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Efficient Computation of Representative Weight Functions with Applications to
Parameterized Counting (Extended Version)*

Daniel Lokshtanov!

Abstract
In this paper we prove an analogue of the classic Bollobas
lemma for approximate counting. In fact, we match an
analogous result of Fomin et al. [JACM 2016] for decision.
This immediately yields, for a number of fundamental
problems, parameterized approximate counting algorithms
with the same running times as what is obtained for the
decision variant using the representative family technique
of Fomin et al. [JACM 2016]. For example, we devise
an algorithm for approximately counting (a factor (1 =+ €)
approximation algorithm) k-paths in an n-vertex directed
graph (#k-PATH) running in time O((2.619* 4+ n°®). 5 -
(n+m)). This improves over an earlier algorithm of Brand et
al. [STOC 2018] that runs in time O(4*-k°™") - % - (n+m)).
Additionally, we obtain an approximate counting ana-
logue of the efficient computation of representative fam-
ilies for product families of Fomin et al. [TALG 2017],
again essentially matching the running time for decision.
This results in an algorithm with running time O((3.841% +
|7]°M) - % - [1]) for computing a (1 + €) approximation of
the sum of the coefficients of the multilinear monomials in
a degree-k homogeneous n-variate polynomial encoded by a
monotone circuit (#MULTILINEAR MONOMIAL DETECTION).
When restricted to monotone circuits (rather than polyno-
mials of non-negative coefficients), this improves upon an
earlier algorithm of Pratt [FOCS 2019] that runs in time

4.075% - S log - n®W.

1 Introduction and Overview

The seminal paper of Valiant on counting prob-
lem [Val79] showed that although PERFECT MATCHING
is solvable in polynomial time, #PERFECT MATHICNG
is unlikely to be. This paper has since sparked vast
interest in the study of counting problems. In this pa-
per, we consider counting problems from the lens of Pa-
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rameterized Complexity [CFK'15, DF13, FG06]. Our
objective is twofold.

e Devise a general purpose algorithmic tool
for parameterized counting problems.
e Use this tool to design state-of-the-art al-

gorithms for several counting problems, in-
cluding #k-PATH.

. 7

The subfield of Parameterized Counting Complex-
ity was initiated by Flum and Grohe [FG04], as early
as 2002. Thus, this subfield has been around for the
last 18 years, but until recently it has remained largely
unexplored, with exceptions that are few and far be-
tween [AR02, Kou08, KW16b]. The last few years have
seen a flurry of activities in this area resulting in the de-
velopment of new tools and settlement of some old prob-
lems [Curl3, CM14, CDM17, CX15, BDH18, RW20,
Bral9, DLM20]. We refer to the survey by Curtica-
pean [Curl8] for a detailed exposition to parameterized
counting problems.

As is the case with classical complexity, most of the
natural counting problems are #W/[1]-hard [FG04] in
the realm of Parameterized Complexity, which means
that they are unlikely to be solvable in time f(k)n®®)
for any computable function f of k. A problem ad-
mitting an algorithm with running time f(k)n®® is
called fized parameter tractable (FPT) and the running
time of the form f(k)n®M) is called FPT-time. For
example, Flum and Grohe [FGO04] showed that count-
ing k-sized distinct (simple) paths in an undirected or
directed graph (#k-PaTH) is #W/[1]-hard [FG04], al-
though the decision version can be solved in FPT-time.
In fact, until this day #k-PATH is considered the most
classical example of a problem solvable in FPT-time but
which is #W/[1]-hard. Further, Flum and Grohe [FG04]
conjectured the same for counting k-sized matchings
(#k-MATCHING) even on bipartite graphs. Curtica-
pean [Curl3] and Curticapean and Marx [CM14] set-
tled the parameterized complexity of #k-MATCHING by
showing that the problem is #W/[1]-hard.

The intractability of counting problems leads to the
question of approximately counting in FPT-time. In par-
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ticular, there is a long history of FPT-approximation
schemes (FPT-ASs), that is, f(k,e ")n®M-time algo-
rithms that approximate the number of certain com-
binatorial objects in the given input. Specifically, an
FPT-AS for the #k-PATH problem has been around for
almost two decades [AR02] and is one of the fundamen-
tal problems driving the field of parameterized counting
problems [AR02, ADH*08, AG10, BDH18, BLSZ19].
Recently, an approach based on representative families
has been successful in the design of FPT-time algorithms
for a wide-range of problems including k-PATH (the de-
cision version of #k-PATH), thus it is natural to con-
sider a counting notion analogous to this notion. How-
ever, even just the existence of “small” representative
families for counting purposes has not been known. In
this paper, we develop a new technology that both as-
serts their existence and shows how to compute them
efficiently.

1.1 Representative Functions (or Counters)
and Applications Our starting point is the notion of
representative families [Mon85, Mar(09]. Let U be a uni-
verse and let S = {S1,...,S;} be a family of subsets of
U of size p. A subfamily S C S is g-representative for
S if for every set Y C U of size at most ¢, if there is
a set X € § disjoint from Y, then there exists a set
X € § disjoint from Y. By the classical combinatorial
result of Bollobds, every family of sets of size p has a
g-representative family with at most (p;'q) sets [Bol65].
Given a family S of sets of size p, and an integer ¢, an
efficient algorithm computing a g-representative family
S C S was given in [Mar06, Mar09, FLPS16]. The
fact that S can be efficiently computed from S (and its
generalizations to representative matroids) has found
numerous applications in Parameterized and Exact
Algorithms [Mon85, Mar09, FLPS16, SZ16, FGPS19,
FLPS17, KW12, KS17, Mar06].

In this paper we prove an analogue of this re-
sult for approzimate counting. More precisely, a func-
tion € : P — Ny where P C (Z) (such a function
is called a counter) is said to (e, q)-represent a func-
tion € : P — Ny with respect to Q@ C ([qj) if for
every set ( € Q, the following condition is_satisfied:
Yopep:prg=0 €(P) = (1£€) -3 pep.pro—p CP). We
prove that, when P and Q are “nice” (where the defini-
tion of “nice” is just the product of a minor technicality
that can be ignored at the moment and to which we
will return later), given any function € : P — Ny, a
function € : P — Np that (e, q)-represents € with re-
spect to @ and whose support (denoted by supp) size is
(f)) 200 . L o) where k = p+ ¢ and n = |U], can
be computed with success probability arbitrarily close
to 1 and in time O(|supp(¥)] - (g)q 2200 . L plto(D)y,

We demonstrate how the efficient construction of repre-
sentative functions can be a powerful tool in designing
parameterized algorithms for counting problems.

1.1.1 Applications The k-PATH problem (on both
directed and undirected graphs) is among the most
extensively studied parameterized problems [CFK 15,
FLSZ19]. This problem has played a pivotal role in the
development of Parameterized Complexity and has led
to several new tools and techniques in the area such as
color-coding [AYZ95], divide & color [CKL*09b], alge-
braic methods [KW16b, BKKZ17, Wil09] and represen-
tative families [Mon85, Mar09, FLPS16]. After a long
sequence of works in the past three decades, the cur-
rent best known parameterized algorithms for k-PATH
have running times 1.657%n®®) (randomized, polyno-
mial space, undirected only) [BHKKI17, Bjo14] (ex-
tended in [BKKZ17]), 2fn°™) (randomized, polynomial
space) [Wil09], 2.554*n°(1) (deterministic, exponential
space) [Tsul9, Zehl15, FLPS16, SZ16], and 4*+o(k)pn©(1)
(deterministic, polynomial space) [CKL™09a].
Similarly to k-PATH, the counting analogue #k-
PATH plays a significant role in the development of
the field of parameterized counting. More than 15
years ago, Arvind and Raman [AR02] utilized the clas-
sic method of color coding [AYZ95] and Karp-Luby
approximate counting technique to design a random-
ized exponential-space FPT-AS for #k-PATH with run-
ning time k°®nCM) whenever ¢! < kO®). A few
years afterwards, the development and use of appli-
cations in computational biology to detect and an-
alyze network motifs have already become common
practice [SIKS06, SSRS06, SI06, DSGT08, HWZ0S].
Roughly speaking, a network motif is a small pattern
whose number of occurrences in a given network is sub-
stantially larger than its number of occurrences in a
random network. Due to their tight relation to net-
work motifs, #k-PATH and other cases of the #SUB-
GRAPH ISOMORPHISM problem became highly relevant
to the study of gene transcription networks, protein-
protein interaction (PPI) networks, neural networks and
social networks [MSOIT02]. In light of these develop-
ments, Alon et al. [ADH"08] revisited the method of
color coding to attain a running time whose depen-
dency on k is single-exponential rather than slightly
super-exponential. Specifically, they designed a simple
randomized O((2¢)¥me=2)-time exponential-space FPT-
AS for #k-PATH, which they employed to analyze PPI
networks of unicellular organisms. In particular, their
algorithm has running time 29 )m whenever e~ <
20(%) The first deterministic FPT-AS for #k-PATH was
found in 2007 by Alon and Gutner [AG10]; this algo-
rithm has an exponential space complexity and run-
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Table 1: History of #k-PATH

] Ref. \ Time \ Technique \ Det. \ Extension ‘
[AR02] EOR) 00 Karp-Luby No | Treewidth O(1)
[ADH'08] (2e)FnOM Color-Coding No No Extension
[AG09] (2¢)FFo(k) O Color-Coding Yes | Treewidth O(1)
[BDH18] 4FnOM Exterior Algebra No | Pathwidth O(1)
[Pral9] 4.075Fn0M Waring Rank No | Treewidth O(1)
[BLSZ19] 4FFo(k), O) Divide & Color Yes | Treewidth O(1)
This Paper 2.619Fn0M Representative Counters | No | Treewidth O(1)

ning time 20(F108108%) 1 1og 1 whenever ! = 20008#),

Shortly afterwards, Alon and Gutner [AG09] improved
upon their previous work, and designed a deterministic
exponential-space FPT-AS for #k-PATH with running
time (2e)k+o(1°g3 Fmlogn whenever e~! = k©(). For
close to a decade, this algorithm has remained the state-
of-the-art. In 2016, Koutis and Williams [KW16a] made
the following conjecture.

