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Abstract

We consider a 2 x 2 system of hyperbolic-parabolic balance laws. Our system is the converted form
under inverse Hopf-Cole transformation of a Keller-Segel type chemotaxis model with logistic growth,
logarithmic sensitivity, non-diffusive chemical signal and density-dependent production/consumption rate.
We study Cauchy problem when the Cauchy data are near a diffusive contact wave. The contact wave
connects two different end-states as x — £oo0, reflecting the situation when the logarithmic singularity
plays an intrinsic role in the original chemotaxis model. We establish global existence of solution and
study time asymptotic behavior of the solution. Consequently, we obtain nonlinear stability of the diffusive
contact wave. Our result shows a significant difference when comparing our model to Euler equations with
damping. In our case, there exists a secondary wave in the asymptotic ansatz. Therefore, the solution to
Cauchy problem converges to the diffusive contact wave slower than in the case of Euler equations with
damping. Besides its own physical relevance, our model is a prototype of a general system of hyperbolic-
parabolic balance laws. Our results shed light on the future study of nonlinear stability of elementary waves
for a general system.
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1. Introduction

We consider the following initial value problem of a system of partial differential equations
in the unknowns v and u:

U +MX ZO,
ur + W)y =uyxy +ru(l —u),

(v, u)(x,0) = (vo, up)(x), (1.2)

xeR, t>0, (1.1)

where the parameter r > 0 is a constant, and the initial data satisty
Iim vo(x) = v, Iim wup(x) =1, (1.3)
x—+o00 x—+o0

for two constants v_ % v . The goal is to establish the existence of solution global in time and
to study the time asymptotic behavior of the solution under appropriate assumptions.

1.1. Background

System (1.1) is derived from a Keller-Segel type chemotaxis model with logistic growth, loga-
rithmic sensitivity, non-diffusive chemical signal and density-dependent production/consumption
rate,

!stz—/ms—GS, xeR, t>0. (1.4)

ur = Duyy — x[u(Ins)y ] +au(l — %),

Here the unknown functions are s = s(x, t) and u = u(x, t) for the concentration of a chemical
signal and the density of a cellular population, respectively. The system parameters have the
following meaning:  # 0 is the coefficient of density-dependent production/consumption rate of
chemical signal; o > 0 the natural degradation rate of the signal; D > 0 the diffusion coefficient
of cellular population; x # 0 the coefficient of chemotactic sensitivity; a > O the natural growth
rate of the cellular population; and K > 0 the typical carrying capacity for the population. All
these parameters are constants. Interested readers are referred to [35,36] and references therein
for a more detailed discussion on the model (1.4).

A commonly adopted approach to remove the logarithmic function in (1.4) is by the inverse
Hopf-Cole transformation [9]:

v=(ns), = . (1.5)
S

Under the new variables v and u, the reaction-diffusion system (1.4) becomes a system of
hyperbolic-parabolic balance laws,

v + puy =0,

u (1.6)
ur + x (wv)y = Duyy +au(l — E)
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We assume xu > 0, which implies x, u > 0, or x, u < 0. The former is interpreted as cells
are attracted to and consume the chemical, while the latter indicates that cells deposit the signal
to modify the local environment for succeeding passages [22]. Mathematically, the non-diffusive,
non-reactive part of (1.6) is hyperbolic in biologically relevant regimes when x p > 0, while it
may change type when x 1 < 0 [35].

Under the assumption y u > 0, we introduce rescaled and dimensionless variables,

- K VXK
tz)“; R X; o O=sign(o[Lov = (1.7)
This simplifies (1.6) to
v;+uz =0,
up 4+ o)z =uzz +ru(l —u),

where r =aD/(xuK) > 0. Dropping the tilde accent we obtain (1.1).
Corresponding to (1.2), we impose initial condition

(s,u)(x,0) = (so, up)(x), xeR (1.8)

to (1.4). Here s is related to vg by the transformation (1.5) and the rescaling (1.7). For x > 0 it
is easy to see that without loss of generality and for simplicity we may bypass (1.7) and have

) 5o(xX)
vo(x) =v(x,0) = (Insp) (x) = .
50 (x)
This implies
50(x) = 50(0)elo MY ¢ 0) > 0. (1.9)

We are interested in the Cauchy problem (1.1), (1.2), with Cauchy data satisfying (1.3). This
includes (but is not limited to) the following special cases.

(i) 0 <v_ <ooand fooo lvo(¥)|dy < oo. In this case, (1.3) and (1.9) imply

lim so(x)=0, lim so(x) =s4 <o00.
X—>—0Q0 X—> 00

.. 0 . .
(i) —oo <v4 <0and f—oo |vo(y)|dy < oo. Similarly, (1.3) and (1.9) imply
Iim so(x)=s_ <00, lim so(x)=0.
X—>—00 X—> 00
(iii) 0 <v— < oo and —oo0 < v4 < 0. In this case,
i s =o.
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We observe that in those special cases, sp is not bounded away from zero while v_ > v .
If x <0 in (1.7), there are also special cases where sp is not bounded away from zero while
v_ < v4. In other words, the singularity of the logarithmic function in (1.4) is intrinsic, which is
further reflected into technical difficulties associated with v_ # v in (1.1)-(1.3).

1.2. Connection with existing literature

When a =0 in (1.4), the nongrowth model

{s,:—uus—as, (1.10)

u; = Duyy — x[u(lns)ylx

was proposed in [22] for describing the movement of chemotactic populations that deposit non-
diffusive chemical signals that modify the local environment for succeeding passages, and later
found applications in cancer research [10]. Under the transformation (1.5) and rescaling (1.7),
one gets the following hyperbolic-parabolic system of conservation laws:

(1.11)
ur + Uv)x = yy.

{v, +u, =0,

Since the model was proposed in the late 1990s, the qualitative behavior of (1.10) has been
analyzed to a large extent. In the pioneering works of [9,22], explicit and numerical solutions to
(1.10) were constructed to exhibit chemotactic aggregation or collapsing. A series of papers
followed, in which a number of topics were studied for (1.11). These include global well-
posedness and long time behavior of large data classical solutions [3,11], stability of traveling
waves [13,14], boundary layer formation [12] and others. Also see references therein.

Growth and death are important factors in population dynamics. Therefore, sophisticated
chemotaxis models include reaction terms to describe those mechanisms. Among them logis-
tic growth is a popular choice. Many research results for chemotaxis models with logistic growth
are for constant rate production and degradation of the chemical signal. Among them many are
with regular sensitivity as well. For instance, global well-posedness of large data classical so-
lutions has been studied for those models on bounded domains in all space dimensions under
suitable conditions, see [27,29,4] and references therein. Also see [1] for systems with singular
sensitivity functions. Cauchy problem is considered in R? in [21]. In addition, we refer readers
to [7,28,30] and references therein for the existence of weak solutions.

Systems with density-dependent production/consumption rate of the chemical signal, singular
chemotactic sensitivity and logistic growth of cells have been studied as well in recent years.
For example, global existence and asymptotic behavior have been studied in multi-dimensional
bounded domains, see [39,8] and references therein. The systems are similar to (1.4) but for a
diffusive chemical signal. The existing works implicate an interest in understanding the role of
logistic growth in different chemotaxis models. Besides its biological significance, the logistic
growth resembles common phenomena such as damping and relaxation in kinetic theory. This is
to be seen in Section 1.3 below.

Cauchy problem (1.1), (1.2) has been considered in [35-38,24,25] under appropriate assump-
tions, which all imply
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lim vo(x)=0, lim uo(x)=1. (1.12)
x—+o0 x—£o0

Here in [35], global well-posedness, long-time behavior and vanishing coefficient limits have
been studied. The relevant results are obtained for large data solutions, i.e., under the assumption
that [|(vo, ug — 1)|| g2 is finite and uo > 0. In view of (1.12), say, assuming vg € L'(R), (1.9)
implies

lim so(x) =s+ > 0. (1.13)
x—+o0

Therefore, in [35] Cauchy problem (1.1), (1.2) is studied away from the singularity of the loga-
rithmic function in (1.4).

Under an additional assumption that vo(x) (hence v(x, t)) is of zero mass, which is translated
into

lim so(x) =35>0,
x—+o00

explicit decay rates of the solution and its derivatives are obtained in [35]. The non-optimal
rates serve as a starting point in an iteration scheme developed in [36], where optimal rates of
solutions to the original system (1.4) and to the converted system (1.1) have been obtained. The
results on (1.4) are applicable to the border case when s(x, t) neither exponentially decays nor
exponentially grows. Also see [37,38].

Under the assumption (1.12), if we consider small solutions we may obtain a very detailed
picture of solution behavior for large time. In that scenario we do not need zero mass assumption
(in comparison to [36]). Specifically, let |(vo, uo — 1)|(x) = o2+ 1)~ witha > 1/2, and
supxeR[(x2 + D[ (vo, uo — 1| (x)]+ || (vo, up — 1)|| g2 be sufficiently small. We identify the time
asymptotic solution of v(x, t) as a heat kernel 8 (x, t) determined by the parameter r > 0 in (1.1)
and by the mass of vg. The corresponding time asymptotic solution of u(x,?) is 1 — %Gx (x,1).
The error between (v, u) and (6, 1 — %Bx) is given pointwisely in x and ¢z, which leads to optimal
time decay rates in L?, 1 < p < 00. See [25,24] for details.

