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—— Abstract
Given two points in the plane, a set of obstacles defined by closed curves, and an integer k, does
there exist a path between the two designated points intersecting at most k£ of the obstacles? This
is a fundamental and well-studied problem arising naturally in computational geometry, graph
theory, wireless computing, and motion planning. It remains NP-hard even when the obstacles are
very simple geometric shapes (e.g., unit-length line segments). In this paper, we show that the
problem is fixed-parameter tractable (FPT) parameterized by k, by giving an algorithm with running
time k°*)nOW | Here n is the number connected areas in the plane drawing of all the obstacles.
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1 Introduction

In the CONNECTED OBSTACLE REMOVAL problem we are given as input a source point s
and a target point ¢ in the plane, and our goal is to move from the source to the target along
a continuous curve. The catch is that the plane is also littered with obstacles — each obstacle
is represented by a bounded closed connected subset of the plane, and the goal is to get from
the source to the target while intersecting as few of the obstacles as possible. Equivalently
we can ask for the minimum number of obstacles that have to be removed so that one can
move from s to t without touching any of the remaining one. The problem has a wealth
of applications, and has been studied under different names, such as BARRIER COVERAGE
or BARRIER RESILIENCE in networking and wirless computing [1, 3, 15, 16, 17, 18], or
MINIMUM CONSTRAINT REMOVAL in planning [7, 10, 13, 14]. The problem is NP-hard even
when the obstacles are restricted to simple geometric shapes, such as line segments (e.g.,
see [1, 17, 18]). On the other hand, for unit-disk obstacles in a restricted setting, the problem
can be solved in polynomial time [16]. Whether CONNECTED OBSTACLE REMOVAL can be
solved in polynomial time for unit-disk obstacles remains open. The problem is known to be
APX-hard [2], and also no factor o(n)-approximation is known. For restricted inputs (such
as unit disc or rectangle obstacles) better approximation algorithms are known [2, 3].

In this paper we approach the general CONNECTED OBSTACLE REMOVAL problem from
the perspective of parameterized algorithms (see [4] for an introduction). In particular it is
easy to see that the problem is solvable in time n¥TO() if the solution curve is to intersect
at most k obstacles. Here n is the number of connected regions in the plane defined by
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the simultaneous drawing of all the obstacles. If k is considered a constant then this is
polynomial time, however the exponent of the polynomial grows with the parameter k. A
natural problem is whether the algorithm can be improved to a Fixed Parameter Tractable
(FPT) one, that is an algorithm with running time f(k)n®®). In this paper we give the first
FPT algorithm for the problem. Our algorithm substantially generalizes previous work by
Kumar et al. [16] as well as the first author and Kanj [8].

» Theorem 1.1. There is an algorithm for CONNECTED OBSTACLE REMOVAL with running
time KO- O,

Our arguments and the relation between our results and previous work are more conve-
niently stated in terms of an equivalent graph problem, which we now discuss. Given a graph
G, a set C C N (interpreted as a set of colors), and a function x : V(G) — 2¢ that assigns a
set of colors to every vertex of v, a vertex set S uses the color set | J, g x(v). In the COLORED
PATH problem input consists of G, s,t, x and k, and the goal is to find an s — ¢ path P that
uses at most k colors. Note, that to obtain computational results for the problem, we assume
that the regions and intersections formed by the obstacles can be computed and enumerated
in polynomial time. We do not assume that the obstacles are simply-connected, however
we assume that the boundary of each obstacle is union of finite number of disjoint simple
closed curves. We may also assume that s and ¢ are not on a boundary of any obstacle. It is
easy to see that CONNECTED OBSTACLE REMOVAL reduces to COLORED PATH (see also
Figure 1). In particular, we let the vertices of G be the connected components, called regions,
of the plane minus the union of the boundaries of the obstacles and we put an edge between
two vertices if their boundaries have a curve of positive length in common. The color set is
exactly the set of obstacles and the color set of a vertex is the set of obstacles containing the
region associated with the vertex. The equivalence of the instances is rather straightforward.
One way, the sequence of (closures of) regions a path in the plane intersects when traversing
it from s to t, determines an s-t walk in G. On the other hand, we can easily define an s-t
path in plane from a path in the graph that intersects precisely the regions associated with
the vertices of the path and crosses between consecutive regions in the common boundary.
Of course, reducing from CONNECTED OBSTACLE REMOVAL in this way can not produce
all possible instances of COLORED PATH: the graph G is always a planar graph, and for
every color ¢ € C the set x"!(c) = {v € V(G) : c € x(v)} induces a connected subgraph of
G. We shall denote the COLORED PATH problem restricted to instances that satisfy the two
properties above by COLORED PATH*. With these additional restrictions it is easy to reduce
back (we can just take the dual of G and let each obstacle be the closure of the union of the
faces containing the associated color), and therefore CONNECTED OBSTACLE REMOVAL and
COLORED PATH* are, for all practical purposes, different formulations of the same problem.

