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Abstract

We consider a 2 × 2 system of hyperbolic-parabolic balance laws. Our system is the converted form 
under inverse Hopf-Cole transformation of a Keller-Segel type chemotaxis model with logistic growth, 
logarithmic sensitivity, non-diffusive chemical signal and density-dependent production/consumption rate. 
We study Cauchy problem when the Cauchy data are near a diffusive contact wave. The contact wave 
connects two different end-states as x → ±∞, reflecting the situation when the logarithmic singularity 
plays an intrinsic role in the original chemotaxis model. We establish global existence of solution and 
study time asymptotic behavior of the solution. Consequently, we obtain nonlinear stability of the diffusive 
contact wave. Our result shows a significant difference when comparing our model to Euler equations with 
damping. In our case, there exists a secondary wave in the asymptotic ansatz. Therefore, the solution to 
Cauchy problem converges to the diffusive contact wave slower than in the case of Euler equations with 
damping. Besides its own physical relevance, our model is a prototype of a general system of hyperbolic-
parabolic balance laws. Our results shed light on the future study of nonlinear stability of elementary waves 
for a general system.
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1. Introduction

We consider the following initial value problem of a system of partial differential equations 
in the unknowns v and u:

{
vt + ux = 0,

ut + (uv)x = uxx + ru(1 − u),
x ∈R, t > 0, (1.1)

(v,u)(x,0) = (v0, u0)(x), (1.2)

where the parameter r > 0 is a constant, and the initial data satisfy

lim
x→±∞v0(x) = v±, lim

x→±∞u0(x) = 1, (1.3)

for two constants v− �= v+. The goal is to establish the existence of solution global in time and 
to study the time asymptotic behavior of the solution under appropriate assumptions.

1.1. Background

System (1.1) is derived from a Keller-Segel type chemotaxis model with logistic growth, loga-
rithmic sensitivity, non-diffusive chemical signal and density-dependent production/consumption 
rate,

{
st = −μus − σs,

ut = Duxx − χ[u(ln s)x]x + au(1 − u
K

),
x ∈ R, t > 0. (1.4)

Here the unknown functions are s = s(x, t) and u = u(x, t) for the concentration of a chemical 
signal and the density of a cellular population, respectively. The system parameters have the 
following meaning: μ �= 0 is the coefficient of density-dependent production/consumption rate of 
chemical signal; σ ≥ 0 the natural degradation rate of the signal; D > 0 the diffusion coefficient 
of cellular population; χ �= 0 the coefficient of chemotactic sensitivity; a > 0 the natural growth 
rate of the cellular population; and K > 0 the typical carrying capacity for the population. All 
these parameters are constants. Interested readers are referred to [35,36] and references therein 
for a more detailed discussion on the model (1.4).

A commonly adopted approach to remove the logarithmic function in (1.4) is by the inverse 
Hopf-Cole transformation [9]:

v = (ln s)x = sx

s
. (1.5)

Under the new variables v and u, the reaction-diffusion system (1.4) becomes a system of 
hyperbolic-parabolic balance laws,

{
vt + μux = 0,

ut + χ(uv)x = Duxx + au(1 − u ).
(1.6)
K
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We assume χμ > 0, which implies χ, μ > 0, or χ, μ < 0. The former is interpreted as cells 
are attracted to and consume the chemical, while the latter indicates that cells deposit the signal 
to modify the local environment for succeeding passages [22]. Mathematically, the non-diffusive, 
non-reactive part of (1.6) is hyperbolic in biologically relevant regimes when χμ > 0, while it 
may change type when χμ < 0 [35].

Under the assumption χμ > 0, we introduce rescaled and dimensionless variables,

t̃ = χμK

D
t, x̃ =

√
χμK

D
x, ṽ = sign(χ)

√
χ

μK
v, ũ = u

K
. (1.7)

This simplifies (1.6) to

{
ṽt̃ + ũx̃ = 0,

ũt̃ + (ũṽ)x̃ = ũx̃x̃ + rũ(1 − ũ),

where r = aD/(χμK) > 0. Dropping the tilde accent we obtain (1.1).
Corresponding to (1.2), we impose initial condition

(s, u)(x,0) = (s0, u0)(x), x ∈R (1.8)

to (1.4). Here s0 is related to v0 by the transformation (1.5) and the rescaling (1.7). For χ > 0 it 
is easy to see that without loss of generality and for simplicity we may bypass (1.7) and have

v0(x) = v(x,0) = (ln s0)
′(x) = s′

0(x)

s0(x)
.

This implies

s0(x) = s0(0)e
∫ x

0 v0(y)dy, s0(0) > 0. (1.9)

We are interested in the Cauchy problem (1.1), (1.2), with Cauchy data satisfying (1.3). This 
includes (but is not limited to) the following special cases.

(i) 0 < v− < ∞ and 
∫ ∞

0 |v0(y)| dy < ∞. In this case, (1.3) and (1.9) imply

lim
x→−∞ s0(x) = 0, lim

x→∞ s0(x) = s+ < ∞.

(ii) −∞ < v+ < 0 and 
∫ 0
−∞ |v0(y)| dy < ∞. Similarly, (1.3) and (1.9) imply

lim
x→−∞ s0(x) = s− < ∞, lim

x→∞ s0(x) = 0.

(iii) 0 < v− < ∞ and −∞ < v+ < 0. In this case,

lim s0(x) = 0.

x→±∞
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We observe that in those special cases, s0 is not bounded away from zero while v− > v+. 
If χ < 0 in (1.7), there are also special cases where s0 is not bounded away from zero while 
v− < v+. In other words, the singularity of the logarithmic function in (1.4) is intrinsic, which is 
further reflected into technical difficulties associated with v− �= v+ in (1.1)-(1.3).

1.2. Connection with existing literature

When a = 0 in (1.4), the nongrowth model

{
st = −μus − σs,

ut = Duxx − χ[u(ln s)x]x (1.10)

was proposed in [22] for describing the movement of chemotactic populations that deposit non-
diffusive chemical signals that modify the local environment for succeeding passages, and later 
found applications in cancer research [10]. Under the transformation (1.5) and rescaling (1.7), 
one gets the following hyperbolic-parabolic system of conservation laws:

{
vt + ux = 0,

ut + (uv)x = uxx.
(1.11)

Since the model was proposed in the late 1990s, the qualitative behavior of (1.10) has been 
analyzed to a large extent. In the pioneering works of [9,22], explicit and numerical solutions to 
(1.10) were constructed to exhibit chemotactic aggregation or collapsing. A series of papers 
followed, in which a number of topics were studied for (1.11). These include global well-
posedness and long time behavior of large data classical solutions [3,11], stability of traveling 
waves [13,14], boundary layer formation [12] and others. Also see references therein.

Growth and death are important factors in population dynamics. Therefore, sophisticated 
chemotaxis models include reaction terms to describe those mechanisms. Among them logis-
tic growth is a popular choice. Many research results for chemotaxis models with logistic growth 
are for constant rate production and degradation of the chemical signal. Among them many are 
with regular sensitivity as well. For instance, global well-posedness of large data classical so-
lutions has been studied for those models on bounded domains in all space dimensions under 
suitable conditions, see [27,29,4] and references therein. Also see [1] for systems with singular 
sensitivity functions. Cauchy problem is considered in R2 in [21]. In addition, we refer readers 
to [7,28,30] and references therein for the existence of weak solutions.

Systems with density-dependent production/consumption rate of the chemical signal, singular 
chemotactic sensitivity and logistic growth of cells have been studied as well in recent years. 
For example, global existence and asymptotic behavior have been studied in multi-dimensional 
bounded domains, see [39,8] and references therein. The systems are similar to (1.4) but for a 
diffusive chemical signal. The existing works implicate an interest in understanding the role of 
logistic growth in different chemotaxis models. Besides its biological significance, the logistic 
growth resembles common phenomena such as damping and relaxation in kinetic theory. This is 
to be seen in Section 1.3 below.

Cauchy problem (1.1), (1.2) has been considered in [35–38,24,25] under appropriate assump-
tions, which all imply
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lim
x→±∞v0(x) = 0, lim

x→±∞u0(x) = 1. (1.12)

Here in [35], global well-posedness, long-time behavior and vanishing coefficient limits have 
been studied. The relevant results are obtained for large data solutions, i.e., under the assumption 
that ‖(v0, u0 − 1)‖H 2 is finite and u0 > 0. In view of (1.12), say, assuming v0 ∈ L1(R), (1.9)
implies

lim
x→±∞ s0(x) = s± > 0. (1.13)

Therefore, in [35] Cauchy problem (1.1), (1.2) is studied away from the singularity of the loga-
rithmic function in (1.4).

Under an additional assumption that v0(x) (hence v(x, t)) is of zero mass, which is translated 
into

lim
x→±∞ s0(x) = s̄ > 0,

explicit decay rates of the solution and its derivatives are obtained in [35]. The non-optimal 
rates serve as a starting point in an iteration scheme developed in [36], where optimal rates of 
solutions to the original system (1.4) and to the converted system (1.1) have been obtained. The 
results on (1.4) are applicable to the border case when s(x, t) neither exponentially decays nor 
exponentially grows. Also see [37,38].

Under the assumption (1.12), if we consider small solutions we may obtain a very detailed 
picture of solution behavior for large time. In that scenario we do not need zero mass assumption 
(in comparison to [36]). Specifically, let |(v0, u0 − 1)|(x) = O(1)(x2 + 1)−α with α > 1/2, and 
supx∈R[(x2 +1)α|(v0, u0 −1)|(x)] +‖(v0, u0 −1)‖H 2 be sufficiently small. We identify the time 
asymptotic solution of v(x, t) as a heat kernel θ(x, t) determined by the parameter r > 0 in (1.1)
and by the mass of v0. The corresponding time asymptotic solution of u(x, t) is 1 − 1

r
θx(x, t). 

The error between (v, u) and (θ, 1 − 1
r
θx) is given pointwisely in x and t , which leads to optimal 

time decay rates in Lp, 1 ≤ p ≤ ∞. See [25,24] for details.

1.3. A prototype of systems of hyperbolic-parabolic balance laws

A general system of hyperbolic-parabolic balance laws takes the form

wt + f (w)x = [B(w)wx]x + g(w), (1.14)

where w, f, g ∈ Rn and B ∈ Rn×n. Here w is the unknown density function, f the flux func-
tion, g the reaction term, and B the viscosity matrix. The reaction term g is for external force, 
relaxation, chemical reaction, etc, while the viscosity matrix B is for viscosity, heat conduc-
tion, species diffusion and so forth. We assume that f, g and B are smooth functions of w. 
In physical applications, the Jacobian matrix f ′ has real, distinct eigenvalues or can be sym-
metrized with an entropy function, and the viscosity matrix B is rank deficient. Thus we say 
that (1.14) is hyperbolic-parabolic. In many important applications, the Jacobian matrix g′ is 
also rank deficient. The system describes the balance of physical quantities dictated by laws in 
physics. A prominent example is the system for physical gas dynamics, which includes transla-
tional and thermal/chemical non-equilibrium.
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A special case of (1.14) is when B = 0, which gives a system of hyperbolic balance laws

wt + f (w)x = g(w). (1.15)

An important example is Euler equations with damping.
Another special case of (1.14) is when g = 0, which gives a system of hyperbolic-parabolic 

conservation laws,

wt + f (w)x = [B(w)wx]x. (1.16)

In this case, physical quantities are conserved. A well-known example is Navier-Stokes equations 
for a compressible flow.

We observe that (1.1) is a prototype of (1.14), with nontrivial B and g. Here

w =
(

v

u

)
, f (w) =

(
u

uv

)
, B(w) =

(
0 0
0 1

)
, g(w) =

(
0

ru(1 − u)

)
. (1.17)

It is clear that both B and g′ are rank deficient. It is also clear that

f ′(w) =
(

0 1
u v

)

has two real, distinct eigenvalues λ± = 1
2 (v ± √

v2 + 4u) in its biologically relevant regime 
u > 0.

