB model fidelity improves, we anticipate more applications integrating in vitro human NVU models into the discovery and development process of neurotherapeutics. For example, the use of human in vitro NVU models enables screening of neurotherapeutic delivery strategies, including BBB-crossing peptide-decorated liposomes, bispecific mAbs targeting both the NVU for delivery and the CNS target for therapeutics, and engineered AAV capsids that are able to cross the BBB and transduce neurons and astrocytes. We also anticipate a broader application of in vitro NVU models to study CNS disease pathogenesis. For example, by assembling in vitro models using NVU cell types differentiated from patientspecific control and disease human iPSC lines, researchers can study disease pathogenesis in a personalized fashion. Given the species differences in both transport at the BBB and CNS disease mechanisms, the incorporation of human cells into in vitro NVU models is of particular importance. In the future, in vitro NVU models may also be incorporated into the manufacturing process of neurotherapeutics, enabling measurement of BBB permeability as a release criterion in the quality control process. We envision that given the relatively low cost and complexity of some of the *in vitro* NVU models, samples of BBB-crossing therapeutics could be tested for penetrance in these models to ensure efficacy and minimize batch-to-batch variability.

Author contributions

Yunfeng Ding: Conceptualization, Writing — Original draft preparation. Eric V. Shusta: Conceptualization, Writing — Review and Editing, Supervision: Sean P. Palecek: Conceptualization, Writing - Review and Editing, Supervision.

Funding

This work was supported by the National Institutes of [grant numbers HL154254, NS107461, NS109486] and the National Science Foundation [grant EEC-1648035].

Declaration of competing interest

The authors declare the following financial interests/ personal relationships which may be considered as potential competing interests: The authors have multiple issued patents and patent applications in the field of BBB modeling.

Acknowledgements

Figure 1 was created with BioRender.com.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest
- Villabona-Rueda A. Erice C. Pardo CA. Stins MF: The evolving concept of the blood brain barrier (BBB): from a single static barrier to a heterogeneous and dynamic relay center. Front Cell Neurosci 2019, 13:405. https://doi.org/10.3389 fncel.2019.00405.
- Profaci CP, Munji RN, Pulido RS, Daneman R: The blood-brain barrier in health and disease: important unanswered questions. J Exp Med 2020, 217. https://doi.org/10.1084/ iem.20190062
- Cai Z, Qiao P-F, Wan C-Q, Cai M, Zhou N-K, Li Q: Role of bloodbrain barrier in Alzheimer's disease. J. Alzheimers. Dis. 2018, 63:1223-1234. https://doi.org/10.3233/JAD-180098.
- Al-Bachari S, Naish JH, Parker GJM, Emsley HCA, Parkes LM: Blood-brain barrier leakage is increased in Parkinson's disease. Front Physiol 2020, 11:593026. https://doi.org/10.3389/ fphys.2020.593026.
- Zlokovic BV: The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008, 57:178-201. https://doi.org/10.1016/j.neuron.2008.01.003.
- Bhalerao Aditya, Sivandzade Farzane, Rahman Archie Sabrina, , Ekram Ahmed Chowdhury, Noorani Behnam, Cucullo Luca: In vitro modeling of the neurovascular unit: advances in the field. In Fluids and barriers of the CNS, vol. 17; 2020. https:// doi.org/10.1186/s12987-020-00183-7.

- Deo AK, Theil F-P, Nicolas J-M: Confounding parameters in preclinical assessment of blood-brain barrier permeation: an overview with emphasis on species differences and effect of disease states. Mol Pharm 2013, 10:1581-1595. https://doi.org/ 10.1021/mp300570z.
- Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A: The antibody aducanumab reduces AB plaques in Alzheimer's disease. Nature 2016, 537:50-56. https://doi.org/10.1038/ nature19323
- Alexander GC. Emerson S. Kesselheim AS: Evaluation of aducanumab for Alzheimer disease: scientific evidence and regulatory review involving efficacy, safety, and futility. *J Am Med Assoc* 2021, **325**:1717–1718. https://doi.org/10.1001/ iama.2021.3854.
- 10. Pardridge WM: Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci 2019, 11:373. https://doi.org/10.3389/fnagi.2019.00373
- 11. Pardridge WM: Treatment of Alzheimer's disease and bloodbrain barrier drug delivery. Pharmaceuticals 2020, 13:394. https://doi.org/10.3390/ph13110394.
- 12. Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H: Genetically engineered T-cells for malignant glioma: overcoming the barriers to effective immunotherapy. Front Immunol 2018, 9:3062. https://doi.org/10.3389/ fimmu.2018.03062
- 13. Nishihara H, Soldati S, Mossu A, et al.: Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS 2020, 17.

https://doi.org/10.1186/s12987-019-0165-2.
The authors found that different Th* and Th1 subsets of CD4+ helper T cells preferentially crossed the BBB under non-inflammatory conditions using an in vitro NVU model. This works indicates that in vitro NVU models can be deployed to study immune cell trafficking at the BBB.

