
FPT-approximation for FPT Problems
Daniel Lokshtanov∗, Pranabendu Misra† , M. S. Ramanujan‡ , Saket Saurabh§ , and

Meirav Zehavi¶

Abstract
Over the past decade, many results have focused on the
design of parameterized approximation algorithms for
W[1]-hard problems. However, there are fundamental
problems within the class FPT for which the best known
algorithms have seen no progress over the course of the
decade; some of them have even been proved not to
admit algorithms that run in time 2O(k)nO(1) under the
Exponential Time Hypothesis (ETH) or (c − ε)knO(1)

under the Strong ETH (SETH). In this paper, we
expand the study of FPT-approximation and initiate a
systematic study of FPT-approximation for problems
that are FPT. We design FPT-approximation algorithms
for problems that are FPT, with running times that are
significantly faster than the corresponding best known
FPT-algorithm, and while achieving approximation
ratios that are significantly better than what is possible
in polynomial time.

• We present a general scheme to design 2O(k)nO(1)-
time 2-approximation algorithms for cut problems.
In particular, we exemplify it for Directed Feed-
back Vertex Set, Directed Subset Feedback
Vertex Set, Directed Odd Cycle Transver-
sal and Undirected Multicut.

• Further, we extend our scheme to obtain FPT-
time O(1)-approximation algorithms for weighted
cut problems, where the objective is to obtain
a solution of size at most k and of minimum
weight. Here, we present two approaches. The first
approach achieves 2O(k)nO(1)-time constant-factor
approximation, which we exemplify for all problems
mentioned in the first bullet. The other leads

∗University of California, Santa Barbara, USA.
daniello@ucsb.edu
†Max Planck Institute for Informatics, Germany.

pmisra@mpi-inf.mpg.de
‡University of Warwick, UK

r.maadapuzhi-sridharan@warwick.ac.uk
§Department of Informatics, University of Bergen, Nor-

way and Institute of Mathematical Sciences, HBNI, India,
saket@imsc.res.in
¶Ben-Gurion University of the Negev, Israel.

meiravze@bgu.ac.il

to an FPT-approximation Scheme (FPT-AS) for
Weighted Directed Feedback Vertex Set.

• Additionally, we present a combinatorial lemma
that yields a partition of the vertex set of a graph
to roughly equal sized sets so that the removal of
each set reduces its treewidth substantially, which
may be of independent interest. For several graph
problems, use this lemma to design cwnO(1)-time
(1 + ε)-approximation algorithms that are faster
than known SETH lower bounds, where w is the
treewidth of the input graph. Examples of such
problems include Vertex Cover, Component
Order Connectivity, Bounded-Degree Ver-
tex Deletion and F-Packing for any family F
of bounded sized graphs.

• Lastly, we present a general reduction of problems
parameterized by treewidth to their versions param-
eterized by solution size. Combined with our first
scheme, we exemplify it to obtain cwnO(1)-time bi-
criteria approximation algorithms for all problems
mentioned in the first bullet.

1 Introduction
Two algorithmic paradigms that have seen immense suc-
cess in dealing with NP-hard problems are approximation
algorithms and parameterized complexity. In approx-
imation algorithms, we design algorithms that run in
polynomial time and output a solution with a provable
guarantee on its quality. There is also a well-developed

Lokshtanov and Zehavi acknowledge support
from United States-Israel Binational Science
Foundation (BSF) grant no. 2018302. Loksh-
tanov is also supported by NSF award CCF-
2008838. Zehavi is also supported by Israel
Science Foundation (ISF) grant no. 1176/18.
Saurabh is supported by funding from the
European Research Council (ERC) under
the European Union’s Horizon 2020 research
and innovation programme (grant agreement
No. 819416) and also acknowledges the
support of Swarnajayanti Fellowship grant
DST/SJF/MSA-01/2017-18.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited199

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

theory of hardness of approximation, which allows us to
trace the boundaries of tractability for approximation
algorithms.

On the other hand, the goal of parameterized
complexity is to find ways of solving NP-hard problems
more efficiently than by brute force: here the aim is to
restrict the combinatorial explosion to a parameter that
is hopefully much smaller than the input size. Formally,
a parameterization of a problem is the assignment of
an integer k to each input instance, and we say that
a parameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm that solves the problem
in time f(k) · |I|O(1), where |I| is the size of the input
and f is an arbitrary computable function. Just as NP-
hardness is used as evidence that a problem probably
is not polynomial-time solvable or polynomial-time
approximable, there exists a hierarchy of complexity
classes above FPT, and showing that a parameterized
problem is hard for one of these classes gives evidence
that the problem is unlikely to be FPT. In fact,
assuming well-known assumptions such as Exponential
Time Hypothesis (ETH) or Strong Exponential Time
Hypothesis (SETH), we can obtain qualitative lower
bounds for FPT algorithms, that is, lower bounds
on f(k) in the running time of any FPT algorithm
for some specific problem. For more background on
approximation algorithms and parameterized complexity,
the reader is referred to the monographs and books
[17, 19, 25, 58, 64, 66, 26].

There is a plethora of problems for which, simultane-
ously, the non-existence of polynomial-time algorithms
with certain approximation ratios, as well as intractabil-
ity within parameterized complexity, are known. These
intractabilities together motivate the desire for algo-
rithms that runs in FPT-time, for the parameter in
which the problem is intractable, and at the same time
beat the lower bounds on hardness of approximation
that are proven for polynomial-time algorithms. This
leads to the world of FPT-approximation, which has
been an extremely active area of research in the last five
years. For a minimization problem parameterized by the
solution size k, a factor-α FPT-approximation algorithm
is an algorithm that runs in time f(k) ·nO(1), and either
correctly concludes that there is no solution of size at
most k or returns a solution of size at most αk. One can
similarly define the notion of parameterized approxima-
tion for maximization problems. When the parameter
is structural (e.g., the treewidth of the input graph), a
factor-α approximation FPT-algorithm is just a factor-α
approximation algorithm that runs in FPT-time rather
than in polynomial time.

Some of the notable problems that have been
shown to admit FPT-approximation algorithms include

Vertex Minimum Bisection [22], k-Path Dele-
tion [43], Max k-Vertex Cover in d-uniform hyper-
graphs [62, 53], k-Way Cut [28, 29, 34, 52] and Steiner
Tree parameterized by the number of non-terminals [20].
These are just representative examples [16, 18, 20, 2, 22,
27, 28, 29, 34, 36, 42, 43, 53, 54, 55, 52, 59, 62, 65]. On
the other hand, several basic problems are shown to be
even hard in terms of FPT-approximation. The main
ones include Set Cover, Dominating Set, Indepen-
dent Set, Clique, Biclique and Steiner Orienta-
tion [11, 33, 67, 14, 45, 46, 3]. For a comprehensive
overview of the state of the art on Parameterized Ap-
proximation, we refer to the recent survey by Feldmann
et al. [23], and the surveys by Kortsarz [36] and by
Marx [55].

1.1 Our Context and Questions For all the pa-
rameterized problems mentioned above for which FPT-
approximation algorithms were developed, the parameter
used to measure the running time of the algorithm is one
with respect to which the problem is known to be W-
hard. In other words, most known FPT-approximation
algorithms are for problems that are intractable within
parameterized complexity. A natural question is: What
about FPT-approximation for problems that are FPT?

Indeed, these problems hold a lot of promise and
remain hitherto unexplored from the perspective of FPT-
approximation, with exceptions that are few and far
between [8, 9, 24, 40, 56] (this list is not exhaustive). Our
guiding example in this regard is Treewidth. From as
early as 1990, it is well known that given a graph G and
an integer k, we can test whether the graph has treewidth
at most k in time 2O(k3)n [4]. While this algorithm
has stood the test of time and remains the best-known
algorithm for the problem, several faster parameterized
algorithms have been designed that either return that
the treewidth of G is more than k or return a tree
decomposition of width O(k) [61, 41, 60, 1]. In fact, in
2013, the first constant-factor FPT-approximation with
running time 2O(k)n was obtained [5]. The main idea of
the paper is to replicate this success of Treewidth for
other combinatorial problems.

With this goal in mind, in this paper, we expand the
study of FPT-approximation and initiate a systematic
study of FPT-approximation for problems that are FPT.
We design FPT-approximation algorithms for problems
that are FPT, with a running time that is significantly
faster than the corresponding FPT-algorithm (for an
exact decision version of the problem), and that achieves
approximation ratios that are better than one can
provably achieve in polynomial time.

Since we plan to design FPT-approximations for
FPT problems, two important questions that we need

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited200

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

to address are: (a) which problems within FPT are
interesting to study from this perspective; and (b) for
which running times and factors of approximation should
one aim?

1.1.1 Which Problems Within FPT? A central
problem in parameterized algorithms is to obtain algo-
rithms with running time f(k)nO(1), such that f is a
computable function of the parameter k that grows as
slowly as possible. In the last three decades, several
problems have been shown to admit such algorithms
or shown that no such algorithms can exist under a
plausible assumption. Moreover, several problems have
been shown to admit algorithms with running time of
the form cknO(1); however, still, there is a plethora of
problems for which the best known algorithms run in
time 2poly(k)nO(1), and have seen no progress over more
than a decade. Also, there are problems for which we
can show lower bounds on f(k) under ETH or SETH
(or other plausible conjectures). In our opinion, these
problems are the most natural candidates for designing
FPT-approximation algorithms

For illustration, consider Directed Feedback
Vertex Set (DFVS) parameterized by the solution
size. It is well known that it admits an algorithm with
running time 2O(k log k)nO(1), and the parameter depen-
dence has not been improved since 2007, when Chen et
al. [13] resolved this longstanding open question in the
area of parameterized complexity, although the depen-
dence on the input size has been improved [50]. Similarly,
a decade ago Marx and Razgon [57] and Bousquet et
al. [7], independently, settled the parameterized complex-
ity of Multicut on undirected graphs parameterized
by the solution size, by designing an algorithm with
running time 2O(k3)nO(1) (this is the running time of
the algorithm given in [57]). However, there has been
no improvement over the function f(k) = 2O(k3) in
the last ten years. These are examples of problems for
which there has been little to no progress in a long time.
Other examples are those problems for which we have
lower bounds on f(k)—for example, DFVS and Ver-
tex Cover parameterized by the treewidth w of the
input graph (in case of a directed graph, the treewidth
of its underlying undirected graph). Indeed, Bonamy
et al. [6] showed that assuming ETH, DFVS does not
admit an algorithm with running time 2o(w logw)nO(1).
Moreover, Lokshtanov et al. [47] showed that assuming
SETH, there is no algorithm for Vertex Cover run-
ning in time (2− δ)wnO(1), for any fixed constant δ > 0.
The field of Parameterized Algorithms is full of such
examples [10, 32, 38, 47, 48].

We believe that studying the aforementioned central
problems in parameterized complexity in the realm of

FPT-approximation will lead to the development of new
algorithm design methodologies.

1.1.2 What Approximation Ratios and Run-
ning Times? As stated above, we must aim to design
an FPT-approximation algorithm that achieves an ap-
proximation factor that is not possible (under a plausible
complexity theoretic assumption) in polynomial time,
and the function f(k) in the running time should be
asymptotically better than the best known bound to
solve the exact decision version of the problem. For
example, DFVS parameterized by the solution size ad-
mits an algorithm with running time 2O(k log k)nO(1) [13],
and the best known polynomial-time approximation al-
gorithm has factor O(logn log logn) [21]. Furthermore,
under Unique Games Conjecture (UGC), the problem
does not admit any constant-factor approximation algo-
rithm [30, 63, 31]. Similarly, Multicut on undirected
graphs [57], parameterized by the solution size admits
an algorithm with running time 2O(k3)nO(1), and an
approximation algorithm with factor O(logn) [44]. As-
suming UGC, Chawla et al. [12] showed that the problem
does not admit any constant-factor approximation al-
gorithm. A stronger version of UGC leads to a lower
bound of Ω(

√
log logn) [12]. Thus, for DFVS and Mul-

ticut on undirected graphs, a desirable outcome will be
a constant-factor FPT-approximation algorithm running
in time 2O(k)nO(1).