1.3. A prototype of systems of hyperbolic-parabolic balance laws

A general system of hyperbolic-parabolic balance laws takes the form

wy + f(w)y =[B(w)wylx + g(w), (1.14)

where w, f, g € R" and B € R"*". Here w is the unknown density function, f the flux func-
tion, g the reaction term, and B the viscosity matrix. The reaction term g is for external force,
relaxation, chemical reaction, etc, while the viscosity matrix B is for viscosity, heat conduc-
tion, species diffusion and so forth. We assume that f, g and B are smooth functions of w.
In physical applications, the Jacobian matrix f’ has real, distinct eigenvalues or can be sym-
metrized with an entropy function, and the viscosity matrix B is rank deficient. Thus we say
that (1.14) is hyperbolic-parabolic. In many important applications, the Jacobian matrix g’ is
also rank deficient. The system describes the balance of physical quantities dictated by laws in
physics. A prominent example is the system for physical gas dynamics, which includes transla-
tional and thermal/chemical non-equilibrium.
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A special case of (1.14) is when B = 0, which gives a system of hyperbolic balance laws

wr + f(w)y = g(w). (1.15)

An important example is Euler equations with damping.
Another special case of (1.14) is when g = 0, which gives a system of hyperbolic-parabolic
conservation laws,

wy + f(w)y = [BWw)wy]y. (1.16)

In this case, physical quantities are conserved. A well-known example is Navier-Stokes equations
for a compressible flow.
We observe that (1.1) is a prototype of (1.14), with nontrivial B and g. Here

v u 0 0 0

It is clear that both B and g’ are rank deficient. It is also clear that

flw) = (2 i)

has two real, distinct eigenvalues A4 = %(v + Vv +4u) in its biologically relevant regime
u>0.

Cauchy problem of the general system (1.14) has been studied for small solutions around a
constant equilibrium state w, g(w) = 0, in [32,34]. Here is [32] a set of structural conditions
have been proposed, under which existence of global in time solutions has been established
for (1.14) and its multi-dimensional counterpart. L? (p > 2) decay rates have been obtained
in [34], also see [33] for similar results in multi-space dimensions. The results apply to (1.1)
and the much more complicated system of physical gas dynamics. Here in view of (1.17), a
stable, constant equilibrium state of (1.1) is (v, 1) for a constant v. For physically interesting
scenario limy_, +o050(x) = s+ < 00, (1.9) implies v = 0, see [35] for details. Therefore, the
above mentioned results apply to (1.1), (1.2) with regard to small solutions around the state
O, 1).

To the best of the author’s knowledge, Cauchy problem of (1.14), on the other hand, has not
been studied when w connects two different end-states as x — £o0. Since (1.1) is a prototype,
results from this paper on (1.1)-(1.3) may shed light on the study of (1.14). We are particularly
interested in the similar situation for physical gas dynamics.

In contrast to (1.14), there is a rich literature on Cauchy problems of the special cases (1.15)
and (1.16) where Cauchy data connect two different end-states as x — +o00. Most results are on
the existence and/or stability of an elementary wave.

For instance, let w4 be two constant states that form a shock wave with speed o of the hyper-
bolic system

wi + f(w)y =0. (1.18)
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Under appropriate assumptions, we may show that there exists a traveling wave solution of (1.16)
connecting w_ to w4 and with speed o [2]. The traveling wave is called a viscous shock wave of
(1.16). We may then consider the stability of the viscous shock wave. For example, it is show in
[18] that a weak shock of (1.16) is stable under a generic perturbation and physical assumptions.

Similarly, let (w_, w4, o) be a contact discontinuity of (1.18). Under appropriate assump-
tions, there is a viscous contact wave that is a smooth solution of (1.16), connecting w_ to w4
and having a center moving at the speed o. It takes states on the contact-wave curve of (1.18)
from w_ to w., parameterized by the solution of a heat equation with Riemann data at t = —1.
Interested readers are referred to [15,31] and references therein.

The scenario of viscous rarefaction waves is much more intricate. As indicated and explained
in [16], there is no exact, explicit representation of a viscous rarefaction wave, though there is an
accurate approximation of the wave for (1.16) using the scalar Burgers equation.

In the context of elementary waves and their stability, the special case (1.15) turns out to be
quite different from (1.16). This is because now those waves are not associated with (1.18) (the
frozen system) but with the reduced system (the equilibrium system). To be relevant to this paper,
below we focus on the specific model of Euler equations with damping.

1.4. Comparison to Euler equations with damping

We consider Euler equations with damping for isentropic flows. Under Lagrangian coordi-
nates they read

xeR, t>0, (1.19)
ur+ p(v)x =—ru,

{vt —uy =0,
where r > 0 is a constant. The unknown functions v and u are for the specific volume and ve-
locity, respectively. On the other hand, p is the pressure, a given smooth function of v, satisfying
p'(v) < 0. The model describes a compressible flow through a porous medium. It is shown in [5]
that solutions of (1.19) time asymptotically behave as those of the porous medium equation and
the Darcy’s law,

p()y = —ru. (120

{Ut = _%p(v)mn
Also see [19,20,23] and references therein.
The equilibrium manifold of (1.19) is u = 0. Substituting it into the first equation we obtain
the equilibrium equation of (1.19),

v =0, (1.21)

which is also known as the reduced equation. A better (the next order) approximation is obtained
by first dropping u;, the higher order term in time decay rate, in the second equation of (1.19).
This gives the second equation of (1.20). Then we substitute it into the first equation of (1.19). We
thus arrive at the first equation of (1.20). The idea employed here is Chapman-Enskog expansion.

In [5] Cauchy problem is considered with Cauchy data (v, u)(x, 0) — (v+, u+) as x — £o0,
with v_ # v4. To focus on the key difference between (1.1) and (1.19) in their solution behavior,
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we simplify the setting to u_ = u; = 0. Thus we consider (1.19) under initial condition (1.2),
where

(vg, ug)(x) > (v4£,0) as x — %oo0, (1.22)

with v_ # vy. That is, the end-states are equilibrium states.
Following [5], the primary wave in the solution of (1.19), (1.2) is

1
W, i) (x +x0.0), it =——p)x. (1.23)

Here v is the unique self-similar solution, v(x, t) = ¢ (x/+/t + 1), of the porous medium equation

_ L
v = —;p(v)xx, (1.24)
satisfying the boundary condition
lim v(x,t)=vy. (1.25)
x—Foo
The translation x is uniquely determined by
o o
/ [v(x,t) —v(x + x0,8)]dx = f [vo(x) — v(x + x0,0)]dx =0, (1.26)
—00 —00

noting the equations for v and v are conservation laws.
The end-states v4 from a contact discontinuity with speed zero of the reduced equation (1.21):

_ if
ﬁ(x,t):{v if x <0,

Uy if x > 0,

see [26]. The primary wave v defined by (1.24), (1.25) can be regarded as a diffusive version of
0. Thus we call ¥ a diffusive contact wave.
Based on (1.26) we introduce new variables,

Vix,t)= /[v(y»t)—ﬁ(vaXO,t)]dy,
Ux,t)=u(x,t) —u(x +xg,1).
Thus,

Velx,t) =v(x,t) —v(x + x0,1).
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Nonlinear stability of a weak diffusive contact wave is studied in [5]. That is, if |[v; —v_]| is
small and V (x, 0) and U (x, 0) = V;(x, 0) are small in H3(R) and H2(R), respectively, there ex-
ists a global in time solution of (1.19), (1.2), (1.22). The solution converges in L2(R) N L®(R)
to (v, u)(x + xo,1) time asymptotically, with [[(Vy, U)(@)ll 2®)nL®) decaying at the rate
(t+ 1)_% - The decay rate is improved to optimal ones, ||V (£ [l 2r) ~ (1 + 1)_%, U@ 2Ry ~

3

(t+ 1)_%, Vil oo vy ~ (¢ + D!, and U@ Loy ~ (¢ +1)" 2, under a variety of assump-
tions on the initial data [19,20].

For our model (1.1), similarly, we can derive an approximate system that is the counterpart
of Darcy’s law (1.20). As a consequence, the primary wave in the time asymptotic ansatz of
the solution to (1.1)-(1.3) is a diffusive contact wave. The purpose of this paper is to study its
stability assuming that the wave is weak.

Our result, however, reveals a significant difference between the solutions to (1.1) and (1.19)
in their long-time behavior. We show that there exists a secondary wave in the asymptotic ansatz
of the solution to (1.1)-(1.3). The v-component of the wave has zero mass and decays like a heat
kernel. The u-component, on the other hand, decays like the first derivative of a heat kernel. We
are able to show that the remainder of the solution after taking out the primary and secondary
waves is higher order in L(R). This implies that the secondary wave is the leading term in the
time-asymptotic error when approximating the solution by the diffusive contact wave. Therefore,
the contact wave is stable, and the L?-convergence rate to it is (¢ + 1)’% for the v-component and
(t+ 1)’% for the u-component. This is to compare with (¢ + 1)’% and (r + 1)’%, respectively,
for (1.19).

