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A B S T R A C T

The problem of detecting anomalies in time series from network measurements has been widely studied and is
a topic of fundamental importance. Many anomaly detection methods are based on the inspection of packets
collected at the network core routers, with consequent disadvantages in terms of computational cost and
privacy. We propose an alternative method in which packet header inspection is not needed. The method is
based on the extraction of a normal subspace obtained by the tensor decomposition technique considering
the correlation among metrics. In its online version, the proposed approach for tensor decomposition allows
efficient tracking of changes in the normal subspace. The flexibility of the method is illustrated by applying
it to distinct examples that include supervised and unsupervised anomaly detection. The examples use actual
data collected at residential routers.
1. Introduction

The problem of detecting anomalous events in computer networks
has been widely studied due to its relevance to network operators.
However, these events are in general very hard to identify [1]. The
problem is challenging due to the wide variety of anomalies, low
frequency of occurrences, and the definition of what is considered
‘‘expected behavior’’ [2].

An application example among the countless existing ones is de-
tecting occasional changes in traffic patterns on a communication
channel caused by a distributed denial of service (DDoS) attack. DDoS
attacks represent a major threat to proper network operation, wasting
resources and creating network outages. For instance, DDoS attacks
targeted Amazon Web Services in October 2019 and were able to
disrupt different services [3].

Another example was the sudden and significant increase in the
mount of network traffic which was observed in several countries
hen social distance measures were enforced at the beginning of the
OVID-19 pandemic [4–6]. In addition, throughout the subsequent
onths, there has been an unprecedented growth in the overall number
f cyberattacks [7]; DDoS attacks reached record numbers and became
ore disruptive [8–10]. These events caused unusual changes in traffic
nd performance degradation in network services were reported world-
ide [11]. We show that both DDoS attacks (Section 6.5) and network
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performance degradation events (Section 7.3.3) were observed in our
dataset during the pandemic and other periods.

In general, anomaly detection is based on the analysis of packet
headers at the core of the network, with potentially high computational
cost and possible privacy issues. Our methodology differs from others
in that it does not use packet headers. Instead, we use only a small
amount of information such as byte and packet counts.

Network measurements are key to identifying network problems
[12]. In our work we analyzed data from passive and active measure-
ments collected at one-minute intervals from thousands of home routers
of a medium-sized ISP during several months.

The methodology is founded on tensor decomposition to detect and
diagnose anomalous events using multivariate time-series resulting
from the data obtained from our partner ISP. Tensor decomposition
is useful to extract normal patterns from the considered metrics, at
different time intervals, and to identify latent relationships between
them. We also devise a new online tensor decomposition method that
efficiently tracks changes in the normal subspace. Our results show
the effectiveness of our approach to detect anomalies in two differ-
ent scenarios used as examples. Nevertheless, we emphasize that the
methodology is general and can be employed in other scenarios.

This work shares similarities with [13,14], where a normal subspace
is defined by applying PCA and the residuals from the model are used
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to detect network anomalies. In our work, extraction of the normal
subspace is performed using the PARAFAC model [15], which naturally
allows the decomposition of multidimensional data.

The first application of our approach is to detect intentional anoma-
lies caused by DDoS attacks. We applied the offline and online versions
of our approach to the dataset that contains time-series of packets and
bit rates collected with non-intrusive measurements performed at home
routers. The results indicate that the online version is a viable approach
in practice. We also provide examples to show that anomalies can be
detected even when ground truth labels are not available. That is, our
method is applicable either as a supervised or unsupervised technique.

In our second application, we analyze time-series of packet loss
and latency collected at home routers aiming to identify periods when
performance is degraded to a sufficient degree that affects user’s per-
ception of the quality of service (QoS) provided by the ISP. In this
application, we are not interested in identifying the possible events
that caused performance to degrade either intentionally or non-inten-
tionally. Instead, our goal is to discover the time intervals where
performance was affected to such an extent that they adversely im-
pacted user services. The unsupervised method we devised can be
used not only to automatically identify intervals with poor network
performance but also to locate regions in the ISP topology that suffered
from degraded performance during these intervals. The examples we
provide are from a real world scenario and indicate that our method is
able to detect performance anomalies without previous knowledge of
labels. This is done by correlating our results with real events reported
by our partner ISP after concluding our analysis.

Contributions. Key contributions are summarized below:
∙ Tensor decomposition to detect network anomalies. Our framework is

based on tensor decomposition (Section 4). We show that the PARAFAC
model provides an interpretable and efficient way to extract expected
normal behavior, taking into account correlations among different
metrics. We illustrate the application in two scenarios using different
input metrics.

∙ New online tensor decomposition method. Our method is based on a
tensor window [16] (Section 5.2). The results show the efficiency and
good accuracy of the approach.

∙ Supervised and unsupervised anomaly detection. The proposed frame-
work is applicable both when labels for anomalies are available and
when they are not (supervised or unsupervised techniques). In the latter
case, we further enhanced the framework with statistical modeling or
unsupervised clustering applied to the residuals of the PARAFAC model
as a means of interpreting the final results.

∙ Use of real data collected at home routers. We use time-series
obtained from real network measurements collected at home routers to
evaluate the framework. Our method is capable of detecting different
types of anomalies, such as DDoS attacks (Section 6) and network
performance issues (Section 7), based on simple metrics and without
compromising user privacy.

∙ Analysis of network behavior during the COVID-19 pandemic. One
of the examples used data collected during the COVID-19 confinement
period. The results show that not only did performance degrade during
that period but also the occurrence of DDoS attacks. We have identified
both an intentional DDoS attack targeting the ISP (Section 6.5) and a
non-intentional degradation in performance (Section 7.3.3).

∙ Application to assess user QoE. As shown in one of the application
examples, the basic framework can be used to assess user QoE from the
data collected at home routers (Section 7.3.4).

Related work is presented in Section 2. The tensor decomposition
technique is discussed in Section 3. Section 4 describes the proposed
framework for anomaly detection and we explain how residuals are
extracted in both offline and online scenarios in Section 5. The DDoS
attack detection example application is presented in Section 6, and
Section 7 describes the second application example in which network
performance degradation intervals are identified. Section 8 concludes
our work.
2

2. Related work

Most prior work on network anomaly detection is based on packet
inspection in the core of the network [2,13,14,17,18], which requires
processing private/sensitive information from packet headers, such as
traffic volume between source and destination IPs and port number.
Recent work also employs packet inspection, but at home routers [19].
Our work relies on lightweight measurements at home routers without
requiring packet inspection, providing a simple, efficient and privacy-
preserving strategy.

A cyber attack may be thought of as a traffic anomaly. Prior work
from our group [20] focus on DDoS lightweight attack detection and
solely employs byte and packet counts collected at home routers to
detect an attack, similar to our present work. However, in [20] a
classifier is trained using simple traffic statistics over a small time
window, while we use tensor decomposition. Additionally, we show
that the foundation of our approach is applicable to detecting different
types of anomalies. PARAFAC produces interpretable models [15] and
we are able to infer the normal daily behavior of users which is central
for network managing and monitoring tasks [21] and one of the main
challenges in anomaly detection [1].

Additional works use subspace extraction methods (like PARAFAC)
to detect network anomalies. In one such work, Maruhashi et al. [17]
identify suspicious activities in the network, such as port scanning and
the spreading of worms, by searching for abnormal sub-graphs from
the patterns discovered by PARAFAC. Their method heavily depends
on manually choosing patterns deemed interesting. In addition, [17]
uses packet inspection, considering a dataset structured as ⟨source
IP × destination IP × timestamp or port number⟩. This is a typical
structure used for network analysis with tensor models based on packet
inspection. Instead, our work does not extract data from packet headers
and considers tensors in the form: ⟨residential router × network metric
× timestamp⟩.

The works of Lakhina et al. [13,14] apply PCA to define a normal
subspace. In [14] anomalies that span multiple traffic features (metrics)
are detected, similar to our work. However, PCA is a matrix-based
model and, unlike tensor-based models like PARAFAC, it requires that
multidimensional data is unfolded [22] into a single large matrix before
being applied. The PARAFAC model, on the other hand, preserves
correlations between different metrics in multidimensional data and,
as such, it is more robust to noise. Furthermore, under mild conditions
PARAFAC solution is unique, a very useful property. This differs from
PCA [15] (PCA’s solution is not unique).