For Vertex Cover parameterized by treewidth
(w), an FPT-algorithm with running time O(2wn) is
known; on the other hand, assuming SETH, there is
no algorithm running in time (2 − δ)wnO(1), for any
fixed constant δ > 0 [47]. In the realm of polynomial-
time approximation algorithms, the problem admits a
simple factor-2 approximation, and assuming UGC, this
approximation factor cannot be improved to 2− η, for
any fixed η > 0 [35]. For this problem, a desirable
FPT-approximation algorithm will be an FPT-AS (FPT-
approximation scheme). That is, for every ε > 0, a
factor-(1 + ε) approximation algorithm running in time
(2− g(ε))wnO(1), for some function g.

1.2 Our Results and Methods We classify our
algorithmic results into following three classes based
on the methods involved in solving each of them.
• Basic cut problems such as DFVS, Subset DFVS,

Directed Odd Cycle Transversal, and Mul-
ticut.
• Problems parameterized by the treewidth (denoted

by w) of the input graph, including all aforemen-
tioned problems, as well as Vertex Cover, Tri-
angle Packing (or, more generally, F-Packing),
and more.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited201

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

• Weighted versions of cut problems such as
Weighted DFVS and Weighted Multicut.

1.2.1 Two-extremal Separator Technique and
Cut Problems Our main technical results for cut
problems are single-exponential-time factor-2 FPT-
approximation algorithms for basic cut-problems such
as DFVS, Subset DFVS, Directed Odd Cycle
Transversal (DOCT) and Multicut. In particular,
we prove the following results.

Theorem 1.1. Directed Feedback Vertex Set,
Subset Directed Feedback Vertex Set, Di-
rected Odd Cycle Transversal (DOCT), and
Multicut have 2O(k)nO(1)-time factor-2 approximation
algorithms.

Lokshtanov et al. [51] gave the first factor-2 FPT-
approximation for DOCT. However, the running time
of their algorithm is 2O(k2)nO(1), which we improve to a
single-exponential FPT running time.

To obtain our results, we give a general technique
for FPT-approximating cut problems that could be
applicable to further problems. Here, we illustrate this
technique by describing its application to the DFVS
problem. Recall that in the optimization version of
DFVS, one is given a digraph D and the goal is to find a
vertex set S of smallest size such that D−S is acyclic. A
factor-2 FPT-approximation for DFVS is an algorithm
that, given the pair (D, k), runs in time f(k)nO(1) for
some computable f and if D has a solution of size at
most k, then it outputs a solution of size at most 2k.

Our starting point is the well-known iterative com-
pression method [17] which guarantees that in order to
obtain our result for DFVS, it is sufficient for us to give
an algorithm that, given the pair (D, k) and a vertex set
W that is a solution of size at most 2k + 1, runs in time
2O(k+|W |)nO(1) and if D has a solution of size at most
k disjoint from W , then it outputs a solution of size at
most 2k. In the base case, when |W | = 1, this can be
solved trivially in polynomial time. Hence, suppose that
|W | > 1 and let S? be a smallest solution (with size at
most k) in D that is disjoint from W . Then, it is straight-
forward to see that there is an ordering w1, . . . , wr of
the vertices in W such that in the graph D − S?, there
is no directed path from wi to wj for every j < i. Let
W2 = {w1, . . . , wbr/2c} and W1 = {wbr/2c+1, . . . , wr}.
Then, S? is a W1-W2 separator1 of size at most k in D.
In particular, there is a minimal subset S?1 ⊆ S? that
is a W1-W2 separator in D. Now, let Xpre and Xpost
be W1-W2 separators in D such that Xpre is “closer”

1That is, a set of vertices that hits all paths that start at a
vertex in W1 and end at a vertex in W2.

than S?1 is to W1 and Xpost is “closer” than S?1 is to W2.
Formally, the set of vertices reachable from W1 after
deleting Xpre is a subset of that reachable from W1 after
deleting S?1 . Similarly, the set of vertices reachable from
W1 after deleting Xpost is a superset of that reachable
from W1 after deleting S?1 . Then, we show that deleting
Xpre ∪ Xpost from D makes S?1 irrelevant, i.e., S? \ S?1
is a solution for D − (Xpre ∪Xpost). In other words, we
can reduce the size of an optimal solution by |S?1 | by
paying a cost of at most |Xpre ∪Xpost|. This raises the
question – “Can we come up with small enough Xpre,
Xpost, say of size at most |S?1 | each?”. We observe that
indeed, this is possible by considering these separators
to be important W1-W2 separators (see Section 3 for the
formal definition), out of which one is pushed as close
as possible to W1 and the other is pushed as close as
possible to W2. It is well-known that the number of such
extremal separators of size at most k pushed closest to
each side is at most 4k, and hence we have 16k choices
for Xpre and Xpost, which can therefore be guessed in
FPT-time. Once these are guessed, we delete both sepa-
rators from the input, in the process decreasing the size
of the optimal solution by at least 1/2 · |Xpre ∪ Xpost|,
and then recurse independently on two subinstances –
one induced by the vertices in the strong components
containing W1 and the other induced by the vertices in
the strong components containing W2. This division of
the problem can be done since no cycle can intersect
both these instances once a W1-W2 separator has been
removed. Now, we recursively solve the same problem on
two inputs, each of which has at most half the number
of vertices of W from the original input. Analysing the
resulting recurrence gives us the required running time
bound.

We apply the same high level “two-extremal” separa-
tor approach to the other cut problems we consider. In
fact, this approach works for any problem where the goal
is to hit a family of strongly connected subgraphs. How-
ever, a major difference between DFVS and the other
problems is the following. We know that the strongly
connected components of D − S? (in the above exam-
ple) are singletons, implying that we can continue the
divide-and-conquer approach till we hit the base case.
However, for the other problems, two issues crop up:
(i) It may very well be the case that there is a unique
strongly connected component containing the set W (a
given solution for the respective problem) after remov-
ing the hypothetical solution S?. (ii) The vertices of
W could be broken up across the strong components
of S? in a very imbalanced way. We overcome Issue (i)
by designing a subroutine to efficiently 2-approximate
the solution in cases where there is a unique strongly
connected component containing W in D − S?. This

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited202

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

subroutine is problem-specific and can take different
forms for different problems. For instance, in the case of
Subset DFVS, we solve this special case using branch-
ing on important separators, in the case of Multicut
(which we phrase as a directed cut problem by moving
to bidirected graphs), this case is solved by a reduction
to the Digraph Pair Cut problem [39] and in the
case of DOCT, the special case can be 2-approximated
by solving max-flow in a bounded number of auxiliary
graphs. In order to overcome Issue (ii), we devise a 3-way
divide and conquer where, in each of the (at most) three
subinstances that are generated in each step, either the
number of vertices of W drops by a constant fraction
or we can directly use the subroutine designed for the
aforementioned special case, avoiding the need for fur-
ther recursion on this instance. A careful analysis of the
recurrence relation give us the required time bound for
these problems.

Before proceeding, we briefly remark on the main
similarities and differences between the factor-2 approxi-
mation for DOCT in this paper and that of Lokshtanov
et al. [51]. Lokshtanov et al. also begin with the itera-
tive compression method and assume that the input is a
pair (D, k) and a set W ⊆ V (D) of size at most 2k + 1
which intersects all directed odd cycles in D. However,
in order to test for the existence of a solution S of size
at most k disjoint from W (and compute a factor-2 ap-
proximation thereof), they guess the partition of W into
the strongly connected components of D − S and guess
an ordering between these specific strongly connected
components. Following this, they use an FPT algorithm
for the Skew Multicut problem [13] to compute a set
of size at most |S| that hits all cycles in D that intersect
at least two of these distinct strongly connected com-
ponents of D − S. The residual problem is a disjoint
union of several instances of the special case where one
may assume the existence of a solution whose deletion
keeps the vertices in each guessed partition of W in the
same strongly connected component. However, since
they have already spend a cost of |S| at this point, they
need an exact algorithm for the residual problem, for
which they use the shadow-removal technique [15]. Their
running time of 2O(k2)nO(1) is dominated by the time
required to implement the shadow-removal technique,
which we sidestep in this paper.

1.2.2 Results for Parameterization by
Treewidth For parameterization by the treewidth w
of the input graph, we present three general theorems,
and derive a host of results for specific problems as
corollaries. The first two theorems, derived from a
new combinatorial lemma that may be of independent
interest (described below) “break” SETH-based bounds

at an (arguably) negligible cost of an ε factor in
approximation. The third theorem allows us to combine
the results given in Section 3 to obtain constant-factor
single-exponential (in w) time approximation algorithms
for the problems studied in that section—such as
Directed Feedback Vertex Set—which do not
admit single-exponential (in w) time exact algorithms
under the ETH. Notice that here we consider these
problems when the parameter is w rather than k, yet
the algorithms for the parameterization by k will come
in handy. Briefly, the idea of the proof is to identify
“not too many” bags (so that their removal is not costly),
such that the subinstances derived by their removal
have optimum that is “not too large” compared to the
treewidth w (so that they can be efficiently solved) yet
“not too small” (as to compensate for the cost of the
bags removed). So, as consequences of a more general
(our third) theorem, we have the following.
Theorem 1.2. For every fixed constant ε > 0, each of
the following problems admits a (4 + ε)-approximation
algorithm that runs in time 2O(w) · nO(1): Directed
(Subset) Feedback Vertex Set, Directed Odd
Cycle Transversal, Undirected Multicut.

Roughly speaking, our first theorem states that any
vertex deletion problem that admits an α-approximate
ck-vertex kernel and which can be solved in time
O(bwnp), admits an α(1 + ε)-approximation algorithm
that runs in time O(b(1−

ε
c−1)w+o(w)np + nO(1)). More-

over, the second theorem essentially states that for any
fixed graph family F (where the maximum size of a graph
in F is d) such that the corresponding F-Packing prob-
lem can be solved in timeO(bwnp), the F-Packing prob-
lem also admits a (1 + ε)-approximation algorithm that
runs in time O(b(1− εd)w+o(w)np + nO(1)). It is known
that each of the following problems admits an O(bwn)-
time algorithm: Vertex Cover where b = 2; Compo-
nent Order Connectivity where b = `; Bounded-
Degree Vertex Deletion where b = (d + 2); Tri-
angle Packing where b = 2. Moreover, all of these
constants b are known to be tight under the SETH for
their respective problems. As consequences of our two
theorems, we derive the following.
Theorem 1.3. For every fixed constant ε > 0, each of
the following problems admits a (1 + ε)-approximation
algorithm that runs in time bw+o(w)n+ nO(1): Vertex
Cover where b = 21−ε Component Order Connec-
tivity where b = `1−

ε
2`−1 ; Bounded-Degree Vertex

Deletion where b = (d+ 2)1− ε
d3+4d2+5d+1 ; F-Packing

for every graph family F that consists of graphs on at
most d vertices where b = b

1− εd
F , where bF is the best

known constant such that F-Packing is solvable in time
O(bwFn). For example, for Triangle Packing bF = 2.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited203

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

So, for example, we can approximate Vertex Cover
within factor 1 1

3 in time 1.588wn+ nO(1).
The proof of both theorems is based on a combi-

natorial lemma that yields a partition of the vertex set
of a graph to roughly equal sized sets that the removal
of each reduces its treewidth substantially, which may
be of independent interest. When being applied, for
vertex deletion problems, we note that there exists a
part that has “large” intersection with an (unknown)
optimal solution, and furthermore that part is small
(as all parts are, being disjoint and of equal size, and
considered after applying a linear-vertex kernel), and
hence we can just take it into our solution at modest
cost. For packing problems, we note that there exists
a part that has “small” intersection with an (unknown)
optimal solution, and hence we can just be discard it at
modest cost. Very briefly, the proof of the combinato-
rial lemma itself is based on a greedy computation of a
proper coloring of the graph when each bag of its tree
decomposition is turned into a clique. By using more
colors than “necessary”, we are able to argue that no
color is used “too many” times. Then, having computed
this coloring, a packing argument concerning its color
classes yields the combinatorial lemma.