Conjecture: #k-PATH admits an FPT-AS with
running time Qk(%)o(l)no(l).

After a decade, in 2018, Brand et al. [BDH18] pro-
vided a speed-up towards the resolution of this conjec-
ture. Specifically, they gave an algebraic randomized
O(4*me=2)-time exponential-space algorithm. This was
followed up by Bjorklund et al. [BLSZ19] who gave a de-
terministic algorithm with almost similar running time.
However, this algorithm is still far away from resolving
the conjecture of Koutis and Williams [KW16a].

As our first application we give an algorithm for
#k-PATH that runs in time O((2.619% + n°M). L. (n+
m)). This results brings the gap between the known al-
gorithm and the conjecture close. While on a superficial
level, we make use of the notion of parsimonious univer-
sal families also present in [BLSZ19], our new result is
centred around the efficient computation of representa-
tive counter functions (a concept introduced in this pa-
per), which requires to develop a whole new machinery
in general, and sampling primitives in particular.

The #k-PATH problem is a special case of the
#k-SUBGRAPH [SOMORPHISM problem, where for a
given n-vertex graph G and a given k-vertex graph
F, the objective is to count the number of distinct
subgraphs of GG that are isomorphic to F. In addition
to #k-PATH, parameterized counting algorithms for
two other variants of #k-SUBGRAPH ISOMORPHISM,
when F is a tree, and more generally, a graph of
treewidth at most ¢, were studied in the literature.
The algorithm of Bjorklund et al. [BLSZ19] can be

extended for these cases with running time similar
to that for #k-PATH. Independently, Pratt [Pral9)]
obtained an algorithm for these cases as an application
of his algorithm for a more general problem, called
#MULTILINEAR DETECTION, which we discuss in more
detail in the following subsection.

In particular, we obtain Theorem 1.1 ahead as an
application of our first tool. Before we state it, let us
give the definitions of the problems it addresses. In ¢-
SET p-PACKING we are given a universe U, a family F
of subsets of size ¢ of U, and p € N. Then, the objective
is to determine whether there exist at least p pairwise-
disjoint sets in F. In ¢-DIMENSIONAL p-MATCHING,
we are given a universe U, a partition (U1, Us,...,Uy)
of U, a family F of subsets of size ¢ of U where each
subset contains exactly one element from each part U,
and p € N. Then, the objective is to determine whether
there exist at least p pairwise-disjoint sets in F. In
GRAPH MOTIF, we are given a graph G where each
vertex is assigned a set of colors, a multiset of colors M,
and k € N (the sought motif size). Then, the objective
is to determine whether there exist a subtree T of G on
k vertices and a coloring of the vertices in T' (each by a
color from its set) so that no color is used more times
than its number of occurrences in M.

THEOREM 1.1. For any 0 < € < 1, the #k-PATH,
#q-SET p-PACKING with k = qp, #q¢-DIMENSIONAL p-
MATCHING with k = (¢—1)p and #GRAPH MOTIF with
k being twice the sought motif size problems can be ap-
prozimated with factor (1 £+ €) and success probability
at least 3 in time O((2.619% + [I|°W) . L . |I]), where
k is the parameter and |I| is the input size. Moreover,
for any 0 < € < 1, the #k-TREE (or, more generally,
#SUBGRAPH [SOMORPHISM where the treewidth of pat-
tern graph is bounded by a fized constant) can be ap-
proxzimated with factor (1+¢€) and success probability at
least 5 in time 2.619% - & . |[1|90),

1.2 Representation for Product Functions (or
Counters) and Applications Let P C (Z) Given
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two functions €; : P; — Ny and €5 : Py — Ny where
P, C (;Jl), P C (;]2) and p;+p2 = p, the product €; x &
(with respect to P) is the function € x €5 : P — Ny
defined as follows: For each P € P,

(Cl X Q:Q)(P) = Z
P €P1,P2€P2:
PlﬂPQZ(D,PlUPQ:P

Ci(Pr) - Co(Po).

We prove that, given that Pp,Pa, P and Q C (Z)
are “nice”, given any two funActions ¢ : P — Ny and
¢y : Py — Ny, a function € : P — Ny that (e, q)-
represents € = €; X €, with respect to Q and whose
support size is (];) . 0(k) . 6% -n°M) where k = p+ ¢, can
be computed with success probability arbitrarily close
to 1 and in time

O((3.841% + |supp(¢;)] - a+p2
(( |supp(€,)| (q+p2)
1
+ &) - q+p1y ., 20(k) .= . lto(1) )
|supp(€2)| (q+p1) ) 2N )

A more exact expression of the upper bound on the
time complexity that precisely describes the dependence
on the sizes of the supports of € and &y rather than
the term 3.841F is given in the paper. However, the
crux here is that the time complexity to compute the
output function can be substantially smaller than even
just the time to explicitly write up the function €; x &,
that it represents (even if both €; x €5 have already
been reduced to have support size (;zi) and (;1))' For
example, if both p; and ps are close to k/2, then the
support of their product is already 4*.

Our main application is a randomized algorithm for
the #MULTILINEAR MONOMIAL DETECTION problem,
mentioned in the previous subsection. In this prob-
lem, the objective is to compute a (1 + €) approxi-
mation of the sum of the coefficients of the multilin-
ear monomials in a degree-k homogeneous n-variate
polynomial encoded by an arithmetic circuit with non-
negative coefficients (i.e., a monotone circuit). Re-
cently, Pratt [Pral9] developed a randomized (1 + €)-
approximation algorithm for this problem with time
complexity O(4.075% - Llog1 - s(C)°W). In fact, the
result of Pratt [Pral9] is for a notably more general—it
deals with the #2MULTILINEAR MONOMIAL DETECTION
problem extended to only requiring the polynomial to
have nonnegative coefficients, thus allowing the arith-
metic circuit to have negative coefficients, though not
the polynomial that it encodes. Improving upon this
result for the case of monotone circuits, we get the fol-
lowing.

THEOREM 1.2. For any 0 < ¢ < 1 , the #MULTI-
LINEAR MONOMIAL DETECTION problem (on monotone

circuits) can be approrimated with factor (14€) and suc-
cess probability at least <% in time O((3.841% +s(C)°W).
1

= - s(0)).

The decision version of #MULTILINEAR M ONOMIAL
DETECTION is the central problem in the algebraic ap-
proach of Koutis and Williams for designing fast param-
eterized algorithms [Kou08, KW16b, Wil09]. Here, the
objective is to decide whether there exists a multilinear
monomial of degree-k with non-zero coefficient (rather
than to compute the sum of coefficients of such monomi-
las). Let s(C) denote the size of C'. Williams [Wil09]
gave a randomized algorithm solving k-MULTILINEAR
MONOMIAL DETECTION in time 2% - s(C)°(M) (over
monotone circuits). The only known algorithm for the
problem when there is no restriction on circuits is by
Brand et al. [BDH18], who gave an algorithm with run-
ning time 4.32% - 5(C)°(") (with exponential space com-
plexity). (Recently, further (yet unpublished) develop-
ments were given in the preprint [BP20].) Afterwards,
Arvind et al. [ACDM19] obtained an algorithm with the
same running time and with polynomial space complex-
ity. The algorithms based on the algebraic method of
Koutis-Williams provide a dramatic improvement for a
number of fundamental problems. See the survey by
Koutis and Williams [KW16a] for further details. The
idea behind the approach is to translate a given prob-
lem into the language of algebra by reducing it to the
problem of deciding whether a constructed polynomial
has a multilinear monomial of degree k.

We note that #k-SUBGRAPH ISOMORPHISM can be
reduced to the #MULTILINEAR MONOMIAL DETEC-
TION problem and thus one can obtain an algorithm
(that is efficient when the sought graph is of constant
treewidth) for it as an application of Theorem 1.2. In
fact, #k-SUBGRAPH ISOMORPHISM reduces to #MUL-
TILINEAR MONOMIAL DETECTION on specials circuits
where we can obtain a faster algorithm. This is what is
exploited in the proof of Theorem 1.1. More precisely,
the aforementioned special circuits are “d-skewed cir-
cuits” (mostly, for d = O(1)), where every multiplica-
tion gate has at most one child whose polynomial can
consist of more than d monomials. Specifically, we have
the following theorem, where we are particularly inter-
ested in the case where ¢ = 0. This theorem is also our
intermediate step to derive Theorem 1.1.

THEOREM 1.3. For any 0 < ¢ < 1 and £ € Ny,
the #MULTILINEAR MONOMIAL DETECTION problem
on 2°(k)s(C)€—skewed circuits can be approrimated with
factor (1+¢€) and success probability at least 19—0 mn time

O((2.619% + s(C)°M) - L. (C)*+1).
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1.3 Additional Related Works The algorithms by
Alon et al. [ADH'08] and Alon and Gutner [AG10,
AGO09], just like our algorithms, extend to approximate
counting of graphs of bounded treewidth. (This remark
is also made by Alon and Gutner [AG10, AGO09].)
In what follows, we briefly review works related to
exact counting and decision from the viewpoint of
Parameterized Complexity. Since these topics are not
the focus of our work, the survey is illustrative rather
than comprehensive.

The problem of counting the number of subgraphs
of a graph G that are isomorphic to a graph H—that
is, #SUBGRAPH ISOMORPHISM WITH PATTERN H—
admits a dichotomy: If the vertex cover number of H
is bounded, then it is FPT [WW13], and otherwise it is
#W/[1]-hard [CM14]. The #W/1]-hardness of #k-PATH,
originally shown by Flum and Grohe [FG04], follows
from this dichotomy. By using the “meet in the middle”
approach, the #k-PATH problem and, more generally,
#SUBGRAPH [SOMORPHISM WITH PATTERN H where
H has bounded pathwidth and k vertices, was shown
to admit an n2 TOM)-time algorithm [BHKK09]. Later,
Bjérklund et al. [BKK17] showed that £ is not a barrier
(which was considered to be the case at that time) by de-
signing an n0-49°%+0(1)_time algorithm. A breakthrough
that resulted in substantially faster running times took
place: Curticapean et al. [CDM17] showed that #SuB-
GRAPH ISOMORPHISM WITH PATTERN H is solvable in
time £COn0-174 where ¢ is the number of edges in H;
in particular, this algorithm solves #k-PATH in time
kORI 0174k Recently, Arvind et al. [ACDM19] ob-
tained an algorithm for #MULTILINEAR MONOMIAL
DETECTION with time complexity n¥/2+tOUogk) — Algo
recently, Dell et al. [DLM20] gave “black box” results
for turning algorithms which decide whether or not a
witness exists into algorithms to approximately count
the number of witnesses (with overheads of k°*) that
are prohibitive for our settings).