Cauchy problem of the general system (1.14) has been studied for small solutions around a 
constant equilibrium state w̄, g(w̄) = 0, in [32,34]. Here is [32] a set of structural conditions 
have been proposed, under which existence of global in time solutions has been established 
for (1.14) and its multi-dimensional counterpart. Lp (p ≥ 2) decay rates have been obtained 
in [34], also see [33] for similar results in multi-space dimensions. The results apply to (1.1)
and the much more complicated system of physical gas dynamics. Here in view of (1.17), a 
stable, constant equilibrium state of (1.1) is (v̄, 1) for a constant v̄. For physically interesting 
scenario limx→±∞ s0(x) = s± < ∞, (1.9) implies v̄ = 0, see [35] for details. Therefore, the 
above mentioned results apply to (1.1), (1.2) with regard to small solutions around the state 
(0, 1).

To the best of the author’s knowledge, Cauchy problem of (1.14), on the other hand, has not 
been studied when w connects two different end-states as x → ±∞. Since (1.1) is a prototype, 
results from this paper on (1.1)-(1.3) may shed light on the study of (1.14). We are particularly 
interested in the similar situation for physical gas dynamics.

In contrast to (1.14), there is a rich literature on Cauchy problems of the special cases (1.15)
and (1.16) where Cauchy data connect two different end-states as x → ±∞. Most results are on 
the existence and/or stability of an elementary wave.

For instance, let w± be two constant states that form a shock wave with speed σ of the hyper-
bolic system

wt + f (w)x = 0. (1.18)
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Under appropriate assumptions, we may show that there exists a traveling wave solution of (1.16)
connecting w− to w+ and with speed σ [2]. The traveling wave is called a viscous shock wave of 
(1.16). We may then consider the stability of the viscous shock wave. For example, it is show in 
[18] that a weak shock of (1.16) is stable under a generic perturbation and physical assumptions.

Similarly, let (w−, w+, σ) be a contact discontinuity of (1.18). Under appropriate assump-
tions, there is a viscous contact wave that is a smooth solution of (1.16), connecting w− to w+
and having a center moving at the speed σ . It takes states on the contact-wave curve of (1.18)
from w− to w+, parameterized by the solution of a heat equation with Riemann data at t = −1. 
Interested readers are referred to [15,31] and references therein.

The scenario of viscous rarefaction waves is much more intricate. As indicated and explained 
in [16], there is no exact, explicit representation of a viscous rarefaction wave, though there is an 
accurate approximation of the wave for (1.16) using the scalar Burgers equation.

In the context of elementary waves and their stability, the special case (1.15) turns out to be 
quite different from (1.16). This is because now those waves are not associated with (1.18) (the 
frozen system) but with the reduced system (the equilibrium system). To be relevant to this paper, 
below we focus on the specific model of Euler equations with damping.

1.4. Comparison to Euler equations with damping

We consider Euler equations with damping for isentropic flows. Under Lagrangian coordi-
nates they read

{
vt − ux = 0,

ut + p(v)x = −ru,
x ∈ R, t > 0, (1.19)

where r > 0 is a constant. The unknown functions v and u are for the specific volume and ve-
locity, respectively. On the other hand, p is the pressure, a given smooth function of v, satisfying 
p′(v) < 0. The model describes a compressible flow through a porous medium. It is shown in [5]
that solutions of (1.19) time asymptotically behave as those of the porous medium equation and 
the Darcy’s law,

{
vt = − 1

r
p(v)xx,

p(v)x = −ru.
(1.20)

Also see [19,20,23] and references therein.
The equilibrium manifold of (1.19) is u = 0. Substituting it into the first equation we obtain 

the equilibrium equation of (1.19),

vt = 0, (1.21)

which is also known as the reduced equation. A better (the next order) approximation is obtained 
by first dropping ut , the higher order term in time decay rate, in the second equation of (1.19). 
This gives the second equation of (1.20). Then we substitute it into the first equation of (1.19). We 
thus arrive at the first equation of (1.20). The idea employed here is Chapman-Enskog expansion.

In [5] Cauchy problem is considered with Cauchy data (v, u)(x, 0) → (v±, u±) as x → ±∞, 
with v− �= v+. To focus on the key difference between (1.1) and (1.19) in their solution behavior, 
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we simplify the setting to u− = u+ = 0. Thus we consider (1.19) under initial condition (1.2), 
where

(v0, u0)(x) → (v±,0) as x → ±∞, (1.22)

with v− �= v+. That is, the end-states are equilibrium states.
Following [5], the primary wave in the solution of (1.19), (1.2) is

(v̄, ū)(x + x0, t), ū = −1

r
p(v̄)x. (1.23)

Here v̄ is the unique self-similar solution, v̄(x, t) = φ(x/
√

t + 1), of the porous medium equation

v̄t = −1

r
p(v̄)xx, (1.24)

satisfying the boundary condition

lim
x→±∞ v̄(x, t) = v±. (1.25)

The translation x0 is uniquely determined by

∞∫
−∞

[v(x, t) − v̄(x + x0, t)]dx =
∞∫

−∞
[v0(x) − v̄(x + x0,0)]dx = 0, (1.26)

noting the equations for v and v̄ are conservation laws.
The end-states v± from a contact discontinuity with speed zero of the reduced equation (1.21):

v̂(x, t) =
{

v− if x < 0,

v+ if x > 0,

see [26]. The primary wave v̄ defined by (1.24), (1.25) can be regarded as a diffusive version of 
v̂. Thus we call v̄ a diffusive contact wave.

Based on (1.26) we introduce new variables,

V (x, t) =
x∫

−∞
[v(y, t) − v̄(y + x0, t)]dy,

U(x, t) = u(x, t) − ū(x + x0, t).

Thus,

Vx(x, t) = v(x, t) − v̄(x + x0, t).
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Nonlinear stability of a weak diffusive contact wave is studied in [5]. That is, if |v+ − v−| is 
small and V (x, 0) and U(x, 0) = Vt(x, 0) are small in H 3(R) and H 2(R), respectively, there ex-
ists a global in time solution of (1.19), (1.2), (1.22). The solution converges in L2(R) ∩ L∞(R)

to (v̄, ū)(x + x0, t) time asymptotically, with ‖(Vx, U)(t)‖L2(R)∩L∞(R) decaying at the rate 

(t +1)− 1
2 . The decay rate is improved to optimal ones, ‖Vx(t)‖L2(R) ∼ (t +1)− 3

4 , ‖U(t)‖L2(R) ∼
(t +1)− 5

4 , ‖Vx(t)‖L∞(R) ∼ (t +1)−1, and ‖U(t)‖L∞(R) ∼ (t +1)− 3
2 , under a variety of assump-

tions on the initial data [19,20].
For our model (1.1), similarly, we can derive an approximate system that is the counterpart 

of Darcy’s law (1.20). As a consequence, the primary wave in the time asymptotic ansatz of 
the solution to (1.1)-(1.3) is a diffusive contact wave. The purpose of this paper is to study its 
stability assuming that the wave is weak.

Our result, however, reveals a significant difference between the solutions to (1.1) and (1.19)
in their long-time behavior. We show that there exists a secondary wave in the asymptotic ansatz 
of the solution to (1.1)-(1.3). The v-component of the wave has zero mass and decays like a heat 
kernel. The u-component, on the other hand, decays like the first derivative of a heat kernel. We 
are able to show that the remainder of the solution after taking out the primary and secondary 
waves is higher order in L2(R). This implies that the secondary wave is the leading term in the 
time-asymptotic error when approximating the solution by the diffusive contact wave. Therefore, 
the contact wave is stable, and the L2-convergence rate to it is (t +1)− 1

4 for the v-component and 
(t + 1)− 3

4 for the u-component. This is to compare with (t + 1)− 3
4 and (t + 1)− 5

4 , respectively, 
for (1.19).

The existence of the secondary wave hence the slower convergence rates to the diffusive con-
tact wave come from the fact that the nonlinear flux in the equation for u in (1.1) contains both v
and u. By contrast, in (1.19) it is p(v), a function in v only. On the other hand, the extra diffusion 
term uxx in (1.1) does not affect the structure of the primary and the secondary waves. It only 
contributes to the error of the approximation by those waves, see (2.3) and (2.10) below. Thus, 
we believe that in the general case, (1.15) or (1.14), there are similar secondary waves in the 
time-asymptotic ansatz when studying the stability of contact waves.

1.5. The goal of the paper

In this paper we establish the global existence of solution to (1.1)-(1.3) when Cauchy data 
are small perturbations of a diffusive contact wave. We identify and justify the leading term, a 
secondary wave, in the time-asymptotic error. This leads to nonlinear stability of contact wave 
and large time behavior of solution to (1.1)-(1.3). Our main focus is an innovative insight of the 
asymptotic solution for general systems like (1.14) or (1.15), beyond what has been understood 
through the Euler equations with damping. Therefore, we are content to achieve our goal in L2

space via energy and weighted energy methods. Using more sophisticated methods it is possible 
to obtain results in Lp spaces, 1 ≤ p ≤ ∞. This is left to a future work.

The plan of the paper is as follows. Section 2 is for preliminaries and the statement of main 
results. In Section 3 we discuss local existence of solution. In Section 4 we prove Theorem 2.3
to establish global existence of solution. This is done by energy estimate. In Section 5 we prove 
Theorem 2.4, which gives convergence rates of the solution to the asymptotic solution and thus 
justifies the asymptotic solution. It is done by weighted energy estimate. Finally, in the Appendix
we prove Proposition 2.2, which describes the behavior of the secondary wave in the asymptotic 
solution.
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2. Preliminaries and main results

We first consider the primary wave, a diffusive contact wave, for (1.1)-(1.3). Introduce the 
perturbation ũ of u,

ũ = u − 1 or u = 1 + ũ. (2.1)

The second equation in (1.1) becomes

ũt + vx + (ũv)x = ũxx − rũ − rũ2. (2.2)

By identifying the leading terms with respect to time asymptotic decay rates in the first equation 
of (1.1) and (2.2), we define the leading term (v̄, ū) of (v, ũ) as a solution to

{
v̄t + ūx = 0,

v̄x = −rū.
(2.3)

Substituting the second equation in (2.3) into the first one, we have

{
v̄t = 1

r
v̄xx,

ū = − 1
r
v̄x .

(2.4)

The equations in (2.4) are the counterparts of the porous medium equation and Darcy’s law 
for Euler equations with damping, see (1.20). We define v̄ as the self-similar solution with

lim
x→±∞ v̄(x, t) = v±. (2.5)

Then ū is determined by the second equation of (2.4). Explicitly,

v̄(x, t) = v−√
π

∞∫
x√

4(t+1)/r

e−y2
dy + v+√

π

x√
4(t+1)/r∫
−∞

e−y2
dy

= v− + v+
2

− v− − v+
2

erf (
x√

4(t + 1)/r
),

ū(x, t) = v− − v+√
4πr(t + 1)

e
− rx2

4(t+1) .

(2.6)

We note that v̄(x, t) given in (2.6) is a diffusive contact wave of the heat equation in (2.4), with 
Riemann data at t = −1.

We observe that the self-similar solution (a function in x/
√

t + 1) of (2.4) satisfying the 
boundary condition (2.5) is unique up to a translation x0. We determine the constant x0 by the 
excess mass of v. That is, we choose x0 such that
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∫
R

[v0(x) − v̄(x + x0,0)]dx = 0, (2.7)

i.e.

x0 = 1

v+ − v−

∫
R

[v0(x) − v̄(x,0)]dx. (2.8)

From (1.1) and (2.3) we have

d

dt

∫
R

[v(x, t) − v̄(x + x0, t)]dx = 0.