1.2.3 FPT-approximations for Weighted Prob-
lems In the above discussions, the focus was primarily
on unweighted problems. However, it is often the case
that a problem instance is presented with certain costs
or weight function, and the objective is to find a so-
lution of minimum (or maximum) weight. Such types
of optimization problems are a central object of study
in approximation algorithms. However, parameterized
complexity has so far primarily focused on unweighted
problems, although FPT algorithms are known for several
weighted problems such as Weighted Steiner Tree.
The parameterized complexity of many other problems
such as Weighted DFVS and Weighted Multicut
remain longstanding open problems [17], even though
their unweighted variants have been known to be FPT
for a long time.

In this paper, we present methods and techniques
to develop approximation algorithms for weighted graph
problems, that we exemplify via Weighted (Subset)
DFVS, Weighted DOCT, and Weighted Multicut.
We remark that our methods may also be applicable
to other weighted problems for which the unweighted
version admits an FPT (approximation) algorithm.
Moreover, they yield approximation algorithms that
essentially have the same running time as the algorithm
for the unweighted problem, and only a slightly worse
approximation ratio.

To describe our results in more detail, let us focus

on the example of Weighted DFVS. Here we are given
a directed graph G, a weight function w : V (G) → Q,
and the objective is to find a subset S ⊆ V (G) such that
w(S) =

∑
v∈S w(v) is minimized and G−S is a directed

acyclic graph (DAG). Let us begin by discussing the
parameterization of weighted problems.

Parameterization for Weighted Problems. A
natural way to parameterize Weighted DFVS is to
select a non-negative value k, and ask for a solution S
such that w(S) ≤ k. This, however, is not interesting
since we can reduce DFVS to Weighted DFVS by
assigning every vertex a weight of 1

k , and ask for a
solution of weight at most 1. Clearly, unless P6=NP,
we do not expect an FPT algorithm for this problem.
Thus, parameterizing Weighted DFVS by the value
of the weight is not meaningful. A more suitable choice
is the cardinality of the solution, i.e. the number of
vertices in it. That is, given a directed graph D, a
weight function w : V (G) → Q and a non-negative
integer k, we seek a set S ⊆ V (G), such that D − S is a
DAG, |S| ≤ k and w(S) is minimized. We remark that
it is a longstanding open problem whether Weighted
DFVS is FPT parameterized by the solution cardinality
k. Furthermore, this problem does not admit a constant-
factor approximation algorithm in polynomial time, even
in the unweighted setting [30, 63, 31]. We present
algorithms that are substantial improvements on both
fronts.

Let Optk denote the weight w(SOPTk), where SOPTk

is a minimum weight solution of cardinality at most
k. Note that Optk could be much larger than OPT =
mink∈N Optk, and conversely any solution of weight
OPT could have much larger cardinality than k. In
a parameterized algorithm, we are only interested in
solutions whose cardinality is bounded by k, while in an
approximation algorithm our objective is to approximate
OPT irrespective of the solution cardinality. Taking our
cue from both these approaches, we define a notion of
bi-criteria FPT-approximation. To state it formally,
we require a few additional definitions. A problem
Π on graphs is associated with a predicate φΠ(G,S)
(also called a graph property). We interpret φ as a
characterization of the space of all feasible solutions
for an input graph G. That is, for a graph G and a
vertex (or edge) subset S of G, φΠ(G,S) returns true
if S is a feasible solution and false otherwise. Then
let Hk be the collection of those subsets X ⊆ V (G)
(or X ⊆ E(G)), such that |X| ≤ k, and φΠ(G,X) is
true. Further, let w : V (G)→ R+ be a weight function
on the vertices (similarly for edges). Then, we define
Optk = minX∈Hk w(X), and OPT = mink∈[n] Optk.

Definition 1.1. Let Π be a weighted parameterized

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited204

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

graph minimization problem. For α, β > 0, we say that Π
admits an (α, β)-FPT-approximation algorithm, if given
an instance (G,w, k) of Π, there exists an algorithm
running in time f(k)·nO(1) such that, if Hk is non-empty,
then it returns a set S of size at most αk (i.e. S ∈ Hαk),
such that φΠ(G,S) is true and w(S) ≤ β·Optk, otherwise
the output is arbitrary.

Our FPT-approximation algorithms are guaranteed
to output a solution that is (α, β)-approximate should
the given instance admit a solution of cardinality k;
otherwise the output is arbitrary. We prove the following.

Theorem 1.4. For every ε > 0, Weighted DFVS,
Weighted Multicut and Weighted DOCT admit
a (4, 8(1 + ε))-FPT-approximation algorithm running in
time 1

ε · 2
O(k)nO(1).

These algorithms build upon a novel scheme to
reduce the weighted problem to an unweighted instance
and then invoke the FPT (approximation) algorithm
for the unweighted problem on it. Let us discuss our
methods via the example of DFVS. Consider an instance
(D,w, k), and suppose that it admits a solution of
cardinality k. A trivial reduction to the unweighted
version of the problem is as follows: create w(v) copies
for each vertex v ∈ V (D) (assuming for now that the
weights are integral). This reduction however is not very
helpful since the value of OPT (and Optk) might not
be a function of k, and hence the unweighted instance
is not amenable to an FPT (approximation) algorithm.
We present a more nuanced reduction that avoids this
issue, at a small cost to the approximation factor and it
is essentially independent of the weights themselves.

The first step of our reduction is to consider weighted
instances where the weights are integral and upper-
bounded by an integer M . Given such an instance
(D,w, k), suppose that we know the value of Optk, and
let γ = dOptk

k e. Note that, we do not actually need to
know the value of Optk and γ, since we know γ ∈ [M] and
we can iterate over all choices for γ. Next, we consider a
new weight function wγ that is obtained by rounding up
the weight w(v) of each vertex v to the nearest integral
multiple of γ. We prove that the instance (D,wγ , k)
admits a solution of cost at most 2Optk. Then, from D
and wγ we construct an unweighted instance where for
every vertex v we have wγ(v)

γ copies (note that this is an
integer); we refer to the subset of copies of v as the vertex
bundle for v, denoted by Zv. Our key observation is that
any minimal feedback vertex set for H, the digraph
obtained from D by making these copies, must respect
the vertex bundles. That is either it includes all of Zv
or it is disjoint from Zv. From this we infer that if
D admits a solution of cardinality k, then H admits a

solution of cardinality 2k. This means the unweighted
instance (H, 2k) may be approximated using an FPT
algorithm that we discussed earlier. Further, we show
that given a solution S′ of cardinality 4k to this instance,
we can map it back to a solution S of (D,w) such that
w(S) ≤ 8Optk and |S| = |S′|. Thus, for bounded weight
instances we obtain a (4, 8) FPT-approximation in single
exponential FPT time.

The second step is to reduce from the general
weighted instances to bounded weight instances. Here
we make use of a knapsack like rounding procedure, that
given an ε > 0, at a multiplicative cost of (1 + ε) to
the approximation factor, produces weighted instances
of DFVS where the weights are integral and upper-
bounded by dkε e. Then, combined with the previous
step, we obtain a (4, 8(1 + ε)) FPT-approximation in
single exponential time. Our methods easily extend to
Weighted Multicut and Weighted DOCT, and we
believe they can be applied to several other problem.

Finally, we present another FPT-approximation for
Weighted DFVS that is able to achieve a (1, 1 + ε)
FPT-approximation, but at the cost of a higher running
time. This algorithm builds upon an algorithm for
MultiBudgeted DFVS. In this problem, the vertex set
V (D) of the input digraph is partitioned into a number
of classes V1] V2 . . . V`, and the objective is to find
a solution S such that for each i ∈ [`] |S ∩ Vi| ≤ ki,
where the numbers k1, k2, . . . , k` are also a part of the
input. An FPT algorithm for this problem was presented
by Kratsch et.al. [37] that runs in time 2O(k3 log k)nO(1)

where k =
∑`
i=1 ki. We combine this algorithm with the

knapsack like rounding procedure to obtain the following
theorem.

Theorem 1.5. For every ε > 0, Minimum Weight
DFVS admits a (1, 1 + ε)-FPT-approximation algorithm
running in time kk/ε · 2O(k3 log k)nO(1)

The above theorem is an FPT-approximation Scheme
(FPT-AS) for Weighted DFVS. Further, the above
technique can be applied to any problem for which a
“multi-budgeted” algorithm can be designed. In the
rest of this paper, we present the details of our single-
exponential-time factor-2 approximation algorithms for
the unweighted cut problems.

2 Preliminaries
Let w : A → R be a “weight” function. For any
subset A′ ⊆ A, we define the weight of A′ as w(A′) =∑
a∈A′ w(a).

2.1 Graph Notation When the (di)graph G is clear
from the context, we let n = |V (G)| and m = |E(G)|. A
subset S ⊆ V (G) is a connected set if G[S] is a connected

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited205

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

graph. The contraction of an edge {u, v} ∈ E(G) yields
the graph on vertex set V (G − {u, v}) ∪ {r} for some
new vertex r and edge set E(G − {u, v}) ∪ {{r, w} :
{u,w} ∈ E(G) or {v, w} ∈ E(G) (or both)}. A family
F of graphs is hereditary if for every graph G ∈ F and
subset S ⊆ V (G), G − S ∈ F . Given a rooted tree T
and a vertex v ∈ V (T), we let Tv denote the subtree of
T rooted at v. We say that a graph H is a minor of a
graph G if there exists a sequence of vertex deletions,
edges deletions and edge contractions in G that yields a
graph isomorphic to H.

A digraph D is bidirected if for every arc (u, v) ∈
A(D), the arc (v, u) is also present in D. The operation
of identifying a vertex set X in a digraph D is defined as
follows. We create a new vertex x′ and define a function f
as follows: for every v ∈ V (D)\X, f(v) = v and for every
v ∈ X, f(v) = x′. Now, for every arc (x, y) ∈ A(D),
we add the arc (f(x), f(y)) (if it is not already present
in D). Finally, we delete X. The resulting digraph is
said to be obtained from D by identifying the vertices in
X. Notice that in general, the identification operation
could lead to self-loops and parallel edges. For a pair
of vertices a, b ∈ V (D), an a-b walk denotes a directed
walk in D that starts at a and ends in b.

2.2 Optimization and Parameterized Complex-
ity

Definition 2.1. An NP-optimisation problem is de-
fined as a tuple (I, sol, cost, goal) where: (i) I is the set
of instances. (ii) For an instance x ∈ I, sol(x) is the set
of feasible solutions for x, the length of each y ∈ sol(x)
is polynomially bounded in |x|, and it can be decided
in time polynomial in |x| whether y ∈ sol(x) holds for
given x and y. (iii) Given an instance x and a feasible
solution y, cost(x, y) is a polynomial-time computable
positive integer. (iv) goal ∈ {max,min}.

The objective of an optimization problem is to find
an optimal solution z for a given instance x, that is a
solution z with cost(x, z) = opt(x) := goal{cost(x, y) |
y ∈ sol(x)}.

If y is a solution for the instance x then the perfor-
mance ratio of y is defined as R(x, y) = cost(x, y)/opt(x)
(if goal = min) and opt(x)/cost(x, y) (if goal = max).
For a real number c > 1 (or a function c : N→ N), we
say that an algorithm is a c-approximation algorithm if
it always produces a solution with performance ratio at
most c (respectively, c(x)).

Let Π be an NP-hard problem. In the framework
of parameterized complexity, each instance of Π is
associated with a parameter k. Here, the goal is to
confine the combinatorial explosion in the running time
of an algorithm for Π to depend only on k. Formally,

we say that Π is fixed-parameter tractable (FPT) if any
instance (I, k) of Π is solvable in time f(k) · |I|O(1),
where f is an arbitrary function of k. Parameterized
complexity also provides methods to show that a problem
is unlikely to be FPT. The main technique is the one of
parameterized reductions analogous to those employed in
classical complexity. Here, the concept of W[1]-hardness
replaces the one of NP-hardness. Parameterization by
solution size (or value) means that we seek a solution
of size (or value) at most (for minimization) or at least
(for maximization) k where k, the parameter, is given as
part of the input. We note that with respect to graph
problems parameterized by the treewidth of the input
graph, w, we assume that every input instance is given
to us along with a tree decomposition of width w. We
remark that for other structural parameterizations, when
the parameter is computable in polynomial time (e.g.,
the size of a maximum matching in the graph), the input
instance does not have additional arguments, and the
parameter is thus implicit.