- Aday S, Cecchelli R, Hallier-Vanuxeem D, Dehouck MP Ferreira L: Stem cell-based human blood-brain barrier models for drug discovery and delivery. Trends Biotechnol 2016, 34: 382–393. https://doi.org/10.1016/j.tibtech.2016.01.001.
- 15. Gastfriend BD, Palecek SP, Shusta EV: Modeling the bloodbrain barrier: beyond the endothelial cells. Curr Opin Biomed Eng 2018, 5:6-12. https://doi.org/10.1016/j.cobme.2017.11.002.
- 16. Katt ME, Shusta EV: In vitro models of the blood-brain barrier: building in physiological complexity. Curr. Opin. Chem. Eng. 2020, 30:42-52. https://doi.org/10.1016/j.coche.2020.07.002.
- Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, Rahnama M, Barthakur S, Kasendra M, Lucchesi C, Kerns J, Wen N, Spivia WR, Chen Z, Van Eyk J, Svendsen CN: **Human** iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 2019, 24:995-1005. e6, https://doi.org/10.1016/j.stem.2019.

The authors created an entirely human in vitro microfluidic NVU model with iPSC-derived BMEC-like cells, astrocytes, and neurons highlighting a vessel-like morphology for BMEC-like cells inside a microfluidic channel. This work demonstrated that microfluidic NVU models can be used for predictions of BBB permeabilities of small molecule

- Cho CF, Wolfe JM, Fadzen CM, Calligaris D, Hornburg K, Chiocca EA, Agar NYR, Pentelute BL, Lawler SE: **Blood-brain**barrier spheroids as an in vitro screening platform for brainpenetrating agents. Nat Commun 2017, 8:1-14. https://doi.org/
- Blanchard JW, Bula M, Davila-Velderrain J, Akay LA, Zhu L, Frank A, Victor MB, Bonner JM, Mathys H, Lin Y-T, Ko T, Bennett DA, Cam HP, Kellis M, Tsai L-H: **Reconstruction of the** human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat Med 2020, 26: 952-963. https://doi.org/10.1038/s41591-020-0886-2

The authors constructed an in vitro NVU assembloid model using iPSC-derived BMEC-like cells, pericytes and astrocytes encapsulated in Matrigel. Using iPSC lines with either APOE3 or APOE4 allele, the

authors demonstrated that dysregulation of calcineurin-nuclear factor of activated T cells (NFAT) signaling and APOE in pericyte-like mural cells induces APOE4-associated amyloid pathology. This work highlights the usage of in vitro NVU model for disease modelling and pathogenesis pathway discovery.

- Mantle JL, Min L, Lee KH: Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood-brain barrier model. Mol Pharm 2016, 13:4191-4198. https://doi.org/10.1021/ acs.molpharmaceut.6b00818.
- 21. Appelt-Menzel A, Cubukova A, Günther K, Edenhofer F, Piontek J, Krause G, Stüber T, Walles H, Neuhaus W, Metzger M: Establishment of a human blood-brain barrier Co-culture model mimicking the neurovascular unit using induced pluriand multipotent stem cells. Stem Cell Reports 2017, 8: 894-906. https://doi.org/10.1016/j.stemcr.2017.02.021.
- 22. Roux GL, Jarray R, Guyot A-C, Pavoni S, Costa N, Théodoro F, Nassor F, Pruvost A, Tournier N, Kiyan Y, Langer O, Yates F, Deslys JP, Mabondzo A: **Proof-of-concept study of drug brain** permeability between in vivo human brain and an in vitro iPSCs-human blood-brain barrier model. Sci Rep 2019, 9: 16310. https://doi.org/10.1038/s41598-019-52213-6.
- 23. Re F, Cambianica I, Zona C, Sesana S, Gregori M, Rigolio R, La Ferla B, Nicotra F, Forloni G, Cagnotto A, Salmona M, Masserini M, Sancini G: Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine 2011, 7:551-559. https://doi.org/10.1016/
- Gong Y, Chowdhury P, Nagesh PKB, Rahman MA, Zhi K, Yallapu MM, Kumar S: **Novel elvitegravir nanoformulation for** drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. *Sci Rep* 2020, **10**:3835. https://doi.org/10.1038/s41598-020-60684-1.