Xie et al. [18] proposes an anomaly detection method using a
modified PARAFAC model that separates normal from sparse outlier
data during the optimization process. Unlike our approach, the method
of [18] requires a hyperparameter which is an upper limit to the
number of outliers. Subsequent work from the same authors followed
similar path [23]. Kasai et al. [24] also proposes a sparse tensor to
account for abnormal flows. However, all of the above works ignore
the interpretability of the model and evaluate the method using only
artificially generated attack data taken from arbitrary probability dis-
tributions. In contrast, we consider: (i) attack traffic generated using
real malware and an actual attack traffic directed to our partner ISP;
(ii) actual network performance degradation events.

We propose an online tensor decomposition approach based on
the sliding window method of Sun et al. [16]. Our solution incurs
a small computational cost appropriate to online applications while
maintaining good performance. Kasai et al. [24] also considers a tensor-
based online algorithm, makes use of the sliding window concept, and
modifies PARAFAC to deal with time and space complexities required
for an online approach. The work of [23] is another example targeted
to online usage where an incremental tensor factorization algorithm is
proposed in order to reduce storage and computational costs. The liter-
ature includes additional methods for online applications that propose
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Fig. 1. Framework for anomaly detection based on tensor decomposition.
modifications to the standard PARAFAC but do not use the concept of
windows [25,26].

We devise an online solution which is simpler than the above
methods and avoids the use of hyperparameters such as the upper limit
on the number of outliers that is necessary in [23]. In our approach, we
modify the standard PARAFAC decomposition to recalculate only part
of the model when the window slides, instead of updating it entirely, as
done in Kasai et al. [24]. In our method, only a fraction of the entries of
the time mode factor matrix are recomputed in an online fashion (see
Section 5.2.2 for details).

We extended our previous work in [27] in several ways. We de-
veloped a new unsupervised approach for traffic outlier detection. The
approach is assessed in detecting a real DDoS attack. We modified
our previous anomaly clustering technique training a Gaussian Mixture
Model using residuals of the PARAFAC model and showed that it was
able to detect additional real network events including: (i) the day of
improvement in the QoS resulting from interventions performed by
the ISP on its network and (ii) network service degradation caused
by two distinct events: a DDoS attack and the increase in residential
traffic when the COVID-19 confinement was issued. In addition, we
were able to correlate the results of the residual clustering using our
dataset with the quality of experience (QoE) observed by ISP clients as
extracted from the ISP customer ticket database. Finally, we compare
our residual-based model with an approach that makes immediate use
of the PARAFAC model loadings and show that the former was more
efficient in detecting anomalies in our dataset.

3. Background: Tensor decomposition

In this section we briefly present tensor decomposition and describe
our notation. For details we refer the reader to [22]. A tensor is
a multidimensional matrix denoted by  . We usually refer to the
dimensions of  as modes. A third-order tensor  ∈ R𝐼×𝐽×𝐾 can be
represented by a sum of three-way outer products [22] as follows,

 =  +  , 𝐚𝑟 ∈ R𝐼 ,𝐛𝑟 ∈ R𝐽 , 𝐜𝑟 ∈ R𝐾 , (1)

𝑖,𝑗,𝑘 =
𝑅
∑

𝑟=1
𝐚𝑟,𝑖𝐛𝑟,𝑗𝐜𝑟,𝑘, (2)

where  is the residual tensor and 𝑅 is the number of factors. The factor
matrices (or loadings) define model : 𝐴 = [𝐚1, 𝐚2, … , 𝐚𝑅] ∈ R𝐼×𝑅,
𝐵 = [𝐛1,𝐛2, … ,𝐛𝑅] ∈ R𝐽×𝑅, 𝐶 = [𝐜1, 𝐜2, … , 𝐜𝑅] ∈ R𝐾×𝑅. Following
standard notation, we let 𝐚𝑟 = 𝐴∶,𝑟, for 1 ≤ 𝑟 ≤ 𝑅, and 𝐚(𝑖) = 𝐴𝑖,∶, for
1 ≤ 𝑖 ≤ 𝐼 .

The PARAFAC decomposition is obtained by minimizing the sum of
squares of the residuals, i.e., the difference between  and . Such a
difference is a nonconvex function; however, if we fix two of the factor
matrices, the problem is reduced to a linear least squares regression
3

for the third matrix. This is the basis of the Alternating Least Squares
(ALS) procedure [15]. ALS estimates the factor matrices one at a time,
keeping the others fixed. The process iterates until a convergence
criterion is satisfied or there are no changes in the estimates.

In this work we use the method of Split-Half Validation (SV) [28] in
combination with Tucker Congruence Coefficient (TCC) [29] to estimate
𝑅 and evaluate whether the solution is unique and generalizable.

4. Framework

The proposed framework is sketched in Fig. 1. The first three steps
in the figure are executed regardless of whether labels are available
or not. For these two cases, measurement data is preprocessed, tensor
decomposition is applied, and residuals are extracted from the model.
Note that the key to detecting anomalies is the analysis of PARAFAC
residuals after they are calculated. The last step executed depends on
the availability of labels. When labels for anomalies can be obtained, a
supervised classifier is used to find the residual patterns associated with
the anomalies under investigation. On the other hand, when labels are
absent, two cases are considered, depending on whether anomalies are
expected to be rare or not. In the first case a statistical outlier detection
method is used and we classify as anomalies the residual samples
that deviate from the expected residual distribution. When anomalies
are anticipated not to be rare, unsupervised clustering methods are
employed and the resulting clusters are used as a means of interpreting
the anomalies. The steps in Fig. 1 are detailed below.

Preprocessing: In this step we perform data transformations needed to
apply tensor decomposition, such as data scaling and filtering.

Tensor decomposition: Tensor decomposition is applied to extract the
normal subspace. We use PARAFAC due to its properties (robustness
and unique solution) and the ability to support multivariate data [15].

Residual extraction: Residuals are extracted from the PARAFAC
model. Considering that anomalies are not well modeled by the normal
subspace, it would be possible to separate the normal behavior of the
data from the anomalies through residual analysis. In this work, we
account for both offline and online residual extraction. In the first
case, the residuals are extracted from a model parameterized using a
reference dataset (Section 5.1). The online procedure employs a sliding
time window that moves at regularly spaced intervals and at a speed
proportional to the rate at which new data is received. The model is
updated to include the samples in the current window and then new
residuals are extracted. (Section 5.2).

Anomaly detection: The final steps depend on the availability of
labels. When the dataset contains labeled anomalies, supervised clas-
sification is used. The application described in Section 6 provides an
example that uses a traffic dataset that contains DDoS attack traffic
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Fig. 2. Offline residual extraction.

dentified as such. We are also interested in applications where labels
or anomalies are unavailable or hard to obtain. When labels are
nknown and anomalies are believed rare, we use a statistical model to
stimate the expected behavior of the residuals. Our method identifies
s outliers the residuals that deviate from the expected behavior.
ection 6.5 shows an example of this case. When anomalies are not
xpected to be rare, we use residual clustering in order to interpret
he clustering results and categorize anomalies. We apply residual
lustering to the example in Section 7.

. Residual extraction

Our anomaly detection technique is based on the analysis of
ARAFAC residuals [15]. The model is built from time-series of resi-
ential traffic (first application) and then from loss and latency mea-
urements (second application) sampled continuously at every minute
n both cases. Anomalies are detected from deviations of the tensor
ecomposition model.

.1. Offline residual extraction

Residential traffic data exhibits strong daily patterns over time and
hus we chose to work with daily residential traffic time-series. We
enote each series as a Residence–Day pair, or RD pair for short.
Fig. 2 describes the offline residual extraction method. Let 𝐼 denote

he number of RD pairs in our dataset. We built a three-way tensor
ith modes: RD-pair, the measure of interest and the instant of time the
easurement was taken. Modes are indexed by 𝑖, 𝑗 and 𝑘, respectively.
et 𝑖,∶,∶ be the 𝑖th horizontal slice of tensor  , i.e., 𝑖,∶,∶ is a two-
imensional matrix obtained by fixing the RD pair mode at value 𝑖 [22].
hen, for each RD𝑖 with sampled values 𝑖,∶,∶ ∈ R1×𝐽×𝐾 , we obtain
model slice 𝑖,∶,∶ ∈ R1×𝐽×𝐾 using the PARAFAC ALS procedure.
esiduals are the difference between the model estimates and the input
ataset values 𝑖,∶,∶ = 𝑖,∶,∶ −𝑖,∶,∶, where 𝑖,∶,∶ ∈ R1×𝐽×𝐾 . Measure-
ents are performed at each residence every minute and the corre-
ponding time-series are divided into 24-hour periods. Then, 𝐾 = 1440.