Related Work in Parameterized Algorithms, and Barriers to Generalization. Korman
et al. [15] initiated the study of CONNECTED OBSTACLE REMOVAL from the perspective
of parameterized complexity. They show that CONNECTED OBSTACLE REMOVAL is FPT
parameterized by k for unit-disk obstacles, and extended this result to similar-size fat-region
obstacles with a constant overlapping number, which is the maximum number of obstacles
having nonempty intersection. Eiben and Kanj [8] generalize the results of Korman et al. [15]
by giving algorithms for COLORED PATH* with running time f(k,#)n®®) and g(k, £)n©®
where t is the treewidth of the input graph G, and /¢ is an upper bound on the number of
vertices on the shortest solution path P.
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Figure 1 The figure shows an instance of CONNECTED OBSTACLE REMOVAL and the graph G of
an equivalent instance of COLORED PATH. Every obstacle corresponds to a color, and the color set
of a vertex are the obstacles that contain the vertex in their interior.

Eiben and Kanj [8] leave open the existence of an FPT algorithm for COLORED PATH* -
Theorem 1.1 provides such an algorithm. Interestingly, Eiben and Kanj [8] also show that if an
FPT algorithm for COLORED PATH* were to exist, then in many ways it would be the best one
can hope for. More concretely, for each of the most natural ways to generalize Thoerem 1.1,
Eiben and Kanj [8] provide evidence of hardness. Specifically, the COLORED PATH* problem
imposes two constraints on the input — the graph G has to be planar and the color sets need
to be connected. Eiben and Kanj [8] show that lifting either one of these constraints results
in a W[1]-hard problem (i.e. one that is not FPT assuming plausible complexity theoretic
hypotheses) even if the treewidth of the input graph G is a small constant, and the length of
the a solution path (if one exists) is promised to be a function of k.

Algorithms that determine the existence of a path can often be adapted to algorithms
that find the shortest such path. Eiben and Kanj [8] show that for COLORED PATH*, this
can not be the case. Indeed, they show that an algorithm with running time f (k)no(l) that
given a graph G, color function y and integers k and ¢ determines whether there exists an
s — t path of length at most ¢ using at most k colors, would imply that FPT = W][1]. Thus,
unless FPT = W[1] the algorithm of Theorem 1.1 can not be adapted to an FPT algorithm
that finds a shortest path through k obstacles.

1.1 Overview of the Algorithm

k+0(1) time algorithm enumerates all choices of a set S on at most k colors in

The naive n
the graph, and then decides in polynomial time whether S is a feasible color set, in other
words whether there exists a solution path that only uses colors from S. At a very high level
our algorithm does the same thing, but it only computes sets S that can be obtained as a
union of colors of at most k vertices and additionally it performs a pruning step so that not
all n* choices for S are enumerated.

In FPT algorithms such a pruning step is often done by clever branching: when choosing
the 7’th vertex defining S one would show that there are only f(k) viable choices that could
possibly lead to a solution. We are not able to implement a pruning step in this way. Instead,
our pruning step is inspired by algorithms based on representative sets [12].
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In particular, our algorithm proceeds in k rounds. In each round we make a family P; of
color sets of size at most ¢, with the following properties. First, |P;| < kO pOo), Second,
if there exists a solution path, then there exists a solution such that the set containing the
first i visited colors is in P;.

In each round ¢ the algorithm does two things: first it extends the already computed
families Py, ...P;—1 by going over every set S € U;;}) P; and every vertex v € V(G) and
inserting S U x(v) into the new family P; if |S U x(v)| = 4. It is quite easy to see that P
satisfies the second property - however it is a factor of n larger than the union of previous
P;’s. If we keep extending P; in this way then after a super-constant number of steps we
will break the first requirement that the family size should be at most kOG0 | For this
reason the algorithm also performs an irrelevant set step: as long as P; is “too large” we
show that one can identify a set S € P; that can be removed from P; without breaking the
second property. We repeat this irrelevant set step until P is sufficiently small. At this point
we declare that this is our ¢’th family P; and proceed to step i + 1.

The most technically involved part of our argument is the proof of correctness for the
irrelevant set step, see Section 3.3. This argument crucially exploits the structure of a large
set of paths in a planar graph that start and end in the same vertex.

2 Preliminaries

For integers n, m with n < m, we let [n,m] :={n,n+1,...,m} and [n] := [1,n]. Let F be
a family of subsets of a universe U. A sunflower in F is a subset 7/ C F such that all pairs
of elements in 7’ have the same intersection.

» Lemma 2.1 ([9, 11]). Let F be a family of subsets of a universe U, each of cardinality
ezactly b, and let a € N. If | F| > bl(a — 1), then F contains a sunflower F' of cardinality at
least a. Moreover, F' can be computed in time polynomial in |F|.

We assume familiarity with the basic notations and terminologies in graph theory and
parameterized complexity. We refer the reader to the standard books [4, 5, 6] for more
information on these subjects.

Graphs. All graphs in this paper are simple (i.e., loop-less and with no multiple edges). Let
G be an undirected graph. For an edge e = wv in G, contracting e means removing the two
vertices u and v from G, replacing them with a new vertex w, and for every vertex y in the
neighborhood of v or u in G, adding an edge wy in the new graph, not allowing multiple
edges. Given a connected vertex-set S C V(G), contracting S means contracting the edges
between the vertices in S to obtain a single vertex at the end. For a set of edges E' C E(G),
the subgraph of G induced by E’ is the graph whose vertex-set is the set of endpoints of the
edges in E’, and whose edge-set is F’.