When the parameter k is structural (e.g., treewidth),
a factor-c(k) FPT-approximation algorithm for X is
an algorithm that, given input (x, k) (where k can be
implicit), runs in time f(k) · |x|O(1) and computes a y ∈
sol(x) such that cost(x, y) ≤ opt(x) ·c(k). The definition
for maximization problems is symmetric. When the
parameterization is by solution size or value, we define
FPT-approximation as follows.

Definition 2.2. Let X = (I, sol, cost, goal) be a
minimization problem. A standard factor-c(k) FPT-
approximation algorithm for X (where the parameter-
ization is by solution size or value) is an algorithm
that, given input (x, k) satisfying opt(x) ≤ k, runs in
time f(k) · |x|O(1) and computes a y ∈ sol(x) such that
cost(x, y) ≤ k·c(k). For inputs not satisfying opt(x) ≤ k,
the output can be arbitrary.

The definition for maximization problems is sym-
metric. In this paper, we will refer to standard FPT-
approximation algorithms as simply FPT-approximation
algorithms when the parameterization by solution size is
clear. Moreover, for all unweighted graph minimization
problems we consider, feasible solutions will be vertex or
edge subsets and the cost of a solution will be the size
of the set.

To obtain (essentially) tight conditional lower
bounds for the running times of algorithms, we rely
on the well-known Exponential-Time Hypothesis (ETH)
and Strong Exponential-Time Hypothesis (SETH). To
formalize the statements of ETH and SETH, first recall
that given a formula ϕ in conjuctive normal form (CNF)
with n variables and m clauses, the task of CNF-SAT
is to decide whether there is a truth assignment to the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited206

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

variables that satisfies ϕ. In the p-CNF-SAT problem,
each clause is restricted to have at most p literals. First,
ETH asserts that 3-CNF-SAT cannot be solved in time
O(2o(n)). Second, SETH asserts that for every fixed
ε < 1, there exists a (large) integer p = p(ε) such that
p-CNF-SAT cannot be solved in time O((2− ε)n). We
remark that ETH implies FPT 6=W[1], and that SETH
implies ETH.

A companion notion to that of FPT is the one of
a kernel. Formally, a decision parameterized problem
Π is said to admit a compression if there exists a (not
necessarily parameterized) problem Π′ and a polynomial-
time algorithm that given an instance (I, k) of Π, outputs
an equivalent instance I ′ of Π′ (that is, (I, k) is a yes-
instance of Π if and only if I ′ is a yes-instance of Π′) such
that |I ′| ≤ p(k) where p is some computable function
that depends only on k. In case Π′ = Π, we further say
that Π admits a kernel. More broadly, to accommodate
optimization and approximation, we rely on the more
general notion of lossy kernelization. We define the
notion of lossy kernelization in a more restricted way
than [49] that will suffice for our purposes.

Definition 2.3. Let Π be a parameterized minimiza-
tion problem, parameterized by the solution size. Let
α ≥ 1. An α-approximate kernelization algorithm for Π
consists of two polynomial-time procedures: reduce and
lift. Given an instance I of Π with parameter k, reduce
outputs another instance I ′ of Π with parameter k′ such
that |I ′| ≤ f(k′, α), k′ ≤ k, and where k′

opt(I′) ≤
k

opt(I) .2

Given I, I ′ and a solution S′ for I ′, lift outputs a solution
S for I such that, if opt(I) ≤ k, then |S|

opt(I) ≤ α |S′|
opt(I′)

(otherwise, S can be of any size).

In case of a graph problem and when the output
graph has f(k) vertices, we say that the kernel (in the
above definition) is an α-approximate f(k)-vertex kernel.
When f(k) is linear in k, we use the term α-approximate
linear-vertex kernel.

3 Factor-2 approximations in 2O(k)nO(1)-time
In this section, we present the first single-exponential-
time factor-2 FPT-approximations for some well-studied
cut problems – (Subset) DFVS, Undirected Multi-
cut and Directed Odd Cycle Transversal.

3.1 Setting Up the Machinery In Definitions 3.1–
3.5, Observation 3.1, Proposition 3.1, fix a digraph D

2Often, the requirement |I′| ≤ f(k′, α) is replaced by the more
relaxed requirement |I′| ≤ f(k, α). However, as all the (known)
kernels we will use (as black boxes) have this property, we directly
define it like this. Further, the requirement is implicit for the
definition to be sensible (without using a π function as in [49]).

and disjoint X,Y ⊆ V (D).

Definition 3.1. We denote by relD(X,Y) the set of all
vertices that lie in a strongly connected component of
D−Y intersected by X. We denote by connD(X,Y) the
set of all vertices that lie on an x1-x2 walk in D − Y
for some x1, x2 ∈ X. When Y = ∅, we simply write,
relD(X) and connD(X) and drop the subscript if D is
clear from the context.

Notice that in the above definition, it is possible
that x1 = x2 and hence connD(X,Y) ⊇ relD(X,Y).

Definition 3.2. (Separators) A vertex set S dis-
joint from X ∪ Y is called an X-Y separator if there
is no X-Y path in D − S. We say that S is a minimal
X-Y separator if no strict subset of S is also an X-Y
separator. We denote by RD(X,S) the set of vertices
reachable from vertices of X via directed paths in D − S
and by NRD(X,S) the set of vertices not reachable from
vertices of X in D − S. The subscript is ignored if the
digraph D is clear from the context.

Definition 3.3. Let S1 and S2 be X-Y separators.
We say that S2 covers S1 (denoted by S1 v S2) if
R(X,S1) ⊆ R(X,S2) and we say that S2 dominates
S1 (denoted by S1 � S2) if S2 covers S1 and |S2| ≤ |S1|.

When S2 covers S1, we also say that S1 is covered
by S2.

Observation 3.1. Let S1 and S2 be minimal X-Y
separators such that S1 v S2. Then, S2 \ S1 ⊆
NR(X,S1). That is, S2 \ S1 is unreachable from X
in D − S1. Similarly, Y ⊆ NR(S1 \ S2, S2). That is, Y
is unreachable from S1 \ S2 in D − S2.

Definition 3.4. (Important separators) Let S be
a minimal X-Y separator. We say that S is an important
X-Y separator closest to Y if there is no X-Y separator
S′ that dominates S. We say that S is an important X-
Y separator closest to X if there is no X-Y separator S′
that is dominated by S. Following standard terminology,
we simply use the term important X-Y separator, then
we are referring to one closest to Y .

Proposition 3.1. [17] The number of important X-
Y separators of size at most k closest to Z (for each
Z ∈ {X,Y }) is bounded by 4k. Moreover, these can be
enumerated in time 4k(m+ n).

Definition 3.5. Let D be a directed graph. A directed
closed walk in D (a directed walk that starts and ends at
the same vertex) with an odd number of edges is called a
directed odd closed walk. For a set T ⊆ V (D) ∪A(D),

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited207

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

a directed closed walk in D is said to be a T -closed walk
if it contains an element from T . A T -closed walk is
called a T -cycle if it is a simple cycle. A set S ⊆ V (D)
is called a T -sfvs if it intersects every T -cycle in D.

Let F = {F1, F2, . . . , , Fq} be a fixed set of sub-
graphs of a digraph D such that F -free subgraphs of D
are closed under taking subgraphs. An F-transversal
in D is a set of vertices that intersects every Fi ∈ F .
The family F could be exponentially large, in which
case it is implicitly defined. In our work, we are inter-
ested in problems that can be formulated as computing
a smallest F-transversal where the graphs in F are all
strongly connected. We refer to this problem as SCC
F-Transversal.

The minimization version of SCC F-Transversal
is the tuple (I, sol, cost,min), where, I is the set of
digraphs, for every x ∈ I, sol(x) denotes the set of F-
transversals in x. Moreover, for every feasible solution
y, cost(x, y) denotes the size of the vertex set y. Recall
that for every c ∈ R, a (standard) factor-c FPT-
approximation algorithm for SCC F-Transversal
is an algorithm that, on input (D, k), runs in time
f(k) · nO(1) (for some computable f) and if there is
an F -transversal in D of size at most k, then it outputs
an F-transversal in D of size ≤ ck.

Observation 3.2. Subset DFVS, Directed OCT,
Bidirected Multicut are special cases of F-
transversal.

The following lemma is at the heart of the algorithms
in this section.

Lemma 3.1. Let S̃ be an F-transversal in D. Let
W = W1]W2 be an F-transversal in D such that for
some ∅ 6= S ⊆ S̃, S is a minimal W1-W2 separator.
Let Xpre and Xpost be W1-W2 separators in D such that
Xpre v S v Xpost. Then, S̃ \ S is an F-transversal in
the graph D′ = D − (Xpre ∪Xpost).

Proof. Suppose that this is not the case. Then, there is
a graph F ∈ F that is contained in D′′ = D′ − (S̃ \ S).
Since S̃ and W are both F-transversals in D, it follows
that F is a strongly connected subgraph of D′′ that
intersects both S and W . This, in turn, implies that
there is a closed walk in D′′ that intersects some
s ∈ S \ (Xpre ∪ Xpost) and some w ∈ W . Since,
Xpre v S v Xpost, we have that S \Xpre is unreachable
from W1 in D − Xpre and W2 is unreachable from
S \Xpost in D −Xpost (see Observation 3.1). This gives
a contradiction to our assumption that there is a closed
walk in D′′ that contains s and w.

As an immediate consequence of Lemma 3.1, we
have the following.

Lemma 3.2. Let D,W1,W2, S̃, S be as defined in
Lemma 3.1. Then, there exists an important W1-W2
separator closest to W1 of size at most |S|, call it Xpre,
and an important W1-W2 separator closest to W2 of
size at most |S|, call it Xpost, such that S̃ \ S is an
F-transversal in D′ = D − (Xpre ∪Xpost).

Therefore, if we knew W1, W2 and |S|, then we
can guess Xpre and Xpost and make some |S| vertices
of S̃ “irrelevant” (and reducing the size of the optimal
solution by |S|) by paying a cost of at most 2|S|. This
property forms the crux of our approximation algorithms
for the special cases of SCC F-Transversal considered
in this section. However, embedding this idea into our
algorithms is not straightforward and requires some care.

3.2 Subset DFVS Using the reduction in [15], we
work with the following equivalent formulation of Subset
DFVS where the terminals are arcs instead of vertices,
as is usually the case. We continue to refer to this prob-
lem as Subset DFVS instead of the term Edge Subset
DFVS used in [15]. As proved in Observation 3.2, Sub-
set DFVS is a special case of SCC F-Transversal
as one can simply take F to be the set of T -cycles. More-
over, notice that the existence of T -cycles is equivalent
to the existence of T -closed walks. In order to design our
FPT-approximation for Subset DFVS, we first consider
a special case.

Note that a factor-c FPT-approximation algorithm
for Strict Subset DFVS is an algorithm that, on input
(D,T,W, k) where (D,T) is an input to the minimization
version of Subset DFVS and W is a T -sfvs in D, runs
in time f(k) ·nO(1) (for some computable f) and if there
is a T -sfvs S in D of size at most k such that W is
contained in a unique strongly connected component of
D − S, then it outputs a T -sfvs in D of size at most ck.
Otherwise, the output of the algorithm can be arbitrary.

Lemma 3.3. There is a factor-1 FPT-approximation
algorithm for Strict Subset DFVS with running time
2O(k)nO(1). We call this algorithm Alg-Strict-SFVS.

Proof. Let I = (D,T,W, k) be the given input. We
may assume that D is a strongly connected graph.
Otherwise, we work individually over each strongly
connected component. We first check whether there
is an arc (u, v) ∈ T such that u, v ∈W . If yes, then we
terminate the algorithm with an arbitrary output. This
is correct since there is no T -sfvs S in D such that W
is contained in a unique strongly connected component
of D − S. Henceforth, we assume that D[W] is an
independent set.

Our next step is to construct a new tuple I ′ =
(D′, T ′, w, k) where D′ is obtained from D by identifying

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited208

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

the vertices in W (with parallel arcs removed), w is
the new vertex created in place of W by this operation
and T ′ is obtained by updating T accordingly. That
is, T ′ contains the arcs {(x, y) ∈ T | x, y /∈ W}
plus the arcs {(w, y) | ∃x ∈ W, ∃(x, y) ∈ T} and
{(x,w) | ∃y ∈ W, ∃(x, y) ∈ T}. Since we are in the
case where D[W] is an independent set, there are no self-
loops incident on w. Notice that D′ is strongly connected
since D is assumed to be strongly connected. We now
have the following claim.