After parameterizing the model , we obtain the residuals cor-
esponding to the measures of new RD pairs not previously used to
onstruct . Let ̃𝜅,∶,∶ denote the measures corresponding to a new
D𝜅 . We use factor matrices 𝐵 and 𝐶 from the previously trained model
(Eq. (2)) and the new values ̃𝜅,∶,∶ to obtain vector 𝐚̃(𝜅) ∈ R1×𝑅.

Factor matrices 𝐴̃, B and C produce model ̃𝜅,∶,∶, with corresponding
error ̃𝜅,∶,∶, where 𝐴̃𝜅,∶ = 𝐚̃(𝜅). Vector 𝐚̃(𝜅) is chosen to minimize
the quadratic error between model estimates and measurements. Let
̃𝜅,∶,∶(1) be the matrix unfolding of tensor ̃𝜅,∶,∶ in its first mode [22],
where ̃𝜅,∶,∶(1) ∈ R1×𝐽𝐾 . Then,

̃ ̃ ̃
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𝜅,∶,∶ = 𝜅,∶,∶ − 𝜅,∶,∶
Fig. 3. Online residual extraction.

⇒𝐚̃(𝜅)(𝐶 ⊙ 𝐵)𝑇 = ̃𝜅,∶,∶(1) − ̃𝜅,∶,∶(1)
⇒𝐚̃(𝜅) = ̃𝜅,∶,∶(1)((𝐶 ⊙ 𝐵)𝑇 )†, (3)

here 𝐶 ⊙ 𝐵 denotes the Khatri–Rao product [22] between matrices
and 𝐵 and 𝑀† denotes the Moore–Penrose pseudo-inverse of matrix
[22]. Note that both (𝐶 ⊙ 𝐵) ∈ R𝐽𝐾×𝑅 and ((𝐶 ⊙ 𝐵)𝑇 )† ∈ R𝐽𝐾×𝑅.

s vector 𝐚̃(𝜅) minimizes the quadratic error, the corresponding error
̃𝜅,∶,∶(1) is orthogonal to ((𝐶 ⊙ 𝐵)𝑇 )† which implies (3). Thus, the
residuals of RD𝜅 are obtained by ̃𝜅,∶,∶ = ̃𝜅,∶,∶ − ̃𝜅,∶,∶, where model
̃𝜅,∶,∶ ∈ R1×𝐽×𝐾 contains the new factor vector 𝐚̃(𝜅).

For the offline applications that uses daily time-series, one must
wait for a 24 h period to obtain new time-series for an entire day and
for all users (i.e., the measurements corresponding to RD pairs) and
residuals are computed when the new daily batch of series is available.
In addition, since statistics of network metrics may considerably change
after a long period of time it is necessary to check, from time to time,
if  is still a good model and, if needed, to retrain model . (The
Split-Half validation [28] is used for the check.) In the examples we
consider, no model retraining was needed even after several months.

5.2. Online residual extraction

The online method searches for anomalies in data by continuously
recomputing the model using PARAFAC. Since the data used on our ap-
plication is collected every minute from all residences that participated
in the measurement campaign, it is natural to use one minute time slots
and to process the data accordingly, to detect anomalies as new data
arrives. The online decomposition considers residences instead of RD
pairs as one of the tensor modes, and obtains a three-way tensor with
residence (mode 𝐴), the metrics of interest (mode 𝐵), and time (mode
𝐶). At every minute, using the new measurement values that arrive
from residences, the model is updated and residuals are extracted.

Fig. 3 shows how residuals are obtained. At every time slot 𝑡,
new measurement data arrives. This new set constitutes a matrix with
dimensions 𝐼 × 𝐽 , where 𝐼 is the number of residences and 𝐽 is the
number of different measures of interest (for instance, download and
upload byte counts). This matrix is represented by the vertical tensor
slice in Fig. 3. The window 𝑊 (shown in red in the figure) slides
to incorporate the slice with new samples to tensor  . Finally new
loadings 𝐴(𝑡;𝑊 ), 𝐵(𝑡;𝑊 ) and 𝐶(𝑡;𝑊 ) are calculated as indicated in
the following sections and the process repeats for the subsequent slots.
(For conciseness of notation, we drop the parameter 𝑊 from the factor
matrices.)

We propose two different online residual extraction schemes: Full
Window Optimization (FWO) which is based on [16] (Section 5.2.1),
and Partial Window Optimization (PWO), a simpler and more efficient
FWO variant (Section 5.2.2).

Fig. 4 illustrates the main difference between FWO and PWO. In
the figure, each rectangle represents the metrics of one residence for
a time slot. In the FWO method all window information (red/solid

rectangles) is used to compute factor matrices 𝐴, 𝐵 and 𝐶. On the other
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Fig. 4. Online tensor decomposition approaches (𝑊 = 4 time slots). Red time slots
(solid rectangles) are used to compute factor matrices 𝐴, 𝐵 and 𝐶. Blue time slots
(hatched rectangles) are used to compute factor matrices 𝐴 and 𝐵.

hand, in the PWO method, factor matrices 𝐴, 𝐵 are estimated with all
window information, as in FWO, but matrix 𝐶 is updated using only
the information from the last time slot. Note that both schemes allow
expansion of modes 𝐴 and 𝐵 in case new residences are added or new
metrics of interest are collected, respectively.

5.2.1. Full window optimization (FWO)
A simple approach to online tensor decomposition is based on a

tensor window [16] (𝑡;𝑊 ) ∈ R𝐼×𝐽×𝑊 over the time mode (mode 𝐶),
here 𝑊 refers to the window size. At every time slot 𝑡 the window
lides and a new tensor is formed by merging the preceding 𝑊 −1 slices
∶,∶,𝑡−𝑊 +1,… ,∶,∶,𝑡−1} with data ∶,∶,𝑡 ∈ R𝐼×𝐽×1 from slot 𝑡. Since our
raffic data exhibit daily patterns and we consider one minute slots, we
hoose 𝑊 = 1440 minutes.
To obtain models in FWO we use the same optimization method

pplied in the offline scenario for each sliding window. Briefly, for
ach window we compute a PARAFAC model (𝑡;𝑊 ) ∈ R𝐼×𝐽×𝑊 using
(𝑡;𝑊 ) ∈ R𝐼×𝐽×𝑊 as input for the PARAFAC ALS algorithm. Residuals
re computed for a window of data (𝑡;𝑊 ) = (𝑡;𝑊 ) −(𝑡;𝑊 ). Since
e are interested on the most recent sample, we focus on the residuals
f the last minute 𝑡, ∶,∶,𝑡 ∈ R𝐼×𝐽×1.
FWO requires the computation of a new PARAFAC model at every

indow. As such, it may not be suitable for online applications, often
equiring a large and variable number of iterations [25]. We evaluated
his method (Section 6) and the results indicate it was computation-
lly expensive, enough to preclude its use for our online application
see Fig. 8). This motivates the variation we propose below aimed at
educing the computational cost while providing good performance.