A graph is planar if it can be drawn in the plane without edge intersections (except at the
endpoints). A plane graph is a planar graph together with a fixed drawing. Each maximal
connected region of the plane minus the drawing is an open set; these are the faces.

Let W7 = (u1,...,up) and Wa = (v1,...,v4), p,q¢ € N, be two walks such that u, = v;.
Define the gluing operation o that when applied to W7 and W5 produces that walk W10 Wy =
(U1,...,Up, V2, ...,0q). For a path P = (v1,...,v4), ¢ € Nand i € [g], we let pre(P,v;) be
the prefiz of the P ending at v;, that is the path (v, ve,...v;). Similarly, we let suf (P, v;)
be the suffiz of the P starting at v;, that is the path (v, vit1,...v4).

For a graph G and two vertices u,v € V(G), we denote by dg(u,v) the distance between
uw and v in G, which is the length (number of edges) of a shortest path between v and v in G.
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Parameterized Complexity. A parameterized problem @ is a subset of Q* x N, where Q is a
fixed alphabet. Each instance of the parameterized problem () is a pair (z, k), where k € N is
called the parameter. We say that the parameterized problem @ is fixed-parameter tractable
(FPT) [6], if there is a (parameterized) algorithm, also called an FPT-algorithm, that decides
whether an input (z, k) is a member of @ in time f(k) - |2|°(), where f is a computable
function. Let FPT denote the class of all fixed-parameter tractable parameterized problems.
By FPT-time we denote time of the form f(k) - |2|°(!), where f is a computable function
and |z| is the input instance size.

Colored Path and Colored Path*. For a set S, we denote by 2° the power set of S. Let
G = (V,E) be a graph, let C C N be a finite set of colors, and let x : V — 2¢. A vertex v
in V is empty if x(v) = 0. A color ¢ appears on, or is contained in, a subset S of vertices if
¢ € Upeg x(v). For u,v € V(G), L €N, a u-v walk W = (u = vo, ...,v, =) in G is {-valid
if [U._y x(v:)| < 4 ie., if the total number of colors appearing on the vertices of W is at
most £. A color c is connected in G, or simply connected, if | . X(U){v} induces a connected
subgraph of G. The graph G is color-connected, if for every c € C, ¢ is connected in G.

For an instance (G, C, x, s, t, k) of COLORED PATH*, if s and ¢ are nonempty vertices, we
can remove their colors and decrement k by |x(s) U x(t)| because their colors appear on every
s-t path. If afterwards k becomes negative, then there is no k-valid s-t path in G. Moreover,
if s and t are adjacent, then the path (s,t) is a path with the minimum number of colors
among all s-t paths in G. Therefore, we will assume:

» Assumption 2.2. For an instance (G, C, x, s,t,k) of COLORED PATH or COLORED PATH*,
we can assume that s and t are nonadjacent empty vertices.

» Definition 2.3. Let s,t be two designated vertices in G, and let z,y be two adjacent
vertices in G such that x(z) = x(y). We define the following operation to x and y, referred
to as a color contraction operation, that results in a graph G’, a color function x’, and two
designated vertices s’,t’ in G’, obtained as follows:
G’ is the graph obtained from G by contracting the edge 'y, which results in a new vertex z;
s’ =5 (resp. t' =1t) if s ¢ {x,y} (vesp. t ¢ {x,y}), and s’ = z (resp. ' = z) otherwise;
X V(G") — 29 is defined as x/(w) = x(w) if w # 2, and x'(2) = x(z) = x(y).
G is irreducible if there does not exist two vertices in GG to which the color contraction
operation is applicable.

» Observation 2.4. Let G be a color-connected plane graph, C a color set, x : V. — 2°,
s,t € V(G), and k € N. Suppose that the color contraction operation is applied to two
vertices x,y in G to obtain G', X', s',t', as described in Definition 2.3. For any two vertices
u,v € V(G) and p C C there is a u-v walk W with x(W) = p in G if and only if there is a
u'-v" walk W' with x(W') = p, where v =wu (resp. v/ =v) if u ¢ {x,y} (resp. v & {z,y}),
and u' = z (resp. v' = z) otherwise.

3 FPT algorithm for Colored Path*

Given an instance (G, C, x, s,t, k) and a vertex v € V(G), we say that a vertex u is reachable
from a vertex v by a color set p C C' if there exists a v-u path p with x(P) C p. Furthermore,
we say that a color set p C C' is v-opening if there is a vertex u € V(G) such that u is
reachable from v by p, but not by any proper subset of p. Note that necessarily x(v) C p. A
set of colors p completes a v-t walk @ if there is an s-v path P with x(P) =p, [pUx(Q)| <k,
and v is the only vertex on @ reachable from s by p. We say p minimally completes a v-t
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walk @, if p completes @ and there is no s-v path P’ with x(P’) € p. We say that an s-t
path P is nice, if for every prefix pre(P,u) of P ending at the vertex u € V(@) there is no
s-u path P" with x(P’) € x(pre(P,u)).

» Observation 3.1. There is a k-valid s-t path if and only if there is a nice k-valid s-t path.