The existence of the secondary wave hence the slower convergence rates to the diffusive con-
tact wave come from the fact that the nonlinear flux in the equation for  in (1.1) contains both v
and u. By contrast, in (1.19) itis p(v), a function in v only. On the other hand, the extra diffusion
term u,, in (1.1) does not affect the structure of the primary and the secondary waves. It only
contributes to the error of the approximation by those waves, see (2.3) and (2.10) below. Thus,
we believe that in the general case, (1.15) or (1.14), there are similar secondary waves in the
time-asymptotic ansatz when studying the stability of contact waves.

1.5. The goal of the paper

In this paper we establish the global existence of solution to (1.1)-(1.3) when Cauchy data
are small perturbations of a diffusive contact wave. We identify and justify the leading term, a
secondary wave, in the time-asymptotic error. This leads to nonlinear stability of contact wave
and large time behavior of solution to (1.1)-(1.3). Our main focus is an innovative insight of the
asymptotic solution for general systems like (1.14) or (1.15), beyond what has been understood
through the Euler equations with damping. Therefore, we are content to achieve our goal in L2
space via energy and weighted energy methods. Using more sophisticated methods it is possible
to obtain results in L? spaces, 1 < p < oo. This is left to a future work.

The plan of the paper is as follows. Section 2 is for preliminaries and the statement of main
results. In Section 3 we discuss local existence of solution. In Section 4 we prove Theorem 2.3
to establish global existence of solution. This is done by energy estimate. In Section 5 we prove
Theorem 2.4, which gives convergence rates of the solution to the asymptotic solution and thus
justifies the asymptotic solution. It is done by weighted energy estimate. Finally, in the Appendix
we prove Proposition 2.2, which describes the behavior of the secondary wave in the asymptotic
solution.

294



Y. Zeng Journal of Differential Equations 308 (2022) 286-326

2. Preliminaries and main results

We first consider the primary wave, a diffusive contact wave, for (1.1)-(1.3). Introduce the
perturbation u of u,

i=u—1 or u=1+i. @2.1)

The second equation in (1.1) becomes

Ay + vy + (V) = figy — Fil — rii>. (2.2)

By identifying the leading terms with respect to time asymptotic decay rates in the first equation
of (1.1) and (2.2), we define the leading term (v, u) of (v, it) as a solution to

{tjz i =0, 03
Uy = —ri.
Substituting the second equation in (2.3) into the first one, we have
U = %'_)xx s
- 1 - 24
U=—-0.

The equations in (2.4) are the counterparts of the porous medium equation and Darcy’s law
for Euler equations with damping, see (1.20). We define v as the self-similar solution with

lim v(x,t)=v+. 2.5)

x—+o0

Then u is determined by the second equation of (2.4). Explicitly,

o0 N
v(x, 1) = 3—% f e’ dy + % / e’ dy
Ve -
v +vy v —uy X (2.6)
“ 2 2 Gron
dGrt) = —2= Ve
Varr(+1)

We note that v(x, ¢) given in (2.6) is a diffusive contact wave of the heat equation in (2.4), with
Riemann data at t = —1.

We observe that the self-similar solution (a function in x/+/f 4+ 1) of (2.4) satisfying the
boundary condition (2.5) is unique up to a translation xo. We determine the constant xo by the
excess mass of v. That is, we choose xg such that
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/[vo(x) — v(x 4+ x0,0)]dx =0, 2.7
R
i.e.
xXo = ! /[vo(x) —v(x,0)]dx. 2.8)
Vy — V-
R

From (1.1) and (2.3) we have

%f[v(x, t) —v(x +x0,1)]dx =0.
R

Combining with (2.7) we further have

/[v(x, 1) — (x + x0,1)]dx = 0. 2.9)
R

Now (v, 1 4+ u)(x + xo,t), with v and u defined in (2.6), is the primary wave in the solution
of (1.1)-(1.3). However, it is not sufficiently accurate. We thus construct a secondary wave. For
this we substitute (v, «) in (1.1) by (v + v*, 1 + & 4+ u™), apply (2.3) and keep the leading terms
only. We arrive at

{”f:Jr”; =0, (2.10)
vi4+ru*=—R(x,1),
where

R(x,1) = (ux0)(x + xp, 1). (2.11)
Substituting the second equation in (2.10) into the first one gives us

{v,*:}v;:x+}Rx(x,t), .

u* = —%v;’; - %R(x, 1).
Noting (2.7) we set

v*(x,0) =0. (2.13)

The secondary wave in the asymptotic ansatz of the solution to (1.1)-(1.3) is set as (v*, u™), the
solution to (2.12), (2.13).
We solve (2.12), (2.13) explicitly by Duhamel’s principle:

r(x— *)2
e~ T Ry (y, 7)dydr, (2.14)

t
" _ 1
v (x’t)_O/R/ JaTrt —1)
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and u™*(x,t) is given by the second equation of (2.12). The exact formulation (2.14), however,
does not provide a clear, convenient picture of the behavior of v*. Next, we give such a picture
by optimal, pointwise estimation. For comparison we give similar estimates on v and u first.

Lemma 2.1. Let 0 < 1’ < r/4 be an arbitrarily fixed constant. For x € R, t > 0 we have

[V —v_| <|v- —v4],

Iy L2
o & D=0 —vi |+ D7ze w121, (2.15)
al— 2
a—bj(x,r)=0(1)|v_—v+|(t+1)*%e*m, 1>0.

X

Proof. From (2.3) we have v, = —ru where u is given in (2.6). Thus v, < 0if v— 2 v. That s,
for a fixed ¢t > 0, v(x, t) monotonically decreases or increases from v_ to v4. The first estimate
in (2.15) follows. Other estimates in (2.15) are direct consequence of u(x, ) in (2.6), together
with vy = —ru. O

The following proposition gives similar estimates on v* and u*. We postpone its proof to the
Appendix.

Proposition 2.2. Let 0 < r’ < r/4 be an arbitrarily fixed constant and | > 0 be an integer. For
x €R, t >0 we have

lv* 1 _r/(x+x0)2
?(x,t) =0M|v- —vy |t + 1)~ T e T

X
olu* 12 Geag)? 210
ol () =0l vyt + 17 2 e

X

With x( given in (2.8), we have (2.7) hence define a function
X
Vo(x) = / [vo(y) — v(y +x0,0)]1dy. (2.17)

—00
From (2.10) and (2.13) we have
/ vi(x, ) dx = / v*(x,0)dx =0.
R R
Combining with (2.9) we arrive at
/[v(x, ) —v(x+x0, 1) —v*(x,)]dx =0.
R

Thus we define a new variable
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Vix,t)= / [v(y, 1) — 0(y +x0,1) —v*(y,1)]dy. (2.18)
It is clear that
Ve(x,t) =v(x, 1) — v(x +x9,1) — v*(x, 1). (2.19)

Correspondingly, we define

Ux,t)=ua(x,t) —ulx+x0,8) —u*(x, ) =ulx,t) =1 —u(x +xo,1) —u*(x,1). (2.20)

From (2.13) it is clear that

V(x,0) = Vo(x). 221

We introduce the following notations to abbreviate the norms of Sobolev spaces with respect
to x:

Il =11 Mm@y, -1 =1-l2®w)- (2.22)

Our first result is on global existence when Cauchy data are small perturbations of a weak
diffusive contact wave.

Theorem 2.3. Let m > 3 be an integer, Vo € H™ 1 (R) and ug — 1 € H™ (R). Then there exists a
constant gy > 0, such that if

[v— — vl + [ Vollm+1 + luo — Lllm < €0,
the Cauchy problem (1.1)-(1.3) has a unique global solution (v,u). The solution satisfies

V € C(0, 00; H"H(R)) N C1(0, 0o; H™(R)), U € C(0, oo; H™(R)) N C(0, 0o; H™2(R)) N
L%(0, 00; H"T1(R)), and the following energy estimate,

o0
sup{ |V ()I2,4 + IU @112} + /[an(t)ni + U@ 2,41 1dt
>0 o (2.23)
<C(IVolimyr + lluo — LUI2, + o= — vi]?),
where C > 0 is a constant.

Our second result gives time decay rates of the solution towards the asymptotic solution.

Theorem 2.4. Under the same assumptions as in Theorem 2.3, and with sufficiently small g, the
global solution (v, u) of (1.1)-(1.3) has the following estimates for t > 0,
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t + DUV, + U OIZ1+ (¢ + DU Ve 121 + 10U (0112,
t t
+ f T+ DUVer @A + U @124 1dT + f (T + DU (D)2, dT (2.24)
0 0

<C(IVoll2 11 + lluo — 1|2, + lv= — v4]?),

UM < CUVollms1 + lluo = Ll + lv— — v D@+ D71, (2.25)
where C > 0 is a constant.

Remark 2.5. We are able to obtain L>°(R) decay rates via Sobolev inequality, see (3.9). From
(2.23)-(2.25) we have

IVl Loo®) < CUVollmtt + lluo — Ul + v — v D@ 4+ 1) 714,
IVl Loo®y < CUVollmtt + lluo — Ul + lv— — vt + 1734,

IU Ol Lo ®) < CUIVollmtr + lluo — 1w + lv— — v Dt + D7,

where C > 0 is a constant. Here the rate for ||U (¢)|| L~ (r) can be improved to (¢t + 1)=/% if we
carry out an estimate similar to (2.25) for U,.
Recall (2.19) and (2.20), which give us
v(x, 1) = v(x + x0, 1) + v*(x, 1) + Vi (x, 1),
(2.26)

ux,t)=14u(x +x9,t) +u*(x,t) +U(x,1).