 The authors assembled an *in vitro* NVU Transwell model using immortalized mouse brain endothelial cells, and demorable AA popular transmissions.

antiviral drug elvitegravir, when loaded in a poloxamer-PLGA nano-formulation, demonstrated improved BBB penetration, and an enhanced HIV-1 suppression in infected human monocyte-derived macrophages after crossing the BBB model. This work highlights the ability to test BBB penetration and analyze drug efficacy in a single NVI I model

- Shi D, Mi G, Shen Y, Webster TJ: Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale 2019, 11: 15057-15071. https://doi.org/10.1039/c9nr03931g.
- Rizzuto MA, Dal Magro R, Barbieri L, Pandolfi L, Sguazzini-Viscontini A, Truffi M, Salvioni L, Corsi F, Colombo M, Re F, Prosperi D: H-Ferritin nanoparticle-mediated delivery of antibodies across a BBB in vitro model for treatment of brain malignancies. Biomater Sci 2021, 9:2032-2042. https://doi.org/ 10.1039/d0bm01726d.
- Christensen SC, Krogh BO, Jensen A, Andersen CBF, Christensen S, Nielsen MS: Characterization of basigin monoclonal antibodies for receptor-mediated drug delivery to the brain. Sci Rep 2020, 10:14582. https://doi.org/10.1038 s41598-020-71286-2
- Georgieva JV, Goulatis LI, Stutz CC, Canfield SG, Song HW, Gastfriend BD, Shusta EV: **Antibody screening using a human** iPSC-based blood-brain barrier model identifies antibodies that accumulate in the CNS. Faseb J 2020, 34:12549-12564. https://doi.org/10.1096/fj.202000851R.
- Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC, Loetscher H, Ghosh A, Freskgård P-O: Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014, 81:49-60. https://doi.org/10.1016/ j.neuron.2013.10.061.
- Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, Haqqani AS, Ly D, Zachar P, Baumann E, Ball M, Huang J, Rukhlova M, Martina M, Liu Q, Stanimirovic D, Jezierski A, Bani-Yaghoub M: A novel human induced pluripotent stem cell blood-brain barrier model: applicability to study antibody-triggered

- receptor-mediated transcytosis. Sci Rep 2018, 8:1873. https:// doi.org/10.1038/s41598-018-19522-8.
- 31. Naso MF, Tomkowicz B, Perry 3rd WL, Strohl WR: Adenoassociated virus (AAV) as a vector for gene therapy. BioDrugs 2017, 31:317-334. https://doi.org/10.1007/s40259-0-
- Deverman BE, Praydo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, Wu W-L, Yang B, Huber N, Pasca SP, Gradinaru V: Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. *Nat Biotechnol* 2016, **34**: 204–209. https://doi.org/10.1038/nbt.3440.
- 33. Huang Q, Chan KY, Tobey IG, Chan YA, Poterba T, Boutros CL, Balazs AB, Daneman R, Bloom JM, Seed C, Deverman BE: Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. *PloS One* 2019, **14**, e0225206. https://doi.org/10.1371/ journal.pone.0225206.

The authors identified LY6A as an essential receptor for the AAV-PHP.B vectors to traverse across the BBB in mice. This work explains on a molecular level why AAV-PHP.B was only able to transduce CNS cells of certain mouse strains, and highlights the need for further engineering of AAV vehicles for human gene therapy.