Claim 3.1. The following statements hold.

1. w is a T -sfvs in D′.
2. Every T -sfvs S in D that is disjoint from W such

that W is contained in a unique strongly connected
component of D−S, is a T ′-sfvs in D′ that is disjoint
from w.

3. Conversely, every T ′-sfvs in D′ disjoint from w is
a T -sfvs in D.

Due to this claim, it is sufficient to describe an
algorithm that, given I ′ = (D′, T ′, w, k), runs in time
2O(k)nO(1) and either outputs a T ′-sfvs of size at most
k disjoint from w (we refer to such sets as a solution for
I ′ in the rest of the proof) or correctly concludes that
one does not exist.

Claim 3.2. Let S be a solution for I ′. For every
(u, v) ∈ T ′, either {u, v} ∩ S 6= ∅ or there is a solution
for I ′ that contains an important x-w separator closest
to w or an important w-x separator closest to w for some
x ∈ {u, v}.

Proof. Let S be a T ′-sfvs in D′ of size at most k disjoint
from w and let C be the strongly connected component
of D′−S that contains w. We first observe that for every
e = (u, v) ∈ T ′, it cannot be the case that {u, v} ⊆ C.
Otherwise, we would contradict S being a T ′-sfvs in
D′. This implies that either at least one of u or v is
contained in S, or S intersects all w-x or x-w paths for
some x ∈ {u, v}. It remains for us to argue that if S
intersects all w-x or x-w paths for some x ∈ {u, v}, then
there is a solution S′ that contains an important w-x
separator closest to w or an important x-w separator
closest to w for some x ∈ {u, v}. We only argue the case
where S intersects all w-x paths for some x ∈ {u, v}.
The other case is analogous.

Let Ŝ ⊆ S be a minimal w-x separator in D′. Since
D′ is strongly connected, it must be the case that Ŝ is
non-empty. Now, consider an important w-x separator
S̃ of size at most |Ŝ| that is covered by Ŝ. We claim
that (S \ Ŝ)∪ S̃ is also a solution for I ′. If this were not
the case, then there would be a closed walk intersecting

w and a vertex s ∈ Ŝ \ S̃ that is disjoint from S̃, a
contradiction to Observation 3.1, which guarantees the
absence of w-s paths in the graph D′−S̃. This completes
the proof of the claim.

Given the above claim, we make use of a standard
important-separator branching routine (see [17] for
an exposition) to obtain an algorithm that does the
following: It picks an arc (u, v) ∈ T ′, in the first two
branches, it branches by deleting one of u, v and adding
it to the solution. In the remaining four branches, it
enumerates all important u-w separators closest to w,
important v-w separators closest to w, important w-u
separators closest to w and important w-v separators
closest to w, each of size at most k and adds one of them
to the solution. Finally, if there is a leaf at which the
vertices added to the solution form a T -sfvs (which can
be checked in polynomial-time) of size at most k, then
we return such a solution. Otherwise, we terminate with
an arbitrary output.

The correctness of the algorithm follows from
Claim 3.1 and Claim 3.2. Indeed, from Claim 3.1, we
have that for every T -sfvs S in D of size at most k such
that W is contained in a unique strongly connected com-
ponent of D − S, then S is a solution for I ′. Moreover,
Claim 3.2 guarantees that for every (u, v) ∈ T ′, either
one of u or v must be in S or our important separator
branching procedure is correct.

Standard important separator analysis with a
branching measure of 2k − λ(y, z) (where we are enu-
merating important y-z separators and λ(y, z) de-
notes the size of smallest y-z separator) shows that
we have a branching algorithm with branching vector
(2, 2, 1, 1, 1, 1), bounding the number of leaves in our
search tree by γk (where γ = 10 + 4

√
6) and overall

running time by γknO(1) since we only require polyno-
mial time at each node. This completes the proof of the
lemma.

Lemma 3.4. Let D be a digraph, T ⊆ A(D), and let W
and S be disjoint T -sfvs in D. Let ∅ 6= W ′ ⊆W be such
that in D − S, there is a strongly connected component
whose intersection with W is precisely W ′. Consider the
graph D′ obtained from D by adding a bidirected clique
on W ′ (i.e., we add an arc (w,w′) for every w,w′ ∈W ′
such that (w,w′) /∈ A(D)). Then, W and S are both
T -sfvs in D′.

We are now ready to present the algorithm for
Subset DFVS, which uses Algorithm Alg-Strict-SFVS
as a subroutine.

Theorem 3.1. There is a factor-2 FPT-approximation
algorithm for Subset DFVS with running time
2O(k)nO(1).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited209

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Proof. By using the iterative compression technique,
we reduce our goal to designing an algorithm that, on
input (D,T,W, k), where (D,T) is an instance of Subset
DFVS, k ≥ 0 and W is a T -sfvs in D, runs in time
2O(k+|W |)nO(1) and if there is a T -sfvs S in D of size at
most k that is disjoint from W , then it outputs a T -sfvs
in D of size at most 2k. Otherwise, the output of the
algorithm can be arbitrary. Indeed, suppose that such an
algorithm (which we call Algorithm Alg-Disjoint-SFVS)
exists. Then, one can immediately obtain an algorithm
Alg-Compression-SFVS that, on input (D,T,W, k), runs
in time 2O(k+|W |)nO(1) and if there is a T -sfvs S in D
of size at most k that is not necessarily disjoint from W ,
then it outputs a T -sfvs in D of size at most 2k.

Now, suppose that V (D) = {v1, . . . , vn} and for
every i ∈ [n], Vi =

⋃i
j=1 vj . Furthermore, for every

X ⊆ V (D), let T [X] = {(x, y) ∈ T | x, y ∈ X}.
Then, we construct instances I1, . . . , In where Ii =
(D[Vi], T [Vi],Wi, k), W1 = {v1}, for every i > 1, Wi ←
{vi} ∪ Alg-Compression-SFVS(Ii−1). Moreover, for the
first occurrence of an i for which Wi is not a T -sfvs of
size at most 2k + 1 in D[Vi], we terminate and return
an arbitrary vertex set. It is straightforward to see that
assuming the correctness and claimed running time of
Alg-Disjoint-SFVS, we have the required factor-2 FPT-
approximation for Subset DFVS.

We now proceed to describe Algorithm Alg-Disjoint-
SFVS. In the base case of this algorithm, k ≤ 1 or
|W | = 1. In either case, can solve the instance by brute
force. If k ≤ 1, then it is sufficient for us to check whether
there is a T -cycle in D and if yes, whether there is a
T -sfvs in D of size at most 1. If k > 1, |W | = 1, then we
can simply return W . Hence, we assume that k, |W | > 1.
Moreover, we assume that D is strongly connected.
Otherwise, we can simply work with the subinstance
induced by each strongly connected component.

Let P denote the set of all 3-partitions of W into
sets (X,Y, Z). For every τ = (X,Y, Z) ∈ P, we define
the following sets and tuples. Let 1 ≤ i, j ≤ k.

• Li[Z → XY] denotes the set of all important Z-
X ∪ Y separators of size at most i closest to X ∪ Y .

• Li[XY ← Z] denotes the set of all important Z-
X ∪ Y separators of size at most i closest to Z.

Recall that both these sets have size at most 4i
(Proposition 3.1). When i = 0, we assume that these
sets only contain ∅. Moreover, if Z or X ∪ Y is ∅, then
Li[Z → XY] and Li[XY ← Z] are empty for every i.

In the following, let 1 ≤ i, j ≤ k, L1 ∈ Lj [Z → XY],
L2 ∈ Lj [XY ← Z].
• Li[Y → X,L1, L2] denotes the set of all important
Y -X separators of size at most i closest to X in
D − (L1 ∪ L2).

Figure 1: An illustration of the sets X]Y]Z = W and
the separators L1, . . . , L4. The dotted arrows represent
paths.

• Li[X ← Y,L1, L2] denotes the set of all important
Y -X separators of size at most i closest to Y in
D − (L1 ∪ L2).

When i = 0, we assume that these sets only contain
∅. Moreover, if X or Y is empty, then Li[Y → X,L1, L2]
and Li[X ← Y, L1, L2] are empty for every i.

To help readability, in the rest of proof, we will
forgo the notation T [Q] when referring to the arcs of T
with both endpoints in Q, because the vertex set Q will
always be clear from the context. Abusing notation in
this way, we will continue to refer to the set of terminals
as T even when referring to subinstances that do not
contain some arcs in T . Now, for every Q ⊆ V (D), we
define the following:

• I[Q,Z, i] denotes the tuple (D[rel(Z,Q)], T, Z, i).
Similarly, we define the following tuples.

• I[Q,XY, i] denotes (D[rel(X ∪ Y,Q)], T,X ∪ Y, i).
• I[Q,X, i] denotes (D[rel(X,Q)], T,X, i).
• Ĩ[Q,Y, i] denotes (D′, T, Y, i), where D′ is the graph

obtained from D[rel(Y,Q)] by adding a bidirected
clique on Y .

To ease readability, we interleave the steps of the
algorithm and intuitive descriptions and observations
related to these.
Main loop: For every (X,Y, Z) ∈ P such that |W |/3 ≤
|X ∪ Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3, and for every
i1, i2 such that 1 ≤ i1 ≤ k and k1 = i1 + i2 ≤ k, we do
the following:
Step 1: We guess L1 ∈ Li1 [Z → XY], L2 ∈ Li1 [XY ←
Z], L3 ∈ Li2 [Y → X,L1, L2], L4 ∈ Li2 [X ← Y, L1, L2]
(see Figure 1). Set Q =

⋃
q∈[4] Lq.

That is, we guess a pair of important Z-(X ∪ Y)
separators of size at most i1 in D, one that is closest
to Z and another that is closest to X ∪ Y . Following

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited210

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

this, we delete L1 ∪ L2 and guess a pair of important
Y -X separators of size at most i2 in D − (L1 ∪ L2), one
that is closest to Y and another that is closest to X.
This guessing step is implemented as follows. Using
the important separator enumeration algorithm [17], we
obtain a branching algorithm that takes polynomial time
in each step and produces at most 4i1 · 4i1 · 4i2 · 4i2 =
24(i1+i2) = 24k1 leaves, where each leaf corresponds to a
guess of L1, L2, L3, L4.

Notice that deleting L1 and L2 breaks up the original
instance into two disjoint pieces comprising the vertices
in relD(Z) and relD(X ∪ Y). Additionally, deleting L3
and L4, breaks up the original instance into three disjoint
pieces comprising the vertices in relD(Z), relD(X) and
relD(Y). We will use this crucially in our algorithm as
follows.
Step 2: If |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3, then for
every i3, i4 such that i3 + i4 ≤ k − k1, we recursively
compute:

(i) SZ ← Alg-Disjoint-SFVS(I[Q,Z, i3]).
(ii) SXY ← Alg-Disjoint-SFVS(I[Q,XY, i4]).

If ∆ = Q∪SZ ∪SXY is a T -sfvs in D of size at most
2k, then we return ∆.

Note that if Z or X ∪ Y is empty, then above two
instances are empty. We allow Alg-Disjoint-SFVS to take
empty instances with the promise that the output is
always the empty set. We argue that the instances
I[Q,Z, i3] and I[Q,XY, i4] are valid input instances
to Alg-Disjoint-SFVS as follows. Notice that from the
definition of L1 and L2 as Z-(X ∪Y) separators in D, it
follows that X∪Y is disjoint from rel(Z,L1∪L2) and Z is
disjoint from rel(X ∪Y,L1∪L2). Moreover, X ∪Y ∪Z is
a T -sfvs in D. Hence, we conclude that Z and X ∪Y are
T -sfvs in D[rel(Z,Q)] and D[rel(X ∪ Y,Q)] respectively,
validating I[Q,Z, i3] and I[Q,XY, i4] as input instances
to Alg-Disjoint-SFVS.
Step 3: If Step 2 does not apply and |Y | > |W |/3, then
for every i3, i4, i5 such that i3 + i4 + i5 = k − k1, we
compute:

(i) SZ ← Alg-Disjoint-SFVS(I[Q,Z, i3]).
(ii) SX ← Alg-Disjoint-SFVS(I[Q,X, i4]).