From (2.6), ¥ is a diffusive contact wave while i is a heat kernel. From (2.16) we have L2
decay rates of (t + 1)*% and (¢ + 1)’?’1 for v* and u*, respectively. Here (2.24) and (2.25) give
us L? decay rates (f + 1)_% for Vi and (r + 1)~! for U. This gives the nonlinear stability of
the diffusive contact wave. It also justifies that (v*, u*) indeed is a secondary wave in the time
asymptotic ansatz of the solution (v, u) to (1.1)-(1.3). The rates for V, and U can be improved
to the optimal ones by a different set of analytic tools. It is left to a future work since the main
purpose of this paper is the global existence of solution, the stability of the diffusive contact
wave, and the identification of the asymptotic ansatz.

3. Local existence of solution

We rewrite (1.1)-(1.3) in terms of the new variables V and U as defined in (2.18) and (2.20).
Substituting (2.26) into (1.1) and applying (2.3) and (2.10), we have

th + Ux ZO,

3.1
Ut+(UVx)x+Vxx_Uxx+rU2+VU=F, (-1
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where

F=F + Fh+ F3,
Fi=—[(i +u*)Vyly,
F=—[0+vU], —2r(a +u™U, (3.2)
Fy = —it; — u’ — [(ii + u*) (B +1*)]; — (54 v*),
(i + U)oy — (i + u*)? = r (i +u®).

Applying (2.3), (2.10) and (2.11) we further simplify F3 as

1 1 * = = ~ = =k * = *
F3=;vxz+;(vx+uxv)z—(uv)x—[uv +ut(v+v7)lk
il ¥ A A+ U)oy — (i 4 200" 4 u*?)
1 1

_ 1 _ _ _ _ _ _
== e — ;u;kx + ;(uxv)t —[av* 4+ u* (@ + vy + @+ u)x — rQiu* +u*?)

(3.3)

1 _ _ _ | _
= (x0); — [av* +u* (v + ")) + (1~ )+ u*)xx —r Qi +u)u*.
From (3.2) we see that F' = F(V,, U, Vi, Uy, x, t), where the explicit dependence on x and ¢ is
via (v, u) and (v*, u™), defined in (2.6) and (2.11)-(2.13). We solve (3.1) for (V,, U) with initial
data

Vi (x,0) = vo(x) — (x + xo, 0) = V(x),

34
Ux,0 =uo(x) —1—u(x+ xp,0) — }(ﬁxﬁ)(x ~+ x0, 0) = Up(x), G4
see (2.21), (2.17), (2.20) and (2.11)-(2.13).

Local existence of solutions for Cauchy problems has been established by Kawashima for a
quite general class of hyperbolic-parabolic systems, with applications in continuum mechanics
[6]. Kawashima’s theory, however, does not apply directly to (3.1), (3.4), due to the explicit
dependence of F on x and ¢. In this section we modify Kawashima’s argument, specifically for
(3.1), to establish our local existence theory. We focus on the part that is related to the (x,¢)-
dependence of F, and briefly outline the rest. More details can be found in [6].

Since a local solution of (3.1), (3.4) is constructed as the limit of a successive approximation
sequence, we consider Cauchy problem of the linear system that produces the sequence. This is

Zi = fitx,), Z1(x,0)=Zpx), (3.5
Zyt — Zoxx = f2(x,1),  Zo(x,0) = Z(x). (3.6)

Note that Z and Z; are decoupled in this system. We cite Lemma 2.6 and Proposition 2.7 in [6],
simplified for the special case (3.5), (3.6).
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Lemma 3.1 (/6] energy estimate for linearized equation). Let m > 2 be an integer and T > 0 be
a constant.

(i) Let 0 <1 <m be an integer and f; € L*°(0, T; H'=YR) N L0, T; H (R)). Assume that

Z1 is a solution of (3.5) satisfying Z1 € L0, T; H'(R)) and Z;, € L*(0, T; H'=(R)).
Then we have Z1 € C(0, T; H'(R)), satisfying the energy inequality

t
1Z1(O1F <20 Z1oll7 + ¢ / I Ai(D)7del, 0<r<T. 3.7
0

(ii) Let 1 <1 < m be an integer and f» € L*°(0,T; Hl_l(R)). Assume that Zp is a so-
lution of (3.6) satisfying Z» € L°°(0,T; H'(R)) and Z>, € L®(0,T; H'=2(R)). Then
Z, € C(,T; H([R) N L%, T; HTL(R)), satisfying the energy inequality

t t
1Z20)117 +/ 1Z2(0) 17,y dT < e (1 Zaolf + 2r/ IO dT). 0<t<T. (3.8)
0 0
Proposition 3.2 ([6] existence of solutions for linearized equations). Let m > 2 be an integer
and T > 0 be a constant.
(i) Let 1 <1 <m be an integer and fi € C0,T; H'"'(R)) N L0, T; H'(R)). If Zyo €
H!(R), then (3.5) has a unique solution Z1 € C(0, T; H'(R)) nC'(0, T; H'='(R)), satis-
fying the energy estimate (3.7).
(ii) Let 2 <1 <m be an integer and f> € C(0, T; H'='(R)). If Zog € H'(R), then (3.6) has a
unique solution Z» € C(0,T; H' (R)) N C1(0, T; H'72(R)) N L*(0, T; H*1(R)), satisfy-

ing the energy estimate (3.8).

We need some analytic tools such as Sobolev inequality.

Lemma 3.3.

(i) Letu € H'(R). Then u € L (R) with
lullz < ~2lull 21’12 < V2llulls. (3.9)
(ii) Let m > 1 and 0 <l <m be integers. Ifu € H"(R) and v € H!(R), the uv € H'(R) with
luvll; < Cllullm vz, (3.10)

where C > 0 is a constant.
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(iii) Let m > 2 and 1 <1 < m be integers. Suppose u € H" (R) and v € H'"Y(R). Then for
0 <k <1, we have the commutator [B)IC‘, ulv = 8}’? (uv) — ua)]fv e L2(R) and

1
D los, ulvll < Cllugllm—1lvli-1, (3.11)
k=0

where C > 0 is a constant.

Following the formulation in [6] we write (3.1), (3.4) as

Z11 = f1(Z2x)
Z2[_ZZ.XX=f2(Zl’ZZ5ZIX’ZZX7x7t)7 (3'12)
(Z1, Z2)(x,0) = (Vg, Up) (x).

Here (Z1, Z,) stands for (Vy, U), and

fl (Zoy) = — 22y,

PAZL, Za, Zix, Zox, X, 1) = —(Z1Z2)x — Zix — 125 — 1 Za + F(Z1, Z2, Zix, Zox, X, 1).
(3.13)

Interested readers can compare (3.12) with (2.1), (2.2) in [6].
To set up the successive approximation we further study the linear system

Zi = fi(Za)
Zyt — Zoxx = [2(Z1, 22, Z1x, Zox, X, 1), (3.14)
(Z1,22)(x,0) = (Z1, Z2)(x,0) = (V}3, Up) (x),

where f1 and f; are defined in (3.13). An invariant set is to be built for the mapping (Z1, Z7) —
(Z1,Z7).

For a constant T > 0 we denote Q7 =R x [0, T']. For (Z1, Z3)(x, t) defined on Q7, with an
integer m > 2 we assume the following,

Z,eC(0,T; H"(R)), Z1,€C(0,T; H" '(R)), (3.15)
Z, € C(0,T; H™"(R)) N L0, T; H" 1 (R)), 3.16)
Zy € C(0,T; H"2(R)) N L2(0, T; H"~1(R)), '

T
sup 1(Z1, Z) O + / 1Zo 0112,y di < M, G.17)
0<t<T
0
T
/ 1(Z1s, Zo) (O, dt < M} (3.18)
0

302



Y. Zeng Journal of Differential Equations 308 (2022) 286-326

Here M and M; are positive constants. We denote by X ’7’3 (M, M) the set of functions
(Z1, Z2)(x, t) satisfying (3.15)-(3.18).

We determine the constants M, M; and T such that for (Z1, Z;) € X ’}’ (M, M), the solution
(Z1,Z5) of (3.14) is in the same X (M, M).

Lemma 3.4. Let m > 2 be an integer and (Z1, Z3) € X7 (M, My).