2 Preliminaries

Let U be a universe, and let p, ¢ € Ny be non-negative
integers. Then, let (g) be the collection of subsets of U

of size exactly p, and denote ( <Up) =U, ((Z]) Given
two subsets P, Q of U and a family F C 2V of subsets
of U, denote F[P,Q] £ {F € F: PC F,QNnF = (}.
Given a function f : U — R, let supp(f) = {u € U :
f(u) # 0} denote the support of f. Given two functions
f:U —=Rand g: U — R such that for every a € A, it
holds that g(a) < f(a), we denote g < f.

A central notion in our proofs is of parsimonious
universal families, defined as follows.

DEFINITION 1. (e-Parsimonious Universal Family)

Let n,p,q € N and 0 < e < 1. Let U be a universe of
sizen, and let P C (g) and Q C (qu) A family F C 2V
is an e-parsimonious (n,p,q)-universal family with
respect to (P, Q) if there exists T = T(n,p,q,¢€) > 0,
called a correction factor, such that for each pair
of disjoint sets P € P and QQ € Q, it holds that
(1-¢ -T<|FIPQ]<(1+¢)-T.

The special case of Definition 1 where P = (g)

and Q = (Z) is the definition of an e-parsiminious uni-
versal family in [BLSZ19]. For parsimonious universal
families, the following proposition is known, based on a
straightforward sampling argument.

PRrOPOSITION 2.1. ([BLSZ19]) Let ¢ € N be a fized

constant. Let n,p,q € N and 0 < ¢ < 1, and denote

k = p+q. Let U be a universe of size n. An

e-parsimonious (n,p,q)-universal family F C 2Y of
k

k 1
sizet = O —— -klogn-— |, can be computed with
g €
success probability at least 1 — 1/n°* in time O(t - n).

We will need more sophisticated parsimonious uni-
versal families, constructed in a manner to enable hav-
ing an efficient “membership query” procedure—that is,
a procedure that given any set P € (U), outputs all the
sets in the family that contain P. We will address the
computation of such families and procedures in Section
3.2. Formally, they are defined as follows.

DEFINITION 2. (Membership Query Procedure)
Let n,p,q € N and 0 < e < 1. Let U be a universe of
size n, and let P C (g) and Q C (Z) Let F C 2V
be an e-parsimonious (n,p,q)-universal family with
respect to (P, Q). A T-membership query procedure is
a procedure that given any set P € P as input, outputs
the subfamily {F € F : P C F'} in time O(T).

We will also make use of the following well known
inequality to bound probabilities.

PROPOSITION 2.2. (Chernoff Bound) Let

X1,..., Xy be independent random variables bounded
14

by the interval [0,1]. Let X = ZXi' For any e > 0,
i=1

2EB[X]
2

Pr(|X — E[X]| > eE[X]) < 2e™

Lastly, we define the notion of an arithmetic circuit.
An arithmetic circuit C' over a commutative ring R is
a simple labelled directed acyclic graph whose internal
nodes are labeled by + or x and whose leaves (in-
degree zero nodes) are labeled from X where X =
{z1,22,...,x,} is a set of variables. There is a node
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of out-degree zero, called the root node or the output
gate. The size of C, denoted by s(C), is the number
of nodes, sy(C), plus the number of arcs, sa(C), in the
digraph.

3 Representative Counters

In this section, we will be working with counters, defined
as follows.

DEFINITION 3. (Counter) Let U be a universe. Let
p € Ny, and let P C (g) A function € : P — Ny is
called a counter. A counter is encoded as a collection
of pairs, where each pair consists of an element P €
supp(€) and its value €(P).

The main objective of this section is to compute
representative counters, defined as follows.

DEFINITION 4. ((Representative) Let U be a uni-
verse. Let « < 1,8 > 1, and let p,q € Ng. Let P C (IZ‘:)

and Q C (g) A counter € : P — Ny is said to (a, B, q)-
represent a counter € : P — Ny with respect to Q if for
every set Q) € Q, the following condition is satisfied.

a- Y €P)< Y EP)<B- Y P

PeP:PNQ=0 PeP:PNQ=0 PeP:PNQ=0

Whena=1—¢ andﬁ:1+ef07‘som60<e<1,€is
said to (e, q)-represent €.

Further, we will need the representative counter to
be, in expectation, not just similar, but identical to the
given counter.

DEFINITION 5. (Representative in Expectation)
Let U be a universe. Let p € Ny, and let P C (g)

A sampled counter c:P - Ny is said to represent
in expectation a counter € : P — Ny if for every set
P € P, the following condition is satisfied.

We will first show how to efficiently compute rep-
resentative counters under the assumption that we can
compute parsimonious universal families equipped with
efficient membership query procedures. Next, we will
show how to compute a parsimonious universal family
equipped with efficient membership query procedure for
specific choices of (P, Q). We remark that in what fol-
lows, we implicitly suppose that the counter to represent
has non-empty support, because otherwise representa-
tion is trivial.

3.1 Computation of Representative Counters
of Small Support We first extend the notion of a
counter to also assign values to sets of size larger than p.

DEFINITION 6. (Domain Extension) Let U be a uni-
verse. Let p € No, and let P C (7). Let €: P — Ny be

a counter. The extender Coy : 2V — Ny is defined as
follows. For any set F C U, define

> p).

Pe(7)nP

Qext (F) é

Notice that for any set P € P, we have that Ceyx(P) =
¢(P). Now, we present an alternative (to Definition 4)
notion of similarity between counters, based on a given
family F (that will, when used ahead, be a parsimonious
universal family). In particular, it makes similarly, in
a sense, be more focused, considering only sets in F
rather than all possible choices of P € P and Q € Q
in order to measure similarity. Being more focused,
working with this definition for the computation of
representative counters will also yield efficiency. Notice
that this definition does not replace Definition 4—the
usage of representative counters for applications will
require Definition 4.

DEFINITION 7. ((e, F)-Similarly) Let U be a uni-
verse, and let F C 2V. Let 0 < € < 1, and let p € Ny
and P C (g) Let € : P - Ny and € : P — Ny be

two counters. We say that ¢ and € are (e, F)-similar
if for every set F € F, (1 —€) - Coxt(F) < Coxt(F) <
(14 ¢€) - Coxt(F).

We now prove that for the sake of efficient compu-
tation of representative counters, we can indeed work
with the new definition.

LEMMA 3.1. Letn,p,g e N, 0 <e<1land 0 < < 1.
Let P C (g) and Q@ C (g) Let F C 2V be an e-
parsimonious (n,p,q)-universal family with respect to
(P,Q). Let € : P — Ny and € : P — Ny be (5, F)-
similar counters. Then, € (4e + 6, q)-represents € with
respect to Q.

Proof. To prove that ¢ (e, q)-represents € with respect
to Q, consider some set () € Q. First, observe that

x) Y, IFPRQl-er)= > ep)

PeP:PNQR=0D PeP:PNQ=0 FEF[P,Q]

PO D2

FEF:QNF=0) PEP:PCF

Z Q:ext(F‘)’

FEF:QNF=0
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Let T be the correction factor of F. Then, for any
set P € P, we have that (1—¢€)T < |F[P,Q]| < (1+¢)T.
On the one hand, this implies that

o > «p

PeP:PNQ=0

1
ST,

PeP:PNQR=0

1
<aTor 2

PeP:PNQ=0

1
ST,

FEF:QNF=0

(1-e)T-e(P)
7P, Q] - €(P)

Qtext(F‘)‘

Here, the last equality was derived from equality (*).
Symmetrically, we have that

~ 1 ~
1I P —-nw-—. oxt (F').
W Y AP Y Gl
PeP:PNQ=0 FeF:QNF=0
On the other hand, this implies that

> e(Pp)

PeP:PNQ=0

1
(1+eT 2

PeP:PNQ=0

1
2 (1+eT >

PeP:PNQR=0

1
RETe>

FEF:QNF=0

(1+€)T-e(P)
7P, Q]| - €(P)

Coxt (F).

Again, the last equality was derived from equality (*).
Symmetrically, we have that

) Y Emc—— Y Elh).

PeP:PNQ=0 (1 + €)T FeF:QNF=0

Because ¢ and € are (0, F)-similar, for any set
F € F, we have that (1 — §) - Coxt(F) < Coxi(F) <
(1 4+0) - Cexs(F). On the one hand, combined with

inequalities (IT) and (III), this implies that

>

PeP:PNQ=0

1 ~
= W ' FeJ—':QZmF_(Z) Q:eXt(F)
(1+6)
St
(1+6)(1+e¢ 1 3

(1—¢) (1+eT rert e
< A+9)A+e) Z ¢(P).