» Definition 3.2 (k-representation). Given an instance (G,C,x, s,t, k) of COLORED PATH*,
a vertex v € V(G), and two families P and P’ of s-opening subsets of C of size £ < k, we
say that P’ k-represents P w.r.t. v if for every p € P and every v-t walk Q such that p
minimally completes @, there is a set p' € P’ such that [p"Ux(Q)| <k, p'Nx(Q) 2 pNx(Q),
and there is an s-v path P' with x(P') =p'.

The main technical result of this paper is then the following theorem stating that if a
family P of color sets is large, then we can find an irrelevant color set in P.

» Lemma 3.3. Let (G,C, X, s,t,k) be an instance of COLORED PATH*. Given a family P of
s-opening color sets of set of size ¢ < k and a vertez v € V(G), if |P| > f(k), f(k) = kOF"),
then we can in time polynomial in |P|+ |V (G)| find a set p € P such that P\ {p} k-represents
P w.rt. v.

3.1 Algorithm assuming Lemma 3.3

In this subsection, we show how to get an FPT-algorithm for COLORED PATH* assuming
Lemma 3.3 is true. The whole algorithm is relatively simple and is given in Algorithm 1. The
main goal of the subsection is to show that the algorithm is correct and runs in FPT-time.
While the definition of k-representation is not the most intuitive definition of representation
(for example it is not transitive), we show that it is sufficient to preserve a path of some
specific form. Let P be a k-valid s-¢ path. For i € [0, k] let v;(P) be the last vertex on P such
that |y (pre(P,v;(P)))| < iand let ;(P) be the length, i.e., number of edges, of suf (P, v;(P)).
If the path P is clear from the context, we write v; and ¢; instead of v;(P) and ¢;(P). For
example, we write pre(P,v;) instead of pre(P,v;(P)). Note that for a k-valid s-¢t path P,
£;,(P) = 0 and since G is irreducible w.r.t. color contraction, ¢o(P) is precisely the length of
P. For two vectors (ag, a1, ag, ..., ax), (bo,b1,b2,...,bx) we say (ag,...,ax) < (bo,...,bg) if
there exists i € [0, k] such that a; < b; and for all j > i a; = b;. For a k-valid s-t path, we

—

call the vector £(P) = (¢o(P), ..., (P)) the characteristic vector of P (see also Figure 2).

¢ o 0 O O {23 {2 {4 {24 385 0

Se ° ° ° ° ° ° ° ° ° °
vo(P) Ul(P) vg(P) ’U4(P) Us(P)
v (P) vg(P)

Figure 2 Figure depicting the definition of v;(P) for k = 6 and a path using 5 colors. The

—

characteristic vector £(P) = (¢o(P),...,L(P)) is (10,6,6,4,2,0,0).

—

» Lemma 3.4. Let P be a k-valid s-t path with characteristic vector £(P), then there exists

— — —

a nice k-valid s-t path P’ with characteristic vector £(P') such that ¢(P") < ¢(P).

The following technical lemma will help us later show that replacing a prefix of a path P

— —

with x(pre(P,v;)) € P by its representative will always lead to a path P’ with ¢(P") < ¢(P).

» Lemma 3.5. Let P be an s-t path, w € V(P), let pre = pre(P,w), suf = suf(P,w), and let
pre’ be an s-w path such that |x(pre’) U (x(pre) N x(suf))| < |x(pre)| and |x(pre’)| < |x(pre)|.

-

Then £(pre’ osuf) < ¢(P).
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Algorithm 1 The algorithm for COLORED PATH*.

Data: An instance (G,C, x, s,t, k) of COLORED PATH*
Result: A k-valid s-t path or NO, if such a path does not exists

1 Py = {0};
2 for i € [k] do
3 751 = @
4 for v € V(G) do
5 for p € U;cp0,i—11 Pj do
6 if |x(v) Up| =1 then
7 if there is a k-valid s-t path P with x(P) C x(v) Up then
8 ‘ Output P and stop
9 end
10 Pi = Pi U {x(v) Up}
11 end
12 end
13 end
14 for v € V(G) do
15 Pr =P
16 while |P}| > f(k) do
17 Compute p € P? such that PP \ {p} k-represents P? w.r.t. v (by
Lemma 3.3)
18 Py =P \{pr}
19 end
20 end
21 Pi = Uvevia) PP
22 end

23 Output NO

Next, we show that k-representativity preserve in a sense a representation of a k-valid
paths with minimal characteristic vector. Before we state the next lemma we introduce the
following notation. We say that a set of colors p i-captures a s-t path P if |x(pre(P,v;)| = |p|,
p completes suf (P, v;), and p contains y(pre(P,v;)) N x(suf (P, v;)).

—

» Lemma 3.6. Let (G,C, x, s,t, k) be a YES-instance, P a nice k-valid path minimizing ¢(P),
and P" and P two families of s-opening subsets of C of size i < k. If |x(pre(P,v;))| =4, P’
k-represents P w.r.t. v; = v;(P), and there is p € P such that p i-captures P. Then there is
p' € P’ such that p' i-captures P.