(i) For f1 and f> defined by (3.13) and (3.2) we have

I 1O m—1=1Z2x @O llm-1 = M,
I 2O lm—1 = B(M, A),

(3.19)

where B is a positive constant depending on M and an upper bound A of |v_| + |v|.
(ii) LAet (Z1, Z3) be a solution of (3.14) and satisfy (3.15)-(3.17), with M in (3.17) replaced by
M. Then

T
f 1(Z11, Za) )2, dt <2M* + T(M?* +2B?). (3.20)
0

Proof. Under the assumption (Z1, Z3) € X7 (M, My), from (3.13) we have

IAOIn—1= 1l = ZoxDllm—1 = 1 Z2@Olln =M, 1€[0,T]. (3.21)

This gives us the first estimate in (3.19). Also with (3.2) and (3.10) we have

1O lm=1 UZ1Zallm + 1 Z1llm + 71 Z3 -1 + 71 Zallm—1 + G+ 1w Z1 [l
+ 1@+ v 2ol + 271Gt + u™) Zollm—1 + 1 F3() -1
<CIZ1llml Z2llm + 1 Z1 llm + rCN 2211y + 71 Za2llm—1 + Cllit + t* | | Z1 llm
+ Cl|v + v lwme | Z2llm + 2r Cllit + u* w11 Z2llm—1 + 1 F3(0) -1
SCM +1+r+ i+ u™lm + 10+ v [wmoo) M + || F3(t)]|m—1,
(3.22)

where C > 1 is a universal constant. In (3.22) we note that v ¢ LZ(R) thus we use L* norm

instead.
From (3.3), (2.6), (2.15) and (2.16) we have

1 o _ _
8L F5 ()] s;naiat(uxv)n + 18 @)+ 185 [ (0 4 0]
1 _ _
1= 102G+ )|+ r L2 + ]| (3.23)

<Clo_ —vyl(t+1)"277
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for an integer [ > 0. Here C > 0 in (3.23) is a constant depending only on an upper bound A of
[v—| + |v4]|. This implies

5
I3 Im—1 = Clu- —vy [+ 1) 4. (3.24)

Substituting (3.24) into (3.22) and noting || + u*||;, + |V + v*||wme < C(Jv—| + |v4]) give us
the second estlmate in (3.19).

Suppose (21 Zz) is a solution of (3.14) satisfying (3.15)-(3.17) with M replaced by M. Then
with (3.19) we have

T T
/ V21O di + / 12O, di
0 0

= / A% di + f 1(Zaxx + F)OI2,_, dt
0 0

T
f[nfl(t)n; |+ 2A005, 11dt+/2||22xx(r>||,%1,1dr
0
T
5/[M2+2Bz]dt+2M2:(M2+232)T+2M. 0
0

The following proposition gives us an invariant set under iterations.

Proposition 3.5. Let m > 2 be an integer, and A and A be positive constants. Suppose |v_| +
lvy| < A and (V§, Up) € H™(R) with ||(Vy, Uo)llm < Ao. Then there exists a constant Ty >

0, depending only on A and Ay, such that if (Z1, Z») € X’ﬁ) (v/8Ag, V17 Ag), the initial value
problem (3.14) has a unique solution (21, 22) in the same X’}’O (v/8A¢, V17 Ap).

Proof. We set M = /8Ag and M, = V17 A¢. If (Z1,Z) € X’" (M, My), then by (3.13)

we have f| = —Zs, € C(0, To; H™1(R)) N L2(0, Ty: H™ (R)). Sumlarly, we also have f; €
C(0, Ty; H"1(R)). Applying Proposition 3.2, there is a unique solution (Z1, Zz) of (3.14),

Z1 € C(0, To; H™(R)) N C'(0, To; H" 1 (R)),
Zy € C(0, To; H™(R)) N C1(0, To; H™2(R)) N L2(0, To; H™ 1 (R)).

The solution satisfies the energy estimate
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t
IZ1 N2 + 1 220112, + / 1Z2(0)12 4 dT

0

t t (3.25)

m2 2 2t 2 2
<2ANVGIZ +1 [ 1A@IZ del+ e UIE +2 [ 1 A£@I5_ dT)
0 0
forO <t <Ty.

To show (21, 22) € X?O(M, M) we only need to obtain (3.17) and (3.18) for (21, 22). For
this we apply (3.19) and (3.17) to bound the right-hand side of (3.25) by

Ty
20V5I% +2To / I Zax () 112, dt + *TO[||Up||%, + 2To B*]
0

<QIVJIZ, + P Upl12,) + 2To(M? + 20 B),

where B is a positive constant depending on M (hence on Ag) and A. Now we choose Tp > 0
such that

T <2 and 2TH(M? 4 2B?%) <243, (3.26)
This gives us
Ty
5 5 2 5 2 2 a2
sup (21, 2012 + / 122012, di <843 = M2,
0<r<Ty 5

which is (3.17) for (21, 22). Here from (3.26) we note that T depends only on A and Ayp.
Next we apply (3.20) with M taken as M to have

Ty
f I(Z1s, Zo) (O3, dt <2M* + To(M* +2B%) = 1745 = M}.
0

This is (3.18) for (Z1, Z2). O

The following theorem establishes the existence of local solution to (3.12) hence to (3.1),
(3.4).

Theorem 3.6. Let m > 2 be an integer, and A and Aq be positive constants. Suppose |v_| +
lvy| < A and (V], Up) € H™(R) with ||[(V], Up)|lm < Ao. Then there exists a positive constant
T1 (£ To), depending only on A and Ay, such that the initial value problem (3.12) has a unique
solution (Z1, Z»), satisfying

Z)€C0,Ti; H"(R) NC'(0, Ty; H" ' (R)),

Z,€C(0,Ty; H"(R) N C (0, T1; H"2(R)) N L*(0, Ty; H™ T (R)).
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Proof. We define a successive approximation sequence {(Z¥, Z’j)(x, t)} via the following itera-
tion scheme,

(29.29)=1(0.0),
ziH = b)),
ZET 78 = 2k K ZK L ZE xon, k>0,

(ZHY ZE (x, 0) = (V) Uo) ().

(3.27)

By Proposition 3.5, for all k > 0, (zk, Z’z‘)(x, t) is well-defined on Q7, and (zk, Z’z‘)(x, t) €
X7 (M, M), where M = V8Ap and M| = V17 A,.
Next we prove that {(Zk, Z’zc)(x, t)} is a Cauchy sequence. Let

7k k+1 7k k+1
Z¥=z{" -z, ZA=Z75t1 -7 (3.28)

From (3.27), (3.13) and (3.2), for k > 1 we have

7k rk
Zu=h
zk —Z5 = fx, (3.29)

(Z%, Z5)(x,0) = (0,0),
where

ft =hz5) - fuzyHh=-23",
5=z}, 25, 74,
=-Zy,' =2y = (2, 2y - 20 2y — (225, - 2 250
—r[(Z5)? — (Z5DH — (ay +ut) 25 — w2
— (O +vHZE — @+ ZE T —2r@+u ZE

Zéx’x’ t) - fz(zllc_lv Z]2(_19 Zk_l lecx_laxa t)

Ix

Since (Z%, Z%) € X7 (M, M)), together with (3.9) and (3.10) we have

1 =t =N Z5 et < 125 o,
1 =2 <NZ5 Mz + 1 Z5 ez + 125 ZE 2 + 125 ZE 2
125 ZE M2 123 25 e + 7128 + 257D 25 iz
F NGty + u) ZE M e+ 1G4+ u*) ZE T ez + 1B + 0D Z5 2
F U@+ 0 ZE a4+ 201G+ u) ZE s
<CIZY, Z5 Dl

(3.30)

where C > 0 is a constant depending only on M and A (hence only on Ag and A).
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From (3.28) it is clear that (Z¥, Z}) € X7 (M, M) implies (Z%,Z%) e X7 (2M,2M)). Then
(3.29) implies f{ € C(0, To; H™2(R)) N L%(0, Tp; H™~'(R)) and f5 € C(0, To; H"2(R)).
Applying Lemma 3.1 to (3.29) with [ =m — 1, from (3.7), (3.8) and (3.30) we have

t
IZX Oy + I Z5OI2,_; + / 1Z5(x)|12 dt
0
t t
< / 1752, d 426 / 1O 12y de
0 0

t t
< / 1Z5 @)1, de + ¥ / 11 ZE Y@ de
0 0

for 0 <t < Tp. Here C > 1 is a constant depending only on A and Ag. Thus for 0 <t < Ty,

t
sup [1(ZF, ZH)(OIA -, + f I1Z5(0)112, d=
0

O<t=<t
. (3.31)
<2ce*™r sup (251 ZEH@l3 +4z/ 1Z5~ ()12 dx.
o<
<t<t 0
Now we take a positive constant 77 such that
T.<Ty, p=4CT) <1. (3.32)

Clearly T1 > 0 is a constant depending only on A and A(. Noting (3.26) we simplify (3.31) to

0<t<t

t
sup [1(ZX, Z5H@)12_, + / I1Z5 ()12, d=
0 (3.33)

t
<pl sup ||<Z§‘—1,Z’5‘1)<r>||,%1,1+/||Z§‘l(r)||idr], 0<r<T.
0

0<t<t

The rest is completely parallel to the proof of Theorem 2.9 in [6]. It follows from (3.33)
that {(Zk, Z§)} is a Cauchy sequence in C(0, Tt; H™~L(R)). Therefore, there is (Z;, Z2) €
C(0, Ty; H™'(R)) such that (Z¥ — 7y, Z% — Z5) — 0 strongly in C(0, Ty; H"~'(R)) as
k — oo. Since (Z¥, Z5) e X7, (M, My) C X7, (M, My), we conclude that there is a subsequence
{k'} of {k} such that z’g’ — Zp — 0 weakly in L2(0, T1; H"1(R)).

Similarly, for each ¢ € [0, T], there is a subsequence {k”} = {k”}(¢) of {k’} such that (Z’f” -
Z1,ZY" — ) — 0 weakly in H"(R). Thus we have a solution (Z1, Z) of (3.12), satisfying
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Z1 € L*™(0,Ti; H"(R)),
Zy € L0, Ty H™(R)) N L*(0, Ty; H™ ' (R)).