- (-9 PeP:PNQ=0

Qext (F)

On the other hand, combined with inequalities (I) and
(IV), this implies that

>ooep

PEP:P?Q:@
> - . ¢
~ (14T 2, Cull)
19 FeF:QNF=0
> U0 Y e(p)
El + 6))? Fe)f:QmF:@
1-6)(1—c¢ 1
= . . Cox (F)
(1+e) (1—¢T Fe]—‘:QZﬂF:(D '
1-9)(1—
R
( +6) PeP:PNQ=0
Overall, we have that
(1+8)(1—¢ ~
—. P) < P) <
Tt . s B ep)<
PeP:PNQ=0 PeP:PNQ=0
(1+6)(1+e¢) ~ .
_— P). N h
a-0 Z e(P) otice that
PeP:PNQR=0
1 —€e > 1—€e—-22% = (1 —2)(1 + ¢), and
hence (1 — ¢)/(1 + €¢) > 1 — 2¢ similarly,

l4+e>1+€e—22 = (1+2€¢)(1 —¢), and hence
(I1+¢€)/(1—€) > 1+ 2e. Moreover, because 0 < ¢, < 1,
(1=06)(1—2¢)=1—(2¢+3—2e0) >1— (4de+9), and
(I1+6)(14+2¢) =1+ (2e+0+2e0) < 1+ (4de+0).
Thus, displaystyle(l — (4 +6)) - > pep.pro=p €(F) <

Yoo «P) < (1+Me+d) > €(P).
PeP:PNQ=0 PeP:PNQ=0
Since the choice of @ € Q was arbitrary, the proof is
complete. 0

Our computation of representative counters will be
done in a sampling procedure defined as follows. (Some
explanation of the intuition behind it is given ahead.)

DEFINITION 8. ((€, F)-Counter Sampling) Let U be
a universe, and let F C 2V with U € F. Let p,L € Ny
and P C (g) Let € : P — Ng be a counter. Then,

(¢, F, L)-counter sampling is the randomized procedure

that constructs a counter € : P — Ny as follows. For
any set P € P, define

assoce 7.(P) £  min  Co(F),

FeF:PCF

¢(P)

—_— d
assoce r,1.(P) ) an

probg 1 (P) = min(1, L -
. P
probe r 1.(P)

Then, for any set P € P, set €(P) to counte r.1(P)
with probability pronf’L(P) and to 0 with probability

counte r 1 (P)
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1—- PFObc,J-',L(P)-l

Firstly, observe that the support of any counter that
can be potentially output is contained in the support
of the input counter. Essentially, with this sampling
procedure we aim to discard as many sets as possible
from the support of the input counter while modifying
the values of those that are kept so that we obtain
a representative counter of small support. Intuitively,
each set P € P is associated, among the sets in F that
contain it and hence whose value is effected by the value
of P (as assigned by the counter), with a set F' having
minimum value. Thus, P is associated with a set F
for which P is most significant among all sets in F—
that is, in which the fraction of the value of P from
the entire value of F' is largest. In a sense, this means
that the value of F' is most “vulnerable” in case P will
be dropped from the support of the counter. Next, the
probability of keeping P in the support is chosen to
be proportional to its fraction of value within F—the
larger €(P) is, the larger is the probability to choose it,
but at the same time, the larger assoce 7,1, (P) is (which
means that the set F' associated with P, and hence all
other sets in F as well, are less vulnerable to P being
dropped out), the smaller is the probability to choose
P. The factor L (whose exact value will be determined
later) is meant to boost up the probability to be larger
than just the fraction of the value of P within F' (else
we may drop “too many” sets from the support, and
hence the output counter will not represent the input
counter). Due to this boosting factor, we also need to
trim down the boosted fraction to be 1 so that it will
indeed represent a probability. Lastly, the new value of
P when decided to be kept in the support, is chosen in
a way as to ensure that its expected value (being the
probability to keep it times its new value when it is
kept) will be equal to its original value.

We first show the the size of the support of the
output counter is expected to be “small” (in case the
size of the family F and the boosting factor L are both
“small”).

LEMMA 3.2. Let U be a universe, and let F C 2V with
UeF. Letp,L €Ng and P C (). Let €: P — N be
a counter. Then, the expected size of the support of the
output counter € of (€, F, L)-counter sampling is upper
bounded as follows.

-~

E[|supp(¢)[] < |F]- L.

Moreover, for any ¢ > 0, we have that PT(|supp(€)| >

e

(@+1)-|F|]-L) <2 7.

TSince U € F, there exists F € F such that P C F, hence
assocg, 7,1, (P) is well defined.

Proof. Observe that

E[|supp(€)]]
= Z PrObq:,F,L(P)
¢(P)

PeP
= in(l. [ — )
Z min(1, assoce r,1,(P)

¢(P)
=L Z assoce, 7,1 (P)
PeP 7

G
<L- Z Z assoce r.1,(P)

FeF PeP:assoce, 7,1 (P)=Cext (F)
¢(P)

=L 2 2 o (F)

FeF PcP:assoce, 7,1 (P)=Cext (F)

1
SLZ Q:ext(F). Z

FeF PeP:assoce, 7,1 (P)=Cext (F)

)

¢(P)

1
<L- E . E (P
= L O e "
) c
<Ly — ¢ (F)=L-|F|
LY gy P =11

Here, (1), (3), (5), (6) and the equality at (8)
are immediate. The equality (2) follows from the
definition of probg  ;(P). The inequality (4) follows
from the observation that for each set P € P, there
exists a (not necessarily unique) set F € F such that
assoce 7.1, (P) = €(F). The inequality (7) follows from
the definition of assoce 7,7, and the inequality at (8)
follows from the definition of €.

For the second claim in the proof, let c>1. Because
E[|supp(®)|] < |F|- L, we have that Pr(|supp(€)| >
€+ 1) - [F[- L) < Pr(|[supp(€)| — Elsupp(&)[]| >
¢ - Ellsupp(®)]]). By Chernoff bound (Proposition
2.2), the aforementioned term is upper bounded by

a2 supp(& -~
- Ol case E[|supp(®)|] > 1, then the

a2 .
aforementioned term is upper bounded by 2e™ 2", which

completes the proof. Else, in case E[|supp(€)|] < 1, we
have that

: ¢(P)
= . L — 1.
Z min(1, aSSOCQ:7f7L(P)) <

Thus, for every P € P, we have that probg  ;(P) =
~$. Moreover, for every P € P, we have that
assoce 7, (P) < €ext(U), and therefore proby 1 (P) >

. Ei(f(Dl)f)' However, we thus derive that E[|supp(¢)|] =
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> pep Probe = (P) > L - M = L > 1, which is

. & ext (U
a contradiction. O

Now, we present a statement regarding the new val-
ues and probabilities assigned by the sampling proce-
dure. This statement will be used soon together with
the observation ahead, towards the proof that the out-
put counter is likely to represent the input one.

LeEMMA 3.3. Let U be a universe, and let F C 2V with
UeF. Let p, L € Ng and P C (g) Let € : P — Ny
be a counter. Then, for all P € P and F € F such that
P C F, at least one of the following two conditions is
satisfied.

Coxt (F)

° count¢7].-7L(P) < T

® probe 5 1(P) =1.

Proof. Consider some P € P and F € F such that
P C F. We need to prove that at least one of
the two conditions in the lemma is satisfied. In case
probe = 1 (P) = 1, we are done. Thus, we next
suppose that probg z ; (P) # 1. Then, by the definition
of proby  (P), we have that probey  (P) = L -

%. By the definition of assoce, 7 1,(P), we have

that assoce 7 1(P) < €ex(F). Thus, probe  (P) >

() .
L Q:ext(F) :

counte, 7 1,(P), we derive that

From this inequality and the definition of

¢(P) ¢(P) Coxt (F)
COunt¢7‘7:7L(P) = < =
probe 7 (P) ~ L- % L
This completes the proof. d

We will also need the following two simple observa-
tions where the first asserts representation in expecta-
tion and the second, which is an immediate consequence
of the first, concerns the expected output value of each
set in F.

OBSERVATION 1. Let U be a universe, and let F C 2V
with U € F. Let p,L € Ny and P C (Z) Let
¢ : P — Ny be a counter. The output counter ¢ of
(¢, F, L)-counter sampling represents in expectation €.

Proof. Consider some set P € P. Then, the definition
of (¢, F, L)-counter sampling yields that

E[&(P)] = probe £ 1 (P) - counte, 7,1,(P) = ¢(P).

Since the choice of P was arbitrary, we derive that ¢
represents in expectation €. a

OBSERVATION 2. Let U be a universe, and let F C 2V
with U € F. Let p,L € Ny and P C (U) Let
€ : P — Ny be a counter. For any set F C U, for
the output counter € of (€, F, L)-counter sampling, we

have that E[/Q\:ext(F)] = Coxt (F).

Proof. Consider some set F' C U. Then,

BEl€(F)] =E[ > €P) (1)
Pe( ) NP
= Y E[E(P) (2)
Pe( )P
= C(P) =Coxt(F). (3)

pPe(T)nP

Here, equality (1) and the second equality at (3) follow
from the definition of domain extension, equality (2)
follows from the linearity of expectation, and the first
equality at (3) follows from Observation 1. a

From Lemma 3.3 and Observation 2, we derive the
following corollary.

COROLLARY 3.1. Let U be a universe, and let F C 2V
with U € F. Let p,L € Ny and P C (U). Let
€ : P — Ny be a counter. For any I' € F, for the output
counter € of (€, F, L)-counter sampling, we have that
E[%W] > L where W = max{countg 1 (P) : P €
P,probe z 1 (P) < 1}.

Proof. Consider some F' € F. By Lemma 3.3, for all

- Pe (i) NP such that proby z ; (P) < 1, it must hold

that counte 7 1,(P) < Ge%(F)’ implying that necessarily
W < Q%(F) Therefore,

Coxt(F
o (F)

Fe )= Bea(F)] = L.

~ L
'E[cht(F)} > m

Here, the last equality follows from Observation 2.
d

We are now ready to prove that the output counter
is likely to represent the input one.

LEMMA 3.4. Let U be a universe, and let F C 2V with
UeF. Let p,c,L € Ny such that L > 26%111(20|]:|).