Proof. Since |p| = |pre(P,v;)| = i and p completes suf Pv;, it follows from the choice of
P and Lemma 3.5 that p minimally completes P. Because, P’ k-represents P w.r.t. v;, it
follows that there exists p’ € P’ such that [p’ U x(suf Pv;)|, there is a s-v; path P’ with
X(P") =p" and p’ N x(suf(P,v;)) 2 pNx(suf(P,v;)) 2 x(pre(P,v;)) N x(suf(P,v;)). Where
the second containment follows, because p i-captures P. Therefore p’ contains x(pre(P,v;))N
x(suf (P, v;)). To finish the proof it only remains to show that no vertex on suf (P, v;) other
than v; is reachable from s by p’. Assume otherwise and let w € V(suf(P,v;)) \ {vi} be
the last vertex that is reachable by p’. We show that |p’ U (x(pre(P,w)) N x(suf (P, w)))| <
|x(pre(P,w))|. Since clearly |p/| =i < |x(pre(P,w))|, the lemma then follows by applying
Lemma 3.5 and from the choice of P. <
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» Lemma 3.7. Let (G,C,x,s,t,k) be a YES-instance, P a nice k-valid s-t path minimizing
the vector Z(P) Moreover, let Py = (0 and Py,..., Py the color sets created in the step on
line 21 of Algorithm 1. Then for alli € [0,k] such that |x(pre(P,v;))| =i, there is p; € P;
such that p; i-captures P.

Proof. We will prove the lemma by induction. Since Py contains ) and x(s) = (), it is easy
to see that the lemma is true for ¢ = 0 and that x(pre(P,v)) = 0. Let us assume that
the lemma is true for all j < i. If v; = v;_1," then the statement is true for i, because
Ix(pre(P,v;))| < i— 1. Hence, we assume for the rest of the proof that v; # v;_;. Let
j €]0,i—1] be such that Vj_1 # Vi—1 but v; = v;_1 and let u be the vertex on P just after v;.
It follows from definition of v;_1, vj, and v;_; that |x(pre(P,v;))| = j and |x(pre(P,u))| = i.
By the induction hypothesis there is p; € P; such that p; i-captures P. In particular v; is
the last vertex on suf(P, v;) reachable from s by p; and p; D x(pre(P,v;)) N x(suf (P, v;)).

> Claim 3.8. |p; Ux(u)| =4 and p; U x(u) minimally completes suf (P, v;).

From the above claim, it follows that P; contains a color set p = p; U x(u) such that |p| =i
minimally completes suf (P, v;). Moreover, p 2 x(pre(P,v;))Nx(suf(P,v;)) and p i-captures
P. The rest of the proof follows by applying Lemma 3.6 in every loop between the steps on
lines 16 and 19 for v = v;. <

—

Now, if the nice k-valid s-t path P minimizing the vector ¢(P) contains i < k colors, then
v;(P) is a singleton path (¢). Since by Lemma 3.7 there is p € P; that i-captures P, it means
that t is reachable from s by p and Algorithm 1 outputs a s-t path using only the colors
in p. Moreover, whenever it outputs a path it check whether it is k-valid. Therefore after
analyzing the running time of Algorithm 1 we obtain the following theorem.

» Theorem 3.9. There is an algorithm that given an instance (G,C, x, s,t,k) of COLORED
PATH* either outputs k-valid s-t path or decides that no such path exists, in time O(k'o(ks) .

V(G)°W).

Note that by the reduction from CONNECTED OBSTACLE REMOVAL to COLORED PATH*
discussed in the introduction, Theorem 3.9 implies also an algorithm for CONNECTED
OBSTACLE REMOVAL with the asymptotically same running time and hence Theorem 1.1.

3.2 Proof of Lemma 3.3

» Observation 3.10. Let P be a family of s-opening subsets of C of size £ < k, v € V(G),
and p € P. If there is an s-v path P with x(P) C p, then P\ {p} k-represents P.

For the rest of the section we will fix v € V(G), ¢ € [k], and we let P be a family of
s-opening color sets of size ¢ such that, for every p € P, v is reachable from s by p but is not
reachable from s by any proper subset of p. Our goal in the remainder of the section is to
show that if [P| > f(k), f(k) = k°*)_ then we can find in FPT-time a color set p € P such
that P\ {p} k-represents P w.r.t. v. We refer to such p also as an érrelevant color set.

1 Throughout the proof, to improve readability we write v; instead of vi(P).
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3.2.1 Sketch of the Proof

The main idea is to show that if the family P is large, in our case of size at least kzo(k3),
then we can find a subfamily of P that is structured and this structure makes it easier to
find an irrelevant color set that can be always represented within the structured subfamily.
We can first apply sunflower lemma and restrict our search to a subfamily of size at least
E©**) whose color sets pairwise intersect in the same color sets ¢, but are otherwise pairwise
color-disjoint. Now we can remove colors in ¢ from the graph and apply the color contraction
operation to newly created neighbors with the same color (see Subsection 3.2.3).