Moreover, it follows that

Z1 € L®(0, T H" ™' (R),
Zy € L0, Ty; H™2(R)) N L0, T1; H"'(R)).
By Lemma 3.1, we improve the regularity to
(Z1,Z2) € C(0, Ty; H"(R)),
hence
Z1, €C0,T1; H"Y(R)), Zy € C(0, Ty; H"2(R)).
The uniqueness of (Z1, Z;) follows from the regularity and Proposition 3.2. O
4. Global existence of solution
In this section we prove Theorem 2.3, the existence of a solution global in time for (1.1)-(1.3).
Based on Theorem 3.6, we only need to prove the following proposition. From there a standard

continuity argument gives us Theorem 2.3.

Proposition 4.1. Let m > 3 be an integer, Vo € H" T (R) and ug— 1 € H™(R). Suppose (Vy, U)
is a solution of (3.1), (3.4), satisfying

VecC©O,T; H""'\R) nc' 0, T; H™"(R)),
UeCO,T; H"R)NCL0, T; H"2(R)) N L*©0, T; H™T'(R)).

Let

t
N2(t) = sup {||V<r)||%n+1+||U<r)||,%1}+/[||vx(r>||,2n+||U<r)||,%1+1]dr, t€[0,T]. (4.1)

0<t<t
0

Then there exist constants &g, 81 > 0, such that if [v— — v4| < 8o and N, (T) < 81, the following
a priori estimate holds:

N2A(T) < CIVollZ 1 + U2, + lv= — vy, 4.2)
where C > 0 is a constant.

Proof. In the following C denotes a universal positive constant. In particular, it is independent
of T. For 0 <1 <m, we apply afc to the second equation in (3.1) to have

AU, + 02V — 82U +rdlu =0T WV —rdl U + 0L F. (4.3)
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Multiply (4.3) by 8)16 U and integrate with respect to x. After integration by parts we have
d 1o Loy e R 72
2SNV + 21 VIFT+ 19, U+ rlo Ul = I+ I+ s, (4.4)

dr
I =—fa§Ua§+1(va)dx, 12=—r/a§U3§U2dx, Ig:faaniFdx. (4.5)
R R R

Here we have applied the first equation in (3.1) to obtain the second term on the left-hand side of
(4.4).
For I; using the commutator notation in Lemma 3.3 and by integration by parts, we have

I = —/(8iU)U(8i+2V)dx - /(aiU)[ajjl, U1V, dx
R R

:/U(a;+1U)(a§+1V)dx+/UX(3§U)(3§+1V)dx—/(3§U)[a§+1,U]vx dx 49
R

R R
=1+ 1o+ Lz

Here for 117 again we apply (3.1) to have

1 d
h=- [ UGV @ Vdx =3 [Ul @y 2
R R
d 1
= [—= | U@®t'v)ia
dt[ 2/ (@7 V)7dx]
R

! 2 I+1 2
+§ [_(va)x_vxx+Uxx_rU _rU+F](3x V) dx.
R

Applying (3.9) we bound the right-hand side to have

d 1

In < E[—E/U(ai“wzdx]+C<||v”||1 + Ul + 1 Fllz) 1957 V1%
R

From (3.2), (3.3), (2.15), (2.16) and (2.6) we have

| Fllzee < | FillLoe + | F2llLee + | F3llLoe

<CUWVall + Vil + U+ 10Ukl + lv- — v ).

This gives us

d 1
i< —l=3 / U@V dx]1+ C(IVella + U I3 + v — v DL V%, 4.7)
R
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Similarly, for 717 and /3 in (4.6) we have
Lo < CIU 0L UINOT VI, I < 19LU IS, UV,
Substituting (4.7) and (4.8) into (4.6) and noting (4.1), we arrive at

d 1
I sa[—E[U(aiHVﬂdx]+C[Nm(r)+|v_—v+|]||ai+1vn2
R

+ %Nmmnaivnz + U lm I, UV
For I, in (4.5) we apply (3.10) to have
L <rlaLUotu?| < rloLUINIU N < CILUINU w1 U Il
For I3, with (3.2) we write

:/Banchldx—I—/aanchzdx—k/aani&dx5131+I32+133.
R R R

Here applying (3.2) and using the commutator we have

I = _/aan;+1[(ﬁ +u*)Veldx
R

— f(aiU)(ﬁ +uo v dx — f(aiU)[a){“, i+ u*Vedx

= L + Izio.

By integration by parts and applying (3.1), (2.6), (2.11), (2.12), (2.15) and (2.16) we have

B =- /(8i+1vt>(ﬁ +u)d !V dx + /(ach)(ﬁx +ub)ot 1V dx

:%[—%f(u+u YOIV 2 dx] + = /(ut+u YO V) 2 dx
R R

+/(8iU)(ﬁx+u;)8i+lde
<—[——/<u+u*><al+1V)2dx]+C|v_—v+|(||al+1vn +2U1).

—dt
R

It is clear that

310

(4.8)

(4.9)

(4.10)

“4.11)



Y. Zen Journal of Differential Equations 308 (2022) 286-326
g q
l +1 =
L < 1 U0 i+ w1Vl

Therefore,

I3 <—[——/(u +u)@TVY2dx]+ Clo— — v (I35 V2 + 18k u )
(4.12)

+ LU, @ 4 u* Ve

Similarly, the other terms in (4.11) have the following estimates,

132=/8§U3§F2dx
R
=—/8iU8i+l[(f)+v*)U]dx—2r/8iU8i[(ﬁ+u*)U]dx
R R
1
—/(5+v*)[§(a§U)2]xdx—/(3§U)[a§+1,ﬁ+v*]de @.13)
R R

—2r / AUd (@ +uHU)dx
R

<Clo— — vy ||QLU U I + LU I, § + v U,
Iy < [0 UN0L F3)) < Clo_ — vyl (e + D72 310l U]. (4.14)
Here is (4.14) we have used (3.3), (2.4), (2.15) and (2.16) to conclude that

r,(x+xo)2

8L F3] < Clu_ — vy |(t + )~ F e~ (4.15)

for some r’ > 0. Combining (4.11)-(4.14) we arrive at

I <—[——/< +u*) @V dx]+ Clo- — vy | (125 VI + 185U 1T 1)
R

_ _ _1_5
F LU AL, @ 4 u* 1V | + 15T, 5 4 v U ) + Clo— —vi | + D727 518l U .
(4.16)
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Now we substitute (4.9), (4.10) and (4.16) into (4.4). This gives us

d 1 1 1 1 [
E[§||8iU||2+EIIB)IC“VIIZ—FEfU(8i+1V)2dx+Ef(u—i-u*)(ai“V)zdx]
R R

+ 13 U P+l ?
el , “4.17)
<C[Nu(t) + lv— — vy N V2 + 10l u o )

U (1B, UV 4 1105, i+ w1V |+ (1185, § 4 v*1U )

L_5
+Clo — vyl + D275 3LU).

We sum up (4.17) for 0 < < m and apply (3.11) to have

1d _ =
SV + IVl + [ 47400 @V ax) + 10 + U
R =0

<C[Nu(t) + lv— — v 1A Ve lZ + 11U 112)
+ CNU Nl 1 Vil + Nl + @ |Vl 4 155 4 0l 1U 1) (4.18)

5
+ Clo- —vi |t + D)4 [Ullm
<CINp (@) + o= = v 1V l5, + 1U 13D + CIU I I Ul | Vil

5
+ Clo- —vg |+ D74 [[Ullm-

Integrating (4.18) with respect to time on [0, 7] for 0 <t < T, we further have

t
HU @2 + 1 Ve®lI% + / IU @2, d7
0

<C{llUol7, + IV, + (U + it +u*) Ol o |V, + (U + it + ) @) < 1 Ve 0I5,

+ [N (£) + v — v [INA (1) + [v— —vi| sup U (T)Im)

0<t<t

<C{IUolI2, + V4112, 4 [N () + [v— — v |IN2(6) + v — vy | sup [|U(T)]Im}-

0<t<t

(4.19)

Next, for 0 <! <m — 1, we multiply (4.3) by B}ZC‘FZV and integrate with respect to x. This
gives us

102VIP = L+ Is + I+ I + I, (4.20)
where
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14=—/a§+2vaiu,dx, 15=/a§+ZV(a§+2U—ra§U)dx,
R R

16=—/a§+2va§+1(va)dx, 17=—r/a§+zva§U2dx, 18=/a§+zva§Fdx.
R R R

For 14 by integration by parts and (3.1),

d
I4=/a)lc+lvai+lUtdx:E/aiHVBiHde—/8)lc+th3i+lde
R

R R

421
d 1+1 1+1 1+1 2 ( )
= | &V Udx + ot U,
R

It is clear that
c 1
Is < 352 vqait?ul + rlelul) < Enaﬁzvuz + Z(na,i”Un +rlplu?,  4.22)

where ¢ > 0 is a constant to be determined. Similarly, with (3.9) and (3.10) we have

Ig = —/(a§+2\/)20dx - f(afc“\/)[a;“, U1V, dx

R R 4.23)
<NV2IU 102V 4 18 2 v I, uvedl,
I <rlla P2V 8L U?) < CIBTAV U -1 U - (4.24)