Let P C (g) Let € : P — Ny be a counter. Then, the

probability that € and the output counter ¢ of (¢, F,L)-

counter sampling are (e, F)-similar is at least 1 — %

Proof. Consider some F € F, and denote W =
max{counte 7 .(P) : P € P,probg  ;(P) < 1}. For
any P € (5) NP such that proby » ;(P) < 1, define
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fp = 1 and the random variable Xp; = E( P) " For
any P € (i) NP such that probg  ,(P) = 1, define

lp = [%1 and the deterministic variable Xp,, =
% — (lp — 1), as well as for any i € {1,...,¢p — 1},
the deterministic variable Xp; = 1, and notice that
Zfil Xp; = % Then, {Xpﬂ' : P e (5) NP,i
{1,...,¢p}} is a collection of independent random vari-

ables bounded by the interval [0, 1]. Here, independence
among variables Xp; corresponding to the same set
P € (I;) N P follows because these variables are de-

Lp
terministic. Let X = Z ZXRZ" By Chernoff
pe(Pynp i=1

bound (Proposition 2.2),

2 E[X]

(lX E[ ]| > EE[X]) < 2e¢" 7 2

> S -

Mnp i=1

Z @I(AI/D) _ EexvtéF), Thus, E[X] = E[am(p)}’
pe(T)nP

Observe that

N ex’ F .
hence by Observation 2, E[X| = Coxt(F) This

means that | X — E[X]| > eE[X] is true if and only if
|€ext( ) — Coxt (F)| > € Coxt(F) is true. Thus, by this
equivalence between events,

Pr(€ut(F) — Co(F)| > €+ Con(F)) < 2e 5
Recall that E[X]| = E[%], hence by Corollary
3.1 and the given lower bound on L, E[X] > L >
224 In(2¢|F|). Thus,

Pr(|Coxt(F) = Cox (F)| > € Coxe (F))
(27 In(2e| 7))

< 2e” 2

— %%~ In(2¢|F|) — 2 1

2|F] ~ o|F|

As the choice of F' € F was arbitrary, union bound
implies that the probability that there exists F' € F
such that (1 — €) - Coxt(F) > Coxt(F) or Coxt(F) >

~ 1
(14 €) - Coxt(F) is upper bounded by |F| - |}_| -
c
Thus, the probability that € and ¢ are (e, F)-similar is
at least 1 — % a

We now turn to analyze the time complexity of the
sampling procedure.

LEMMA 3.5. Let U be a universe. Let p,L € Ny
and P C (g) Let F C 2V with U € F be an e-
parsimonious (n,p, q)-universal family F, equipped with
a T-membership query procedure. Let € : P — Ny be a
counter. Then, the time complexity of (€, F, L)-counter
sampling is bounded by O(|supp(€)|-T).

Proof. First, we initialize the value ot (F') of each set
F € F to be 0. Then, for every set P € supp(€),
we compute F' = {F € F : P C F} in time O(T)
using the membership query procedure (which implies
that |F'| = O(T)), and then for each set F' € F' we
update Cext(F) by adding €(P) to it. Thus, in time
O(|supp(€)| - T) we correctly compute oy (F) for all
F € F. Now, for each set P € supp(€), we can compute
assoce 7, (P) in time O(T), then proby z ; (P) in time
O(1), and lastly counte  1(P) in time O(1). Overall,
we have so far spent time O(|supp(€)| - T'). Finally,
picking up sets using their probabilities and new values
is done in time O(|supp(€)]). a

We conclude this subsection with the following
theorem.

THEOREM 3.1. Let U be a universe. Let 0 < € < 1,
p.q,c € Ng, P C (g) and Q C (g) Let F C 2V be an
%e—parsimonious (n,p, q)-universal family with respect
to (P, Q) of size S, equipped with a T-membership query
procedure. Let € : P — Ny be a counter. Then, a
counter € : P — Ng such that

1. ¢ necessarily (with probability 1) represents in ex-
pectation €, and

2. with success probability at least 1 — l, ¢ (e,q)-
represents € with respect to Q and satisfies
|supp(€)| < O((%)2Slog c(log c + log ),

can be computed in time O(|supp(€)| - T).

Proof. Without loss of generality, we suppose that U €
F, else we just add U to F. By Lemma 3.1, to prove the
theorem, it suffices to compute in time O(|supp(€)|-T')
a counter € : (g) — Ny that necessarily represents
in expectation €, and that with probability at least
1- % is (£, F)-similar to € and satisfies |supp(€)| <
o((2 )QSlogclog(cS))

Fix L = f2 1n(4cSﬂ = O((1)?1og(cS)). By
Lemma 3.2 with ¢ = /2In(4c), with probability at most

82
2e"7 = 279 = L we have that the expected
size of the support of the output counter ¢ of (¢, F, L)-
counter sampling is upper bounded as follows.

E[|supp(€)[] < (€+ 1)SL.
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Moreover, by Lemma 3.4, € and ¢ are (g, F)-similar
1

with probability at least 1 — 5-. By union bound, the

probability that \supp(€)| > (¢4 1)SL or that € and ¢
are not (¢, F)-similar is at most 21(,—6-2( = 1. Thus, with
probability at least 1 — <, both |supp( @) < (@+1)SL =
O(loge- S - ( )2 log(cS)) O((1)2Slog c(log ¢ +log S))
and € and € are (g, F)-similar. Further, by Lemma
3.5, € is computed in time O(|supp(€)| - T). Lastly, by
Observation 1, ¢ necessarily represents in expectation
€. This completes the proof. a

We remark that as a corollary to this theorem (with
¢ = 2 and where the membership query procedure is
simply brute-force) and Proposition 2.1, we can already
assert the existence of representative counters of small
support.

3.2 Parsimonious Universal Families with
Membership Query Procedures We will be able to
equip our parsimonious universal families with efficient
membership query procedures only when we deal with
P and O that are “balancedly split”. Towards the
definition of this term, we first present the following
definition.

DEFINITION 9. Let t,k,p,b € N. A tuple U =
(U1,Us,...,Us) where Uy, Us,..., U are pairwise-
disjoint universes s called a t-partitioned uni-
verse.  Moreover, a function f : {1,2,...,t} —
{0,1,...,[bk/t]} that satisfies 22:1 f(@) =k is called
a (t,k,b)-splitting function.  Lastly, a pair (f,g)
of a (t, k,b)-splitting function [ : {1,2,...,t} —
{0,1,...,[bk/t]} and a function g : {1,2,...,t} —
{0,1,...,[bk/t]} that satisfies g < f and 25:1 g(i) =
p, is called a (t, k,p,b)-splitting function pair.

When t or (t,k,p,b) is clear from context, we do
not mention it explicitly. Notice that when p = k,
necessarily ¢ = f. We now present a definition which
will be useful only for product counters; by considering
it already here, we will be able to avoid repetition of
arguments.

Now, we define the notion of balancedly split sets.

DEFINITION 10. (Balancedly Split Sets I) Let
t,k,p,b € N withp < k. Let U = (Uy,Us,..., Up)
be a partitioned universe with U = \J'_, U;, and let

(f,9) be a splitting function pair. Then, P € (Z) 18

(U, f, g)-balancedly split if for every i € {1,2,...,t},
it holds that |P N U;| = g(i); in case k = p, P is

(U, f)-balancedly split . Further, PEAfI,“ - (g) denotes

the collection of all (U, f, g)-balancedly split sets. More-
over, @ € (k(fp) is complementary (U, f, g)-balancedly

split if for every i € {1,2,...,t}, it holds that
|QNU;| = f(i) —g(i). Further, Q%B?; C (kl_]p) denotes

the collection of all complementary (U, f, g)-balancedly
split sets.

When U, f and g are clear from context, we do not
mention it explicitly.

Our computation of universal families will be done
in a sampling procedure defined as follows.

DEFINITION 11. (Universal Family Sampling) Let
t,k,p,b e Nwithp <k, 0<e<1andc,d>1. Let
U = (Uy,Us,...,U;) be a partitioned universe with
U = U§:1 U; of size n, and let (f,g) be a splitting
function pair. Then, (U, f,g,¢, c,d)-universal family
sampling is the randomized procedure that constructs a
family F C 2Y as follows.

e Forie{l,2,...,t}:

— Forje{1,2,...,s;} with s; being
(d- f(i))!® 1
. - ~ - —=10k1
S 1(0) — gy @ o)
where € = IH(HE), construct a set F; ; C U; as

follows. FEach element in U; is inserted inde-

g9(4)

pendently with probability 0 nto Fj ;.
— Denote F; = {F; ; : j € {1,2 ,sz}}
o Then, construct F = {Fy j, U F» U,

Fljle]:l, 1326]:2,... theft}

We remark that d can depend on any argument of
interest (e.g., k and p). We begin the analysis of the
sampling procedure by an observation concerning its
time complexity and by giving an upper bound on the
size of the family it produces.

OBSERVATION 3. Lett,k,p,b e Nwithp <k, 0<e<1
and c,d > 1. Let U = (Uy,Us, ..., U;) be a partitioned
universe with U = Ule U; of size n, and let (f,g) be
a splitting function pair. Then, the time complexity of
(U, b, f,g,¢,c¢,d)-universal is O(|F|n), where F C 2Y is
the output family.

For lack of space, we omit the proof of the following
lemma.

LEMMA 3.6. Let t,k,p,b € N with p < k, 0 <
€ < 1 and ¢,d > 1. Let U = (U,Us,...,U)
be a partitioned universe with U = Ule U; of
size n, and let (f,g) be a splitting function pair.
Then, the output family F C 2Y of (U,b, f,g,¢, ¢, d)-
universal family sampling necessarily satisfies |F]|

(k)L s e
pP(dk — p)k—» (1n2(1+e) 10%" - In(nc))".
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We proceed by giving a lower bound for the proba-
bility of failure of the procedure to produce a parsimo-
nious universal family with respect to a balancedly split
pair.

LEMMA 3.7. Let t,k,p,b e Nwithp <k, 0<e <1
and ¢,d > 1. Let U = (Uy,Us,...,U;) be a partitioned
universe with U = |J'_, Ui of size n, and let (f,g) be a
splitting function pair. With probability at least 1 — 2i

the output family F C 2Y of (U, b, f, g, €, ¢, d)-universal
family sampling is an e-parsimonious (n, p, q)-universal

family with respect to (PE?E, QEE:‘;L) with correction

¢
1

factor upper bounded by <(1n(1+e))2 - 10k - ln(nc)> .
t

Proof. Towards the proof of the lemma, we first show
that the following claim is correct.

Cram 1. With probability at least 1 — 5, for ev-
ery i € {1,2,...,t}, we have that F; is an €-
parsimonious (|U;, g(3), f(i) — g(i))-universal family
with rfspect to ((g(;)), f(i)_"g(i))) with correction factor
T, = = 10k - In(nc).