(iii) SY ← Alg-Strict-SFVS(Ĩ[Q,Y, i5]).

If ∆ = Q ∪ SZ ∪ SX ∪ SY is a T -sfvs in D of size at
most 2k, then we return ∆.

The argument for the validity of I[Q,Z, i3] and
I[Q,X, i4] as inputs to the recursive calls to Alg-Disjoint-
SFVS follows along the same line as the arguments
used following the previous step. That is, since Q is
a Z-(X ∪ Y) separator and a Y -X separator, it follows

that Z is a T -sfvs in D[rel(Z,Q)] and X is a T -sfvs
in D[rel(X,Q)]. Moreover, we have that Y is a T -sfvs
in D[rel(Y,Q)]. Now, since every arc in A(D′) \ A(D)
is incident on Y , it follows that Y is also a T -sfvs in
D′. This implies that Ĩ[Q,Y, i5] is a valid input to Alg-
Disjoint-SFVS.

If the algorithm completes iterating through the
main loop without returning, then we return an arbitrary
vertex set. This completes the description.
Correctness. The correctness is proved by induction
on |W |. In the base case, |W | = 1, in which case, the
algorithm works by brute-force and hence is correct.
Now, we assume that |W | > 1. Suppose that there is a
T -sfvs S in D of size at most k, such that S ∩W = ∅.
Our aim is to show that the algorithm outputs a T -sfvs
of size at most 2k.

Let (M1, . . . ,Mr) denote the partition of W such
that (i) each Mi is contained in a strongly connected
component of D − S , and (ii) for every `1 > `2, there
is no path in D − S from relD(M`1 , S) to relD(M`2 , S).
That is, S is an M`1-M`2 separator for every `1 > `2.
We now consider the following two cases:

Case 1: |M`| ≤ |W |/3 for every ` ∈ [r]. Let `′ ∈ [r]
denote the least value such that |W |/3 < Σ`′

i=1|Mi|.
Then, |W |/3 < Σ`′

i=1|Mi| ≤ 2|W |/3. Define X = ∅,
Y =

⋃`′

i=1Mi and Z =
⋃r
i=`′+1Mi. Then, we have

that |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3. Therefore, when
considering the partition (X,Y, Z), Step 2 would have
been executed.
Let S1 be a minimal subset of S that intersects all
Z-X ∪ Y paths in D. Let i1 = |S1|. Since D is
strongly connected, it follows that i1 > 0. Lemma 3.2
guarantees that there exist L1 ∈ Li1 [Z → XY] and
L2 ∈ Li1 [XY ← Z] such that S′ = S \ S1 is a T -sfvs in
D−(L1∪L2). Let i2 = 0. This implies that L3 = L4 = ∅.
Let Q =

⋃
q∈[4] Lq. Now, define:

• S′Z = S′ ∩ rel(Z,Q), i3 = |S′Z |.
• S′XY = S′ ∩ rel(X ∪ Y,Q), i4 = |S′XY |.

Notice that S′XY intersects all T -cycles in D − Q that
intersect X ∪ Y and S′Z intersects all T -cycles in D −Q
that intersect Z. Conversely, one can obtain a T -sfvs in
D −Q by taking the union of any set that intersects all
T -cycles in D−Q that intersect X ∪Y and any set that
intersects all T -cycles in D −Q that intersect Z. This
is becaue W = X ∪ Y ∪ Z is a T -sfvs in D.
Therefore, by the induction hypothesis, SZ is a T -sfvs of
size at most 2i3 in D[rel(Z,Q)] and SXY is a T -sfvs
of size at most 2i4 in D[rel(X ∪ Y,Q)]. As argued,
the set Q ∪ SZ ∪ SXY = L1 ∪ L2 ∪ SZ ∪ SXY is a
therefore a T -sfvs in D. Moreover, it has size at most
2(i1 + i3 + i4) ≤ 2|S| ≤ 2k as required.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited211

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Case 2: There exists `? ∈ [r] such that |M`? | > |W |/3.
Define Y = M`? . If `? = 1, then define X = ∅. If `? = r,
then define Z = ∅. Otherwise, define X =

⋃`?−1
i=1 Mi and

Z =
⋃r
i=`?+1Mi. Then, we have that |X|, |Z| ≤ 2|W |/3.

Notice that we would have executed Step 3 in this case.

Let S1 be a minimal subset of S that intersects all Z-
X ∪ Y paths in D. Let i1 = |S1|. Then, Lemma 3.2
guarantees that there exist L1 ∈ Li1 [Z → XY] and
L2 ∈ Li1 [XY ← Z] such that S′ = S \ S1 is a T -sfvs
in D − (L1 ∪ L2). Now, let S2 be a minimal subset of
S′ that intersects all Y -X paths in D − (L1 ∪ L2). Let
i2 = |S2|. Then, Lemma 3.2 guarantees that there exist
L3 ∈ Li2 [Y → X,L1, L2] and L4 ∈ Li2 [X ← Y,L1, L2]
such that S′′ = S′ \ S2 is a T -sfvs in D −

⋃
q∈[4] Lq. Let

Q =
⋃
q∈[4] Lq. Define:

• S′′Z = S′′ ∩ rel(Z,Q), i3 = |S′′Z |.
• S′′X = S′′ ∩ rel(X,Q), i4 = |S′′X |.
• S′′Y = S′′ ∩ rel(Y,Q), i5 = |S′′Y |.

Then, we have that S′′Z is a T -sfvs of size at most
i3 in D[rel(Z,Q)], S′′X is a T -sfvs of size at most i4
in D[rel(X,Q)]. Lemma 3.4 implies that S′′Y and Y
are both T -sfvs in D′ where D′ is the graph obtained
from D[rel(Y,Q)] by adding a bidirected clique on Y .
Due to this bidirected clique, it trivially holds that in
D′−S′′Y , there is a unique strongly connected component
intersected by Y . We also have that S′′Y has size at most
i5. Conversely, we have that the union of any three sets
hitting all T -cycles in D −Q passing through X, Y and
Z respectively, is a T -sfvs in D −Q.

Therefore, by the induction hypothesis and correctness of
Alg-Strict-SFVS (in the case of S′′Y), SZ is a T -sfvs of size
at most 2i3 in D[rel(Z,Q)], SX is a T -sfvs of size at most
2i4 in D[rel(X,Q)], SY is a T -sfvs of size at most i5 in
D′ where D′ is the graph obtained from D[rel(Y,Q)] by
adding a bidirected clique on Y . This also implies that
SY is a T -sfvs of size at most i5 in D[rel(Y,Q)]. Then,
the set Q∪SX∪SY ∪SZ =

⋃
q∈[4] Lq∪SX∪SY ∪SZ is a T -

sfvs in D of size at most 2(i1+i2+i3+i4+i5) ≤ 2|S| ≤ 2k
as required.

This completes the proof of correctness.
Running time. We now analyze the running time taken
by Alg-Disjoint-SFVS. The time spent in any single step
of the algorithm is dominated by 2O(k)nO(1) (the running
time of Alg-Strict-SFVS). Hence, in order to bound the
running time, it suffices to bound the number of leaves
generated in the branching. Let T (k, r) denote the
number of leaves generated by the instance (D,T,W, k),
where r = |W |. From the description of the algorithm,

we have the following recurrence:

T (k, r) ≤ 3r ·
k∑

k1=1
25k1 · 2

∑
k2+k3≤k−k1

T (k2, b2r/3c)

+T (k3, b2r/3c).
T (1, r) = 1, T (k, 1) = 1.

The following is an intuitive description of this
recurrence. There are 3r 3-way partitions (X,Y, Z) of
|W |. For each possible size k1 (which is equal to i1 + i2)
of the minimal part of a hypothetical optimal solution
that intersects all Z-X ∪ Y paths (and if necessary, also
all Y -X paths), there are at most 16k1 ·k2

1 ≤ 25k1 choices
of vertex sets of size at most 2k1 that comprise important
separators and whose deletion reduces the size of the
optimal solution by k1. Having guessed and removed
this set of size at most 2k1, we recursively call Alg-
Disjoint-SFVS for increasing values of i3, followed by
calls to Alg-Disjoint-SFVS for increasing values of i4,
which is followed by the invocation of Lemma 3.3 (Alg-
Strict-SFVS) with budget i5 = k − (k1 − i3 − i4). This
gives a total of at most 3 recursive calls to Alg-Disjoint-
SFVS: (i) on subinstance corresponding to X (budget
i4), (ii) on subinstance corresponding to Z (budget i3),
(iii) on subinstance corresponding to X ∪Y (budget i5)).
Moreover, |X|, |Z|, |X ∪ Y | ≤ 2|W |/3.

We now argue by induction on k and r that T (k, r) ≤
29k+5r. Indeed, the base cases are satisfied and we
assume r, k > 1. Now,

T (k, r) ≤ 3r · 210/3r ·
k∑

k1=1
25k1 · 2

∑
i3+i4≤k−k1

(29i3 + 29i4)

≤ 25r ·
k∑

k1=1
25k1 · 29(k−k1)+3

≤ 25r · 29k ·
k∑

k1=1
2−4k1+3 ≤ 25r · 29k.

Thus, we have concluded that Algorithm Alg-Disjoint-
SFVS on input (D,T,W, k), where (D,T) is an instance
of Subset DFVS and W is a T -sfvs in D, runs in time
2O(k+|W |)nO(1) and if there is a T -sfvs S in D of size
at most k disjoint from W , then it outputs a T -sfvs
in D of size at most 2k. This completes the proof of
Theorem 3.1.

As a corollary of Theorem 3.1, we get our factor-2
FPT-approximation for DFVS.

3.3 Bidirected Multicut For a digraph D and a
set T = {(si, ti) | si, ti ∈ V (D)}, we say that a path
is a T -path if it is an si-ti path for some (si, ti) ∈ T .
We say that a set S ⊆ V (D) is a T -multicut if there
is no T -path in D − S and T [S] denotes the set
{(si, ti) ∈ T | si, ti ∈ S}. The classic Undirected

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited212

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Multicut problem [57, 7] is easily seen to be equivalent
to the Bidirected Multicut (BiMC) problem.

Moreover, recall that BiMC is a special case of
SCC F-Transversal as one can simply take F to be
the subgraphs induced by the vertex sets of the si-ti
paths in D where (si, ti) ∈ T . The results of Marx
and Razgon [57] and Bousquet et al. [7] on the fixed-
parameter tractability of Undirected Multicut imply
factor-1 FPT-approximation algorithms for BiMC. The
result of Marx and Razgon in particular, implies a factor-
1 FPT-approximation with running time 2O(k2)nO(1).
Our goal is to improve the running time to 2O(k)nO(1)

at the cost of a factor-2 approximation. As we did for
Subset DFVS, we first consider a special case.

Note that a factor-c FPT-approximation algorithm
for Strict BiMC is an algorithm that, on input
(D, T ,W, k), runs in time f(k,W) · nO(1) (for some
computable f) and if there is a T -multicut S in D
of size at most k such that W is contained in a unique
strongly connected component of D−S, then it outputs
a T -multicut in D of size at most ck. Otherwise, the
output of the algorithm can be arbitrary.

Towards designing such an algorithm, we recall the
following definitions from [39]. Let D be a digraph,
s ∈ V (D) and {x, y} ⊆ V (D) be a pair of vertices. We
say that the pair {x, y} is reachable from s if there exist
paths from s to x and from s to y in D. These paths need
not be disjoint. In the Digraph Pair Cut problem, we
are given a directed graph D, a source vertex s ∈ V (D),
a set P of pairs of vertices, and a non-negative integer
k. The task is to decide whether there exists a set
X ⊆ V (D) \ {s} such that |X| ≤ k and no pair in P is
reachable from s in D −X.

Proposition 3.2. [39] There is an algorithm that,
given D, a source vertex s ∈ V (D), a set P of pairs
of vertices, and a non negative integer k, runs in time
2knO(1) and either correctly outputs a set X ⊆ V (D)\{s}
such that |X| ≤ k and no pair in P is reachable from s
in D −X or correctly concludes that one does not exist.