In the rest of the proof, we can restrict our search for an irrelevant color set to a family
‘P whose color sets are pairwise color disjoint. Moreover, we assume the graph is irreducible
w.r.t. color contraction. Now for each p; € P we compute an s-v path P; such that x(FP;) = p;,
by Observation 3.10 this is simply done by finding an s-v path in the subgraph induced on
vertices with colors in p;. The goal is to further restrict the search for an irrelevant path to a
set of paths P such that there is a small set of vertices U, |U| < 2k, such that all the paths in
P visit all vertices of U in the same order, but every vertex in V(G) \ (U U{s, v}) appears on

at most % paths. This is simply done by finding a vertex that appear on the most paths in

P, including the vertex in U if the vertex appears on at least IU“I_% paths, and restricting
P to the paths containing the vertex. Otherwise, we stop. We show in Lemma 3.13 that
because each path in P has at most k colors, we stop after including at most 2k vertices into
U. To get the paths that visit U in the same order, we just go through all |U|! orderings of
U and pick the one most paths adhere to. To finish the proof, we show that thanks to the
structure of paths in P, for any two consecutive vertices in U, there is a large set of paths

that are pairwise vertex disjoint between the two consecutive vertices of U (Lemma 3.16).

Hence, we get into the situation similar to the one in Figure 3. Any v-t path (walk) that
contains at most k colors and does not contain vertices in U can only interact with a few of
these paths between the two consecutive vertices. Hence, because P was large and because
of the structure of paths in P, we find a path that cannot share a color with any v-t walk
with at most k colors (Lemma 3.17). But the color set of such a path is then represented by
any other color set in P, as they have the same size.

Uy Uz

t

Figure 3 A set of pairwise color-disjoint paths that intersects exactly in u; and wus in the same
order. If a path P from v to ¢t do not contain s, u1, nor uz but it shares a color with some vertex w
on the part of the red. Then P has to cross at least 4 of the color-disjoint path and hence it has to
contain at least 3 colors. For example for the blue path are vertices outside of the orange region,
inside the purple region, and the region between red and green path pairwise color-disjoint. In each
of these regions the blue path contains at least 2 consecutive vertices, hence at least one is not empty.

39:9

SoCG 2020



39:10

Removing Connected Obstacles in the Plane Is FPT

3.2.2 The Color-Disjoint Case

The goal of this subsection is to show that Lemma 3.3 is true for a special case when the
color sets in P are pairwise color-disjoint and the input graph is irreducible w.r.t. color
contraction. This is the most difficult and technical part of the proof. For the rest of the
subsection we will have the following assumption:

» Assumption 3.11. For an instance (G,C,x, s,t,k) of COLORED PATH* and family P of
color sets each of size £ < k, we assume that G is irreducible w.r.t. color contraction and the
sets in P are pairwise color-disjoint.

In this subsection, it will be more convenient to work with a set of paths instead of a
set of color sets. Given a set P = {p1,...,pp|} of color-disjoint color sets such that v is
reachable by each p € P from s but not by any proper subset of p, we will construct a set
of paths P = {P,..., Pp|} such that x(P;) = p; for all i € [|P|]. Note that, since v is not
reachable from s by any proper subset of p;, this can be simply done by finding a shortest
s-v path in the graph obtained from G by removing all vertices containing a color not in p;.

Now we restrict our attention to a subset of paths Q constructed by Algorithm 2.

Algorithm 2 Refining the set of important s-v paths.

Data: A set of pairwise color-disjoint paths P in a graph G

Result: A subset Q of P and U C V(G) such that |Q| > ((|U|+1)!~(8|lf;‘+8k+2))‘U‘ , all
paths in Q contains all the vertices in U, and for every vertex w € V(G)\ U
at most (IU‘+1)!_|(§,12+8,€+2) paths in Q contains w.

U=0and Q=P

let u be a vertex in V(G) \ U contained by the highest number of paths in Q

N o=

if u is contained in more than (|U\+1)!-|(§k|2+8k+3) paths then
U=UU{u}
restrict Q to contain only the paths containing u
go to the step on line 2

N o oA W

end

» Lemma 3.12. Let G a color-connected plane graph that is irreducible w.r.t. color contrac-
tion, s,u1,us, uz,v be vertices in G and let P = {Py,..., P|p|} be pairwise color-disjoint s-v
paths all going through the vertices w1, us, and usg in the same order. Then there are at most
two paths P; € P such that if wé, J € [3], denotes the vertex on P; immediately after u; then

x(wh) N x(ws) # 0.

Now we can show that if |[U| > 2k + 1, then at the point when Algorithm 2 adds 2k + 1-st
element to U, we can find k%2 + k + 1 paths in Q that visit the first 2k + 1 vertices of
U in the same order. Lemma 3.12 then implies that there is a path P; € P such that
X(w;) N X(wé,) = forall 5 #j', 7,7/ € {1,3,5,...,2k + 1}, where w§ denotes the vertex on
P; immediately after u;. Then |x(F;)| > k + 1 which contradicts definition of P.

» Lemma 3.13. If [P| > f(k), f(k) = k°*") | then when Algorithm 2 terminates, it holds
that |U| < 2k + 1.

We can now fix an ordering 7 = (u1, u, ..., ujy|) of vertices in U which maximizes the
number of paths in Q that visit U in the same order as 7 and let Q' be the restriction of Q
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to the paths that are consistent with this ordering. Clearly |Q| < |Q| - (2k)! and it suffice to
show that we can find an irrelevant path in Q' if |Q’| is large. The agenda for the rest of the
proof is as follows. Because |U| < 2k and intersection number of each vertex outside |U| is
small compared to the size of Q’, only “few” paths can share a color with any k-valid v-t
walk that do not contain a vertex in U hence we can find an irrelevant path. The color set of
this irrelevant path is then the irrelevant color set in P.