- 34. Batista AR, King OD, Reardon CP, Davis C, Shankaracharya, Philip V, Gray-Edwards H, Aronin N, Lutz C, Landers J, Sena-Esteves M: Ly6a differential expression in blood-brain barrier is responsible for strain specific central nervous system transduction profile of AAV-PHP.B. Hum. Gene Ther 2020, 31: 90-102. https://doi.org/10.1089/hum.2019.186
- 35. Reynaud-Dulaurier R, Decressac M: PHP.B/eB vectors bring new successes to gene therapy for brain diseases. Front. Bioeng. Biotechnol. 2020, 8:582979. https://doi.org/10.3389/ fbioe.2020.582979.
- 36. Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, Cabassi T, Cattaneo S, Luoni M, Cancellieri C, Sessa A, Bacigaluppi M, Taverna S, Leocani L, Lanciego JL Broccoli V: AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. Mol Ther 2017, 25: 2727-2742. https://doi.org/10.1016/j.ymthe.2017.08.004.
- 37. Liguore WA, Domire JS, Button D, Wang Y, Dufour BD, Srinivasan S, McBride JL: AAV-PHP.B administration results in a differential pattern of CNS biodistribution in non-human primates compared with mice. Mol Ther 2019, 27:2018-2037. https://doi.org/10.1016/j.ymthe.2019.07.017.
- Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM: The neurotropic properties of AAV-PHP.B are limited to C57bl/6J mice. Mol Ther 2018, 26:664–668. https://doi.org/10.1016/ j.ymthe.2018.01.018.
- Merkel SF, Andrews AM, Lutton EM, Mu D, Hudry E, Hyman BT, Maguire CA, Ramirez SH: **Trafficking of adeno-associated** virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J Neurochem 2017, 140:216-230. https://doi.org/10.1111/jnc.13861.
- 40. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009, 27:59-65. https://doi.org/10.1038/nbt.1515.
- 41. Zhang X, He T, Chai Z, Samulski RJ, Li C: Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials 2018, 176:71-83. https:// doi.org/10.1016/j.biomaterials.2018.05.041.
- 42. Körbelin J, Dogbevia G, Michelfelder S, Ridder DA, Hunger A, Wenzel J, Seismann H, Lampe M, Bannach J, Pasparakis M, Kleinschmidt JA, Schwaninger M, Trepel M: A brain microvasculature endothelial cell-specific viral vector with the potential tial to treat neurovascular and neurological diseases. EMBO Mol Med 2016, 8:609-625. https://doi.org/10.15252/ emmm.201506078.
- 43. Land CA, Musich PR, Haydar D, Krenciute G, Xie Q: Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med 2020, 18:428. https://doi.org/ 10.1186/s12967-020-02598-0.

- 44. Engelhardt B: Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm (Vienna) 2006, 113:477-485. https://doi.org/10.1007/s00702-005-0409-y
- 45. Nishihara H, Gastfriend BD, Soldati S, Perriot S, Mathias A, Sano Y, Shimizu F, Gosselet F, Kanda T, Palecek SP, Du Pasquier R, Shusta EV, Engelhardt B: Advancing human induced pluripotent stem cell-derived blood-brain barrier models for studying immune cell interactions. Faseb J 2020, 34:16693-16715. https://doi.org/10.1096/fj.202001507RR
- Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, Chung S, Kim DY, Kamm RD, Tanzi RE: Blood-brain barrier dysfunction in a 3D in vitro model of Alzheimer's disease. Adv Sci 2019, 6: 1900962. https://doi.org/10.1002/advs.201900962.
- 47. Kuan W-L, Bennett N, He X, Skepper JN, Martynyuk N, Wijeyekoon R, Moghe PV, Williams-Gray CH, Barker RA: α -Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol 2016, 285:72–81. https://doi.org/10.1016/ j.expneurol.2016.09.003.
- 48. Pediaditakis I, Kodella KR, Manatakis DV, Hinojosa CD, Manolakos ES, Rubin LL, Hamilton GA, Karalis K: Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption in Parkinson's disease. BioRxiv 2020. 2020.07.22.207340, https://doi.org/10.1101/2020.07.22
- Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, Bullock TA, McGary HM, Khan JA, Razmpour R, Hale JF, Galie PA, Potula R, Andrews AM, Ramirez SH: The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis 2020,

146:105131. https://doi.org/10.1016/j.nbd.2020.105131. The authors assembled an *in vitro* microfluidic NVU model with hCMEC/D3 cells, and found that SARS-CoV-2 spike protein S1 triggered a pro-inflammatory response and promotes loss of barrier integrity in this model. This work features the use of *in vitro* NVU models to quickly identify BBB-penetrating mechanisms of SARS-CoV-2 during a global pandemic, potentially explaining the observation of neurological complications in a subset of COVID-19 patients.

