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Abstract

The ability to study ”gain of function” mutations has impor-
tant implications for identifying and mitigating risks to public
health and national security associated with viral infections.
Numerous respiratory viruses of concern have RNA genomes
(e.g., SARS and flu). These RNA genomes fold into complex
structures that perform several critical functions for viruses.
However, our ability to predict the functional consequence
of mutations in RNA structures continues to limit our abil-
ity to predict gain of function mutations caused by altered or
novel RNA structures. Biological research in this area is also
limited by the considerable risk of direct experimental work
with viruses. Here we used small functional RNA molecules
(ribozymes) as a model system of RNA structure and func-
tion. We used combinatorial DNA synthesis to generate all
of the possible individual and pairs of mutations and used
high-throughput sequencing to evaluate the functional conse-
quence of each single- and double-mutant sequence. We used
this data to train a Long Short-Term Memory model. This
model was also used to predict the function of sequences
found in the genomes of mammals with three mutations,
which were not in our training set. We found a strong pre-
diction correlation in all of our experiments.

Introduction
Unlike human genomes that are made of DNA, many viruses
have genomes made of a molecule called RNA (ribonucleic
acid). One important property of RNA molecules is that
they can form various complex shapes that are very differ-
ent than the well-known double-helix of DNA. For viruses
with RNA genomes, these RNA shapes can perform impor-
tant functions, such as the binding of virus or human pro-
teins that enable replication and infection. RNA molecules
are formed from long chains of small molecular building
blocks called nucleotides. The shape, also called structure,
formed by a specific RNA molecule depends on the order
of the connected nucleotides, which we call the RNA se-
quence. Changing the RNA sequence changes the shape,
which changes the function. Random mutations that occur
during the virus replication change the sequence, which can
in turn change the shape and function of the RNA. Some of
these mutations, termed ”gain of function”, would make the
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virus better at replicating or infecting, which makes them
more harmful. Unfortunately, our inability to predict which
sequence changes will change RNA functions limits our
ability to predict gain of function mutations. The ability to
predict gain of function mutations in RNA could help us pre-
pare and respond to viral epidemics and pandemics.

Self-cleaving ribozymes are small functional RNA
molecules that can be found in the genomes of all living or-
ganisms. Ribozymes are a good model of sequence to func-
tion relationships in RNA because changing the sequence
of a ribozyme can change the function, and this can be stud-
ied safely and easily in the lab. ”Gain of function mutations”
enhance the ribozyme function, but the ribozymes are not in-
fectious or harmful to humans. In addition, it is easy to make
changes to the RNA sequence in the lab. Recent experimen-
tal advancements have made it possible to study millions of
nucleotide changes to a ribozyme sequence all at once, pro-
viding rich data sets for learning and predicting which nu-
cleotide changes result in gain of function mutations in this
model RNA system.

Here we use such high-throughput sequence-function data
from a ribozyme called CPEB3. This ribozyme was origi-
nally found in the human genome but now is known to have
been present in the ancient genomes of the earliest mam-
mals. The ribozyme is found in the genomes of all mam-
mals but with some differences in the nucleotide sequences.
This provides a good model system for predicting which
nucleotide changes in mammals enhanced ribozyme func-
tion. Toward this goal, we first generated all the possible
nucleotide changes to the most ancient CPEB3 ribozyme,
all the possible pairs of nucleotide changes, and evaluated
the ribozyme function for all these sequences (∼20,000 se-
quences). We used a portion of this data as a training set for
a Long Short-Term Memory model (LSTM). We used this
model to predict the function of the withheld training data
and then to predict the function of sequences with three mu-
tations that were not in our training data but are found in
the genomes of other mammals. We analyzed the accuracy
of our predictive model using correlation between the pre-
dicted ribozyme activity and the lab determined activity.