Recall that due to Assumption 3.11, we assume that the graph G is color contracted and
no two neighbors have the same color set. Moreover, the paths in Q' are color-disjoint, so
the vertices in U U {s,v} are all empty and each neighbor of these vertices belongs to at
most one path in Q’. The goal in the following few technical lemmas is to show that for any
two consecutive vertices u; and u;41 in U we can find a large (of size at least 4k + 1) subsets
of paths in Q' that pairwise do not intersect between u; and w; 1.

wr

Figure 4 Situation in Lemma 3.14. On the picture are seven u-v paths, no 3 of them intersecting
in the same vertex. The red wz-we path on the picture intersects the three paths containing ws, wa,
and ws, respectively. Any such path has to contain at least 2 vertices, else the only vertex on the
path would be the intersection of 3 u-v paths.

» Lemma 3.14. Given an instance (G, C, x, s,t,k) which is irreducible w.r.t. color contrac-
tion, two vertices u, v, b € N and a set P of k-valid u-v paths such that no b paths intersect
in the same vertex. Let wq,...,w, be the neighbors of u, each the second vertex of a different
path in P, in counterclockwise order. For i € [r] let P; denote the path in P containing w;.
Let 1 <i < j <, then the shortest curve o from w; to w; that intersects G only in vertices
of V(G) \ {u,v} contains at least w vertices on paths in P\ {P;, P;}.

Proof. See an example of the situation in Figure 4. Given a curve o, we can easily find a
closed curve ¢’ that intersect G in w, w;, w; and the vertices that are intersected by o. The
vertices on ¢ are then the vertex separator separating v from either w11, ... ,wj_1 or from
Wi, ..., wi—1 and wji1,...,w,. If the vertices on ¢’ are the vertex separator separating v
from w;41,...,w;j—1, then all the paths P;11,..., P;_1 has to pass a vertex on o different
than w; or w;. Since no b paths intersect in the same vertex, we get that o contains at
least 2 7;';1
separating v from wy,...,w;—1 and w;i1,...,w, is symmetric and the lemma follows. <

vertices in this case. The case when the vertices on ¢’ are the vertex separator

» Lemma 3.15. Let (G,C,x,s,t,k) be an instance of COLORED PATH* such that G is
trreducible w.r.t. color contraction, H a subgraph of G, and P a k-valid u-v path with
u,v € V(H) and x(P)N x(H) =0. Then P intersects at most k faces of H.

The combination of the two above lemmas immediately yields the following:
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» Lemma 3.16. Given an instance (G,C,x, s,t, k) which is irreducible w.r.t. color con-
traction, two vertices u, v, an integer b € N and a set P of k-valid pairwise color-disjoint
u-v paths such that no b paths intersect in the same vertex. Let wq,...,w, be the neigh-
bors of u, each the second vertex of a different path in P, in counterclockwise order. Let
1<i<yj<r andlet P; and P; be the two paths in P containing w; and w;, respectively. If
min{j —i,7+1i—j} > 2k-b, then P; and P; do not intersect.

» Lemma 3.17. If no b paths in Q' intersect in the same vertex in V(G) \ (U U {s,v}) and
|Q'| > (8k + 8k +2) - (|U| + 1) - b, then we can in polynomial time find a path P € Q' such
that for every k-valid v-t walk @ that does not contain a vertez in U holds x(P) N x(Q) = 0.

Proof. For the convenience let us denote s by up and v by w41 We will show that for
every i € {0,...,|U[}, every k-valid v-t walk can intersect at most (8k2 + 8k + 2) - b paths in
a vertex on the path between u; and wu;, 1. For a path P € Q' let P* denote the subpath
between u; and u; 41 and let Q' = {P* | P € Q'}. Clearly, the paths in Q' are color-disjoint
u;-u;;1 each containing at most ¢ < k colors and no b paths in Q° intersect in the same
vertex beside u; and u;; 1. Now let H® be the subgraph of G induced by the edges on paths
in Q°. Since G is color contracted, u; is an empty vertex, and the paths in Q? are colored
disjoint, each neighbor of u; appears on a unique path in Q’. Let wy,wo, ..., w|qi| be the
neighbors of w; in H* in counterclockwise order and let P} be the path in Q" that contains
w;j. Clearly, t is in the interior of some face f of H' and there is at least one path that
contains an edge incident on f in H®. Without loss of generality let P} be such path (note
that we can always choose a counterclockwise order around u; for which this is true).

Figure 5 Any path that starts in a face incident on the red path and finishes in a face incident
on the green path that does not contain u; nor u;y+1 has to appear in at least 4 different faces. Since
the paths are color-disjoint, only the consecutive faces can share colors and hence any such path
contains at least 2 colors.

> Claim 3.18. Let j € [|Q']]. If 2k+1)(2k+1)-b < j < |Q'| — (2k +1)(2k + 1) - b, k-valid
v-t walk @ that does not contain u; nor u;y1 in the interior holds x(P}) N x(Q) = 0.