.2.2. Partial window optimization (PWO)
In order to reduce the run time of the online residual extraction

e modify FWO. Consider the factor matrix related to the time mode
(𝑡) ∈ R𝑊 ×𝑅 used to model the tensor window (𝑡;𝑊 ). To obtain 𝐶(𝑡)
e keep the previous 𝑊 −1 loadings calculated from 𝑡−𝑊 +1 to 𝑡−1,
𝐜(𝑡 − 𝑊 + 1),… , 𝐜(𝑡 − 1)} and compute 𝐜(𝑡), the time mode loadings
f the last sample. The other factor matrices 𝐴(𝑡) and 𝐵(𝑡) are fully
ecomputed based on the tensor window (𝑡;𝑊 ). We use 𝑊 = 1440, as
n FWO.
Let ∶,∶,𝑡 denote the measures at time 𝑡. The model at 𝑡 is obtained

y updating matrices 𝐴(𝑡), 𝐵(𝑡) and vector 𝐜(𝑡) (see Fig. 4(b)) alternately
nd iteratively, until a convergence criterion is satisfied (Algorithm 1).
s in the ALS algorithm, matrices 𝐴(𝑡) and 𝐵(𝑡) and vector 𝐜(𝑡) are
alculated by minimizing the quadratic error between model estimates
nd measurements. The sequence of updates is given by lines 4–7 in
lgorithm 1.
In Algorithm 1, (1) and (2) are the tensor unfoldings of  in its

irst and second modes, respectively, (1) ∈ R𝐼×𝐽𝐾 , (2) ∈ R𝐽×𝐼𝐾 . Note
hat 𝐜(𝑡) ∈ R1×𝑅, 𝐴(𝑡) ∈ R𝐼×𝑅 and 𝐵(𝑡) ∈ R𝐽×𝑅. The factor matrices of
odel (𝑡;𝑊 ) are initialized with the model estimates (𝑡 − 1;𝑊 )
btained for the previous window. The residuals at 𝑡 are obtained by:

(𝑡;𝑊 )∶,∶,𝑡 = (𝑡;𝑊 )∶,∶,𝑡 −(𝑡;𝑊 )∶,∶,𝑡.
5

. Application I: DDoS attack detection

The first example application of the anomaly detection framework
ses actual residential traffic to assess the efficacy of detecting DDoS
ttacks (see Fig. 1). We first focus on the setting where we have
abeled data, and describe in detail every step of our approach. Then
e consider a setting where the data is unlabeled and show that an
nomaly we detected using our method was also identified by the
artner ISP as an external attack on routers in the ISP’s network.

.1. Labeled dataset construction and preprocessing

Our original dataset consists of upload and download byte and
acket counts from nearly a thousand residences, collected every
inute organized into daily multivariate time-series. (Time is divided
nto minute-slots.) Recall that the time-series are anonymously identi-
ied with a residence and with a specific day, referred to as a RD pair,
nd constitute the input to the tensor decomposition method. Data was
ollected during five weeks, 19-August-2019 to 22-September-2019,
nd from 812 residences producing a total of 18,494 time-series.
In order to obtain a labeled dataset with DDoS attack traffic, we

ollowed the methodology described in [20]. Briefly, three steps are
xecuted: (a) residences are randomly chosen to form a botnet; (b)
ttacks initiate at randomly chosen instants of time; (c) the total traffic
enerated during the attack is the actual regular residential traffic
uring that period added to the attack traffic generated from a real
alware.
The attack traffic we used was generated and logged by [20] after

unning, on a Raspberry-Pi in our laboratory, the actual malware code
rom two common IoT botnets: Mirai and BASHLITE. Table 1 lists
he different types of attacks considered in our work. Since, according
o [30], the majority of attacks lasts for a few minutes, the duration
f each attack was chosen to follow a Gaussian distribution with mean
= 120 seconds and standard deviation 𝜎 = 10 seconds.
A fraction 𝑞 = 0.05 of all residences are randomly selected to

articipate in the synchronized botnet, before attacks are launched. The
hoice for the value of 𝑞 was based on attack statistics reported in [31].
There are more than 50,000 minute-slots in our dataset. Attacks

tart in slots chosen uniformly at random from the total, averaging one
ttack per day. (Similar results were obtained when other attack rates
ere considered.) In addition, the specific type of attack for a slot is
andomly selected from the list in Table 1.
The five-week labeled dataset with DDoS attacks was partitioned

nto three non-overlapping subsets: Tr1,Tr2 and Te, respectively used
o: extract the normal subspace; train the classifier to detect traffic
nomalies (supervised training) and; test the performance of the clas-
ifier (see Fig. 5). The first week (dataset Tr1) is used to obtain the
ARAFAC model. The subsequent four weeks are left for extracting
he residuals used for training and testing the classifier (Tr2 and Te,
respectively). We did not apply standard k-fold cross validation to train
and test the classifier, since traffic time-series possess temporal depen-
dencies that would be affected by standard cross validation. Instead, we
used forward-chaining cross-validation for training the classifier [32].

1 𝐴(𝑡) ← 𝐴(𝑡 − 1), 𝐵(𝑡) ← 𝐵(𝑡 − 1)
2 𝐶(𝑡) ← [𝐜(𝑡 −𝑊 + 1)𝑇 ,… , 𝐜(𝑡 − 1)𝑇 , 𝐜(𝑡 −𝑊 )𝑇 ]𝑇

3 while not converged do
4 𝐜(𝑡) ← ∶,∶,𝑡(3)((𝐵(𝑡)⊙ 𝐴(𝑡))𝑇 )†

5 𝐶(𝑡)𝑊 ,∶ ← 𝐜(𝑡)
6 𝐴(𝑡) ← (1)((𝐶(𝑡)⊙ 𝐵(𝑡))𝑇 )†

7 𝐵(𝑡) ← (2)((𝐶(𝑡)⊙ 𝐴(𝑡))𝑇 )†

8 end
9 return 𝐴(𝑡), 𝐵(𝑡), 𝐜(𝑡)

Algorithm 1: PWO Online algorithm
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Table 1
Types of DDoS attacks evaluated.
Malware Attack type (payload size)

Mirai UDP flood (1400B)
Mirai TCP SYN flood (0B)
Mirai TCP ACK flood (0B)
Mirai UDP PLAIN flood (1400B)
BASHLITE UDP flood (1400B)
BASHLITE TCP SYN flood (0B)
BASHLITE TCP ACK flood (0B)

Fig. 5. Application I dataset.

Briefly, Tr2 begins with a week of data and then expands at each step
of the procedure to include more data, while Te contains the data for
the week that immediately follows Tr2. Fig. 5 shows the data intervals
for the last ‘‘fold’’.

Remarks: The number of residences in the original dataset vary
slightly from one day to the other because not all home routers keep
collecting data continuously over the entire four week period. In the
last fold, Tr2 has sightly over one fourth of the RD-pairs in the four
week period (76%) while Te has 24% of the RDs. We applied log-
transformation to the dataset values and then Min-Max normalization.

In order to extract the normal subspace, intuitively one should
use a dataset free of attacks, since anomalies can contaminate the
normal subspace. Ringberg et al. [33] showed that sufficiently large
anomalies can inadvertently pollute the normal PCA subspace, resulting
in increased false positive rates. Therefore, detection using a model
trained from a dataset that contains anomalies is more difficult than
when training is done on a dataset known to be anomaly free.

However, it is not feasible to find out whether any real and unla-
beled traffic dataset contains anomalies, in particular malicious anoma-
lies [14]. Therefore, to stress our model, we use the Tr1 dataset that
contains attacks to extract the normal subspace. For comparison pur-
poses, we also computed an additional PARAFAC model using the
original dataset in which attacks were not added to the measured
residential traffic. In the latter case, no significant accuracy gain in
the testing phase was observed. In the remainder of this section, we
present our results using Tr1 (with attacks included) to emphasize the
obustness of the procedure in realistic scenarios.

.2. PARAFAC model

.2.1. Tensor decomposition
Different tensor structures are used for offline and online scenarios.

n the first scenario, our tensor is composed of three modes: (RD ×
traffic metric × minute). We obtain model  ∈ R3412×4×1440 from
the training set Tr1 containing 3412 RDs. The application of Split-Half
Validation validates up to 𝑅 = 6 factors. (Refer to Section 3. Except
as otherwise noted, we use 𝑅 = 6.) On the other hand, the modes
for the online approach are (residence × traffic metric × minute), and
models (𝑡;𝑊 ) ∈ R812×4×1440 are obtained for a window of size 𝑊 =
1440. Recall that the dataset contains information from 812 residential
routers and only four metrics, bit and packet counts of upload and
6

download traffic collected at every minute are used in our models.
We analyze the factors obtained in the offline scenario aiming to
interpret the model. Fig. 6 shows the results of (column-wise) Khatri–
Rao product 𝐵⊙𝐶, for each of the six factors and the four measurement
loadings, where we recall that 𝐶 is the time mode and mode 𝐵 is associ-
ated with download and upload bit and packet rate measurements. The
PARAFAC model reveals that there is a factor which is nearly constant
throughout the day. We chose to call this factor the Base Factor. The
emaining factors can be associated with high network usage during
ifferent periods of the day as shown in the figure using different
olors and letters. For each factor, when we compare the download
alues in the figure with the corresponding upload values, we note that
here is a significant difference for the loadings corresponding to bits,
hile there is almost no difference for the loadings corresponding to
ackets. This is expected, since TCP should be the predominant protocol
nd download packets are acknowledged in the upward direction, but
ownload packets carry the load.