Combining with (2.7) we further have∫
R

[v(x, t) − v̄(x + x0, t)]dx = 0. (2.9)

Now (v̄, 1 + ū)(x + x0, t), with v̄ and ū defined in (2.6), is the primary wave in the solution 
of (1.1)-(1.3). However, it is not sufficiently accurate. We thus construct a secondary wave. For 
this we substitute (v, u) in (1.1) by (v̄ + v∗, 1 + ū + u∗), apply (2.3) and keep the leading terms 
only. We arrive at

{
v∗
t + u∗

x = 0,

v∗
x + ru∗ = −R(x, t),

(2.10)

where

R(x, t) = (ūx v̄)(x + x0, t). (2.11)

Substituting the second equation in (2.10) into the first one gives us

{
v∗
t = 1

r
v∗
xx + 1

r
Rx(x, t),

u∗ = − 1
r
v∗
x − 1

r
R(x, t).

(2.12)

Noting (2.7) we set

v∗(x,0) = 0. (2.13)

The secondary wave in the asymptotic ansatz of the solution to (1.1)-(1.3) is set as (v∗, u∗), the 
solution to (2.12), (2.13).

We solve (2.12), (2.13) explicitly by Duhamel’s principle:

v∗(x, t) =
t∫ ∫

1√
4πr(t − τ)

e
− r(x−y)2

4(t−τ ) Ry(y, τ ) dydτ, (2.14)
0 R
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and u∗(x, t) is given by the second equation of (2.12). The exact formulation (2.14), however, 
does not provide a clear, convenient picture of the behavior of v∗. Next, we give such a picture 
by optimal, pointwise estimation. For comparison we give similar estimates on v̄ and ū first.

Lemma 2.1. Let 0 < r ′ < r/4 be an arbitrarily fixed constant. For x ∈ R, t ≥ 0 we have

|v̄ − v−| < |v− − v+|,
∂l v̄

∂xl
(x, t) = O(1)|v− − v+|(t + 1)−

l
2 e− r′x2

t+1 , l ≥ 1,

∂l ū

∂xl
(x, t) = O(1)|v− − v+|(t + 1)−

l+1
2 e− r′x2

t+1 , l ≥ 0.

(2.15)

Proof. From (2.3) we have v̄x = −rū where ū is given in (2.6). Thus v̄x ≶ 0 if v− ≷ v+. That is, 
for a fixed t ≥ 0, v̄(x, t) monotonically decreases or increases from v− to v+. The first estimate 
in (2.15) follows. Other estimates in (2.15) are direct consequence of ū(x, t) in (2.6), together 
with v̄x = −rū. �

The following proposition gives similar estimates on v∗ and u∗. We postpone its proof to the 
Appendix.

Proposition 2.2. Let 0 < r ′ < r/4 be an arbitrarily fixed constant and l ≥ 0 be an integer. For 
x ∈R, t ≥ 0 we have

∂lv∗

∂xl
(x, t) = O(1)|v− − v+|(t + 1)−

l+1
2 e− r′(x+x0)2

t+1 ,

∂lu∗

∂xl
(x, t) = O(1)|v− − v+|(t + 1)−

l+2
2 e− r′(x+x0)2

t+1 .

(2.16)

With x0 given in (2.8), we have (2.7) hence define a function

V0(x) =
x∫

−∞
[v0(y) − v̄(y + x0,0)]dy. (2.17)

From (2.10) and (2.13) we have

∫
R

v∗(x, t) dx =
∫
R

v∗(x,0) dx = 0.

Combining with (2.9) we arrive at

∫
R

[v(x, t) − v̄(x + x0, t) − v∗(x, t)]dx = 0.

Thus we define a new variable
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V (x, t) =
x∫

−∞
[v(y, t) − v̄(y + x0, t) − v∗(y, t)]dy. (2.18)

It is clear that

Vx(x, t) = v(x, t) − v̄(x + x0, t) − v∗(x, t). (2.19)

Correspondingly, we define

U(x, t) = ũ(x, t) − ū(x + x0, t) − u∗(x, t) = u(x, t) − 1 − ū(x + x0, t) − u∗(x, t). (2.20)

From (2.13) it is clear that

V (x,0) = V0(x). (2.21)

We introduce the following notations to abbreviate the norms of Sobolev spaces with respect 
to x:

‖ · ‖m = ‖ · ‖Hm(R), ‖ · ‖ = ‖ · ‖L2(R). (2.22)

Our first result is on global existence when Cauchy data are small perturbations of a weak 
diffusive contact wave.

Theorem 2.3. Let m ≥ 3 be an integer, V0 ∈ Hm+1(R) and u0 − 1 ∈ Hm(R). Then there exists a 
constant ε0 > 0, such that if

|v− − v+| + ‖V0‖m+1 + ‖u0 − 1‖m ≤ ε0,

the Cauchy problem (1.1)-(1.3) has a unique global solution (v, u). The solution satisfies 
V ∈ C(0, ∞; Hm+1(R)) ∩ C1(0, ∞; Hm(R)), U ∈ C(0, ∞; Hm(R)) ∩ C1(0, ∞; Hm−2(R)) ∩
L2(0, ∞; Hm+1(R)), and the following energy estimate,

sup
t≥0

{‖V (t)‖2
m+1 + ‖U(t)‖2

m} +
∞∫

0

[‖Vx(t)‖2
m + ‖U(t)‖2

m+1]dt

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2),
(2.23)

where C > 0 is a constant.

Our second result gives time decay rates of the solution towards the asymptotic solution.

Theorem 2.4. Under the same assumptions as in Theorem 2.3, and with sufficiently small ε0, the 
global solution (v, u) of (1.1)-(1.3) has the following estimates for t ≥ 0,
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(t + 1)[‖Vx(t)‖2
m + ‖U(t)‖2

m] + (t + 1)2[‖Vxx(t)‖2
m−1 + ‖Ux(t)‖2

m−1]

+
t∫

0

(τ + 1)[‖Vxx(τ )‖2
m−1 + ‖U(τ)‖2

m+1]dτ +
t∫

0

(τ + 1)2‖Ux(τ)‖2
m dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2),

(2.24)

‖U(t)‖ ≤ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)(t + 1)−1, (2.25)

where C > 0 is a constant.

Remark 2.5. We are able to obtain L∞(R) decay rates via Sobolev inequality, see (3.9). From 
(2.23)-(2.25) we have

‖V (t)‖L∞(R) ≤ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)(t + 1)−1/4,

‖Vx(t)‖L∞(R) ≤ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)(t + 1)−3/4,

‖U(t)‖L∞(R) ≤ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)(t + 1)−1,

where C > 0 is a constant. Here the rate for ‖U(t)‖L∞(R) can be improved to (t + 1)−5/4 if we 
carry out an estimate similar to (2.25) for Ux .

Recall (2.19) and (2.20), which give us

{
v(x, t) = v̄(x + x0, t) + v∗(x, t) + Vx(x, t),

u(x, t) = 1 + ū(x + x0, t) + u∗(x, t) + U(x, t).
(2.26)

From (2.6), v̄ is a diffusive contact wave while ū is a heat kernel. From (2.16) we have L2

decay rates of (t + 1)− 1
4 and (t + 1)− 3

4 for v∗ and u∗, respectively. Here (2.24) and (2.25) give 
us L2 decay rates (t + 1)− 1

2 for Vx and (t + 1)−1 for U . This gives the nonlinear stability of 
the diffusive contact wave. It also justifies that (v∗, u∗) indeed is a secondary wave in the time 
asymptotic ansatz of the solution (v, u) to (1.1)-(1.3). The rates for Vx and U can be improved 
to the optimal ones by a different set of analytic tools. It is left to a future work since the main 
purpose of this paper is the global existence of solution, the stability of the diffusive contact 
wave, and the identification of the asymptotic ansatz.

3. Local existence of solution

We rewrite (1.1)-(1.3) in terms of the new variables V and U as defined in (2.18) and (2.20). 
Substituting (2.26) into (1.1) and applying (2.3) and (2.10), we have

{
Vxt + Ux = 0,

Ut + (UVx)x + Vxx − Uxx + rU2 + rU = F,
(3.1)
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where

F = F1 + F2 + F3,

F1 = −[(ū + u∗)Vx]x,
F2 = −[(v̄ + v∗)U ]x − 2r(ū + u∗)U,

F3 = −ūt − u∗
t − [(ū + u∗)(v̄ + v∗)]x − (v̄ + v∗)x

+ (ū + u∗)xx − r(ū + u∗)2 − r(ū + u∗).

(3.2)

Applying (2.3), (2.10) and (2.11) we further simplify F3 as

F3 =1

r
v̄xt + 1

r
(v∗

x + ūx v̄)t − (ūv̄)x − [ūv∗ + u∗(v̄ + v∗)]x
+ ūx v̄ + (ū + u∗)xx − r(ū2 + 2ūu∗ + u∗2)

= − 1

r
ūxx − 1

r
u∗

xx + 1

r
(ūx v̄)t − [ūv∗ + u∗(v̄ + v∗)]x + (ū + u∗)xx − r(2ūu∗ + u∗2)

=1

r
(ūx v̄)t − [ūv∗ + u∗(v̄ + v∗)]x + (1 − 1

r
)(ū + u∗)xx − r(2ū + u∗)u∗.

(3.3)

From (3.2) we see that F = F(Vx, U, Vxx, Ux, x, t), where the explicit dependence on x and t is 
via (v̄, ū) and (v∗, u∗), defined in (2.6) and (2.11)-(2.13). We solve (3.1) for (Vx, U) with initial 
data

{
Vx(x,0) = v0(x) − v̄(x + x0,0) = V ′

0(x),

U(x,0) = u0(x) − 1 − ū(x + x0,0) − 1
r
(ūx v̄)(x + x0,0) ≡ U0(x),

(3.4)

see (2.21), (2.17), (2.20) and (2.11)-(2.13).
Local existence of solutions for Cauchy problems has been established by Kawashima for a 

quite general class of hyperbolic-parabolic systems, with applications in continuum mechanics 
[6]. Kawashima’s theory, however, does not apply directly to (3.1), (3.4), due to the explicit 
dependence of F on x and t . In this section we modify Kawashima’s argument, specifically for 
(3.1), to establish our local existence theory. We focus on the part that is related to the (x, t)-
dependence of F , and briefly outline the rest. More details can be found in [6].

Since a local solution of (3.1), (3.4) is constructed as the limit of a successive approximation 
sequence, we consider Cauchy problem of the linear system that produces the sequence. This is

Z1t = f1(x, t), Z1(x,0) = Z10(x), (3.5)

Z2t − Z2xx = f2(x, t), Z2(x,0) = Z20(x). (3.6)

Note that Z1 and Z2 are decoupled in this system. We cite Lemma 2.6 and Proposition 2.7 in [6], 
simplified for the special case (3.5), (3.6).
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Lemma 3.1 ([6] energy estimate for linearized equation). Let m ≥ 2 be an integer and T > 0 be 
a constant.

(i) Let 0 ≤ l ≤ m be an integer and f1 ∈ L∞(0, T ; Hl−1(R)) ∩ L2(0, T ; Hl(R)). Assume that 
Z1 is a solution of (3.5) satisfying Z1 ∈ L∞(0, T ; Hl(R)) and Z1t ∈ L∞(0, T ; Hl−1(R)). 
Then we have Z1 ∈ C(0, T ; Hl(R)), satisfying the energy inequality

‖Z1(t)‖2
l ≤ 2[‖Z10‖2

l + t

t∫
0

‖f1(τ )‖2
l dτ ], 0 ≤ t ≤ T . (3.7)

(ii) Let 1 ≤ l ≤ m be an integer and f2 ∈ L∞(0, T ; Hl−1(R)). Assume that Z2 is a so-
lution of (3.6) satisfying Z2 ∈ L∞(0, T ; Hl(R)) and Z2t ∈ L∞(0, T ; Hl−2(R)). Then 
Z2 ∈ C(0, T ; Hl(R)) ∩ L2(0, T ; Hl+1(R)), satisfying the energy inequality

‖Z2(t)‖2
l +

t∫
0

‖Z2(τ )‖2
l+1 dτ ≤ e2t (‖Z20‖2

l + 2t

t∫
0

‖f2(τ )‖2
l−1 dτ), 0 ≤ t ≤ T . (3.8)

Proposition 3.2 ([6] existence of solutions for linearized equations). Let m ≥ 2 be an integer 
and T > 0 be a constant.