- Alimonti JB, Ribecco-Lutkiewicz M, Sodja C, Jezierski A, Stanimirovic DB, Liu Q, Haqqani AS, Conlan W, Bani-Yaghoub M: Zika virus crosses an in vitro human blood brain barrier model. Fluids Barriers CNS 2018, 15:15. https://doi.org/10.1186/ s12987-018-0100-y.
- 51. Dickens D, Webb SD, Antonyuk S, Giannoudis A, Owen A, Rädisch S, Hasnain SS, Pirmohamed M: Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol 2013, 85: 1672-1683. https://doi.org/10.1016/j.bcp.2013.03.022
- Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgård P-O, Niewoehner J: A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. *PloS One* 2014, **9**, e96340. https://doi.org/10.1371/journal.pone.0096340.
- Wimmer I, Tietz S, Nishihara H, Deutsch U, Sallusto F, Gosselet F, Lyck R, Muller WA, Lassmann H, Engelhardt B: PECAM-1 stabilizes blood-brain barrier integrity and favors paracellular T-cell diapedesis across the blood-brain barrier during neuroinflammation. Front Immunol 2019, 10:711. https:// doi.org/10.3389/fimmu.2019.00711
- Steiner O, Coisne C, Engelhardt B, Lyck R: Comparison of immortalized bEnd5 and primary mouse brain microvascular endothelial cells as in vitro blood-brain barrier models for the study of T cell extravasation. J Cerebr Blood Flow Metabol 2011, 31:315-327. https://doi.org/10.1038/jcbfm.2010.96.

- 55. Majerova P, Michalicova A, Cente M, Hanes J, Vegh J, Kittel A, Kosikova N, Cigankova V, Mihaljevic S, Jadhav S, Kovac A: Trafficking of immune cells across the blood-brain barrier is modulated by neurofibrillary pathology in tauopathies. *PloS* One 2019, 14, e0217216. https://doi.org/10.1371/ journal.pone.0217216.
- 56. Robert J, Button EB, Yuen B, Gilmour M, Kang K, Bahrabadi A, Stukas S, Zhao W, Kulic I, Wellington CL: Clearance of betaamyloid is facilitated by apolipoprotein E and circulating highdensity lipoproteins in bioengineered human vessels. Elife 2017, 6:1-24. https://doi.org/10.7554/eLife.29595
- 57. Mantle JL, Lee KH: Immunoglobulin G transport increases in an in vitro blood-brain barrier model with amyloid-β and with neuroinflammatory cytokines. *Biotechnol Bioeng* 2019, 116: 1752–1761. https://doi.org/10.1002/bit.26967.
- Wan W, Cao L, Liu L, Zhang C, Kalionis B, Tai X, Li Y, Xia S:
 Aβ(1-42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins. J Neurochem 2015, 134:382-393. https:// doi.org/10.1111/jnc.13122
- Merino-Zamorano C, Fernández-de Retana S, Montañola A, Batlle A, Saint-Pol J, Mysiorek C, Gosselet F, Montaner J, Hernández-Guillamon M: Modulation of amyloid-β1-40 transport by ApoA1 and ApoJ across an in vitro model of the blood-brain barrier. J. Alzheimers. Dis. 2016, 53:677-691. https://doi.org/10.3233/JAD-150976.
- Cuevas E, Rosas-Hernandez H, Burks SM, Ramirez-Lee MA, Guzman A, Imam SZ, Ali SF, Sarkar S: Amyloid Beta 25-35 induces blood-brain barrier disruption in vitro. Metab Brain Dis 2019, 34:1365-1374. https://doi.org/10.1007/s11011-019-00447-8.
- Biemans EALM, Jäkel L, de Waal RMW, Kuiperij HB, Verbeek MM: Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood-brain barrier. J Neurosci Res 2017, 95:1513-1522. https://doi.org/10.1002/ inr.23964.
- 62. Liu Q, Hou J, Chen X, Liu G, Zhang D, Sun H, Zhang J: Pglycoprotein mediated efflux limits the transport of the novel anti-Parkinson's disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models. PloS One 2014, 9, e102442. https://doi.org/10.1371/ journal.pone.0102442.
- Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, Kataoka Y: Monomeric α -synuclein induces blood-brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc Res 2019, 124: 61-66. https://doi.org/10.1016/j.mvr.2019.03.005.
- Wang L, Sievert D, Clark AE, Lee S, Federman H, Gastfriend BD, Shusta EV, Palecek SP, Carlin A, Gleeson J: A human three-dimensional neural-perivascular 'assembloid' promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat Med 2021, 27:1600-1606. https:// doi.org/10.1038/s41591-021-01443-1.
- Chiu C-F, Chu L-W, Liao I-C, Simanjuntak Y, Lin Y-L, Juan C-C, Ping Y-H: The mechanism of the Zika virus crossing the placental barrier and the blood-brain barrier. Front Microbiol . 2020, **11**:214. https://doi.org/10.3389/fmicb.2020.00214.
- Roe K, Orillo B, Verma S: West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model. *PloS One* 2014, 9, e102598. https://doi.org/10.1371/ journal.pone.0102598.