Proof. By union bound, it suffices to choose some i €
{1,2,...,t}, and prove that with failure probability
at most %, we have that F; is an éparsimonious
(|U4], g() f(@) — g(4))-universal family with respect

to ((g( )) (f(i)[f’g(i))) with correction factor 7; =
1
= + 10k - In(nc).

there are at most |U; |f(' < n* pairs of disjoint sets

P e (g(; ) and Q € ( (i) = g(z)) it suffices to choose some

such pair of disjoint sets P € (g(i)) and Q € (f(i)[fg(i))v
it

Further, by union bound, because

and prove that with failure probability at most
holds that (1 —€)T; < |F[P, Q] < (1 +9)T;.

Towards the proof of the above, observe that each
set F;; € JF; contains P and is disjoint from @ with
g(i)9) (d - f(i) — g(i))T 9@

(d- f(i))7®

expected number of sets in F; that contain P and are
disjoint from @ is T;. Because the sets in F; are sampled
independently from one another, by Chernoff bound
(Proposition 2.2), we have that

2ctnk

Thus, the

probability

Pr(||F7[P, Q]| - Ti| > €T;)
S 2@7%
2 2 1

— 2675k-ln(nc) — < <
(nc)®* ~— nt.nk.c = 2ct

Here, the last inequality follows since n > max(2,1).
This completes the proof of the claim. 0

We now return to the proof of the lemma. Let

= HTi where T; is the correction factor of F;.
i=1

Then, T =

t

1
= + 10k - In(nc) Due to Claim 1, to

prove the lemma it suffices to show that, under the
assumption that for every i € {1,2,...,t}, we have that
Fi C 2Y is an eparsimonious (|U;|, g(7), f(i) — g(i))-
universal family with respect to ((g%?)), (f(i)[fg(i)))7 it
holds that F is an e-parsimonious (n,p,q)-universal
family with respect to (PBAL QCBAL) with correction

factor T'. Towards the proof of this, consider some pair
of disjoint sets P € PBAL and Q € QCBAL). Then,

t

=[[1FPnU, QN

=1

| F1P, Q

Because P € PBAL and Q € QCBAL it holds that for

every i € {1,2,...,t}, PNU; € (g[{;)) and QNU; €

(f(i)[fg(i))' Thus, for every i € {1,2,...,t}, because
F; is an eparsimonious (|U;], g(i), f (i) — g(¢))-universal

family with respect to ((g%l))7 ( f(i)(fq(i)) , it holds that

1-9T; < |FRPNULQNU]| < (14+€)T;

Therefore, on the one hand, |F[P,Q] <
¢
[[a+ar = 1 + 9 - T =
i=1

In(1
(1+L +€))t-T<eln<1+6>'T (1+e-T On

t
the other hand, F[P, Q]

(1- YT > (1 ln( €)-T>1—¢)-T.

Here, the inequality (1 — 2 (HE)) > (1 —1In(1 +¢)

follows since the larger ¢ is (starting at 1), the larger

_ 1n(1+6) )t (
?

In(1+¢)
t

the value of (1 approaching e~ (1+€)) "and
the inequality In(1 + €) < € follows from Taylor series.
Because the choice of the disjoint sets P € PBAL and
Q € QCBAL was arbitrary, the proof is complete. O

To devise an efficient membership query procedure,
we also need to upper bound, for any set P, the number
of sets in F that contain P. We consider any choice of
P of size p’ < p rather than just any choice of P of size
exactly p as that is required for product counters.

LEMMA 3.8. Let t,k,p,b € N with p < k, 0 <
e < 1and c,d > 1. Let U = (Uy,Us,...,Uy) be
a partitioned universe with U = |Ji_, U; of size n,
and let (f,g) be a (t,k,p,b)-splitting function pair.
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With probability at least 1 — i, the output family

F C 2V of (U,b,f,g,¢ c,d)-universal family sam-
pling has the following property: For every ¢ be
such that (f,q') is a (t,k,p’,b)-splitting function pair
(for some p' < p) where ¢ < g and set P €

PIBJAfL,, we have that {F € F : P C F}| <

A% dek 1 5 .
R gkep (D (2 o3 .
G G (s a(ne))

Proof. Towards the proof of the lemma, we first show
that the following claim is correct.

Cra 2. With  probability at least 1 — i,
for every i € {1,2,...,t}, ¢'(i) < g(i) and
P € (y), we have that |{F € F; : P C F}| <
AR (O ORI B LAR (ORI S U S
d- f(i) — g(i) g(%) In?(1 + ¢)

203 - In(nc).
- d-f (i)
Proof. Let E = (d_f(i)fg(i))
m - 10k - In(nc). By union bound and be-
cause \(gp)
{1,2,...,t},4'(i) < g(i) and P € (gfj(ii)), and prove
that with failure probability at most ﬁ, we have
that [{F € F; : P C F}| < E;. To this end, ob-
serve that each set F;; € JF; contains P with proba-
S gli)

bility (=———~
d- f(i)
in F; that contain P is E;. Because the sets in F; are
sampled independently from one another, by Chernoff
bound (Proposition 2.2), we have that

F(@)—g@) . (%@)f'))g(i)—g’(i)
g 1

< nF, it suffices to choose some i €

)g/(i). Thus, the expected number of sets

Pr(||FIP.Ql| — Ei| > E;) <2¢ %
2

1
< 26—5k'lIl(TLC) — < < _
- (nc)® ~— nt.-nk.c = 2ct

Here, the last inequality follows since n > max(2,t).
This completes the proof of the claim. 0

We now return to the proof of the lemma.
Due to Claim 1, to prove the lemma it suf-
fices to show that, under the assumption that
for every i € {1,2,...,t},¢'(1) < g(i) and

€ (9%)), we have that {F € F;, : P C F}| <
(— LDy ro-00) (LS D gy, 1

d- f(i) —g(i) g(i) In*(1 + ¢)
20k - In(nc), it holds that for every g’ be such that
(f.d")isal(t,k p b)-splitting function pair where ¢’ < g
andsetPEPUf ,, we have that |{FF€ F: PC F}| <
(@R)fr dok, 1
(d-k—p)kr " p In%(1 + ¢)

Towards the proof of this, consider some set P €

- 20k* - In(nc))".

BAL
Py o

Then,

t
=[[{FeF:PnU;CF}

=1

Because P € PgAfL,, it holds that for ev-

ery ¢ € {1,...,t}, P nNnU € (gf’(;)), and

{FeF:PCF}

therefore |{FF € F; PNU <C F} <
- ;l('l_)f(_i)g(i))fmg(i) _ (dgégi))gu)g/(i) . h12(11+e)
20k - In(nc). Thus,
{FeF: PC F}|
1;[ (Z))f() a(i) . (d;{igl))gu)—g’(i)
2 (11+€) 20!’4:3 -In(nc))

SAONENTOSO SRS (OO
- o) ) )

t
~(21-20k3-1n(n0)> .
In“(1+4¢)
Recall that f : {1,2,...,t} — {1,2,...,[bk/t]}
and ¢ < g < f satisfy 25:1 @) =k,
Zzzlg(i) = p and Zleg’(i) = p’. Relaxing
the supposition f : {1,2,...,t} — {1,2,...,[bk/t]}

to f {1,2,..
1) ri-gt . (2500 60

fH Ry O TG L TG
tamed When f() =k, g(i) = p and ¢'(3) = p’ for
some i € {1,2,...,t}, and f(i') = g(¢') = ¢'(i') =0
for all other ¢/ € {1,2,...,t} \ {¢}. Then, the value is
(d-k)k=p d-k

(d-k—p)k—p g P )p—p'_
O

st — {1,2,...,k}, the maximum

9'(D) ig at-

This completes the proof.

The property in Lemma 3.7 together with the
product-like manner in which we construct F yields an
efficient membership query procedure as follows.

DEFINITION 12. (Membership Query Procedure)

Let tk,p,b € N withp < k,0<e<1andcd?>1.
Let U = (Uy,Us, ..., Uy) be a partitioned universe with
U= UE:l U; of sizen. Let (f,qg) be a(t,k,p,b)-splitting
function pair. Let F C 2V be the output family of
(U, b, f,g,¢,c¢,d)-universal family sampling. Then,
the procedure MEMBERSHIP is defined as follows.
Let {F;}._, be the collection of families sampled to
construct F (see Definition 11). Given ¢’ such that
(f,9') is a (t,k,p',b)-splitting function pair (for some
p' < p) where ¢ < g and P € P%ALg,, MEMBERSHIP
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nawely computes F, = {F;;, € F; : PNU; C F; .}
by iterating over every set in F;; then, it outputs
{Fij, U Faj, U -~ U Fy, o Py € F, By, €
Fhoo.. Fyj, € Fi}, compuled using naive enumeration.

We now assert that our procedure is indeed an
efficient membership query procedure as a corollary of
Lemma 3.8. For lack of space, we omit the proof of this
corollary.

COROLLARY 3.2. Let t,k,p,b € N with p < k, 0 <
e < 1and c,d > 1. Let U = (Uy,Us,...,U;) be a
partitioned universe with U = U§:1 U; of size n. Let
(f,9) be a (f,g) be a (t, k,p,b)-splitting function pair.
Let F C 2Y be the output family of (U,b, f,g, ¢ c,d)-
universal family sampling. Then, with probability at
least 1 — i, for every ¢’ be such that (f,g') is a
(t,k,p',b)-splitting function pair (for some p' < p)
where ¢ < g, the procedure MEMBERSHIP is a T-

membership query procedure with respect to PSA}L , for

T — ((d X bk,)bk/t + (d dkkp)k_p ) (dz')k)p_p/>

1 t
. <2 - 20k ~ln(nc)> .

In“(1+¢)

By putting together Observation 3, Lemma 3.6,
Lemma 3.7 and Corollary 3.2, we derive our main
statement regarding the produced family F.