.2.2. Residual extraction
We extract residuals for sets Tr2 and Te using the residual extraction

echniques described in Section 5. These residuals are extracted from
ll traffic metrics for each minute of each RD/residence (offline/online)
nd are used as input to the classifier. Since the time correlation
etween upload and download traffic is an important feature to detect
ttacks [20], we make use of two additional features, bringing the total
o the following six features: (i) download bit residuals, (ii) upload bit
residuals, (iii) download packet residuals, (iv) upload packet residuals, (v)
difference between upload and download bit residuals and (vi) difference
between upload and download packet residuals. Figs. 7(a) and 7(b) show
histograms of features (iv) and (vi) above, obtained by the offline
method. These are the two features that are best ranked by the clas-
sifier. The red/crosshatched (green/unhatched) bars of the histogram
represent the feature values for minutes and residences that either do
or do not contain attacks, respectively. Note that the red/crosshatched
and green/unhatched histograms differ significantly and, intuitively,
this observation provides an indication that traffic containing attacks
can be distinguished from normal traffic using the PARAFAC residuals.

For the online methods, the computation time needed to compute
the PARAFAC residuals should be assessed, as the residuals must be
obtained at every minute and hence they must be computed in less than
one minute. PARAFAC validates for models between two to six factors.
We use 𝑅 = 2 for the online methods to reduce extraction time even
though the computational cost is not significantly affected in this range
of 𝑅 values. Fig. 8 shows the number of iterations and run times for the
PWO and FWO online methods, for each minute during a specific day
which included an attack. The red dotted line indicates when a DDoS
attack occurred in the chosen day. We compute both models using a
PowerEdge R230 server with a Intel Xeon E3-1220 v6 of 3Ghz with 4
cores and 64 GB of RAM. FWO recomputes all loadings of factor matrix
𝐶(𝑡) (time) at every minute, that is, whenever the window slides. From
the figure we notice that the computation time required to compute
(𝑡;𝑊 ) using FWO varies depending on the data values (𝑡;𝑊 ) and,
in this example, it is too high for online use. On the other hand, PWO
consistently requires much less computation time than FWO and is the
method of choice.

6.3. Supervised anomaly detection

6.3.1. Performance
In this example, a classifier must be trained to detect attacks lever-

aging features extracted using PARAFAC. We compare results from five
different classifiers, Logistic Regression, Decision Tree, Random Forest,
Gaussian Naive Bayes and Multi-layer Perceptron. We also use PCA as
an alternative method to PARAFAC for comparison purposes, after
unfolding the three dimensional data to a two-dimensional array. For

all five classifiers, PARAFAC outperforms PCA, and classification using
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Fig. 6. Factors obtained by PARAFAC.
Fig. 7. Histograms of residuals for minutes and residences with and without attacks.

able 2
erformance measures with random forest classifier.
Model Precision Detection False positive

accuracy rate

PARAFAC (Offline) 0.9893 0.9618 9.77E−07
PCA 0.9725 0.949 2.57E−06
PWO (Online) 0.9672 0.9401 2.89E−06
Enhanced PWO (Online) 0.9864 0.9908 1.14E−06

Random Forest produced the best results both for PARAFAC based
methods (online and offline) and PCA.

Table 2 presents the results. (In this table two factors are used
for comparison between the online and offline algorithms, but the
values do not vary much with 𝑅.) Precision and false positive rate
ave the usual definition from the literature. We call Detection Accuracy
the ratio between the number of attacks that are correctly detected
and the total number of attacks in dataset Te. Note that an attack
can last for one or more time slots and we consider an attack to be
correctly detected when the classifier identifies at least one of the slots
with attack traffic. The table includes an additional method, referred
to as Enhanced PWO. Briefly, the only difference between PWO and
Enhanced PWO is that the latter includes two additional features for
classification, as described in Section 6.3.2.

From Table 2, the PARAFAC-based methods perform better than
PCA for almost all metrics, although the difference if not significant
in this dataset. We also applied the methodology to a different dataset
with traffic collected during 2019 (full results omitted for the sake of
conciseness) and, in that case, while PARAFAC consistently produced
7

good results as the number of factors varies, the precision and accuracy
Table 3
Feature importance of random forest.
Residual Feature Gini index

Difference between up and down packet residuals 0.5006
Up packet residuals 0.1601
Difference between up and down bit residuals 0.1445
Down packet residuals 0.1024
Down bit residuals 0.0496
Up bit residuals 0.0427

Fig. 8. Number of iterations for FWO and PWO online methods.

of PCA are significantly affected as the number of components varies.
This is consistent with results from the literature (e.g. [33]) that
concludes that PCA is sensitive to its parameters. In addition to robust-
ness to the number of parameters, PARAFAC results are interpretable
(Section 6.2.1) and its solution is unique.

It is important to highlight the False Positive Rate (FPR) metrics.
From the FPR one can immediately obtain the mean number of false
alarms per day (MNFA). The MNFA for the offline PARAFAC-based
method is 1.1 considering all 812 residences. The online Enhanced
PWO has an MNFA comparable to that of offline PARAFAC. Sec-
tion 6.4.2 shows how the MNFA and other performance metrics can
be improved by taking into account spatio-temporal correlations.

For the online algorithms, an important performance metric is the
expected time to detect an attack, as a fast detection time is essential
for adopting countermeasures and mitigating the impact of an attack.
In the case of dataset Te and Enhanced PWO, the expected detection
time was one minute in 89.19% of the detected attacks, while all the

attack detections occur within two minutes.
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Fig. 9. One feature of the GMMs trained using residuals of minutes and residences
with and without attacks.

Fig. 10. Average log-likelihood estimation for each time slot.

.3.2. Feature importance and enhanced PWO
To evaluate the relevance of the six residual features obtained from

ARAFAC, we use the Gini index-based importance metric from the
andom Forest classifier (Table 3). The most important residual feature
s the difference between upload and download packet residuals (Gini
0.5006) followed by upload packet residuals (Gini 0.1601) and difference
etween upload and download bit residuals (Gini 0.1445). The two most
mportant features are based on packet residuals, so we evaluate the
lassifier using only packet-based features and compare the results
ith those including all six features. Using PARAFAC with two factors,
esults show that the average number of false alarms per day triples
hen only packet-based features are used, while Precision decreases
rom 0.9618 to 0.9581. (Similar conclusions hold when we increase
he number of factors.)
The histograms shown in Fig. 7 suggest that the probability distri-

utions of the residual features can be approximated by a Gaussian
ixture Model (GMM). Therefore, we fit two GMMs with two com-
onents each and six dimensions associated with the six features in
able 3. Each of the two GMMs are trained using residual features
ssociated to the minutes for residences that do and do not contain
ttacks, respectively, as samples. Figs. 9(a) and 9(b) illustrate both
aussian mixtures for the feature with the highest Gini index (Table 3):
ifference between upload and download packet residuals. Note that the
wo GMMs are quite different. Based on this observation, we chose to
se two additional features for the online PWO classifier.
Consider a set of features sampled for a residence 𝑟 at minute-slot

. Let 𝑎
𝑟 (𝑡) and 𝑤

𝑟 (𝑡) be the log-likelihood of that sample given that it
s generated by the GMM previously trained with samples that do and
o not contain attacks, respectively. Calculate E(𝑟)[𝑎

𝑟 (𝑡)] (respectively,
(𝑟)[𝑤

𝑟 (𝑡)]) defined as the mean value of 𝑎
𝑟 (𝑡) (respectively, 𝑤

𝑟 (𝑡))
veraged over all residences at slot 𝑡. Fig. 10 illustrates how these two
ew features are obtained.
Fig. 11 shows the values of E(𝑟)[𝑎

𝑟 (𝑡)] and E(𝑟)[𝑤
𝑟 (𝑡)] computed for

oth datasets Tr2 and Te. Each point on the scatterplot represents a
ime slot (refer also to Fig. 10). Red crosses corresponds to time slots in
hich at least one residence contains attack traffic during that minute,
hile green dots correspond to slots in which no residence contains
ttack traffic during that minute. Note the clear separation between
ed crosses and green dots. Therefore, a new classifier is trained with
8

Fig. 11. Average log-likelihood for each time slot computed for GMMs with and
without attacks.