For Ig from (3.2) we have

Ingajjzvaiﬂ dx+/a§+zva§F2dx+/a§+2V3§F3dlegl +Igo + I3, (4.25)
R R R

Applying (2.15) and (2.16), it is straightforward to have

Iy = — f P2Vl (i + u*) Vildx < 02V 185 (@ 4 u*) V]|
R

1
<Clo— —vg |t + D722V IV lliga,
Iso < 82V {10 (@ + v UL + 2701 (@ + w) U

_1
< CI3E2V 5 U || + Clo- — vyl + D282V U |,
Conl4+2v,112 c? I+1772 Y )
< SI2VIP + 9 UIR 4+ Cloe = vl + D720 2V i
With (4.15) we also have
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42 I —L_5 a2
Is3 < 9,2 VI3, F3ll < Clo— — vy |t + D727 39,2V
Substituting these estimates into (4.25) gives us

c _1
Is s—uaffzvn2 +CIS U + Clo- — vg |+ D722V (Vi llir + 11U 1)

(4.26)
FClo — vy |+ DT
Now we combine (4.20)-(4.24) and (4.26) to have
d
a2 v 2 = / ATVt U ax + CIU |, + V2 + ClU 182 v 12
R
+ CIS2VIIAI, UVl + 1U =1 11U 1I7) (4.27)

+ Clo- = vt + D722V Ve it + U1

+Clo- — vy |+ D72 i a2y

We take ¢ = % in (4.27), and sum up the inequality for 0 </ <m — 1. Applying (3.11) we have

||Vxx|| Z/a’“va’“de+C||U||m+1 + CIU NI Vx5,
=0
R

+ ClVarllm 1 QU 1 I Vi lm—1 + U115, 1) (4.28)

ml_dt

_1

+ Clo— — v |+ D7 2[[Vix =1 U Vel + 11U ln—1)
_>

+Clo—m — v |+ 1D # | Vax llm—1-

Integrating with respect to time on [0, ¢] for 0 <t < T gives us

/ Ve (DI, dT <2Z o vl ol + 197 vola U o))
=0

+C/||U(r)||,%1+1dr+CN3,(t)~|—C|v,—v+|[N,,21(t)+Nm(t)]
<IVeOIZ_; + 1002, + V12— + U2,

+C/||U(7:)||,2n+1dr+CN2,(t)+C|v_—v+|[N31(t)+Nm(t)].

Substituting (4.19) into the right-hand side we arrive at
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t
/ [ Vax (II%_; dT < C{UIUIIZ, 4+ IVEIIZ + INm (1) + [v— — v [IN2(£) + v — vy [N ()}
0

We still need to find energy estimate for V. From (3.1) we have
Vi+U=0,

which implies

d(1||vu2)+fv0d =0
dr 2 r=r
R

From the second equation in (3.1) we have
1 2
U= ;[—U, —(UV)x = Vix +Usx —rU+ F].
Thus integration by parts and (4.30) give us

1 1
/Vde:—/[—(VU),—i—V,U]dx—i——/Vx[UVx—i—Vx—Ux]dx
r r

R R R
1
—/VU2dx+—/VFdx
r
R R

d 1 1 1 1
=—[——/vvdx]——||U||2+—||vx||2+—/<uvx2—vax>dx
dt  r r r r
R R

1
—/VU2dx+—/VFdx.
r

R R

Now we substitute (4.32) into (4.31) to have

d 1 51 T

—(=||V|I* = - vUd — ||V,

<GV rf e
R

1 2 1 2 2 1
=—|UI> == | V2=V U)dx+ | VU?dx — - | VFdx.
r r r
R R R

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

For the last term on the right-hand side, we have the following from (3.2), (2.15), (2.16), (4.30),

(2.6) and (4.15), and by integration by parts,
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1 1 _ % 2 - *
—— | VFdx=——-[| u+u™)(Vo)*dx+ | Viy(v+v")Udx
r r
R R R
— Zr/ ViU dx —2r/ Vu*Udx + / V F3dx]
R R R

< —2/zzvv,dx+cnvxn||un +Clo- — v Vsl
R
+Clo- = v+ DTIVIUI VIS

d _ 1 _3
sa[—fuvzdx] + Envxn2 +CIUI* + Clo— — v |lt + D2 V|2
R

_ _5
+Vell? + ¢+ DTHVINUI A+ ¢+ D73V
(4.34)
Substituting (4.34) into (4.33), we arrive at

d 1 1 _ 1
—(—||V||2——/Vde+/uV2dx)~l——|IVx||2
dr 2 r r

R R

l 2 2 2 2 i 2 2
NI+ CAU VP + 1T + IV IV + 1Vl + ClU |
_3 _ _35
+ Clvm —vi [+ D 2VIP+ Ve l2 + ¢+ DTIVINUI + ¢+ D73V

After simplifying, we integrate the above estimate with respect to time on [0, ¢] for 0 <z <T.
Then we have

t
1||V(r>||2+ ! /IIV( )12 d
— — T T
2 2r *
0

, 1 , 1 , p ) (4.35)
=ClIVoll™ + 2 IVOI" + Vol oll + CLIU @] +/ IU@Il1dr]
0
+ Cllv= — v NG (1) + N () + |[v— — vy | No(0)].
Substituting (4.19) into (4.35) and simplifying, we have
t
WoR+ [ 1vmPd
0 (4.36)

<C{IUolIZ + IVoll2, 11 + [Nm (@) + [v= — v [INp (1) + [v— — v | N (1)}
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Finally, combining (4.19), (4.29) and (4.36) gives us

t
IU I, + IV Ol + / HU @541 + 1 Ve(@llZ1dT
0

<C{IIUIIZ + IVoll2 11 + [N () + v — v [IN2(2) + [v= — v | N (1)}
This implies
N2(T) < CUIUOIIZ + 1 Voll2, 11 + [Nm(T) + [v— — v [IN2(T)} + Clo— — vy | N (T).

Since the last term on the right-hand side is bounded by %Nn% (T)+ C|v— —v4|?, we further have

N (T) < C(I1Uollz, + Vol 41+ [v— = v4%) + CINum(T) + [v— — v [INZ (D).
That is,
{1 = CINu(T) + o= = v+ NG (T) < CUIUolly, + 1 Vollggy + v — v ). (437)
Now we take positive §p and §; sufficiently small such that
C(dp+61) < %

Then (4.37) implies (4.2). O
5. Asymptotic behavior of solution

In this section we prove Theorem 2.4, which justifies (v(x + xg,1) + v*(x,1), 1 + u(x +
X0, 1) + u*(x,t)) as an asymptotic solution to (1.1)-(1.3). This is done by weighted energy esti-

mate. We continue to use C as a generic positive constant.
For 0 <! < m, we multiply (4.4) in the energy estimate by a weight (# 4 1). This gives us

d 1 1 1 1
yrCiGes DILUI* + S+ DotV R - E||aiU||2 —~ Enaff‘vn2

(5.1)
+ @+ DI U +re+ DU =1+ L+ 1,
where
ﬂ:a+nh=—a+n/¢U$%meL
R
5=a+nh=—mpu{/%U%Uw& 5.2)
R

g:g+n@=u+U/xeFw.
R
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Integrating (5.1) on [0, #] with respect to time and applying (2.23) give us

t
%<r+ INERAGIEES ||ai“vm||2]+/<r + DB U @12+ rlI8lU (o) 121 dT
0

t

1 1

=5[||aiU(0>||2 + 185V )11 + 5 /[nagiU(r)n2 + 19V (D) *1dT
0

(5.3)

t

+/<i1 + I+ @) de
0
t

<C(IVoll2 41 + lluo — 112, + o= — v4[») + /(1] + L+ B)(t)dr.
0

From (4.6), (3.9) and (3.11) we have

t t
/A(r)dr SC/(Hl)(nunlnai“Un U LU @185V (o)l dT
0 0

t
+ C/(T + DI U @U@ Vi (D)l d (5.4)
0

0<t<t

t
=<C sup IIVx(f)Ilz/(T+1)||U(T)||m||Ux(T)||mdf.
0

Similarly, with (3.10), (3.2), (2.15), (2.16) and (4.15) we have

t

t
/iz(f)dTSC sup IIU(f)IIm/(rJr1)|I3iU(T)|IIIU(T)|Izdf, (5.5)
0

O0<t<t
0

t t
/i3(r)dr=f(r+1)/ai+lua§[(ﬁ+u*)vx]dxdr
0 0 R

13
—/(r+1)f(a+v*)a§Ua§+ldedr
0 R

t
—/(r+ 1)/3§U[3§+1,5+v*]dedz
0 R
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t
—2r/(r+ 1)/3§Uai[(a+u*)U]dxdr
0 R

t
+/(r+1)/aan;F3dxdz
0 R

t
_ 1 _
s/<r+1){||ai“U||||ai[<u+u*)vx]|| +5||vx+v:||Loo||aiU||2
0
+BLUNNOLY, &+ v U | 4 2r [0 U |10L [ 4+ u*) U + 181U | 18] F5 1} d

t
sc/<r+ DU U i 4 u* oo Vil + 10y 4+ vE [l e 102012
0

F10LU 5k + vE e 1U I + 10L Ui + w6 [l yroo 1U 12
+Lulel Bk o) dT

t
1
<Clv_ — v+|/<r+ D2 U NNVl + 105U U () de
0

t
+C|v,—v+|/(r+1)—%—%||a§U(z)|| dr. (5.6)
0

We substitute (5.4)-(5.6) into (5.3), sum up for 0 <[ < m, and apply (2.23). These give us

t

(t + DUU O, + Ve O3] +f(r + DIU@I%,, dT
0

<C(IVollZ4y + lluo — 1112, + o= — vy |?)
t

+CLsup [Ve(@llw+ sup [U@ ] [ ¢+ DIV@7,, dT

O<t=t O<t<t
0
t
1 _3
+Clv_ — vy | f(r + D2 U @)l 1 [ Va @)l + 10U @)l + (x + 1)~ 31d7
0
<C(IVollpi1 + lluo — 1|2, + lv= — v4]?)
t
+ CUIVollms1 + Nl — Ul + o= — vy ) /(r + DU @I, dT
0
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t t
1 3
+ /(r + DIU @)%, dT + Clo- — v+|2/[||vx<r>||,%, + U @2 + (t + 1) 2]dz.