(i) Let 1 ≤ l ≤ m be an integer and f1 ∈ C(0, T ; Hl−1(R)) ∩ L2(0, T ; Hl(R)). If Z10 ∈
Hl(R), then (3.5) has a unique solution Z1 ∈ C(0, T ; Hl(R)) ∩ C1(0, T ; Hl−1(R)), satis-
fying the energy estimate (3.7).

(ii) Let 2 ≤ l ≤ m be an integer and f2 ∈ C(0, T ; Hl−1(R)). If Z20 ∈ Hl(R), then (3.6) has a 
unique solution Z2 ∈ C(0, T ; Hl(R)) ∩ C1(0, T ; Hl−2(R)) ∩ L2(0, T ; Hl+1(R)), satisfy-
ing the energy estimate (3.8).

We need some analytic tools such as Sobolev inequality.

Lemma 3.3.

(i) Let u ∈ H 1(R). Then u ∈ L∞(R) with

‖u‖L∞ ≤ √
2‖u‖ 1

2 ‖u′‖ 1
2 ≤ √

2‖u‖1. (3.9)

(ii) Let m ≥ 1 and 0 ≤ l ≤ m be integers. If u ∈ Hm(R) and v ∈ Hl(R), the uv ∈ Hl(R) with

‖uv‖l ≤ C‖u‖m‖v‖l , (3.10)

where C > 0 is a constant.
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(iii) Let m ≥ 2 and 1 ≤ l ≤ m be integers. Suppose u ∈ Hm(R) and v ∈ Hl−1(R). Then for 
0 ≤ k ≤ l, we have the commutator [∂k

x , u]v ≡ ∂k
x (uv) − u∂k

x v ∈ L2(R) and

l∑
k=0

‖[∂k
x , u]v‖ ≤ C‖ux‖m−1‖v‖l−1, (3.11)

where C > 0 is a constant.

Following the formulation in [6] we write (3.1), (3.4) as

⎧⎪⎨
⎪⎩

Z1t = f1(Z2x)

Z2t − Z2xx = f2(Z1,Z2,Z1x,Z2x, x, t),

(Z1,Z2)(x,0) = (V ′
0,U0)(x).

(3.12)

Here (Z1, Z2) stands for (Vx, U), and

f1(Z2x) = −Z2x,

f2(Z1,Z2,Z1x,Z2x, x, t) = −(Z1Z2)x − Z1x − rZ2
2 − rZ2 + F(Z1,Z2,Z1x,Z2x, x, t).

(3.13)

Interested readers can compare (3.12) with (2.1), (2.2) in [6].
To set up the successive approximation we further study the linear system

⎧⎪⎨
⎪⎩

Ẑ1t = f1(Z2x)

Ẑ2t − Ẑ2xx = f2(Z1,Z2,Z1x,Z2x, x, t),

(Ẑ1, Ẑ2)(x,0) = (Z1,Z2)(x,0) = (V ′
0,U0)(x),

(3.14)

where f1 and f2 are defined in (3.13). An invariant set is to be built for the mapping (Z1, Z2) →
(Ẑ1, Ẑ2).

For a constant T > 0 we denote QT =R × [0, T ]. For (Z1, Z2)(x, t) defined on QT , with an 
integer m ≥ 2 we assume the following,

Z1 ∈ C(0, T ;Hm(R)), Z1t ∈ C(0, T ;Hm−1(R)), (3.15){
Z2 ∈ C(0, T ;Hm(R)) ∩ L2(0, T ;Hm+1(R)),

Z2t ∈ C(0, T ;Hm−2(R)) ∩ L2(0, T ;Hm−1(R)),
(3.16)

sup
0≤t≤T

‖(Z1,Z2)(t)‖2
m +

T∫
0

‖Z2(t)‖2
m+1 dt ≤ M2, (3.17)

T∫
0

‖(Z1t ,Z2t )(t)‖2
m−1 dt ≤ M2

1 . (3.18)
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Here M and M1 are positive constants. We denote by Xm
T (M, M1) the set of functions 

(Z1, Z2)(x, t) satisfying (3.15)-(3.18).
We determine the constants M , M1 and T such that for (Z1, Z2) ∈ Xm

T (M, M1), the solution 
(Ẑ1, Ẑ2) of (3.14) is in the same Xm

T (M, M1).

Lemma 3.4. Let m ≥ 2 be an integer and (Z1, Z2) ∈ Xm
T (M, M1).

(i) For f1 and f2 defined by (3.13) and (3.2) we have

‖f1(t)‖m−1 = ‖Z2x(t)‖m−1 ≤ M,

‖f2(t)‖m−1 ≤ B(M,A),
(3.19)

where B is a positive constant depending on M and an upper bound A of |v−| + |v+|.
(ii) Let (Ẑ1, Ẑ2) be a solution of (3.14) and satisfy (3.15)-(3.17), with M in (3.17) replaced by 

M̂ . Then

T∫
0

‖(Ẑ1t , Ẑ2t )(t)‖2
m−1 dt ≤ 2M̂2 + T (M2 + 2B2). (3.20)

Proof. Under the assumption (Z1, Z2) ∈ Xm
T (M, M1), from (3.13) we have

‖f1(t)‖m−1 = ‖ − Z2x(t)‖m−1 ≤ ‖Z2(t)‖m ≤ M, t ∈ [0, T ]. (3.21)

This gives us the first estimate in (3.19). Also with (3.2) and (3.10) we have

‖f2(t)‖m−1 ≤‖Z1Z2‖m + ‖Z1‖m + r‖Z2
2‖m−1 + r‖Z2‖m−1 + ‖(ū + u∗)Z1‖m

+ ‖(v̄ + v∗)Z2‖m + 2r‖(ū + u∗)Z2‖m−1 + ‖F3(t)‖m−1

≤C‖Z1‖m‖Z2‖m + ‖Z1‖m + rC‖Z2‖2
m−1 + r‖Z2‖m−1 + C‖ū + u∗‖m‖Z1‖m

+ C‖v̄ + v∗‖Wm,∞‖Z2‖m + 2rC‖ū + u∗‖m−1‖Z2‖m−1 + ‖F3(t)||m−1

≤C(M + 1 + r + ‖ū + u∗‖m + ‖v̄ + v∗‖Wm,∞)M + ‖F3(t)||m−1,

(3.22)

where C > 1 is a universal constant. In (3.22) we note that v̄ /∈ L2(R) thus we use L∞ norm 
instead.

From (3.3), (2.6), (2.15) and (2.16) we have

‖∂l
xF3(t)‖ ≤1

r
‖∂l

x∂t (ūx v̄)‖ + ‖∂l+1
x (ūv∗)‖ + ‖∂l+1

x [u∗(v̄ + v∗)]‖

+ |1 − 1

r
|‖∂l+2

x (ū + u∗)‖ + r‖∂l
x[(2ū + u∗)u∗]‖

≤C|v − v |(t + 1)−
l
2 − 5

4

(3.23)
− +
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for an integer l ≥ 0. Here C > 0 in (3.23) is a constant depending only on an upper bound A of 
|v−| + |v+|. This implies

‖F3(t)‖m−1 ≤ C|v− − v+|(t + 1)−
5
4 . (3.24)

Substituting (3.24) into (3.22) and noting ‖ū + u∗‖m + ‖v̄ + v∗‖Wm,∞ ≤ C(|v−| + |v+|) give us 
the second estimate in (3.19).

Suppose (Ẑ1, Ẑ2) is a solution of (3.14) satisfying (3.15)-(3.17) with M replaced by M̂ . Then 
with (3.19) we have

T∫
0

‖Ẑ1t (t)‖2
m−1 dt +

T∫
0

‖Ẑ2t (t)‖2
m−1 dt

=
T∫

0

‖f1(t)‖2
m−1 dt +

T∫
0

‖(Ẑ2xx + f2)(t)‖2
m−1 dt

≤
T∫

0

[‖f1(t)‖2
m−1 + 2‖f2(t)‖2

m−1]dt +
T∫

0

2‖Ẑ2xx(t)‖2
m−1 dt

≤
T∫

0

[M2 + 2B2]dt + 2M̂2 = (M2 + 2B2)T + 2M̂. �

The following proposition gives us an invariant set under iterations.

Proposition 3.5. Let m ≥ 2 be an integer, and A and A0 be positive constants. Suppose |v−| +
|v+| ≤ A and (V ′

0, U0) ∈ Hm(R) with ‖(V ′
0, U0)‖m ≤ A0. Then there exists a constant T0 >

0, depending only on A and A0, such that if (Z1, Z2) ∈ Xm
T0

(
√

8A0, 
√

17A0), the initial value 

problem (3.14) has a unique solution (Ẑ1, Ẑ2) in the same Xm
T0

(
√

8A0, 
√

17A0).

Proof. We set M = √
8A0 and M1 = √

17A0. If (Z1, Z2) ∈ Xm
T0

(M, M1), then by (3.13)

we have f1 = −Z2x ∈ C(0, T0; Hm−1(R)) ∩ L2(0, T0; Hm(R)). Similarly, we also have f2 ∈
C(0, T0; Hm−1(R)). Applying Proposition 3.2, there is a unique solution (Ẑ1, Ẑ2) of (3.14),

Ẑ1 ∈ C(0, T0;Hm(R)) ∩ C1(0, T0;Hm−1(R)),

Ẑ2 ∈ C(0, T0;Hm(R)) ∩ C1(0, T0;Hm−2(R)) ∩ L2(0, T0;Hm+1(R)).

The solution satisfies the energy estimate
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‖Ẑ1(t)‖2
m + ‖Ẑ2(t)‖2

m +
t∫

0

‖Ẑ2(τ )‖2
m+1 dτ

≤2[‖V ′
0‖2

m + t

t∫
0

‖f1(τ )‖2
m dτ ] + e2t [‖U0‖2

m + 2

t∫
0

‖f2(τ )‖2
m−1 dτ ]

(3.25)

for 0 ≤ t ≤ T0.
To show (Ẑ1, Ẑ2) ∈ Xm

T0
(M, M1) we only need to obtain (3.17) and (3.18) for (Ẑ1, Ẑ2). For 

this we apply (3.19) and (3.17) to bound the right-hand side of (3.25) by

2‖V ′
0‖2

m + 2T0

T0∫
0

‖Z2x(t)‖2
m dt + e2T0 [‖U0‖2

m + 2T0B
2]

≤(2‖V ′
0‖2

m + e2T0‖U0‖2
m) + 2T0(M

2 + e2T0B2),

where B is a positive constant depending on M (hence on A0) and A. Now we choose T0 > 0
such that

e2T0 ≤ 2 and 2T0(M
2 + 2B2) ≤ 2A2

0. (3.26)

This gives us

sup
0≤t≤T0

‖(Ẑ1, Ẑ2)(t)‖2
m +

T0∫
0

‖Ẑ2(t)‖2
m+1 dt ≤ 8A2

0 = M2,

which is (3.17) for (Ẑ1, Ẑ2). Here from (3.26) we note that T0 depends only on A and A0.
Next we apply (3.20) with M̂ taken as M to have

T0∫
0

‖(Ẑ1t , Ẑ2t )(t)‖2
m−1 dt ≤ 2M2 + T0(M

2 + 2B2) = 17A2
0 = M2

1 .

This is (3.18) for (Ẑ1, Ẑ2). �
The following theorem establishes the existence of local solution to (3.12) hence to (3.1), 

(3.4).

Theorem 3.6. Let m ≥ 2 be an integer, and A and A0 be positive constants. Suppose |v−| +
|v+| ≤ A and (V ′

0, U0) ∈ Hm(R) with ‖(V ′
0, U0)‖m ≤ A0. Then there exists a positive constant 

T1 (≤ T0), depending only on A and A0, such that the initial value problem (3.12) has a unique 
solution (Z1, Z2), satisfying

Z1 ∈ C(0, T1;Hm(R)) ∩ C1(0, T1;Hm−1(R)),

Z ∈ C(0, T ;Hm(R)) ∩ C1(0, T ;Hm−2(R)) ∩ L2(0, T ;Hm+1(R)).
2 1 1 1
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Proof. We define a successive approximation sequence {(Zk
1, Z

k
2)(x, t)} via the following itera-

tion scheme,

(Z0
1,Z0

2) = (0,0),⎧⎪⎪⎨
⎪⎪⎩

Zk+1
1t = f1(Z

k
2x),

Zk+1
2t − Zk+1

2xx = f2(Z
k
1,Zk

2,Zk
1x,Z

k
2x, x, t), k ≥ 0,

(Zk+1
1 ,Zk+1

2 )(x,0) = (V ′
0,U0)(x).