Fig. 12. Histograms of loadings for minutes and residences with and without attacks.

all the six previously considered features and the two expected values
E(𝑟)[𝑎

𝑟 (𝑡)] and E(𝑟)[𝑤
𝑟 (𝑡)] for each 𝑡, totaling eight features. The results

eported in the last line of Table 2 indicate that these two additional
features increase the classifier performance.

6.4. Additional remarks

6.4.1. Loadings versus residuals for detection
Previous work in the literature consider the detection of patterns

using PARAFAC loadings instead of residuals [17,34]. Inspired by those
works, we investigate whether it is possible to detect DDoS attacks
using the model loadings.

Fig. 12 plots the histograms of the loadings obtained from the
Khatri–Rao product of RD mode 𝐴 and time mode 𝐶 (𝐴⊙𝐶) for the Base
factor (Fig. 12(a)) and Morning factor (Fig. 12(b)). The red/hatched
and green/unhatched bars in the figures are associated to residences
that do and do not contain attack traffic in a minute slot, respectively.
It should be noted that there is no clear separation of the red/hatched
and green/unhatched histograms as in Fig. 7. The same conclusions can
be drawn when the other factors are used.

We also evaluated whether it is possible to detect slots containing
attack traffic using model ̃. Fig. 13 shows the histograms of the
metrics (a) upload packets and (b) difference between upload and down-
load packets obtained by model ̃ (offline method). The red/hatched
(green/unhatched) bars of the histograms represent the values of met-
rics (a) and (b) obtained from slices ̃∶,𝑗,∶ of the model for the minutes
and residences with (without) attack. Note that, unlike Fig. 7 where
esiduals are used, there is a large overlap between the red and green
ars in the histograms of Figs. 12 and 13 when loadings and model ̃
re used, respectively.
We may also try to distinguish slots with attacks based on the

(𝑡) loadings values, using the PWO online method. Fig. 14 shows the
oadings values of the two factors of 𝐜(𝑡) for each time slot 𝑡. Each point
n the scatterplot represents a time slot. Red crosses corresponds to
ime slots in which at least one residence contains attack traffic during
hat minute, while green dots correspond to slots in which no residence
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Fig. 13. Histograms of model values for minutes and residences with and without
attacks.

Fig. 14. 𝐜(𝑡) loadings for time slots with and without residences attacking.

ontains attack traffic during that minute. From the figure it is easy
o see that one cannot distinguish slots containing attacks from those
hat do not using 𝐜(𝑡) loadings. We conclude that, while features based
n residuals are adequate to detect slots with attacks in our dataset,
eatures based on PARAFAC loadings cannot differentiate these two
ases.

.4.2. Spatio-temporal correlation
It is possible to further improve the performance of the attack de-

ector by correlating the detection at individual residences, since DDoS
ttacks are synchronized by nature. Mendonça et al. [20] proposed a
ayesian decision problem using MAP criterion to detect synchronized
ttacks with high probability. The decision problem is parameterized
ith the number of home routers 𝑁𝑅, the prior probability of attack

𝑃𝐷, the classifier’s false positive rate 𝑝𝑓𝑝, the classifier’s recall 𝑝𝑟𝑐 and
the prior probability of infection 𝑞. The model of [20] generates a
hreshold 𝑚0 for the minimum number of residences simultaneously
eporting an attack needed to identify a synchronized attack with very
igh accuracy.
Using the results of the Enhanced PWO online method (𝑁𝑅 =

12, 𝑃𝐷 ≈ 0.0014, 𝑝𝑓𝑝 ≈ 1.14 × 10−6, 𝑝𝑟𝑐 ≈ 0.8864, 𝑞 = 0.05) to parame-
erize the model we obtain 𝑚0 ≈ 4.09. From this, a synchronized attack
s reported if at least 5 users report an attack. In this case, detection
s significantly improved since the probability of false alarms (Type
error) is 5.59 × 10−18 and the probability of missing a synchronized
ttack (Type II error) is 9.57 × 10−12.

.5. Unsupervised anomaly detection

In the previous sections we applied our proposed methods based on
ARAFAC residuals to a scenario where we have labels for anomalies,
nabling the use of supervised classifiers to detect DDoS attacks. How-
ver, in many situations, it may be hard to obtain labels. Furthermore,
etwork anomalies are a moving target and new anomalies continue to

]. Therefore, it is essential to devise methods capable
9

rise over time [14
Fig. 15. Boxplot of the log-likelihood of each minute 𝑡 of each RD 𝑖.

of detecting anomalies in the absence of ground truth labels. In this
section, the framework of Section 4 is used to detect traffic anomalies
(outliers) in an unsupervised manner. Since labels are not available
we cannot train a classifier. Instead, we identify outliers based on the
residuals extracted from a residential–day time-series (RD) that deviate
from expected behavior using a simple statistical model.

The method consists of the following steps: (1) Extract the residuals
of the training set; (2) Fit a multivariate GMM using the residual fea-
tures of the training set; (3) Compute the likelihood that the residuals
for slot 𝑡 and RD 𝑖 in the training set are explained by the GMM model;
(4) Build a boxplot with the log-likelihoods obtained in (3); (5) Set a
threshold 𝛼 equal to the bottom whisker of the boxplot and use it to
identify anomalies for a new set of data.

In the first step, from the trained tensor model, we extract the
residuals of the traffic metrics for each minute and each RD, and
obtain the following four features: download/upload bit residuals and
download/upload packet residuals. These residual features are used to
fit a multivariate Gaussian mixture (GMM) with two components and
four dimensions. Then, for each RD 𝑖 and time slot 𝑡, we calculate the
likelihood that the corresponding residuals features are explained by
the GMM model and build a boxplot with the log of the results (log-
likelihoods). The bottom whisker of the boxplot is used as a threshold
(𝛼). In order to detect anomalous traffic in residences in a given
period of time (not included in the trained dataset), we extract the
residual features of all RD pairs during the considered period, using
the previously trained tensor model. Then, for each time slot and RD
pair in that period, we compute the likelihood of the new residuals,
given the GMM fitted with the dataset used for training. The logs of
these values are compared with the threshold 𝛼 to identify anomalous
traffic for each RD and each slot.

Motivated by the DDoS application, in what follows we assume
that the root cause of an anomaly affects traffic from several resi-
dences simultaneously. Recall that, in our application example, traffic
measurements from home routers are collected every minute and the
number of residences collecting measures can vary with time. Then,
for every time slot 𝑡 in the considered period, we calculate the fraction
of residences with detected anomalous traffic and use this fraction as
a measure of importance of an anomaly at 𝑡 as shown in the example
below based on a real dataset.

Example. The following example uses data collected from residential
routers from 1-March-2020 to 31-March-2020. This period was selected
because our partner ISP notified us of a DDoS attack on the ISP’s
network from external bots between days 26 and 27 of March 2020.
Since we stored the measurement data in our laboratory during that
period, this information could then be used to assess the ability of our
unsupervised method to identify a real DDoS attack using only packets
and byte counts collected from residential routers. The dataset includes
a total of 149,341 time-series from 5,490 residential routers.