0 0
5.7
Letting 9 < 1/(4C) in Theorem 2.3, we simplify (5.7) and apply (2.23) one more time to have

t
t+ DU + ||vx(t>||,%1]+/(r + DU @24 dT
(5.8)
0
<C(IVollZy + lluo — 1117, + [v— — vy |?).

Next we multiply (4.28) by the weight (¢ + 1) and integrate with respect to time on [0, 7].
Similar to the derivation of (5.8) we have

t
1
5/@ F DIV @2, d
0

m—1 m—1
<@+D YR vollttuol+ Y 1t v ot u o)
=0 =0

t
+ C/ Vi (O llm—1 1Ux (D) [lm—1d7
0

t
+C/(f+ DU 1 + NU I Var -y + 1Var bt WU =t 1 Vit + 1T 1, )
0

1
+ - — v [T+ D72 [V llm—1 (Vi llm + U lm-1)]dT

t
1
+ Clv- — U+| /(T +1)"1 | Vix (T lm—1 dt
0
1 2 2 2 2
Sz(t + DUV -1 + 1Ux Ol 11+ CU VO, + 11Uoll;,)

t t
+C/[||vx<r)||,%1,1 + U (D)2, 1dT +c/<r +DIU @2, dT
0 0

0<t=<t 0<t<t

t
+Clsup U@+ sup ||vx<r>||m71+|v7—v+|]/<r+1>||vxx<r>||3n_1dr
0

t

t
+C sup ||vx(r)||mf(r+1)||U(r)||3,dr+€|v_—v+|/[nvx(r)||51+||U(r>||,%1_1]dr
0

O<t<t
0
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t t
1 3
+2 /(r + DI Vix (O3, dT + Clv_ — v+|2/(t +1)"2dr.
0 0

Applying both (2.23) and (5.8) we have

t
1 2 2 2 2
5 [ @+ DIV @Iy de < CAVlp + o = 15, + v- = vi )
0
t
+ CIVollmr1 + luo — Tlw + lv— — v+|>f(r + DIV I3, de
0

t
1
4 Z/(r + DIV (DI, dr.
0

Simplifying and assuming g9 < 1/(8C), we arrive at

t
f(r + DI Vex (OII2,_1 dT < C(IVoll24y + lwo — 112 + lv= — v |?). (5.9)
0

Estimates of the other terms on the left-hand side of (2.24) are obtained similarly. For 1 <[ <
m we multiply (4.4) by the weight (r + 1)>. Then we integrate the result on [0, 7] with respect to
time, and apply (5.8) and (5.9). We have

t
1
S+ D28 u @) 1* + ||ai+‘V<t)||2+/(r+ D2 U + 0L U 1P () de
0 (5.10)

t
<C(IVollZsy + lluo — 1112 + lv- —vi D) + /(r + 12 + I + I)(7)dT,
0

where I, I and I3 are defined in (4.5).
Similar to (5.4) and with the updated estimate (5.8) we have

t 1

/ (+DP(@)dT <€ sup [+ DHVAOI) / ( + D3 U@ I U () | d T
<r<t

0 0

t t
<C sup [(T+1)? ||vx(r>||l][f(r +DIU @2 dt +/(r + DU (D3 dt]
0 0

Ofrft
<C(IVoll 11 + lluo — 1112 + lv= — vy |?)

321



Y. Zeng Journal of Differential Equations 308 (2022) 286-326

+ CVollm+1 4 lluo = Lim + v — v+|)/(f + DU (D)7, d. (5.1

Similar to (5.5) and (5.6) but noting [ > 1 (thus replacing ||V, ||; on the right-hand side of (5.6)
by |Vxx|lj=1 + (r + 1)_% IV, with (2.23) and the updated estimates (5.8) and (5.9) we also
have

/(f + 12 h(r)dT <C(IVolly 41 + llwo — s, + [v- — vy ]?)

+CVollm+1 + lluo = Uim + v — v+|)/(f + D Ux (05, d,

(5.12)
/(r+1> 130 dv <C(VoI oy + o — 112 + v — vy )

+Clv_ _U+|/(r+1) U @)1 + 19LU (D) 1P 1de (5.13)

+%/(r+ D218LU (1) dx.

We substitute (5.11)-(5.13) into (5.10), sum up for 1 </ < m and simplify. We arrive at

t

(t + DU + 1 Ver D121+ /(r + DU (D)2, dT
0

<C(IVollp i1 + lluo — 1|2, + lv— — v4]?)

+ CUIVollmt1 + Nl — Ul + o= — v ) f(r + DUy (D)2, dz.
Letting g9 < 1/(2C) gives us
-+ DUy + Ve Ol 1+ / (r + DU (D)2, dt G

<C(IVollZy + lluo — 1117, + [v— — vy ).

Now we combine (5.8), (5.9) and (5.14) to have (2.24).
To derive (2.25), which improves the rate of ||U(¢)||, we multiply the second equation of (3.1)
by U and integrate with respect to x to have
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1
%[Enwr)nz] + UM + U0 )* = — / UL(UVy)x + Vi + rU? — Fldx
R

r 1
<NU@ONU Vi)x + Vax +rU* = F|(t) < §||U(r>||2 + SV + Vi + rU? — FII*(1).

This implies

4,1 WUOIRT+ SIUOP < = [(U Vs + Vix +rU% — FI20)
di*2 2 = o M Ve Ve ol :
Applying (5.8), (5.14), (3.9), (3.2), (2.15), (2.16) and (4.15), we bound the right-hand side by

CUIVoll2 1 + lluo — 112, + v — v (e + D72

By Gronwall inequality,

t
1 1 o _
5||U<t>||255e "IIU0||2+C(||V0||31+1+I|u0—1llfn+|v——v+|2)/€ r=O (¢ 4 1) 2dr
0

<CIVollggr + llwo = 15, + lo— = vy ) + D72
We thus obtain (2.25).
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Appendix A. Proof of Proposition 2.2

To prove Proposition 2.2 we cite a result from [17]. The following lemma is a simplified
version of Lemma 3.2 therein.

Lemma A.1 ([17]). Let ¥’ > 0 be a constant. For x € R, t > 0, we have

t
r(x— ')2 r’yz r’xz
//(t - t)fle_ = (r+ l)fle_m dydt =O0(1)(t + l)f%e_le. (A1)
0 R

Proof. The key of the proof is completing the square for the sum of the two exponents,

r(x — y)? r/yz_ r'(t+1) [ (t+Dx, ' x?
it 141 (Gt-—ne+D” i+1 r+1

(A.2)

Applying (A.2) to the left-hand side of (A.1) and integrating with respect to y give us
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//(t—r) le=" (7) (r—i—l) e~ T dydr—[(t—i—l) T HT /(l—‘l,') 2(t+ 1)~ 2dr

0 R

We evaluate the time integral on the right-hand side to obtain (A.1). O

We now prove Proposition 2.2. Applying (2.11) and (2.15), for [ > 0 we have

l l r’(x+x0)2

LRG0 = 1)+ 30,01 = Ol — vl + D e T A
0x 0x

Consider ¢ > 1 first. From (2.14) and by integration by parts we have

BH'I _r=y)?
—v *(x,t) = f/ e %0 ]R(y,t)dydt

3x1+1 4nr(t —7)

d 1 '<X)
+ — EGO) —R ,T)dydt.
f/ax[ 4nr(t—t) ] (. 7)dy
£ R

Applying (A.3) gives us

y .X 2
—v *(x, t)—[/O(l)(t—r T = e

_1 _r/(xfy)2 _ﬁ _r (V+X0)2
+ | foma—o e ol — vl + D) B TH T dyde
R

r (v+x )2

=0)|v- —v4 |+ 1)~ //(t—r) ! =2 (r+1) ! _T—dedr.

After change of the variable of integration, y + xo — y, and applying (A.1), we obtain the first
equation in (2.16).
For 0 <t <1, similarly, from (2.14), (A.1) and (A.3), and by integration by parts, we have

(.
D le™ dydt

t
al 3 1 _ra=p? 9!
v (0= e ; ]—R(y,r)dydf
dx! /,/Bx Jarr(t —t
/ t—1)
2

=0M)]v- —U+|//(l -7
! (x+xq) 1 r/(x+x0)2

= OM)v- — v |+ D) 2 F 1 = 0o —vy|(t+ 1) Te
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noting (¢ + 1)% = O(1). This also gives us the first equation in (2.16).
The second equation in (2.16) is obtained by observing u* = —%v* — %R(x, t) in (2.12).
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