(3.27)

By Proposition 3.5, for all k ≥ 0, (Zk
1, Zk

2)(x, t) is well-defined on QT0 and (Zk
1, Zk

2)(x, t) ∈
Xm

T0
(M, M1), where M = √

8A0 and M1 = √
17A0.

Next we prove that {(Zk
1, Z

k
2)(x, t)} is a Cauchy sequence. Let

Z̄k
1 = Zk+1

1 − Zk
1, Z̄k

2 = Zk+1
2 − Zk

2 . (3.28)

From (3.27), (3.13) and (3.2), for k ≥ 1 we have

⎧⎪⎨
⎪⎩

Z̄k
1t = f̄ k

1 ,

Z̄k
2t − Z̄k

2xx = f̄ k
2 ,

(Z̄k
1, Z̄k

2)(x,0) = (0,0),

(3.29)

where

f̄ k
1 =f1(Z

k
2x) − f1(Z

k−1
2x ) = −Z̄k−1

2x ,

f̄ k
2 =f2(Z

k
1,Zk

2,Zk
1x,Z

k
2x, x, t) − f2(Z

k−1
1 ,Zk−1

2 ,Zk−1
1x ,Zk−1

2x , x, t)

= − Z̄k−1
1x − rZ̄k−1

2 − (Zk
1xZ

k
2 − Zk−1

1x Zk−1
2 ) − (Zk

1Zk
2x − Zk−1

1 Zk−1
2x )

− r[(Zk
2)2 − (Zk−1

2 )2] − (ūx + u∗
x)Z̄

k−1
1 − (ū + u∗)Z̄k−1

1x

− (v̄x + v∗
x)Z̄k−1

2 − (v̄ + v∗)Z̄k−1
2x − 2r(ū + u∗)Z̄k−1

2 .

Since (Zk
1, Zk

2) ∈ Xm
T0

(M, M1), together with (3.9) and (3.10) we have

‖f̄ k
1 ‖m−1 =‖Z̄k−1

2x ‖m−1 ≤ ‖Z̄k−1
2x ‖m,

‖f̄ k
2 ‖m−2 ≤‖Z̄k−1

1x ‖m−2 + r‖Z̄k−1
2 ‖m−2 + ‖Z̄k−1

1x Zk
2‖m−2 + ‖Zk−1

1x Z̄k
2‖m−2

+ ‖Z̄k−1
1 Zk

2x‖m−2 + ‖Zk−1
1 Z̄k−1

2x ‖m−2 + r‖(Zk
2 + Zk−1

2 )Z̄k−1
2 ‖m−2

+ ‖(ūx + u∗
x)Z̄

k−1
1 ‖m−2 + ‖(ū + u∗)Z̄k−1

1x ‖m−2 + ‖(v̄x + v∗
x)Z̄k−1

2 ‖m−2

+ ‖(v̄ + v∗)Z̄k−1
2x ‖m−2 + 2r‖(ū + u∗)Z̄k−1

2 ‖m−2

≤C‖(Z̄k−1
1 , Z̄k−1

2 )‖m−1,

(3.30)

where C > 0 is a constant depending only on M and A (hence only on A0 and A).
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From (3.28) it is clear that (Zk
1, Zk

2) ∈ Xm
T0

(M, M1) implies (Z̄k
1, Z̄k

2) ∈ Xm
T0

(2M, 2M1). Then 
(3.29) implies f̄ k

1 ∈ C(0, T0; Hm−2(R)) ∩ L2(0, T0; Hm−1(R)) and f̄ k
2 ∈ C(0, T0; Hm−2(R)). 

Applying Lemma 3.1 to (3.29) with l = m − 1, from (3.7), (3.8) and (3.30) we have

‖Z̄k
1(t)‖2

m−1 + ‖Z̄k
2(t)‖2

m−1 +
t∫

0

‖Z̄k
2(τ )‖2

m dτ

≤2t

t∫
0

‖f̄ k
1 (τ )‖2

m−1 dτ + 2e2t

t∫
0

‖f̄ k
2 (τ )‖2

m−2 dτ

≤2t

t∫
0

‖Z̄k−1
2 (τ )‖2

m dτ + Ce2t

t∫
0

‖(Z̄k−1
1 , Z̄k−1

2 )(τ )‖2
m−1 dτ

for 0 ≤ t ≤ T0. Here C > 1 is a constant depending only on A and A0. Thus for 0 ≤ t ≤ T0,

sup
0≤τ≤t

‖(Z̄k
1, Z̄k

2)(τ )‖2
m−1 +

t∫
0

‖Z̄k
2(τ )‖2

m dτ

≤2Ce2T0 t sup
0≤τ≤t

‖(Z̄k−1
1 , Z̄k−1

2 )(τ )‖2
m−1 + 4t

t∫
0

‖Z̄k−1
2 (τ )‖2

m dτ.

(3.31)

Now we take a positive constant T1 such that

T1 ≤ T0, ρ ≡ 4CT1 < 1. (3.32)

Clearly T1 > 0 is a constant depending only on A and A0. Noting (3.26) we simplify (3.31) to

sup
0≤τ≤t

‖(Z̄k
1, Z̄k

2)(τ )‖2
m−1 +

t∫
0

‖Z̄k
2(τ )‖2

m dτ

≤ρ[ sup
0≤τ≤t

‖(Z̄k−1
1 , Z̄k−1

2 )(τ )‖2
m−1 +

t∫
0

‖Z̄k−1
2 (τ )‖2

m dτ ], 0 ≤ t ≤ T1.

(3.33)

The rest is completely parallel to the proof of Theorem 2.9 in [6]. It follows from (3.33)
that {(Zk

1, Zk
2)} is a Cauchy sequence in C(0, T1; Hm−1(R)). Therefore, there is (Z1, Z2) ∈

C(0, T1; Hm−1(R)) such that (Zk
1 − Z1, Zk

2 − Z2) → 0 strongly in C(0, T1; Hm−1(R)) as 
k → ∞. Since (Zk

1, Zk
2) ∈ Xm

T0
(M, M1) ⊂ Xm

T1
(M, M1), we conclude that there is a subsequence 

{k′} of {k} such that Zk′
2 − Z2 ⇀ 0 weakly in L2(0, T1; Hm−1(R)).

Similarly, for each t ∈ [0, T1], there is a subsequence {k′′} = {k′′}(t) of {k′} such that (Zk′′
1 −

Z1, Zk′′ − Z2) ⇀ 0 weakly in Hm(R). Thus we have a solution (Z1, Z2) of (3.12), satisfying
2
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Z1 ∈ L∞(0, T1;Hm(R)),

Z2 ∈ L∞(0, T1;Hm(R)) ∩ L2(0, T1;Hm+1(R)).

Moreover, it follows that

Z1t ∈ L∞(0, T1;Hm−1(R)),

Z2t ∈ L∞(0, T1;Hm−2(R)) ∩ L2(0, T1;Hm−1(R)).

By Lemma 3.1, we improve the regularity to

(Z1,Z2) ∈ C(0, T1;Hm(R)),

hence

Z1t ∈ C(0, T1;Hm−1(R)), Z2t ∈ C(0, T1;Hm−2(R)).

The uniqueness of (Z1, Z2) follows from the regularity and Proposition 3.2. �
4. Global existence of solution

In this section we prove Theorem 2.3, the existence of a solution global in time for (1.1)-(1.3). 
Based on Theorem 3.6, we only need to prove the following proposition. From there a standard 
continuity argument gives us Theorem 2.3.

Proposition 4.1. Let m ≥ 3 be an integer, V0 ∈ Hm+1(R) and u0 −1 ∈ Hm(R). Suppose (Vx, U)

is a solution of (3.1), (3.4), satisfying

V ∈ C(0, T ;Hm+1(R)) ∩ C1(0, T ;Hm(R)),

U ∈ C(0, T ;Hm(R)) ∩ C1(0, T ;Hm−2(R)) ∩ L2(0, T ;Hm+1(R)).

Let

N2
m(t) = sup

0≤τ≤t

{‖V (τ)‖2
m+1 +‖U(τ)‖2

m}+
t∫

0

[‖Vx(τ)‖2
m +‖U(τ)‖2

m+1]dτ, t ∈ [0, T ]. (4.1)

Then there exist constants δ0, δ1 > 0, such that if |v− − v+| ≤ δ0 and Nm(T ) ≤ δ1, the following 
a priori estimate holds:

N2
m(T ) ≤ C(‖V0‖2

m+1 + ‖U0‖2
m + |v− − v+|2), (4.2)

where C > 0 is a constant.

Proof. In the following C denotes a universal positive constant. In particular, it is independent 
of T . For 0 ≤ l ≤ m, we apply ∂l

x to the second equation in (3.1) to have

∂l Ut + ∂l+2V − ∂l+2U + r∂l U = −∂l+1(UVx) − r∂l U2 + ∂l F. (4.3)
x x x x x x x
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Multiply (4.3) by ∂l
xU and integrate with respect to x. After integration by parts we have

d

dt
[1

2
‖∂l

xU‖2 + 1

2
‖∂l+1

x V ‖2] + ‖∂l+1
x U‖2 + r‖∂l

xU‖2 = I1 + I2 + I3, (4.4)

I1 = −
∫
R

∂l
xU∂l+1

x (UVx)dx, I2 = −r

∫
R

∂l
xU∂l

xU
2 dx, I3 =

∫
R

∂l
xU∂l

xF dx. (4.5)

Here we have applied the first equation in (3.1) to obtain the second term on the left-hand side of 
(4.4).

For I1 using the commutator notation in Lemma 3.3 and by integration by parts, we have

I1 = −
∫
R

(∂l
xU)U(∂l+2

x V )dx −
∫
R

(∂l
xU)[∂l+1

x ,U ]Vx dx

=
∫
R

U(∂l+1
x U)(∂l+1

x V )dx +
∫
R

Ux(∂
l
xU)(∂l+1

x V )dx −
∫
R

(∂l
xU)[∂l+1

x ,U ]Vx dx

≡ I11 + I12 + I13.

(4.6)

Here for I11 again we apply (3.1) to have

I11 = −
∫
R

U(∂l+1
x Vt )(∂

l+1
x V )dx = −1

2

∫
R

U
∂

∂t
(∂l+1

x V )2 dx

= d

dt
[−1

2

∫
R

U(∂l+1
x V )2 dx]

+ 1

2

∫
R

[−(UVx)x − Vxx + Uxx − rU2 − rU + F ](∂l+1
x V )2 dx.

Applying (3.9) we bound the right-hand side to have

I11 ≤ d

dt
[−1

2

∫
R

U(∂l+1
x V )2 dx] + C(‖Vxx‖1 + ‖U‖3 + ‖F‖L∞)‖∂l+1

x V ‖2.

From (3.2), (3.3), (2.15), (2.16) and (2.6) we have

‖F‖L∞ ≤ ‖F1‖L∞ + ‖F2‖L∞ + |F3‖L∞

≤ C(‖Vx‖1 + ‖Vxx‖1 + ‖U‖1 + ‖Ux‖1 + |v− − v+|).
This gives us

I11 ≤ d

dt
[−1

2

∫
U(∂l+1

x V )2 dx] + C(‖Vx‖2 + ‖U‖3 + |v− − v+|)‖∂l+1
x V ‖2. (4.7)
R
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Similarly, for I12 and I13 in (4.6) we have

I12 ≤ C‖Ux‖1‖∂l
xU‖‖∂l+1

x V ‖, I13 ≤ ‖∂l
xU‖‖[∂l+1

x ,U ]Vx‖. (4.8)

Substituting (4.7) and (4.8) into (4.6) and noting (4.1), we arrive at

I1 ≤ d

dt
[−1

2

∫
R

U(∂l+1
x V )2 dx] + C[Nm(t) + |v− − v+|]‖∂l+1

x V ‖2

+ 1

2
Nm(t)‖∂l

xU‖2 + ‖U‖m‖[∂l+1
x ,U ]Vx‖.