Following the steps outlined above, we used the previous PARAFAC
model trained with dataset Tr and then fit a two-component GMM
1
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using the residual tensor  and defined the threshold 𝛼 from the boxplot
Fig. 15). Next, we computed new residuals for the RDs from the
onth of March 2020 using the trained PARAFAC model, calculated
he likelihood using the GMM and finally estimated the fraction of
esidences with outlier traffic for every time slot 𝑡.
Fig. 16(a) shows the fraction of residences with outlier traffic

FRO(𝑡)) during each minute during March-2020. Visually, from the
igure, FRO(𝑡) nearly doubles on many minutes during March 26–27.
Instead of using visual identification from the FRO(𝑡) time-series of

ig. 16(a) we applied the CuSum (Cumulative Sum) [35] algorithm,
hich is commonly used to identify changes in data samples as com-
ared to their mean. We assume that samples at each minute follow a
aussian distribution and CuSum was parameterized using results from
he training data. CuSum parameters were set to detect changes greater
han three standard deviations and, in addition, the CuSum detection
hreshold was set to achieve a mean time between false detections equal
o 31 days. The vertical purple lines in Fig. 16(a) identify the outlier
amples, after applying CuSum. Note that, during the month, there are
ix periods containing outlier samples with a clear concentration of
utliers during the days of March 26th to 28th. Since our data is not
abeled we have no way of knowing what caused the anomalies except
uring the attack days.

omparison. To assess the effectiveness of our method compared with
thers in the literature we first use the Sum of squared residuals per
inute, a commonly used metric for outlier detection using residuals
xtracted from factor models [36–38]. Second, we checked whether
utliers can be detected using the Median of download traffic per minute
irectly. CuSum was applied in both cases. However, since both the Sum
f squared residuals and Median of download traffic time-series exhibit
trong seasonality as shown in Figs. 16(b) and 16(c), before using
uSum, both series are smoothed using an Exponentially Weighted
oving Average fitted using the training set, as done in previous
orks [39,40], to remove seasonality.
From Fig. 16(b) it is evident that the reported DDoS attack was

ot identified and only a single outlier event was marked in day 24.
n contrast, when the median of the download traffic was used, too
any outliers were marked after day 16 as shown in Fig. 16(c). The
ncrease in traffic that is evident after March 16 can be explained by
onfinement measures adopted due to COVID-19 in the state in which
he data was collected.
Using PARAFAC residuals we were able to detect a significant

umber of outliers on March 26–27 which corresponds to the single
vent for which we have knowledge about an anomaly in ground-truth
Fig. 16(a)). The other two considered approaches either missed such
an event (Fig. 16(b)) or detected the event but also raised a significantly
large number of additional alarms (Fig. 16(c)).

7. Application II: Detecting network degradation intervals

The second example application aims to employ our framework to
detect when and where performance degradation occurs in the ISP’s
network. In the absence of reliable labels to identify most anomalies
and evaluate the results quantitatively, we rely on unsupervised cluster-
ing over residuals extracted by the offline residual extraction procedure
of Section 5.1 to group events with similar behavior. Our primary goal
is to automatically detect potential network issues affecting multiple
residences and to locate regions with poor performance. We show that
our method can be effective in the real world by presenting examples
of network events that were detected during the year of 2020. Finally,
we correlate our results with customer tickets in order to understand
the relationship between the obtained clusters and users’ quality of
10

experience (QoE).
Fig. 16. Comparison of different metrics for detecting the DDoS attack originated
by bots outside the ISP’s network, between days 26 and 27 of March-2020. Periods
in purple represent minutes detected as anomalous by the CuSum algorithm. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

7.1. Dataset construction and preprocessing

Our dataset consists of loss and latency metrics measured from thou-
sands of residential routers to a server located in the ISP network. At
every minute during data collection, a train of 100 ICMP probe packets
is sent by the routers at 10 millisecond intervals, and both the fraction
of packets lost in the train as well as the average round trip time of
the probes in the train are computed and stored. We used two different
datasets. The first, for fitting the model and clustering, contains 50,282
multivariate daily time-series collected from 2,964 residences between
19-August-2019 and 22-September-2019. A much larger dataset, is
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used to evaluate the model. It contains 1,282,140 multivariate time-
series collected from 6,307 residences between 16-January-2020 and
31-December-2020.

Latency and loss active measurements collected from the routers can
be affected by the residential traffic (which we call cross-traffic) [41].
Therefore, we do not consider samples when cross-traffic exceeds a
threshold 𝜃. In other words, during every minute, when the upload or
download residential traffic is above 𝜃, latency and loss measurements
are discarded for that minute. We set 𝜃 = 2.5 Mbps after studying the
impact of 𝜃 on the sample values and based on traffic from residences
with the lowest nominal capacity. In addition to discarding samples
with cross-traffic, we also discarded daily time-series with less than
1,000 valid measurements during a day.

For some network failures, such as link failures, communication
between the client and the measurement server can be interrupted
and no measurement samples are recorded. Therefore, it is possible to
infer periods of network unavailability from the lack of measurement
samples, especially when multiple residences do not report results
during the same measurement slot. Hence, we mark slots lacking
measurements to indicate 100% packet loss and considered latency a
missing value.

7.2. Tensor decomposition and residual extraction

We model the measurement data as a tensor with three modes: (RD
× network metric × minute). Model  ∈ R50282×2×1440 is obtained from
he daily time-series of latency/loss measurements (first dataset). We
se the Split-Half Validation to choose the number of factors (𝑅 = 4).
From the model residuals, we used time-series corresponding to

atency residuals and loss residuals. The latter time-series is further
ivided into two: one that includes residuals from all time slots and
nother where residuals corresponding to slots with 100% losses are
arked as missing samples. We calculate three statistics for each of
he three time-series of residuals: mean, standard deviation and 95th
ercentile, totaling nine features that will be used for clustering.

.3. Anomaly clustering

The clustering algorithm uses the nine features extracted from the
esiduals of each RD pair. In Section 7.3.1 we show that each cluster
an be associated with a distinct level of degradation in network
erformance. Section 7.3.2 describes how we correlate residences spa-
ially in order to evaluate the quality of service provided in different
etwork regions and detect performance degradation events affecting
ultiple residences. From a real-world example, we present evidence
n Section 7.3.3 that our unsupervised algorithm based on PARAFAC
esiduals was able to detect performance related events. Finally, in
ection 7.3.4, we correlate the clustering results with customer tickets
to understand the relationship between different clusters and the users’
quality of experience and also describe how our method can be used to
improve ISP troubleshooting.

7.3.1. Clustering results
A popular approach for unsupervised clustering is the 𝐾-means al-

gorithm. It can be shown that 𝐾-means is a variant of the Expectation–
Maximization algorithm for Gaussian Mixtures where equal spherical
covariance matrices for each cluster are considered and a hard cluster
assignment is performed [42]. Since, the Gaussian Mixture Model
(GMM) is a more flexible and general alternative for clustering, we
choose GMM to cluster the model residuals. To select the number of
clusters, we use the Elbow Method [14] and chose five clusters. Before
clustering the data, we apply 𝑧-score normalization to prevent any
feature dominating the analysis due to scaling.

To investigate the meaning of the clusters we compute the 95th
percentile latency, the 95th percentile loss and the fraction of missing
samples for each cluster. These statistics are calculated for every hour of
11

p

Fig. 17. Statistics computed for each cluster.

the day using the loss and latency minute-samples of the RDs associated
with a given cluster. To infer packet queueing times during congestion
periods, we subtracted from each latency time-series its lowest sample
value.

Figs. 17(a)–17(c) show the 95th percentile latency, the fraction of
issing samples and the 95th percentile loss, respectively. Residences
f cluster C1 experience good quality of service (low latency, low loss,
ow network unavailability). Cluster C2 contains time-series with mod-
rate losses but low network unavailability and low latency. Cluster C3
ontains time-series with high latency and moderate losses. The time-
eries of cluster C4 are from residences that experience high network
navailability periods, while cluster C5 contains time-series with high
etwork unavailability, latency and loss. Note that we cluster RD pairs,
.e., daily measurement time-series of different residences. Therefore, a
esidence can be assigned to different clusters on different days.