THEOREM 3.2. Let t,k,p,be N withp <k, 0<e<1
and ¢,d > 1. Let U = (Uy,Us,...,U;) be a partitioned
universe with U = |J'_, Ui of size n, and let (f,g) be a
splitting function pair. With probability at least 1 — %,
the output family F C 2Y of (U, b, f, g, €, ¢, d)-universal
family sampling, computed in time O(|F|n), satisfies all
of the following conditions.

(k) (1
1. |F| < pp(dk’—p)k_p <1n2(1+€)

2. F is an e-parsimonious (n,p,k — p)-universal

' ~ BAL ~CBAL
family — with  respect  to  (Pg T Q5 N g)

whose correction factor is upper bounded by

t
-10k3 - 1n(nc)> .

( 1

In?(1 4 ¢€)

3. With respect to F and any g’ be such that (f,q’) is a
(t,k,p',b)-splitting function pair (for some p’ < p)
where ¢ < g, MEMBERSHIP is a T-membership

query procedure with respect to PSAfL , for

T = <(d . bk)bk/t + (dk)k—p(dk)p—p)

dk —p p

t
-10%3 ~1n(nc)> .

1 t
. (2 - 20%3 ~1n(nc)> .
In“(1+¢)

In partlcular we will be interested in the case where
b=2 ¢e= 5k27p = p and d = 1.447 = O(1); later,
we will run our entire process multiple times to enable
having arbitrarily small error. Then, (ﬁ)t < (e—
€2/2)t (by Taylor series), upper bounded by 20(Vklogh)
Further, we will choose ¢ > n and t = [Vk]. By

these substitutions, we obtain the following corollary
of Theorem 3.2.

COROLLARY 3.3. Let k,p € N with p < k, and ¢ > 1.
Let U = (U, Us, .. me) be a partitioned universe

with U = U(\f] U; of size n < ¢, and let (f,g) be a
splitting function pair. With probability at least 1 — l
the output family F C 2V of (U,2, f,g, 1511,62 ,c, 1. 447)
universal family sampling, computed in time O(|F|n),
satisfies all of the following conditions.

(1.447k)*
pP(1.447k — p)k—

1. |F| < - 0(Vklogh) ‘logﬂ c.

2. F is a lnkz -parsimonious (n,p,k — p)-universal
family with respect to (PBAL, QCBAL),

3. With respect to F, MEMBERSHIP is a T-
membership query procedure for

k—p
_ 1447k . 20(\/Elog k)) . log\/E c.
1.447k — p

3.3 Reducing a Problem to Its Split Version
Because we only deal with balancedly split sets, we
now develop a simple procedure whose employment will
allow us to reduce the general case to one focused only
on balancedly split sets. To this end, we need the
following definition.

DEFINITION 13. (Balancedly Split Sets IT) Let
t,k,b € N. Let U = (Uy,Us,...,U;) be a partitioned
universe with U = |Ji_, U;. Then, P € ((k]) is (U, k, b)-
balancedly split if for every i € {1,2,...,t}, it holds
that |P N U;| < [bk/t].

We now present the procedure.

LEMMA 3.9. Given t,k,b € N and ¢ > 1, a universe U
of sizem, and 0 < § < 1 with b2 k > ln(4t), a collection
U of ézkln(an) t-partitioned umfuerses over U such
that the following property holds with probability at least
1—1 (resp. 1) can be computed in time O(ns5k1In(nc)):
for every set P € (g), the (resp. expected) number of

Copyright © 2021 by SIAM

192 Unauthorized reproduction of this article is prohibited



Downloaded 09/30/21 to 169.231.114.215 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

partitioned universes U € U such that P is (U, k,b
balancedly split is between (1 — 6)X and (1 + §)X
(resp. exactly X ) for some X = X (n,k,t,b,8) > 0. (We
note that X can be computed in time O(JU] - (2 Eyt)).

Proof. Denote r = stkln(2nc).  Given the in-
put t k,c,U,b,6, the algorithm constructs U =
{U1,U2,.. U, } as follows. For i = 1,2,...,r, the
partitioned universe U; = (U;1,U;2,...,U;,) is con-
structed as follows. Each element v € U is inserted
into exactly one part U;; where the choices of j €
{1,2,...,t} are made independently and uniformly at
random. Clearly, the time complexity of the algorithm
is O(nr).

Let X denote the expected number of partitioned
universes U € U such that any set P € (g) is (U, k, b)-
balancedly split. Note that X is the same for all sets
P e (g), thus it is well defined. The exact value of X
will be calculated later.

Now, arbitrarily choose some set P € (g) Addi-
tionally, consider some i € {1,2,...,r}. Notice that for
any j € {1,2,...,t}, the expected number of elements
in P contained in U; ; is k/t, therefore Chernoff bound
(Proposition 2.2) implies that the probability that the
number of elements in P contained in U; ; is not upper

bounded by [bk/t] is at most 2e~ £ < 9e=In(h) = o
where the inequality follows from the supposition b2 % >
In(4t) in the lemma. Then, by union bound, the proba-
bility that P is not (U, k, b)-balancedly split is at most
t- % , hence the probability that it is (U, k,b)-
balancedly split is at least 1. Therefore, X > 5. In
turn, by Chernoff bound (Proposition 2.2) and this
lower bound on X, the probability that the number of
partitioned universes U € U such that P is (U, k,b)-
balancedly split is not between (1—9)X and (1+9)X is

2 27‘
at most 2e~ % < 2e~ 1" = 2ekl(no) = _2 < L
— (2nc)k — nkc

U

Since the choice of P € (k) was arbitrary and by
union bound, the probability that there exists P € (g)
such that the number of partitioned universes U € U
such that P is (U, k, €)-balancedly split is not between
(1—6)X and (1+6)X is upper bounded by (}) = < 1.

Thus, with probability at least 1 — %, for every set P €

(V) the number of partitioned universes U € U such
that P is (U, k, b)-balancedly split is between (1 — §)X
and (14 0)X

It remains to calculate X. To this end, arbitrar-
ily choose some set P € (V) and i € {1,2,...,7}.
Clearly, X = r .Y, where Y is the probability that
P is (U;, k,b)-balancedly split. Now, observe that

t—1
Y =30 tatierz oy (0) (Vo) (k_ze’fl ).
s.t.Z;:l Li=k

(1/t)%. This completes the proof. 0

We now present the our main utility of this pro-
cedure, which is a reduction of a problem to a “split”
version of itself. To this end, we first define the notion
of a split version of a problem.

DEFINITION 14. (Splittable Problem) Let II be a
problem whose input consists, among possibly other
components, of a universe U of size n and k € N, and
whose solutions are subsets (resp. ordered subsets) of U
of size k. Such a problem Il is said to be splittable.
Then, the general split version of Il is defined as fol-
lows. Its input consists of the same components as the
input of I, and in addition, of a t-partitioned universe
U for somet € N, b € N and a (t, k, b)-splitting function
f, and whose solutions are all the subsets (resp. ordered
subsets) of U that are both solutions of Il and are (U, f)-
balancedly split. When t = vk and b = 2, the general
split version is called the split version in short.

Next, we present the reduction.

LeEMMA 3.10. Let II be a splittable problem such that
the number of solutions of the general split version
of I can be approximately counted with multiplicative
error (1 £ a) (resp. and the expectation equals the exact
number of solutions) in time T = T(a,t,b) (where
t,b are input to the split version) and with success
probability at least 1 — % Then, for any ¢ € N such
that (2bk/t)* - ékln(nc) L < and 0 < B < 1, the
number of solutions of 11 can be approrimately counted
with multiplicative error (1 + a)(1 £ 8) (resp. and the
expectation equals the exact number of solutions) in time
O(((Qbk/t)t-T+n)~%k‘ln(nc)) where b £ > In(4t) and

with success probability at least 1 — %

Proof. Let ALG1 be the algorithm supposed to approx-
imately count solutions of the general split version of II
with multiplicative error (1 £ «) where the expectation
equals the exact number of solutions in time 7" and with
success probability at least 1 — % We remark that if
the condition regarding the expectation is not assumed
to hold, then disregard the arguments below concerning
its satisfaction for the output. Then, we design an algo-
rithm ALG2 as follows. Given an instance I of II, ¢ € N
and 0 < 8 < 1, ALG2 executes the following operations.

1. Use the algorithm in Lemma 3.9 to compute a
collection U of Z;kIn(4nc) t-partitioned universes
over U such that the following property holds with
probability at least 1 — 5~ (resp. 1): for every set

P e (Y), the (resp. expected) number of parti-
tioned universes U € U such that P is (U, k,b)-
balancedly split is between (1 — 8)X and (1+ 3)X

(resp. exactly X) for some X = X(n, k,t,b,3) > 0.
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2. Let F be the family of all (¢, k,b)-splitting func-
tions.

3. For every partitioned universe U € U:

(a) For every f € F:

i. Run ALGl on (I,U,b, f) as input, and
denote its output by Oﬁ I

(b) Let Og = Y Og ;-
fer

1
4. Output O = < Z Og.
Uecu

By Lemma 3.9, Step 1 is performed in time
O(nﬁ%kln(nc)). Now, observe that |F| < ([bk/t] +
1)t = O((2bk/t)"). Thus, we perform Step 3(a)i
U|-|F| = (’)(ékln(nc) -(20k /t)!) times, where each sin-
gle performance is done in time O(T'). Thus, the total
running time is indeed O(((2bk/t)*-T +n)- B—Ekln(nc)).

By union bound, with probability at least 1 —
U||F|- L — 5, which is lower bounded by 1 — (2bk/t)" -
%kln(nc) -2 — & >1—1 the call to the algorithm
in Lemma 3.9 as well as all calls to ALG2 are successful.
Thus, to prove the lemma, it suffices to prove that E[O]
is the exact number of solutions, and that under the
aforementioned condition (of all calls being successful),
the number of solutions of II is necessarily approximated
by O with multiplicative error (1 + «)(1 £ 5).