(4.9)

For I2 in (4.5) we apply (3.10) to have

I2 ≤ r‖∂l
xU‖‖∂l

xU
2‖ ≤ r‖∂l

xU‖‖U2‖l ≤ C‖∂l
xU‖‖U‖m‖U‖l . (4.10)

For I3, with (3.2) we write

I3 =
∫
R

∂l
xU∂l

xF1 dx +
∫
R

∂l
xU∂l

xF2 dx +
∫
R

∂l
xU∂l

xF3 dx ≡ I31 + I32 + I33. (4.11)

Here applying (3.2) and using the commutator we have

I31 = −
∫
R

∂l
xU∂l+1

x [(ū + u∗)Vx]dx

= −
∫
R

(∂l
xU)(ū + u∗)∂l+1

x Vx dx −
∫
R

(∂l
xU)[∂l+1

x , ū + u∗]Vx dx

≡ I311 + I312.

By integration by parts and applying (3.1), (2.6), (2.11), (2.12), (2.15) and (2.16) we have

I311 = −
∫
R

(∂l+1
x Vt )(ū + u∗)∂l+1

x V dx +
∫
R

(∂l
xU)(ūx + u∗

x)∂
l+1
x V dx

= d

dt
[−1

2

∫
R

(ū + u∗)(∂l+1
x V )2 dx] + 1

2

∫
R

(ūt + u∗
t )(∂

l+1
x V )2 dx

+
∫
R

(∂l
xU)(ūx + u∗

x)∂
l+1
x V dx

≤ d

dt
[−1

2

∫
R

(ū + u∗)(∂l+1
x V )2 dx] + C|v− − v+|(‖∂l+1

x V ‖2 + ‖∂l
xU‖2).

It is clear that
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I312 ≤ ‖∂l
xU‖‖[∂l+1

x , ū + u∗]Vx‖.

Therefore,

I31 ≤ d

dt
[−1

2

∫
R

(ū + u∗)(∂l+1
x V )2 dx] + C|v− − v+|(‖∂l+1

x V ‖2 + ‖∂l
xU‖2)

+ ‖∂l
xU‖‖[∂l+1

x , ū + u∗]Vx‖.
(4.12)

Similarly, the other terms in (4.11) have the following estimates,

I32 =
∫
R

∂l
xU∂l

xF2 dx

= −
∫
R

∂l
xU∂l+1

x [(v̄ + v∗)U ]dx − 2r

∫
R

∂l
xU∂l

x[(ū + u∗)U ]dx

= −
∫
R

(v̄ + v∗)[1

2
(∂l

xU)2]x dx −
∫
R

(∂l
xU)[∂l+1

x , v̄ + v∗]U dx

− 2r

∫
R

∂l
xU∂l

x[(ū + u∗)U ]dx

≤C|v− − v+|‖∂l
xU‖‖U‖l + ‖∂l

xU‖‖[∂l+1
x , v̄ + v∗]U‖,

(4.13)

I33 ≤ ‖∂l
xU‖‖∂l

xF3‖ ≤ C|v− − v+|(t + 1)−
l
2 − 5

4 ‖∂l
xU‖. (4.14)

Here is (4.14) we have used (3.3), (2.4), (2.15) and (2.16) to conclude that

|∂l
xF3| ≤ C|v− − v+|(t + 1)−

l+3
2 e− r′(x+x0)2

t+1 (4.15)

for some r ′ > 0. Combining (4.11)-(4.14) we arrive at

I3 ≤ d

dt
[−1

2

∫
R

(ū + u∗)(∂l+1
x V )2 dx] + C|v− − v+|(‖∂l+1

x V ‖2 + ‖∂l
xU‖‖U‖l)

+ ‖∂l
xU‖(‖[∂l+1

x , ū + u∗]Vx‖ + ‖[∂l+1
x , v̄ + v∗]U‖) + C|v− − v+|(t + 1)−

l
2 − 5

4 ‖∂l
xU‖.
(4.16)
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Now we substitute (4.9), (4.10) and (4.16) into (4.4). This gives us

d

dt
[1

2
‖∂l

xU‖2 + 1

2
‖∂l+1

x V ‖2 + 1

2

∫
R

U(∂l+1
x V )2 dx + 1

2

∫
R

(ū + u∗)(∂l+1
x V )2 dx]

+ ‖∂l+1
x U‖2 + r‖∂l

xU‖2

≤C[Nm(t) + |v− − v+|](‖∂l+1
x V ‖2 + ‖∂l

xU‖‖U‖l)

+ ‖U‖m(‖[∂l+1
x ,U ]Vx‖ + ‖[∂l+1

x , ū + u∗]Vx‖ + ‖[∂l+1
x , v̄ + v∗]U‖)

+ C|v− − v+|(t + 1)−
l
2 − 5

4 ‖∂l
xU‖.

(4.17)

We sum up (4.17) for 0 ≤ l ≤ m and apply (3.11) to have

1

2

d

dt
[‖U‖2

m + ‖Vx‖2
m +

∫
R

(U + ū + u∗)
m∑

l=0

(∂l+1
x V )2 dx] + ‖Ux‖2

m + r‖U‖2
m

≤C[Nm(t) + |v− − v+|](‖Vx‖2
m + ‖U‖2

m)

+ C‖U‖m(‖Ux‖m‖Vx‖m + ‖ūx + u∗
x‖m‖Vx‖m + ‖v̄x + v∗

x‖m‖U‖m)

+ C|v− − v+|(t + 1)−
5
4 ‖U‖m

≤C[Nm(t) + |v− − v+|](‖Vx‖2
m + ‖U‖2

m) + C‖U‖m‖Ux‖m‖Vx‖m

+ C|v− − v+|(t + 1)−
5
4 ‖U‖m.

(4.18)

Integrating (4.18) with respect to time on [0, t] for 0 ≤ t ≤ T , we further have

[‖U(t)‖2
m + ‖Vx(t)‖2

m +
t∫

0

‖U(τ)‖2
m+1 dτ

≤C{‖U0‖2
m + ‖V ′

0‖2
m + ‖(U + ū + u∗)(0)‖L∞‖V ′

0‖2
m + ‖(U + ū + u∗)(t)‖L∞‖Vx(t)‖2

m

+ [Nm(t) + |v− − v+|]N2
m(t) + |v− − v+| sup

0≤τ≤t

‖U(τ)‖m}

≤C{‖U0‖2
m + ‖V ′

0‖2
m + [Nm(t) + |v− − v+|]N2

m(t) + |v− − v+| sup
0≤τ≤t

‖U(τ)‖m}.
(4.19)

Next, for 0 ≤ l ≤ m − 1, we multiply (4.3) by ∂l+2
x V and integrate with respect to x. This 

gives us

‖∂l+2
x V ‖2 = I4 + I5 + I6 + I7 + I8, (4.20)

where
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I4 = −
∫
R

∂l+2
x V ∂l

xUt dx, I5 =
∫
R

∂l+2
x V (∂l+2

x U − r∂l
xU)dx,

I6 = −
∫
R

∂l+2
x V ∂l+1

x (UVx)dx, I7 = −r

∫
R

∂l+2
x V ∂l

xU
2 dx, I8 =

∫
R

∂l+2
x V ∂l

xF dx.

For I4 by integration by parts and (3.1),

I4 =
∫
R

∂l+1
x V ∂l+1

x Ut dx = d

dt

∫
R

∂l+1
x V ∂l+1

x U dx −
∫
R

∂l+1
x Vt∂

l+1
x U dx

= d

dt

∫
R

∂l+1
x V ∂l+1

x U dx + ‖∂l+1
x U‖2.

(4.21)

It is clear that

I5 ≤ ‖∂l+2
x V ‖(‖∂l+2

x U‖ + r‖∂l
xU‖) ≤ c

2
‖∂l+2

x V ‖2 + 1

2c
(‖∂l+2

x U‖ + r‖∂l
xU‖)2, (4.22)

where c > 0 is a constant to be determined. Similarly, with (3.9) and (3.10) we have

I6 = −
∫
R

(∂l+2
x V )2U dx −

∫
R

(∂l+2
x V )[∂l+1

x ,U ]Vx dx

≤ √
2‖U‖1‖∂l+2

x V ‖2 + ‖∂l+2
x V ‖‖[∂l+1

x ,U ]Vx‖,
(4.23)

I7 ≤ r‖∂l+2
x V ‖‖∂l

xU
2‖ ≤ C‖∂l+2

x V ‖‖U‖m−1‖U‖l . (4.24)

For I8 from (3.2) we have

I8 =
∫
R

∂l+2
x V ∂l

xF1 dx +
∫
R

∂l+2
x V ∂l

xF2 dx +
∫
R

∂l+2
x V ∂l

xF3 dx ≡ I81 + I82 + I83. (4.25)

Applying (2.15) and (2.16), it is straightforward to have

I81 = −
∫
R

∂l+2
x V ∂l+1

x [(ū + u∗)Vx]dx ≤ ‖∂l+2
x V ‖‖∂l+1

x [(ū + u∗)Vx]‖

≤ C|v− − v+|(t + 1)−
1
2 ‖∂l+2

x V ‖‖Vx‖l+1,

I82 ≤ ‖∂l+2
x V ‖{‖∂l+1

x [(v̄ + v∗)U ]‖ + 2r‖∂l
x[(ū + u∗)U ]‖}

≤ C‖∂l+2
x V ‖‖∂l+1

x U‖ + C|v− − v+|(t + 1)−
1
2 ‖∂l+2

x V ‖‖U‖l

≤ c

2
‖∂l+2

x V ‖2 + C2

2c
‖∂l+1

x U‖2 + C|v− − v+|(t + 1)−
1
2 ‖∂l+2

x V ‖‖U‖l .

With (4.15) we also have
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I83 ≤ ‖∂l+2
x V ‖∂l

xF3‖ ≤ C|v− − v+|(t + 1)−
l
2 − 5

4 ‖∂l+2
x V ‖.

Substituting these estimates into (4.25) gives us

I8 ≤ c

2
‖∂l+2

x V ‖2 + C‖∂l+1
x U‖2 + C|v− − v+|(t + 1)−

1
2 ‖∂l+2

x V ‖(‖Vx‖l+1 + ‖U‖l)

+ C|v− − v+|(t + 1)−
l
2 − 5

4 ‖∂l+2
x V ‖.

(4.26)

Now we combine (4.20)-(4.24) and (4.26) to have

‖∂l+2
x V ‖2 ≤ d

dt

∫
R

∂l+1
x V ∂l+1

x U dx + C‖U‖2
l+2 + c‖∂l+2

x V ‖2 + C‖U‖1‖∂l+2
x V ‖2

+ C‖∂l+2
x V ‖(‖[∂l+1

x ,U ]Vx‖ + ‖U‖m−1‖U‖l)

+ C|v− − v+|(t + 1)−
1
2 ‖∂l+2

x V ‖(‖Vx‖l+1 + ‖U‖l)

+ C|v− − v+|(t + 1)−
l
2 − 5

4 ‖∂l+2
x V ‖.

(4.27)

We take c = 1
2 in (4.27), and sum up the inequality for 0 ≤ l ≤ m − 1. Applying (3.11) we have

1

2
‖Vxx‖2

m−1 ≤ d

dt

m−1∑
l=0

∫
R

∂l+1
x V ∂l+1

x U dx + C‖U‖2
m+1 + C‖U‖1‖Vxx‖2

m−1

+ C‖Vxx‖m−1(‖Ux‖m−1‖Vx‖m−1 + ‖U‖2
m−1)

+ C|v− − v+|(t + 1)−
1
2 ‖Vxx‖m−1(‖Vx‖m + ‖U‖m−1)

+ C|v− − v+|(t + 1)−
5
4 ‖Vxx‖m−1.