We are now ready to give our algorithm for Strict
BiMC.

Lemma 3.5. There is a factor-1 FPT-approximation
algorithm for Strict BiMC with running time 2knO(1).
We call this algorithm, Alg-Strict-BiMC.

Proof. Let (D, T ,W, k) be the input. We now construct
a graph D′ as follows. We add a new vertex s and make
every vertex in W an out-neighbor of s. We set P = ∅
and then, for every (si, ti) ∈ T , we add the pair (si, ti)
to P. We now have the following claim.

Claim 3.3. If S is a T -multicut in D such that W is
contained in a unique strongly connected component of
D − S, then no pair in P is reachable from s in D′ − S.
Moreover, if no pair in P is reachable from s in D′ − S′
for some S′ ⊆ V (D), then S′ is a T -multicut in D.

The algorithm follows for Strict BiMC from the
above claim, which reduces our problem to Digraph
Pair Cut and Proposition 3.2, which gives a 2knO(1)-
time algorithm for Digraph Pair Cut. This completes
the proof of Lemma 3.5.

Theorem 3.2. There is a factor-2 FPT-approximation
algorithm for BiMC with running time 2O(k)nO(1).

Proof. By using the iterative compression technique (see
proof of Theorem 3.1), we reduce our goal to designing
an algorithm (called Alg-Disjoint-BiMC) that, on input
(D, T ,W, k), where (D, T) is an instance of BiMC and
W is a T -multicut in D, runs in time 2O(k+|W |)nO(1)

and if there is a T -multicut S in D of size at most k
disjoint from W , then it outputs a T -mulicut in D of
size at most 2k. Otherwise, the output of the algorithm
can be arbitrary.

We now proceed to describe Algorithm Alg-Disjoint-
BiMC. The structure of the algorithm closely resembles
that of Algorithm Alg-Disjoint-SFVS. Moreover, Algo-
rithm Alg-Disjoint-BiMC is simpler since we work with
bidirected graphs and these essentially behave like undi-
rected graphs in our setting. Another consequence of
working with bidirected graphs is that we only need to
consider bipartitions of W instead of 3-partitions. We
now proceed to the description of the algoroithm.

In the base case of this algorithm, k = 1 or |W | = 1.
In either case, it is sufficient for us to check whether there
is a T -multicut in D of size at most 1, which can be done
in polynomial time. Hence, we assume that k, |W | > 1.
Moreover, since D is bidirected, every vertex-induced
subgraph of D is strongly connected.

Let P denote the set of all bipartitions of W into
sets (Y,Z). For every τ = (Y,Z) ∈ P, we define the
following sets and tuples. Let 1 ≤ i, j ≤ k.

• Li[Z → Y] denotes the set of all important Z-Y
separators of size at most i closest to Y .

• Li[Y ← Z] denotes the set of all important Z-Y
separators of size at most i closest to Z.

In the following, let 1 ≤ i ≤ k and Q ⊆ V (D).

• For each N ∈ {Z, Y }, I[Q,N, i] denotes the tuple
(D[rel(N,Q)], T , Z, i), i.e., the subinstance induced
by those vertices that are in the strongly connected
components intersected by N after deleting Q.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited213

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

• Ĩ[Q,Y, i] denotes (D′, T , Y, i), where D′ is the graph
obtained from D[rel(Y,Q)] by adding a bidirected
clique on Y (i.e., we add an arc (w,w′) for every
w,w′ ∈ Y such that (w,w′) /∈ A(D)).

We now describe the rest of the algorithm.

Main loop: For every (Y, Z) ∈ P such that |W |/3 ≤
|Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3, and for every i1 such
that 1 ≤ i1 ≤ k, we do the following:
Step 1: We guess L1 ∈ Li1 [Z → Y] and L2 ∈ Li1 [Y ←
Z] and set Q = L1 ∪ L2.
Step 2: If |W |/3 ≤ |Y |, |Z| ≤ 2|W |/3, then for every
i2, i3 such that i2 + i3 ≤ k − i1, we recursively compute:

(i) SZ ← Alg-Disjoint-BiMC(I[Q,Z, i2]).
(ii) SY ← Alg-Disjoint-BiMC(I[Q,Y, i3]).

Step 3: If Step 2 does not apply and |Y | > |W |/3, then
for every i2, i3 such that i2 + i3 = k − i1, we compute:

(i) SZ ← Alg-Disjoint-BiMC(I[Q,Z, i2]).
(ii) SY ← Alg-Strict-BiMC(Ĩ[Q,Y, i3]).

Step 4: If ∆ = Q ∪ SZ ∪ SY is a T -multicut in D of
size at most 2k, then we return ∆.

If the algorithm completes iterating through the
main loop without returning, then we return an arbitrary
vertex set. This completes the description of the
algorithm. The correctness and running time analysis
are similar to those in the proof of Theorem 3.1 and
hence we omit the details.

3.4 Directed OCT For a digraph D, we denote say
that S is a directed odd cycle transversal (or doct) in D
if D − S does not contain directed odd cycles.

Definition 3.6. Let D be a digraph. We denote by
D̃ the Directed Bipartite Double Cover of D which is
defined as follows. The vertex set of D̃ is {va | v ∈
V (D)} ∪ {vb | v ∈ V (D)}. For every arc (u, v) ∈ A(D),
D̃ has arcs (ua, vb) and (ub, va). For a set S ⊆ V (D),
we define S̃ = {va | v ∈ S} ∪ {vb | v ∈ S}. For each
v ∈ V (D), we call va and vb the copies of v in D̃.

Proposition 3.3. [51] A strongly connected digraph
does not contain directed odd cycles if and only if the
underlying undirected graph is bipartite.

Recall that DOCT is a special case of SCC F-
Transversal as one can simply take F to be the set
of all directed odd cycles.

Note that a factor-c FPT-approximation algorithm
for Strict DOCT is an algorithm that, on input

(D,W, k) where W is a doct in D, runs in time
f(k,W) · nO(1) (for some computable f) and if there is
a doct S in D of size at most k such that the undirected
graph underlying D[conn(W,S)] is bipartite, then then
it outputs a doct in D of size at most ck. Otherwise,
the output of the algorithm can be arbitrary.

The above definition is motivated by Proposition 3.3
and is a relaxation of the case where there is a doct
S in D such that W is contained in a unique strongly
connected component of D−S. Indeed, if W is contained
in a unique strongly connected component of D − S,
then the undirected graph underlying this strongly
connected component, which is the same as the graph
D[conn(W,S)], is bipartite.

Lokshtanov et al. [51] gave a factor-1 FPT-
approximation algorithm for Strict DOCT with
running time 2O(k2+|W | log |W |)nO(1). They used this
algorithm as a subroutine in their factor-2 FPT-
approximation for DOCT running in time 2O(k2)nO(1).
We give a single-exponential-time factor-2 approximation
for Strict DOCT that can be used to obtain a single-
exponential-time factor-2 approximation for DOCT.

Lemma 3.6. There is a factor-2 FPT-approximation al-
gorithm for Strict DOCT with running time 2|W |nO(1).
We call this algorithm Alg-Strict-DOCT.

Proof. Let I = (D,W, k) be the input. We begin with
the following claim.

Claim 3.4. If there is a doct S in D such that the
undirected graph underlying D[conn(W,S)] is bipartite,
then there exists an α ⊆ W such that the following
statements hold.

1. S̃ (see Definition 3.6) intersects all (αa∪βb)−(αb∪
βa) paths in D̃.

2. Conversely, for every S′ ⊆ V (D) such that S̃′

intersects all (αa ∪ βb)− (αb ∪ βa) paths in D̃ is a
doct in D.

Given the above claim, our algorithm is described
as follows. Recall that I = (D,W, k) is the input.
Now, for every α ⊆ W , we check whether there is a
(αa ∪ βb) − (αb ∪ βa) separator in D̃ of size at most
2k and compute one if it exists (call this Ŝα). For
every α ⊆ W and Ŝα, we define Sα ⊆ V (D) as the set
{v | {va ∪ vb} ∩ Ŝα 6= ∅}. That is, Sα comprises those
vertices of V (D) that “contribute a copy” to Ŝα. Notice
that for every α ⊆ W , either Sα does not exist or has
size at most 2k. When then check whether there exists
an α ⊆W such that Sα is a doct in D. If there is such an
α, then we return Sα. Otherwise, we return an arbitrary
output and terminate.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited214

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

The running time bound follows from the fact that
for every α ⊆ W , the time required to compute Sα
(if it exists) and verify whether it is a doct in D is
polynomial. For the correctness, recall that we only need
our output to be correct only if there is a doct S inD such
that the undirected graph underlying D[conn(W,S)] is
bipartite. In this case, the second statement of Claim 3.4
guarantees that it is sufficient to compute any S′ ⊆ V (D)
such that S̃′ intersects all (αa ∪ βb)− (αb ∪ βa) paths in
D̃ is a doct in D for some α ⊆W . The first statement
of Claim 3.4 guarantees that there is indeed at least one
such set. This completes the proof of Lemma 3.6.

Theorem 3.3. There is a factor-2 FPT-approximation
algorithm for DOCT with running time 2O(k)nO(1).

Proof. The algorithm for DOCT closely resembles that
for Subset DFVS (Theorem 3.1) with the primary
difference being the use of Algorithm Alg-Strict-DOCT
as a subroutine instead of Algorithm Alg-Strict-SFVS
(on an appropriate subinstance). We therefore use the
same notation where possible, omit the running time
analysis and only sketch the differences in the algorithm
description and proof of correctness.

By using the iterative compression technique, we
reduce our goal to designing an algorithm that, on
input (D,W, k), where W is a doct in D, runs in time
2O(k+|W |)nO(1) and if there is a doct S in D of size at
most k disjoint from W , then it outputs a doct in D of
size at most 2k. Otherwise, the output of the algorithm
can be arbitrary.

We now proceed to describe this algorithm (Algo-
rithm Alg-Disjoint-DOCT). In the base case of this algo-
rithm, k = 1 or |W | = 1. In either case, the algorithm
solves the instance by brute force. Hence, we assume that
k, |W | > 1. Moreover, we assume that D is strongly con-
nected. Otherwise, we can simply solve the subinstance
induced by each strongly connected component.

Let P denote the set of all 3-partitions of W into
sets (X,Y, Z). In the following, let 1 ≤ i ≤ k, Q ⊆ V (D)
and (X,Y, Z) ∈ P.

• I[Q,Z, i] denotes (D[rel(Z,Q)], Z, i).
• I[Q,XY, i] denotes (D[rel(X ∪ Y,Q)], X ∪ Y, i).
• I[Q,X, i] denotes (D[rel(X,Q)], X, i).
• I[Q,Y, i] denotes (D[rel(Y,Q)], Y, i).

We now proceed to the description of the rest of the
algorithm.

Main loop: For every (X,Y, Z) ∈ P such that |W |/3 ≤
|X ∪ Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3, and for every
i1, i2 such that 1 ≤ i1 ≤ k and k1 = i1 + i2 ≤ k, we do
the following:

Step 1: We guess L1 ∈ Li1 [Z → XY], L2 ∈ Li1 [XY ←
Z], L3 ∈ Li2 [Y → X,L1, L2], L4 ∈ Li2 [X ← Y, L1, L2].
Set Q =

⋃
q∈[4] Lq.

Step 2: If |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3, then for
every i3, i4 such that i3 + i4 ≤ k − k1, we recursively
compute:

(i) SZ ← Alg-Disjoint-DOCT(I[Q,Z, i3]).
(ii) SXY ← Alg-Disjoint-DOCT(I[Q,XY, i4]).

If ∆ = Q ∪ SZ ∪ SXY is a doct in D of size at most
2k, then we return ∆.