Proof. Consider the following set of paths: P, Py, o, Piyis,- -, Pareqars1, P, P;+2k+1,
Pl o ,P;+4k2+4k. By Lemma 3.16, these paths are pairwise non-intersecting. Hence,

we are in the situation as depicted in Figure 5. Since the paths in Q? are pairwise color-disjoint,
the colors of Pj are only on vertices of G inside the region bounded by Py 111 and P; Lokl
Therefore, if x(Q)N P # () for some v-t walk @, then @ contains a vertex w inside the region
bounded by Psj24p+1 and P;+2k+1' Moreover, @) doeb_‘ not cqntain u; NOT ;41 as an inner
vertex then it either crosses all the paths in Py = {P;, 5, Py, 3, ., Pax2qar41} or all the
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paths in Py = {P} o011, Pl apyor- s Pligpe o - Without loss of generality, let us assume
that @ crosses all the paths in P;. The other case is symmetric. As G is color contracted, no
two consecutive vertices of P are empty. Hence, @) either crosses a path in P; in a colored
vertex or there is a colored vertex on ) between two consecutive paths in Py (resp. P2). Let
us partition the paths in Py U {P;, P;} into k 4 1 group of two consecutive pairs. that is we
partition Py into groups {Pi, Pogt2}, {Pak+3, Pokt+ats - A Pak2—1, Pak2 12k o { Pak24ak41, P5 }-
If the walk @ crosses all paths in Py, it has to contains a colored vertex in each of the k£ + 1
groups. However, each two groups are separated by color-disjoint paths. Therefore, two
colored vertices in two different groups have to be color-disjoint. But then x(Q) contains at
least k + 1 colors, this is however not possible, because @Q is k-valid. <

The lemma then follows by marking for each of |U| + 1 consecutive pairs 2(2k + 1)? - b paths
that can share a color with some ) and outputting any non-marked path. <

Since x(P) N x(Q) = @, x(P) can be replaced by any other color set of |x(P)| colors
and we can safely remove it from P. Since we chose Q' such that no o]

Q|
(UT+1)-(8k2+8k+3

(UT+D)-(8k2+8k+3)
) paths intersect in Q’, we get the following main result of this subsection.

» Lemma 3.19. Let (G,C,x,s,t,k) be an instance of COLORED PATH* such that G is
irreducible w.r.t. color contraction. Given a family P of pairwise color-disjoint s-reachable
color sets of set of size { < k and a vertex v € V(G), if |P| > 20¢**106(0)  then we can in
time polynomial in |P| + |V (G)|find a set p € P such that P\ {p} k-represents P w.r.t. v.

3.2.3 Finishing the Proof

Proof of Lemma 3.3. Since each set in P has precisely ¢ < k colors, if |P| > ¢! - (g(k))**!,
g(k) = k°**) then, by Lemma 2.1 we can, in time polynomial in |P|, find a set Q of g(k) + 1
sets in P such that there is a color set ¢ C C' and for any two distinct sets py,po in Q it
holds p; Npa = ¢. Now let (G,C’, X/, s,t, k — |c|) be the instance of COLORED PATH* such
that C’ = C'\ ¢ and for every v € V(G), x'(v) = x(v) \ cand let @' = {p\c|p € Q}.

> Claim 3.20. Forallp € Q, Q'\{p\c} (k—|c|)-represents Q' w.r.t. vin (G,C’, X', s,t, k—|c|)
if and only if Q¥ \ {p} k-represents Q" w.r.t. v in (G,C,x,s,t, k).

Removing the colors in ¢ from G can result in an instance that is not irreducible w.r.t.

color contraction. However, in our algorithm for color-disjoint case, we crucially rely on
the fact that G is irreducible w.r.t. color contraction. Now let Gy = G, xo0 = X/, So = s,
to = t, vo = v and for ¢ > 1 let (G;,C, xi, Si,ti, k — |¢|]) be an instance we obtain from
(Gi-1,C, Xi-1, Si—1,ti—1,k — |c|) by a single color contraction of vertices x; and y; into a
vertex z; and let v; = z; if v;_1 € {w;,y;} and v; = v;_1 otherwise.

> Claim 3.21. For all p € P, if the set P\ p (k — |c|)-represents P w.r.t. v; in (G;,C,

Xi, Sis tiy k—|c|), then P\ p (k— |¢|)-represents P w.r.t. v in (Git1,C\ Xit1, Sit1, tiv1, k—|c]).

Let (G;, C, x4, Si, ti, k — |c|) be the instance obtained from (G, C’, X/, s,t, k — |¢|) by repeating
color contraction operation until G; is irreducible w.r.t. color contraction and let v; be
the image of v. Since Gj is irreducible w.r.t. color contraction, the sets in Q' are pairwise
color-disjoint, and |Q'| = g(k) + 1 > g(k — |c|), we can use Lemma 3.19 to find in time
polynomial in |Q'| 4 |V (G)| a set p € Q' such that Q" \ {p} (k — |c|)-represents Q' w.r.t. v; in

(Gi, C, x4, Sis tiy k — |c|). By Claim 3.21, it follows that Q' \ {p} (k — |c|)-represents Q" w.r.t.
vin (G,C", X', s,t,k —|c|) and by Claim 3.20 Q \ {p U ¢} k-represents Q in (G,C, x, s, ¢, k).

Finally, since for all p’ € P\ Q is p’ € P\ {pUc} it follows that P\ {pUc} k-represents P. <«
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