(4.28)

Integrating with respect to time on [0, t] for 0 ≤ t ≤ T gives us

t∫
0

‖Vxx(τ )‖2
m−1 dτ ≤2

m−1∑
l=0

[‖∂l+1
x V (t)‖‖∂l+1

x U(t)‖ + ‖∂l+1
x V (0)‖‖∂l+1

x U(0)‖]

+ C

t∫
0

‖U(τ)‖2
m+1 dτ + CN3

m(t) + C|v− − v+|[N2
m(t) + Nm(t)]

≤‖Vx(t)‖2
m−1 + ‖Ux(t)‖2

m−1 + ‖V ′
0‖2

m−1 + ‖U ′
0‖2

m−1

+ C

t∫
0

‖U(τ)‖2
m+1 dτ + CN3

m(t) + C|v− − v+|[N2
m(t) + Nm(t)].

Substituting (4.19) into the right-hand side we arrive at
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t∫
0

‖Vxx(τ )‖2
m−1 dτ ≤ C{‖U0‖2

m + ||V ′
0‖2

m + [Nm(t) + |v− − v+|]N2
m(t) + |v− − v+|Nm(t)}.

(4.29)
We still need to find energy estimate for V . From (3.1) we have

Vt + U = 0, (4.30)

which implies

d

dt
(
1

2
‖V ‖2) +

∫
R

V U dx = 0. (4.31)

From the second equation in (3.1) we have

U = 1

r
[−Ut − (UVx)x − Vxx + Uxx − rU2 + F ].

Thus integration by parts and (4.30) give us

∫
R

V U dx =1

r

∫
R

[−(V U)t + VtU ]dx + 1

r

∫
R

Vx[UVx + Vx − Ux]dx

−
∫
R

V U2 dx + 1

r

∫
R

V F dx

= d

dt
[−1

r

∫
R

V U dx] − 1

r
‖U‖2 + 1

r
‖Vx‖2 + 1

r

∫
R

(UV 2
x − VxUx)dx

−
∫
R

V U2 dx + 1

r

∫
R

V F dx.

(4.32)

Now we substitute (4.32) into (4.31) to have

d

dt
(
1

2
‖V ‖2 − 1

r

∫
R

V U dx) + 1

r
‖Vx‖2

=1

r
‖U‖2 − 1

r

∫
R

(UV 2
x − VxUx)dx +

∫
R

V U2 dx − 1

r

∫
R

V F dx.

(4.33)

For the last term on the right-hand side, we have the following from (3.2), (2.15), (2.16), (4.30), 
(2.6) and (4.15), and by integration by parts,
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−1

r

∫
R

V F dx = − 1

r
[
∫
R

(ū + u∗)(Vx)
2 dx +

∫
R

Vx(v̄ + v∗)U dx

− 2r

∫
R

V ūU dx − 2r

∫
R

V u∗U dx +
∫
R

V F3 dx]

≤ − 2
∫
R

ūV Vt dx + C‖Vx‖‖U‖ + C|v− − v+|‖Vx‖2

+ C|v− − v+|(t + 1)−1‖V ‖‖U || + ‖V ‖‖F3‖

≤ d

dt
[−

∫
R

ūV 2 dx] + 1

4r
‖Vx‖2 + C‖U‖2 + C|v− − v+|[(t + 1)−

3
2 ‖V ‖2

+ ‖Vx‖2 + (t + 1)−1‖V ‖‖U‖ + (t + 1)−
5
4 ‖V ‖].

(4.34)

Substituting (4.34) into (4.33), we arrive at

d

dt
(
1

2
‖V ‖2 − 1

r

∫
R

V U dx +
∫
R

ūV 2 dx) + 1

r
‖Vx‖2

≤1

r
‖U‖2 + C(‖U‖1‖Vx‖2 + ‖Ux‖2 + ‖V ‖1‖U‖2) + 1

2r
‖Vx ||2 + C‖U‖2

+ C|v− − v+|[(t + 1)−
3
2 ‖V ‖2 + ‖Vx‖2 + (t + 1)−1‖V ‖‖U‖ + (t + 1)−

5
4 ‖V ‖].

After simplifying, we integrate the above estimate with respect to time on [0, t] for 0 ≤ t ≤ T . 
Then we have

1

2
‖V (t)‖2 + 1

2r

t∫
0

‖Vx(τ)‖2 dτ

≤C‖V0‖2 + 1

4
‖V (t)‖2 + 1

r
‖V0‖‖U0‖ + C[‖U(t)‖2 +

t∫
0

‖U(τ)‖2
1 dτ ]

+ C[|v− − v+|N2
0 (t) + N3

0 (t) + |v− − v+|N0(t)].

(4.35)

Substituting (4.19) into (4.35) and simplifying, we have

‖V (t)‖2 +
t∫

0

‖Vx(τ)‖2 dτ

≤C{‖U ‖2 + ‖V ‖2 + [N (t) + |v − v |]N2 (t) + |v − v |N (t)}.

(4.36)
0 m 0 m+1 m − + m − + m
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Finally, combining (4.19), (4.29) and (4.36) gives us

‖U(t)‖2
m + ‖V (t)‖2

m+1 +
t∫

0

[‖U(τ)‖2
m+1 + ‖Vx(τ)‖2

m]dτ

≤C{‖U0‖2
m + ‖V0‖2

m+1 + [Nm(t) + |v− − v+|]N2
m(t) + |v− − v+|Nm(t)}.

This implies

N2
m(T ) ≤ C{‖U0‖2

m + ‖V0‖2
m+1 + [Nm(T ) + |v− − v+|]N2

m(T )} + C|v− − v+|Nm(T ).

Since the last term on the right-hand side is bounded by 1
2N2

m(T ) +C|v− −v+|2, we further have

N2
m(T ) ≤ C(‖U0‖2

m + ‖V0‖2
m+1 + |v− − v+|2) + C[Nm(T ) + |v− − v+|]N2

m(T ).

That is,

{1 − C[Nm(T ) + |v− − v+|]}N2
m(T ) ≤ C(‖U0‖2

m + ‖V0‖2
m+1 + |v− − v+|2). (4.37)

Now we take positive δ0 and δ1 sufficiently small such that

C(δ0 + δ1) ≤ 1

2
.

Then (4.37) implies (4.2). �
5. Asymptotic behavior of solution

In this section we prove Theorem 2.4, which justifies (v̄(x + x0, t) + v∗(x, t), 1 + ū(x +
x0, t) + u∗(x, t)) as an asymptotic solution to (1.1)-(1.3). This is done by weighted energy esti-
mate. We continue to use C as a generic positive constant.

For 0 ≤ l ≤ m, we multiply (4.4) in the energy estimate by a weight (t + 1). This gives us

d

dt
[1

2
(t + 1)‖∂l

xU‖2 + 1

2
(t + 1)‖∂l+1

x V ‖2] − 1

2
‖∂l

xU‖2 − 1

2
‖∂l+1

x V ‖2

+ (t + 1)‖∂l+1
x U‖2 + r(t + 1)‖∂l

xU‖2 = Ĩ1 + Ĩ2 + Ĩ3,

(5.1)

where

Ĩ1 = (t + 1)I1 = −(t + 1)

∫
R

∂l
xU∂l+1

x (UVx)dx,

Ĩ2 = (t + 1)I2 = −r(t + 1)

∫
R

∂l
xU∂l

xU
2 dx,

Ĩ3 = (t + 1)I3 = (t + 1)

∫
∂l
xU∂l

xF dx.

(5.2)
R
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Integrating (5.1) on [0, t] with respect to time and applying (2.23) give us

1

2
(t + 1)[‖∂l

xU(t)‖2 + ‖∂l+1
x V (t)‖2] +

t∫
0

(τ + 1)[‖∂l+1
x U(τ)‖2 + r‖∂l

xU(τ)‖2]dτ

=1

2
[‖∂l

xU(0)‖2 + ‖∂l+1
x V (0)‖2] + 1

2

t∫
0

[‖∂l
xU(τ)‖2 + ‖∂l+1

x V (τ)‖2]dτ

+
t∫

0

(Ĩ1 + Ĩ2 + Ĩ3)(τ ) dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2) +
t∫

0

(Ĩ1 + Ĩ2 + Ĩ3)(τ ) dτ.

(5.3)

From (4.6), (3.9) and (3.11) we have

t∫
0

Ĩ1(τ ) dτ ≤C

t∫
0

(τ + 1)(‖U‖1‖∂l+1
x U‖ + ‖Ux‖1‖∂l

xU‖)(τ )‖∂l+1
x V (τ)‖dτ

+ C

t∫
0

(τ + 1)‖∂l
xU(τ)‖‖Ux(τ)‖m‖Vx(τ)‖l dτ

≤C sup
0≤τ≤t

‖Vx(τ)‖l

t∫
0

(τ + 1)‖U(τ)‖m‖Ux(τ)‖m dτ.

(5.4)

Similarly, with (3.10), (3.2), (2.15), (2.16) and (4.15) we have

t∫
0

Ĩ2(τ ) dτ ≤ C sup
0≤τ≤t

‖U(τ)‖m

t∫
0

(τ + 1)‖∂l
xU(τ)‖‖U(τ)‖l dτ, (5.5)

t∫
0

Ĩ3(τ ) dτ =
t∫

0

(τ + 1)

∫
R

∂l+1
x U∂l

x[(ū + u∗)Vx]dxdτ

−
t∫

0

(τ + 1)

∫
R

(v̄ + v∗)∂l
xU∂l+1

x U dxdτ

−
t∫
(τ + 1)

∫
∂l
xU [∂l+1

x , v̄ + v∗]U dxdτ
0 R

318



Y. Zeng Journal of Differential Equations 308 (2022) 286–326
− 2r

t∫
0

(τ + 1)

∫
R

∂l
xU∂l

x[(ū + u∗)U ]dxdτ

+
t∫

0

(τ + 1)

∫
R

∂l
xU∂l

xF3 dxdτ

≤
t∫

0

(τ + 1){‖∂l+1
x U‖‖∂l

x[(ū + u∗)Vx]‖ + 1

2
‖v̄x + v∗

x‖L∞‖∂l
xU‖2

+ ‖∂l
xU‖‖[∂l+1

x , v̄ + v∗]U‖ + 2r‖∂l
xU‖|∂l

x[(ū + u∗)U ]‖ + ‖∂l
xU‖‖∂l

xF3‖}dτ

≤C

t∫
0

(τ + 1){‖∂l+1
x U‖‖ū + u∗‖Wl,∞‖Vx‖l + ‖v̄x + v∗

x‖L∞‖∂l
xU‖2

+ ‖∂l
xU‖‖v̄x + v∗

x‖Wl,∞‖U‖l + ‖∂l
xU‖‖ū + u∗‖Wl,∞‖U‖l

+ ‖∂l
xU‖‖∂l

xF3‖}(τ ) dτ

≤C|v− − v+|
t∫

0

(τ + 1)
1
2 [‖∂l+1

x U‖‖Vx‖l + ‖∂l
xU‖‖U‖l](τ ) dτ

+ C|v− − v+|
t∫

0

(τ + 1)−
l
2 − 1

4 ‖∂l
xU(τ)‖dτ. (5.6)

We substitute (5.4)-(5.6) into (5.3), sum up for 0 ≤ l ≤ m, and apply (2.23). These give us

(t + 1)[‖U(t)‖2
m + ‖Vx(t)‖2

m] +
t∫

0

(τ + 1)‖U(τ)‖2
m+1 dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2)

+ C[ sup
0≤τ≤t

‖Vx(τ)‖m + sup
0≤τ≤t

‖U(τ)‖m]
t∫

0

(τ + 1)‖U(τ)‖2
m+1 dτ

+ C|v− − v+|
t∫

0

(τ + 1)
1
2 ‖U(τ)‖m+1[‖Vx(τ)‖m + ‖U(τ)‖m + (τ + 1)−

3
4 ]dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2)

+ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)
t∫
(τ + 1)‖U(τ)‖2

m+1 dτ
0
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+ 1

4

t∫
0

(τ + 1)‖U(τ)‖2
m+1 dτ + C|v− − v+|2

t∫
0

[‖Vx(τ)‖2
m + ‖U(τ)‖2

m + (τ + 1)−
3
2 ]dτ.