Previous works focusing on functional prediction aim to
predict mutated sequences with the same number of muta-
tions as in the training data (Zhang et al. 2020; Schmidt and
Smolke 2021; Calonaci et al. 2020). Most of these models



R2 RMSE PCC
Experiment 1: Replicate 1 0.736 0.152 0.858
Experiment 1: Replicate 2 0.841 0.121 0.918
Experiment 1: Replicate 3 0.848 0.109 0.921
Experiment 2: Replicate 1 0.648 0.180 0.892
Experiment 2: Replicate 2 0.639 0.174 0.924
Experiment 2: Replicate 3 0.800 0.143 0.918

Table 1: Prediction scores for Experiments 1 and 2.

enhance structural homology to predict, i.e., estimating how
similar is the sequence to predict with the one in input. To
the best of our knowledge, this is the first time that a model
trained on single and double mutations is effective to predict
sequences with a larger number of mutations. This is pos-
sible because our LSTM model does not use homology but
learns specific small patterns in the sequence that can also
generalize to sequences with a higher number of mutations.

Methods
Data Generation. The nucleotide changes to the CPEB3
ribozyme were made and studied through molecular biol-
ogy techniques as follows. The RNA molecules were made
in the lab through a process called in vitro transcription,
where a protein is used to make multiple RNA copies of
DNA ”templates”. Ribozymes are unique RNA sequences
that cleave their own sequence while they are being made
(self-cleaving). The DNA templates used in this study were
actually a collection of numerous different DNA sequences,
and the RNA that was made included lots of copies of ev-
ery possible individual and pair of nucleotide changes of the
CPEB3 ribozyme. Some of these nucleotide changes were
expected to enhance the ribozyme function, such that more
of the molecules will cleave while they are being made.
Other nucleotide changes were expected to diminish the ri-
bozyme activity, such that less of these molecules will cleave
while being made. All the different RNA sequences were
made simultaneously so that the amount that they cleave
could be directly compared. The mount cleaved was deter-
mined by sequencing all the RNA molecules (RNA-seq).
This sequencing data reports on both the nucleotide changes
that were present in a specific molecule and whether or not
that specific molecule was cleaved. Because each nucleotide
change was observed multiple times, counting the number
of cleaved and not cleaved molecules was used to determine
the function of each sequence. Specifically, the function was
defined as the fraction cleaved F = count cleaved/count total.

The lab experiments were replicated three times because
the molecular biology methods used involve several stochas-
tic processes. Each replicate was used separately to train and
test the prediction model and contains 207 sequences with
one mutation and 21,114 sequences with double mutation.

Prediction Model. We built a machine learning model to
predict how nucleotide changes will change the ribozyme
function (fraction cleaved). Each dataset contains nucleotide
sequences and the associated fraction cleaved determined
experimentally, which we used as ground truth. Because the

fraction cleaved is a real number in [0,1], we addressed the
problem as a regression task. Given that the input is a se-
quence of nucleotides, we used a Long Short-Term Memory
modelto predict the fraction cleaved. We processed the input
sequence of nucleotides as a text sequence. We used the root
mean square error (RMSE) as the loss function. We used R2

score, RMSE, and Pearson correlation coefficient (PCC) to
measure the model performances of the proposed model.

Experiments and Results
We conducted two types of experiments. In the first experi-
ment (Experiment 1), we trained and predicted on individ-
ual and pairs of nucleotide mutations. We performed 10-
fold cross-validation for each of the Replicates. Results are
shown in Table 1 (first three rows). In the second experi-
ment (Experiment 2), we wanted to see if a model learned
on one and two mutations was able to predict the function
of sequences with a higher number of mutations (three in
the considered case). Hence, we used all the Replicate data
as training set and data consisting of sequences found in the
genomes of mammals with three mutations, which were not
in our training set (518 sequences). Results are shown in Ta-
ble 2 (second three rows). We found that there was a strong
prediction correlation in all models. For both experiments 1
and 2, the Pearson Correlation Coefficient on Replicates 2
and 3 was >0.9, and the R2 ranged from 0.64 to 0.84. These
results indicate that tractable high-throughput experiments
in the lab can be used to determine the effect of combina-
tions of mutations found to evolve in nature. Results were
slightly worse on Replicate 1. Because of variation in the to-
tal number of copies for all mutational variants within each
replicate, the average number of identified copies per vari-
ant is different. Additionally, because this difference is not
uniformly distributed across all mutational variants, some
variant’s counts may be less accurate due to low copy vol-
ume. Consequently, we should not expect that each replicate
will be of equal utility for downstream predictions. Over-
all, these preliminary results are promising for predicting
”gain of function” mutations in other settings, such as RNA
viruses, which could guide RNA vaccine production.
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