First, observe that for any U € U, the number of
(U, k, b)-balancedly split solutions is exactly the sum
over all f € F of the number of (U, f)-balancedly
split solutions. Thus, because the approximation factor
of ALG2 is (1 4+ «) and the expectation is exact, we
have that for any U € U, the number of (U,k,b)-
balancedly split solutions is exactly E[Og], and (under
the aforementioned condition) it is approximated by Og
with multiplicative error (1 &+ «). Now, recall that for
every set P € (Z) (and, in particular, for every solution
of II), the number of partitioned universes U € U such
that P is (U, k, b)-balancedly split is in expectation X,
and (under the aforementioned condition) it is between

(1 -p)X and (14 B)X. Since O = % Z Og, we
Ueld

conclude that indeed the number of solutions of II is
E[O], and that (under the aforementioned condition)
it is necessarily approximated by O with multiplicative
error (1+ a)(1£p). 0

For the (non-general) split version and o = 8 = %,
in which we will be specifically interested, we obtain the
following corollary.

COROLLARY 3.4. Let II be a splittable problem such
that the number of solutions of the split version of 11
can be approrimately counted with multiplicative error
(1+ %) where the expectation equals the exact number
of solutions in time T and with success probability

at least 1 — 5 Then, for any ¢ € N such that

4k(4vE)VE In(nc) - L < 1 the number of solutions of

IT can be approximately counted with multiplicative error

between % and 2& where the expectation equals the exact

number of solutions in time (9((20(\@1%@ T +n)-
k1n(nc)) and with success probability at least 1 — 1.

Lastly, we give a lemma that can be considered
folklore (but whose proof is given for completeness),
whose utility is to enable us to focus on achieving
some small constant multiplicative error for a counting
problem, as this can be boosted to an arbitrarily small
error as follows.

LEMMA 3.11. Let II be a problem that admits a ran-
domized algorithm that, given an instance of II whose
number of solutions is X, returns a numberY such that
ElY]=X and aX <Y < 3X for some 0 < a <1 and
B > 1 in time T with success probability 1 — % Then,

¢ 1
Jor any 0 < e <1 and ¢ > 1 such that ; < 5- where

t= i—fﬂn(élcﬂ, IT also admits an algorithm that, given
an instance of II whose number of solutions is X, re-
turns a number Z such that (1 —e)X < Z < (1+ €)X
in tilme (’)(eﬁzlogc - T) with success probability at least

o
Proof. Let ALGL denote the algorithm given in the
supposition of the lemma. Let 0 < ¢ < 1. Then, we
design an algorithm ALG2 as follows. Given an instance
I of T, ALG2 executes the following operations.

1. For i = 1,2,...¢: Call ALG1 with I as input and
let Y; denote the result.

2. Output Z = 1. S Y

First, notice that the time complexity of ALG2 is O(¢ -
T) = O(Eﬁzlogc - T). Second, by union bound, with
success probability at least 1 — 5 >1- i, all the
calls it makes to ALG1 are successful. Thus, by union
bound, to prove the lemma, it suffices to prove that
under the assumption that all the calls made to ALG1
are successful, with probability at least 1 — i, it holds
that (1—e)X <Z < (1+¢e)X.

For alli € {1,2,...,t}, denote Y/ = BY)Z( Moreover,

denote Z' = Y"!_, Y/. Notice that (1 —¢)X < Z < (1+
€)X if and only if (1 — e)% <Z'<(1+ 6)%, and thus it
suffices to consider the probability that the latter event
occurs. Since all calls are assumed to be successful,
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we have that 0 < Y/ < 1. Moreover, by linearity of
expectation, E[Z ] St E[Y/] = Zf 1 Eﬁ[}; =t/p.
/ < 1+ e)f if and only if

Therefore, (1 — e)% <
|Z' — E[Z']| < eE[Z'], and thus it further suffices to
consider the probability that the latter event occurs.
By Chernoff Bound (Proposition 2.2), we have that

2Bz
2

Pr(|Z' — E[Z')| > €E[Z']) < 2e”

1
-9 —In(4c) —
¢ 2c
Thus, |Z' — E[Z']| < eE[Z'] with probability at least
— i As claimed above, this completes the proof.
0

Combining Corollary 3.4 and Lemma 3.11, we have
the following read-to-use corollary. We did not make
any attempt to optimize the lower bound on ¢’, but just
give a short expression. Clearly, the success probability
can be boosted to any constant close to 1. To simplify
notation, we will work with 1%.

COROLLARY 3.5. Let Il be a splittable problem such
that the number of solutions of the split version of 11
can be approximated with multiplicative error (1 + %)
in time T > n where the expectation equals the exact
number of solutions, and with success probability at
least 1 — i, Then, for any 0 < e < 1 such that

> = (1000[)\[ In(n ) the number of solutions of
11 can be appro:mmated wzth multzplzcatwe error (1 £ ¢)
in time 20(Vklogk) . T
probability at least

L (logn+log 1)) and with success

Proof. Denote ¢’ = 2ct where ¢ = 10, a = 1, 8 = 21
and ¢t = QB In(4c). Then, 4k(4\/>)fln(nc”) L <

Thus, by Corollary 3.4, the number of solutlons of 1T
can be approx1mately counted with multiplicative error
between 1 and 21 in time T’ = O((20Wklogk) . n)

kIn(nc”)) and with success probability at least 1 — .
Therefore, by Lemma 3.11, the number of solutions of I
can be approximated with multiplicative error (1+e€) in
time (’)(Eﬁ2 logc-T') = 20Wklogk) .. L (oo n + log 1)
and with success probability at least 5. a

NH

4 Product Functions and Applications

Due to lack of space, these details are relegated to the
full version of the papers. Here, we only briefly discuss
them.

4.1 Extension to Product Functions. The com-
putation of a representative function for a product func-
tion is technically involved. Among the main difficulties

being faced here is the fact that we cannot even iterate
over the support of the input product function (since
that in itself is too costly) and decide for each set in the
support whether to insert it to the support of the out-
put function (with some probability and new assigned
value). Instead, we pre-determine how many sets to
pick up, and devise a somewhat complex mechanism
that allows us to efficiently sample sets from the support
according to some distribution without ever computing
the support! In particular, we now have two approx-
imately parsimonious families rather than one (where
one is meant to separate between sets in P and sets in
Q, and the other is meant to separate between sets in
P1 and sets in Py), and the sampling is done in three
stages after some critical preprocessing to efficiently de-
termine (in part) the probability distributions used in
these stages. The first stage involves sampling a set
P, from the support of €;, the second (which depends
on the outcome of the first) involves sampling a pair of
sets from our approximately parsimonious families, and
the third (which depends on the outcome of the first
and second) involves sampling a set P, disjoint from P
from the support of €5, so as to pick up P, UP,. We de-
fer further technical details on the extension to product
functions to the full version.

4.2 Applications Our algorithm for #MULTILIN-
EAR DETECTION on skewed circuits is based on dynamic
programming over the nodes of the input circuit. For
each node, we store a counter that assigns to each mono-
mial (encoded by the set containing its variables) of the
polynomial of the subcircuit rooted at the current node
its coefficient with “small error”. (More precisely, for
each node together with a combination of other argu-
ments, we store one such counter, but for the sake of
simplicity of this overview, we ignore these other ar-
guments here.) When we consider a node, we have
already computed the aforementioned counters for all
its outgoing neighbours. So, as the circuit is skewed,
we can explicitly compute the counter for the current
node, and then compute a representative counter for it
and store the representative counter instead of it (else,
even though the circuit is skewed, after several levels
just writing the polynomial via a counter explicitly may
take time (7)). When we reach the root, we can solve
the problem.

On general (monotone) circuits we cannot write
the polynomial (and hence the counter) of a node that
results from the multiplication of the polynomials stored
for its outgoing neighbours (within the desired time
complexity) even after their sized have already been
reduced by representation. So, instead, here we use
our computation for product counters that sidesteps
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this. Having attained algorithms for #MULTILINEAR
DETECTION on skewed and general circuits, all our
other applications, including the algorithm for #k-
PaTH, follow just by using reductions known in the
literature and observing that they are parsimonious.

5 Conclusion and Open Problems

In this paper, we presented a general tool to design FPT-
approximation schemes for counting problems. Specif-
ically, we introduced the notion of a representative
function where our main contribution is a novel sam-
pling procedure to compute representative functions
of small support efficiently. Along the way, we de-
veloped a data structure to efficiently query member-
ship and disjointness in approximately universal fami-
lies, which is of independent interest. We have demon-
strated the wide applicability of our tool by developing
a O((2.619%+|1|°W). % |I|)-time algorithm for #MUL-
TILINEAR MONOMIAL DETECTION on skewed circuits,
#k-PATH, and several other problems as well (includ-
ing #q-SET p-PACKING with k = ¢p, #¢-DIMENSIONAL
p-MATCHING with & = (¢ — 1)p, # GrRaPH Mo-
TIF, and #SUBGRAPH [SOMORPHISM for pattern graphs
of constant treewidth). Additionally, we developed a
O((3.841F +|11°M). & - |I|)-time algorithm for #MULTI-
LINEAR MONOMIAL DETECTION on general (monotone)
circuits.

We conclude our paper with a few open problems.

e Does the #k-PATH problem admit an FPT-
approximation scheme with running time
2k(%)0(1)n0(1)?

e Does the #MULTILINEAR MONOMIAL DETEC-
TION problem admit an FPT-approximation scheme
with running time substantially better than
3.841’“(%)0(1)710(1)? In particular, can the time
bound 2.6191“(%)0(1)710(1) given for #k-PATH be
matched?

e Can our result for the #MULTILINEAR MONOMIAL
DETECTION problem be extended to non-monotone
arithmetic circuits (where subtraction is allowed)?

e Are there relations between techniques based on
exterior algebra, Hadamard product, warring rank
and representative functions?

e Can we compute representative functions efficiently
with respect to linear matroids rather than only
set systems (i.e., uniform matroids)? For more
information on representation with respect to a
matroid, we refer to [FLPS16].

e We remark that results on bounded skewness by
themselves may be of interest in this context. Can
we derive a general theorem about the problems

that admits them? What can be said in this context
on VP-circuits and homomorphism polynomials?

Acknowledgements. We thank one of the review-
ers of a previous version of the paper for telling us about
monotone arithmetic circuits.
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