(5.7)

Letting ε0 ≤ 1/(4C) in Theorem 2.3, we simplify (5.7) and apply (2.23) one more time to have

(t + 1)[‖U(t)‖2
m + ‖Vx(t)‖2

m] +
t∫

0

(τ + 1)‖U(τ)‖2
m+1 dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2).
(5.8)

Next we multiply (4.28) by the weight (t + 1) and integrate with respect to time on [0, t]. 
Similar to the derivation of (5.8) we have

1

2

t∫
0

(τ + 1)‖Vxx(τ )‖2
m−1 dτ

≤(t + 1)

m−1∑
l=0

‖∂l+1
x V (t)‖‖∂l+1

x U(t)‖ +
m−1∑
l=0

‖∂l+1
x V (0)‖‖∂l+1

x U(0)‖

+ C

t∫
0

‖Vx(τ)‖m−1‖Ux(τ)‖m−1 dτ

+ C

t∫
0

(τ + 1)[‖U‖2
m+1 + ‖U‖1‖Vxx‖2

m−1 + ‖Vxx‖m−1(‖Ux‖m−1‖Vx‖m−1 + ‖U‖2
m−1)

+ |v− − v+|(τ + 1)−
1
2 ‖Vxx‖m−1(‖Vx‖m + ‖U‖m−1)]dτ

+ C|v− − v+|
t∫

0

(τ + 1)−
1
4 ‖Vxx(τ )‖m−1 dτ

≤1

2
(t + 1)[‖Vx(t)‖2

m−1 + ‖Ux(t)‖2
m−1] + C(‖V0‖2

m + ‖U0‖2
m)

+ C

t∫
0

[‖Vx(τ)‖2
m−1 + ‖Ux(τ)‖2

m−1]dτ + C

t∫
0

(τ + 1)‖U(τ)‖2
m+1 dτ

+ C[ sup
0≤τ≤t

‖U(τ)‖1 + sup
0≤τ≤t

‖Vx(τ)‖m−1 + |v− − v+|]
t∫

0

(τ + 1)‖Vxx(τ )‖2
m−1 dτ

+ C sup
0≤τ≤t

‖Vx(τ)‖m

t∫
(τ + 1)‖U(τ)‖2

m dτ + C|v− − v+|
t∫
[‖Vx(τ)‖2

m + ‖U(τ)‖2
m−1]dτ
0 0
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+ 1

4

t∫
0

(τ + 1)‖Vxx(τ )‖2
m−1 dτ + C|v− − v+|2

t∫
0

(τ + 1)−
3
2 dτ.

Applying both (2.23) and (5.8) we have

1

2

t∫
0

(τ + 1)‖Vxx(τ )‖2
m−1 dτ ≤ C(‖V0‖2

m+1 + ‖u0 − 1‖2
m + |v− − v+|2)

+ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)
t∫

0

(τ + 1)‖Vxx(τ )‖2
m−1 dτ

+ 1

4

t∫
0

(τ + 1)‖Vxx(τ )‖2
m−1 dτ.

Simplifying and assuming ε0 ≤ 1/(8C), we arrive at

t∫
0

(τ + 1)‖Vxx(τ )‖2
m−1 dτ ≤ C(‖V0‖2

m+1 + ‖u0 − 1‖2
m + |v− − v+|2). (5.9)

Estimates of the other terms on the left-hand side of (2.24) are obtained similarly. For 1 ≤ l ≤
m we multiply (4.4) by the weight (t + 1)2. Then we integrate the result on [0, t] with respect to 
time, and apply (5.8) and (5.9). We have

1

2
(t + 1)2[‖∂l

xU(t)‖2 + ‖∂l+1
x V (t)‖2 +

t∫
0

(τ + 1)2(‖∂l+1
x U‖2 + r‖∂l

xU‖2)(τ ) dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2) +
t∫

0

(τ + 1)2(I1 + I2 + I3)(τ ) dτ,

(5.10)

where I1, I2 and I3 are defined in (4.5).
Similar to (5.4) and with the updated estimate (5.8) we have

t∫
0

(τ+1)2I1(τ ) dτ ≤ C sup
0≤τ≤t

[(τ + 1)
1
2 ‖Vx(τ)‖l]

t∫
0

(τ + 1)
3
2 ‖U(τ)‖m‖Ux(τ)‖m dτ

≤C sup
0≤τ≤t

[(τ + 1)
1
2 ‖Vx(τ)‖l][

t∫
0

(τ + 1)‖U(τ)‖2
m dτ +

t∫
0

(τ + 1)2‖Ux(τ)‖2
m dτ ]

≤C(‖V0‖2 + ‖u0 − 1‖2 + |v− − v+|2)
m+1 m
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+ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)
t∫

0

(τ + 1)2‖Ux(τ)‖2
m dτ. (5.11)

Similar to (5.5) and (5.6) but noting l ≥ 1 (thus replacing ‖Vx‖l on the right-hand side of (5.6)

by ‖V xx‖l−1 + (τ + 1)− 1
2 ‖Vx‖), with (2.23) and the updated estimates (5.8) and (5.9) we also 

have

t∫
0

(τ + 1)2I2(τ ) dτ ≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2)

+C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)
t∫

0

(τ + 1)2‖Ux(τ)‖2
m−1 dτ,

(5.12)

t∫
0

(τ + 1)2I3(τ ) dτ ≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2)

+C|v− − v+|
t∫

0

(τ + 1)2[‖∂l+1
x U(τ)‖2 + ‖∂l

xU(τ)‖2]dτ

+ r

2

t∫
0

(τ + 1)2‖∂l
xU(τ)‖2 dτ.

(5.13)

We substitute (5.11)-(5.13) into (5.10), sum up for 1 ≤ l ≤ m and simplify. We arrive at

(t + 1)2[‖Ux(t)‖2
m−1 + ‖Vxx(t)‖2

m−1] +
t∫

0

(τ + 1)2‖Ux(τ)‖2
m dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2)

+ C(‖V0‖m+1 + ‖u0 − 1‖m + |v− − v+|)
t∫

0

(τ + 1)2‖Ux(τ)‖2
m dτ.

Letting ε0 ≤ 1/(2C) gives us

(t + 1)2[‖Ux(t)‖2
m−1 + ‖Vxx(t)‖2

m−1] +
t∫

0

(τ + 1)2‖Ux(τ)‖2
m dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2).
(5.14)

Now we combine (5.8), (5.9) and (5.14) to have (2.24).
To derive (2.25), which improves the rate of ‖U(t)‖, we multiply the second equation of (3.1)

by U and integrate with respect to x to have
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d

dt
[1

2
‖U(t)‖2] + r‖U(t)‖2 + ‖Ux(t)‖2 = −

∫
R

U [(UVx)x + Vxx + rU2 − F ]dx

≤‖U(t)‖‖(UVx)x + Vxx + rU2 − F‖(t) ≤ r

2
‖U(t)‖2 + 1

2r
‖(UVx)x + Vxx + rU2 − F‖2(t).

This implies

d

dt
[1

2
‖U(t)‖2] + r

2
‖U(t)‖2 ≤ 1

2r
‖(UVx)x + Vxx + rU2 − F‖2(t).

Applying (5.8), (5.14), (3.9), (3.2), (2.15), (2.16) and (4.15), we bound the right-hand side by

C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2)(t + 1)−2.

By Gronwall inequality,

1

2
‖U(t)‖2 ≤1

2
e−rt‖U0‖2 + C(‖V0‖2

m+1 + ‖u0 − 1‖2
m + |v− − v+|2)

t∫
0

e−r(t−τ)(τ + 1)−2 dτ

≤C(‖V0‖2
m+1 + ‖u0 − 1‖2

m + |v− − v+|2)(t + 1)−2.

We thus obtain (2.25).
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Appendix A. Proof of Proposition 2.2

To prove Proposition 2.2 we cite a result from [17]. The following lemma is a simplified 
version of Lemma 3.2 therein.

Lemma A.1 ([17]). Let r ′ > 0 be a constant. For x ∈ R, t ≥ 0, we have

t∫
0

∫
R

(t − τ)−1e− r′(x−y)2

t−τ (τ + 1)−1e− r′y2

τ+1 dydτ = O(1)(t + 1)−
1
2 e− r′x2

t+1 . (A.1)

Proof. The key of the proof is completing the square for the sum of the two exponents,

− r ′(x − y)2

t − τ
− r ′y2

τ + 1
= − r ′(t + 1)

(t − τ)(τ + 1)
[y − (τ + 1)x

t + 1
]2 − r ′x2

t + 1
. (A.2)

Applying (A.2) to the left-hand side of (A.1) and integrating with respect to y give us
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t∫
0

∫
R

(t − τ)−1e− r′(x−y)2

t−τ (τ + 1)−1e− r′y2

τ+1 dydτ =
√

π

r ′ (t + 1)−
1
2 e− r′x2

t+1

t∫
0

(t − τ)−
1
2 (τ + 1)−

1
2 dτ.

We evaluate the time integral on the right-hand side to obtain (A.1). �
We now prove Proposition 2.2. Applying (2.11) and (2.15), for l ≥ 0 we have

∂l

∂xl
R(x, t) = ∂l

∂xl
[(ūx v̄)(x + x0, t)] = O(1)|v− − v+|(t + 1)−

l+2
2 e− r′(x+x0)2

t+1 . (A.3)

Consider t ≥ 1 first. From (2.14) and by integration by parts we have

∂l

∂xl
v∗(x, t) =

t
2∫

0

∫
R

∂l+1

∂xl+1 [ 1√
4πr(t − τ)

e
− r(x−y)2

4(t−τ ) ]R(y, τ) dydτ

+
t∫

t
2

∫
R

∂

∂x
[ 1√

4πr(t − τ)
e
− r(x−y)2

4(t−τ ) ] ∂l

∂yl
R(y, τ ) dydτ.

Applying (A.3) gives us

∂l

∂xl
v∗(x, t) =

t
2∫

0

∫
R

O(1)(t − τ)−
l+2

2 e− r′(x−y)2

t−τ |v− − v+|(τ + 1)−1e− r′(y+x0)2

τ+1 dydτ

+
t∫

t
2

∫
R

O(1)(t − τ)−1e− r′(x−y)2

t−τ |v− − v+|(τ + 1)−
l+2

2 e− r′(y+x0)2

τ+1 dydτ

= O(1)|v− − v+|(t + 1)−
l
2

t∫
0

∫
R

(t − τ)−1e− r′(x−y)2

t−τ (τ + 1)−1e− r′(y+x0)2

τ+1 dydτ.

After change of the variable of integration, y + x0 → y, and applying (A.1), we obtain the first 
equation in (2.16).

For 0 ≤ t ≤ 1, similarly, from (2.14), (A.1) and (A.3), and by integration by parts, we have

∂l

∂xl
v∗(x, t) =

t∫
0

∫
R

∂

∂x
[ 1√

4πr(t − τ)
e
− r(x−y)2

4(t−τ ) ] ∂l

∂yl
R(y, τ ) dydτ

= O(1)|v− − v+|
t∫

0

∫
R

(t − τ)−1e− r′(x−y)2

t−τ (τ + 1)−1e− r′(y+x0)2

τ+1 dydτ

= O(1)|v − v |(t + 1)−
1
2 e− r′(x+x0)2

t+1 = O(1)|v − v |(t + 1)−
l+1

2 e− r′(x+x0)2

t+1 ,
− + − +
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noting (t + 1)
l
2 = O(1). This also gives us the first equation in (2.16).

The second equation in (2.16) is obtained by observing u∗ = − 1
r
v∗ − 1

r
R(x, t) in (2.12).
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