.3.2. Spatial correlation
To identify periods experiencing performance degradation that af-

ect multiple residences in the same ‘‘region’’ of the network, we
patially correlate the clustering results and ISP topology information.
he spatio-temporal correlation algorithm assumes that the routes be-
ween residential routers and the measurement server are static during
ach measurement interval. Consequently, the network topology can
e represented by a tree structure at each measurement interval. We
xpect clients that share the same ISP network paths to exhibit similar
erformance inside the ISP network.
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Fig. 18. Partition of network into network regions.
In order to carry out the spatial correlation procedure, we partition
he network into non-overlapping subsets denominated network regions.
ifferent partition criteria could be considered to obtain network re-
ions. In our dataset, network equipment is divided by the ISP based
n a geographical partition of the city. We take this into account and
efine a network region in our dataset as a subset of network equipment
onnecting a neighborhood to the ISP’s backbone, as illustrated in
ig. 18. Consequently, each network region contains multiple network
quipment that are geographically close and are shared by multiple
lients. Based on this partition, we analyze the fraction of residences
ssigned to each cluster at each day of the dataset for each network
egion.
We illustrate the results of the spatial correlation for a partic-

lar network region. Similar results are obtained for other regions.
ig. 19(d) shows the daily fraction of RD pairs per cluster for a given
etwork region. From the figure, we observe that the majority of
esidences are allocated to cluster C1 (good quality of service) on most
ays. Fig. 19(a) illustrates the daily time-series of packet losses for a
ingle residence that was assigned to cluster C1 on day 6. Note that
he loss fraction is close to zero for most minutes of that day. On the
ther hand, a large number of residences are allocated to clusters C4
nd C5 on day 10. (Recall that clusters C4 and C5 are associated with
eriods of high network unavailability.) In this day, there are multiple
ime-series of packet losses with missing samples (red squares in the
igure) between hours 13:00 and 17:00, as illustrated for one of the RDs
n Fig. 19(b). Another type of event detected by the spatial correlation
ccurs on day 17. On that day, several time-series associated to losses
ave missing samples between 6:00 and 8:00 and high losses between
9:00 and 21:00. These were assigned to cluster C5 on day 17, and
ig. 19(c) shows the measurement results of one of these residences.
The ISP can benefit from the spatial correlation results to prior-

tize efforts to improve the quality of service based on the network
erformance of each region. To illustrate this idea, in Fig. 20 we
resent clustering results for two different network regions with distinct
erformance results. It is clear that region A consistently presents a high
raction of residences associated with good performance (Fig. 20(a)),
and only a few days (9, 10, and 33) suffer from performance degrada-
tion. On the other hand, only a few residences were assigned to cluster
C1 (good performance) in region B (Fig. 20(b)).

7.3.3. Events which were detected
The analysis in Section 7.3.2 was based on unsupervised clustering

using PARAFAC residuals. We showed that it is possible to identify
network regions and time intervals with different levels of performance,
from good to bad, and that affect multiple residences. In what follows,
we present a few network events detected by our approach for which
12

root causes were later identified by our partner ISP. The events were
detected using the dataset collected during 2020. Note that we were
unable either to categorize all anomalies in our dataset or to automat-
ically classify the type of anomaly, since labels are scarce and hard to
obtain.

Fig. 21(a) presents the clustering results of all RDs during the month
of March 2020. It shows that all residences were assigned to cluster C5
(purple) on days 26 and 27. A DDoS attack targeting the ISP was per-
formed during these two days. The attack affected the entire network
and residences experienced network outages during this period. Our
method was able to capture this behavior automatically, assigning all
the clients to a cluster related to periods of network unavailability. Note
that this DDoS attack was also detected by the method of Section 6.5.

Figs. 21(b) and 21(c) show two examples of quality of service
improvement caused by ISP interventions executed on May 2020. In
the first, an upgrade of network equipment by the ISP in region C on
day 14, resulted in improved quality of service for many residences. For
instance, if we calculate the daily fraction of residences in each cluster
and average the results over the days that precede and succeed day 14,
we discover that more than 20% of residences migrate to cluster C1
after day 14, from clusters associated with inferior performance. In the
second example, a reconfiguration of the network topology started on
day 23 in region D, clearly increasing the fraction of residences that
belong to C1 in subsequent days.

Next, we investigate whether it is possible to observe changes in
network performance directly from the model loadings, instead of from
the residuals. For illustrative purposes, we compare both approaches
(loadings versus residuals) using the equipment upgrade event that took
place in Region C on May 14, 2020 (Fig. 21(b)). Fig. 22 shows the
median of the RD loadings for one of the factors and the median of
the residual feature that correspond to the measured losses. We observe
that, unlike Fig. 22(a) the median of the residual feature (Fig. 22(b))
shows a clear change after day 14. The same conclusion was drawn
when other factors were used.

Fig. 21(d) shows an example of an event (equipment failure) that
we detected on August 2020 in day 2, that caused some customers to
be disconnected for a few hours. The failed equipment was replaced
on day 5 causing further disruption during service hours. Our method
assigned the vast majority of residences in the affected region to a
cluster associated with unavailable intervals (cluster C5) on days 2 and
5.

In addition to events that occur during a day, we were also able to
detect performance trends over longer periods. We analyzed our dataset
during 5 months, between March 1st and July 31st 2020. Fig. 23
shows clearly that performance degraded around mid March, since the
fraction of residences in the cluster with the best performance was
approximately halved. Many days after, performance slowly improved
during the following months as residences return to cluster C1.
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Fig. 19. Spatial correlation example (missing samples are represented using red squares).
Fig. 20. Network performance of two different network regions obtained from residual clustering.
A plausible explanation for the observed trend is the considerable
change in user behavior during confinement resulting in increased
network traffic and reduced network performance. The confinement
period in the region where data was collected started on March 16th
and restriction rules were slowly relaxed during the subsequent weeks.

7.3.4. Clusters and quality of experience
User feedback obtained from complaints to the call center of an ISP

could, at a first glance, be interpreted as a good metric for assessing
the user’s quality of experience (QoE) [43]. However, user feedback
is very noisy since, for instance, customers may complain about poor
network performance while the problem is in the home network rather
than an ISP issue and, in addition, many customers may not complain
even if the network is performing poorly [44]. Therefore, correlating
customer complaints with QoS can be an important tool to facilitate
QoE assessment.

We correlate the clustering results obtained using our second dataset
(from January 16th to December 31st 2020) with a database of cus-
tomer’s technical complaints provided by the partner ISP, in order to
infer the relationship between clusters and the customers’ quality of
experience. Data from customers is properly anonymized to preserve
privacy. Fig. 24(a) shows, for each cluster, the ratio of the number
of RDs from a cluster with customer tickets by the total number of
RDs in that cluster (times 100). Clearly, clusters C4 and C5, which are
13
associated with poor performance, have the highest percentage of RDs
with customer tickets. Clusters C2 and C3, associated with moderate
losses and latency, have smaller fractions of RDs with customer tickets
than clusters C4 and C5. These results indicate that customers in
clusters associated with poor performance are more likely to complain
to the call center.

To understand how customer tickets are distributed among clusters
we plot in Fig. 24(b) the percentage of tickets from customers associ-
ated with each of the five clusters. Approximately 60% of all complaints
are from customers in C4 and C5, the clusters with the worst QoS,
while only approximately 20% of the total number of tickets comes
from customers in C1 and C2.

8. Conclusion

In this work, we propose a framework based on tensor decomposi-
tion to detect network anomalies. We apply the PARAFAC method and
extract the residuals obtained by the model in order to detect abnormal
behavior. We also propose a new online tensor decomposition method
that efficiently extracts the normal subspace and detects anomalies
with good performance. We show the flexibility of our method, using
different applications as examples. First, we considered DDoS attack de-
tection using supervised and unsupervised techniques. Our results show

that detection has high accuracy and very low false positive rates when
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Fig. 21. Events detected by our unsupervised approach.
Fig. 22. Loadings vs Residuals for event detection (smoothed with a median filter with window size of 3).
Fig. 23. Clustering results from March 1st to July 31th. The first labeled day represents
the start of lockdown while the following ones represent the starting days of different
phases of confinement relaxation.

applied to real data collected from thousands of residential routers. In
addition, we were able to detect an actual DDoS attack event using the
unsupervised technique. Second, we applied the proposed framework
to identify periods within which network performance deteriorates. We
14
Fig. 24. Relationship between cluster results and customer tickets.

show how real network events could be detected in different regions
of our partner ISP’s topology. In addition, we correlate the results
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of our unsupervised method with a database of customer’s technical
complaints provided by the ISP.
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