In order to see that the instances I[Q,Z, i3] and
I[Q,XY, i4] are valid input instances to Alg-Disjoint-
DOCT, it is sufficient to argue that Z is a doct in
D[rel(Z,Q)] and X ∪ Y is a doct in D[rel(X ∪ Y,Q)].
But this follows from the fact that X ∪ Y ∪ Z is a doct
and no directed odd cycle intersects both X ∪ Y and Z
in D −Q.
Step 3: If Step 2 does not apply and |Y | > |W |/3, then
for every i3, i4, i5 such that i3 + i4 + i5 = k − k1, we
recursively compute:

(i) SZ ← Alg-Disjoint-DOCT(I[Q,Z, i3]).
(ii) SX ← Alg-Disjoint-DOCT(I[Q,X, i4]).

(iii) SY ← Alg-Strict-DOCT(I[Q,Y, i5]).
If ∆ = Q ∪ SZ ∪ SX ∪ SY is a doct in D of size at
most 2k, then we return ∆.

If the algorithm completes iterating through the
main loop without returning, then we return an arbitrary
vertex set. This completes the description of the
algorithm. The correctness and running time analysis
are similar to those in the proof of Theorem 3.1.

4 Conclusion
The area of FPT-approximation has been booming in
the last decade, enjoying a flurry of results. Notably,
almost all of these results are for W[1]-hard problems.
However, there are fundamental problems within the
class FPT itself which the field of FPT-approximation
has so far largely overlooked. In this paper, we took a
systematic approach towards this study and designed
FPT-approximation algorithms for problems that are
in FPT. That is, we designed FPT-approximation algo-
rithms for problems that are FPT, with running times
that are significantly faster than the corresponding best
known FPT-algorithm, and while achieving approxima-
tion ratios that are significantly better than what is
possible in polynomial time. We addressed several funda-
mental problems such as Directed Feedback Vertex
Set, Weighted Directed Feedback Vertex Set,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited215

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Directed Odd Cycle Transversal, Undirected
Multicut, Weighted Undirected Multicut, pa-
rameterized by the solution size. We also considered
graph problems parameterized by the treewidth of the
input graph and considered problems such as Vertex
Cover, Component Order Connectivity, and F-
Packing for any family F of bounded sized graphs.
Finally, we presented general reductions of problems pa-
rameterized by treewidth to their versions parameterized
by solution size, as well as for weighted problems to their
unweighted counterparts. We conclude the paper with
several open problems. Let us fix a constant ε > 0.

1. Do Directed Feedback Vertex Set, and Undi-
rected Multicut, parameterized by the solution
size, admit a (1 + ε) approximation algorithm run-
ning in time g(ε)knO(1)?

2. Does Planar Vertex Deletion, parameterized
by the solution size, admit a constant-factor approx-
imation algorithm running in time 2O(k)nO(1)?

3. Does Chordal Vertex Deletion, parameterized
by the solution size, admit a constant-factor approx-
imation algorithm running in time 2O(k)nO(1)?

4. Does Directed Feedback Vertex Set, param-
eterized by the treewidth of the input graph (w),
admit a (1 + ε) approximation algorithm running
in time g(ε)wnO(1)?

5. Does Planar Vertex Deletion, parameterized
by the treewidth of the input graph (w), admit a
(1 + ε) approximation algorithm running in time
g(ε)wnO(1)? Here, even a constant-factor approxi-
mation algorithm running in time 2O(w)nO(1) would
be interesting.

6. Does Feedback Vertex Set, parameterized by
the treewidth of the input graph (w), admit a (1+ε)
approximation algorithm running in time cwnO(1)

where c is a fixed constant smaller than 3?

References

[1] E. Amir, Approximation algorithms for treewidth,
Algorithmica, 56 (2010), pp. 448–479.

[2] R. Belmonte, M. Lampis, and V. Mitsou, Parame-
terized (approximate) defective coloring, in 35th Sym-
posium on Theoretical Aspects of Computer Science,
STACS 2018, February 28 to March 3, 2018, Caen,
France, R. Niedermeier and B. Vallée, eds., vol. 96 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018, pp. 10:1–10:15.

[3] A. Bhattacharyya, É. Bonnet, L. Egri,
S. Ghoshal, Karthik C. S., B. Lin, P. Ma-
nurangsi, and D. Marx, Parameterized intractability
of even set and shortest vector problem, CoRR,
abs/1909.01986 (2019).

[4] H. L. Bodlaender, A linear-time algorithm for finding
tree-decompositions of small treewidth, SIAM J. Com-
put., 25 (1996), pp. 1305–1317.

[5] H. L. Bodlaender, P. G. Drange, M. S. Dregi,
F. V. Fomin, D. Lokshtanov, and M. Pilipczuk, A
ckn 5-approximation algorithm for treewidth, SIAM J.
Comput., 45 (2016), pp. 317–378.

[6] M. Bonamy, L. Kowalik, J. Nederlof,
M. Pilipczuk, A. Socala, and M. Wrochna,
On directed feedback vertex set parameterized by
treewidth, in Graph-Theoretic Concepts in Computer
Science - 44th International Workshop, WG 2018,
Cottbus, Germany, June 27-29, 2018, Proceedings,
A. Brandstädt, E. Köhler, and K. Meer, eds., vol. 11159
of Lecture Notes in Computer Science, Springer, 2018,
pp. 65–78.

[7] N. Bousquet, J. Daligault, and S. Thomassé,
Multicut is FPT, SIAM J. Comput., 47 (2018), pp. 166–
207.

[8] L. Brankovic and H. Fernau, Parameterized approx-
imation algorithms for hitting set, in Approximation
and Online Algorithms - 9th International Workshop,
WAOA 2011, Saarbrücken, Germany, September 8-9,
2011, Revised Selected Papers, R. Solis-Oba and G. Per-
siano, eds., vol. 7164 of Lecture Notes in Computer
Science, Springer, 2011, pp. 63–76.

[9] , A novel parameterised approximation algorithm
for minimum vertex cover, Theor. Comput. Sci., 511
(2013), pp. 85–108.

[10] Y. Cao and D. Marx, Chordal editing is fixed-
parameter tractable, Algorithmica, 75 (2016), pp. 118–
137.

[11] P. Chalermsook, M. Cygan, G. Kort-
sarz, B. Laekhanukit, P. Manurangsi,
D. Nanongkai, and L. Trevisan, From gap-
eth to fpt-inapproximability: Clique, dominating
set, and more, in 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, C. Umans,
ed., IEEE Computer Society, 2017, pp. 743–754.

[12] S. Chawla, R. Krauthgamer, R. Kumar, Y. Ra-
bani, and D. Sivakumar, On the hardness of approxi-
mating multicut and sparsest-cut, in 20th Annual IEEE
Conference on Computational Complexity (CCC 2005),
11-15 June 2005, San Jose, CA, USA, IEEE Computer
Society, 2005, pp. 144–153.

[13] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and
I. Razgon, A fixed-parameter algorithm for the directed
feedback vertex set problem, J. ACM, 55 (2008).

[14] Y. Chen and B. Lin, The constant inapproximability
of the parameterized dominating set problem, SIAM J.
Comput., 48 (2019), pp. 513–533.

[15] R. H. Chitnis, M. Cygan, M. T. Hajiaghayi, and
D. Marx, Directed subset feedback vertex set is fixed-
parameter tractable, ACM Trans. Algorithms, 11 (2015),
pp. 28:1–28:28.

[16] R. H. Chitnis, M. Hajiaghayi, and G. Kortsarz,
Fixed-parameter and approximation algorithms: A new

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited216

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

look, in Parameterized and Exact Computation - 8th
International Symposium, IPEC 2013, Sophia Antipolis,
France, September 4-6, 2013, Revised Selected Papers,
G. Z. Gutin and S. Szeider, eds., vol. 8246 of Lecture
Notes in Computer Science, Springer, 2013, pp. 110–
122.

[17] M. Cygan, F. V. Fomin, L. Kowalik, D. Loksh-
tanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh, Parameterized Algorithms, Springer, 2015.

[18] E. D. Demaine, M. T. Hajiaghayi, and
K. Kawarabayashi, Algorithmic graph minor
theory: Decomposition, approximation, and coloring,
in 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2005), 23-25 October 2005,
Pittsburgh, PA, USA, Proceedings, IEEE Computer
Society, 2005, pp. 637–646.

[19] R. G. Downey and M. R. Fellows, Parameterized
Complexity, Monographs in Computer Science, Springer,
New York, 1999.

[20] P. Dvorák, A. E. Feldmann, D. Knop, T. Masaŕık,
T. Toufar, and P. Veselý, Parameterized approx-
imation schemes for steiner trees with small number
of steiner vertices, in 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February
28 to March 3, 2018, Caen, France, R. Niedermeier and
B. Vallée, eds., vol. 96 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018, pp. 26:1–26:15.

[21] G. Even, J. Naor, B. Schieber, and M. Sudan,
Approximating minimum feedback sets and multicuts in
directed graphs, Algorithmica, 20 (1998), pp. 151–174.

[22] U. Feige and M. Mahdian, Finding small balanced
separators, in Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA,
USA, May 21-23, 2006, J. M. Kleinberg, ed., ACM,
2006, pp. 375–384.

[23] A. E. Feldmann, Karthik C. S., E. Lee, and P. Ma-
nurangsi, A survey on approximation in parameterized
complexity: Hardness and algorithms, Algorithms, 13
(2020), p. 146.

[24] M. R. Fellows, A. Kulik, F. A. Rosamond, and
H. Shachnai, Parameterized approximation via fidelity
preserving transformations, J. Comput. Syst. Sci., 93
(2018), pp. 30–40.

[25] J. Flum and M. Grohe, Parameterized Complexity
Theory, Springer, Berlin, 2006.

[26] F. V. Fomin, D. Lokshtanov, S. Saurabh, and
M. Zehavi, Kernelization: theory of parameterized
preprocessing, Cambridge University Press, 2019.

[27] F. Grandoni, S. Kratsch, and A. Wiese, Parame-
terized approximation schemes for independent set of
rectangles and geometric knapsack, in 27th Annual Euro-
pean Symposium on Algorithms, ESA 2019, September
9-11, 2019, Munich/Garching, Germany, M. A. Ben-
der, O. Svensson, and G. Herman, eds., vol. 144 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019, pp. 53:1–53:16.

[28] A. Gupta, E. Lee, and J. Li, Faster exact and
approximate algorithms for k-cut, in 59th IEEE Annual

Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, M. Thorup, ed.,
IEEE Computer Society, 2018, pp. 113–123.

[29] , An FPT algorithm beating 2-approximation for
k-cut, in Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, A. Czumaj,
ed., SIAM, 2018, pp. 2821–2837.

[30] V. Guruswami, J. Håstad, R. Manokaran,
P. Raghavendra, and M. Charikar, Beating the
random ordering is hard: Every ordering csp is ap-
proximation resistant, SIAM Journal on Computing, 40
(2011), pp. 878–914.

[31] V. Guruswami and E. Lee, Simple proof of hardness
of feedback vertex set, Theory Comput., 12 (2016), pp. 1–
11.

[32] B. M. P. Jansen, D. Lokshtanov, and S. Saurabh,
A near-optimal planarization algorithm, in Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, C. Chekuri, ed., SIAM, 2014,
pp. 1802–1811.

[33] Karthik C. S., B. Laekhanukit, and P. Manu-
rangsi, On the parameterized complexity of approximat-
ing dominating set, J. ACM, 66 (2019), pp. 33:1–33:38.

[34] K. Kawarabayashi and B. Lin, A nearly 5/3-
approximation FPT algorithm for min-k-cut, in Pro-
ceedings of the 2020 ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, S. Chawla, ed., SIAM, 2020,
pp. 990–999.

[35] S. Khot and O. Regev, Vertex cover might be hard to
approximate to within 2-epsilon, J. Comput. Syst. Sci.,
74 (2008), pp. 335–349.

[36] G. Kortsarz, Fixed-parameter approximability and
hardness, in Encyclopedia of Algorithms, 2016, pp. 756–
761.

[37] S. Kratsch, S. Li, D. Marx, M. Pilipczuk, and
M. Wahlström, Multi-budgeted directed cuts, Algorith-
mica, (2019), pp. 1–21.

[38] S. Kratsch, M. Pilipczuk, M. Pilipczuk, and
M. Wahlström, Fixed-parameter tractability of multi-
cut in directed acyclic graphs, SIAM J. Discret. Math.,
29 (2015), pp. 122–144.

[39] S. Kratsch and M. Wahlström, Representative sets
and irrelevant vertices: New tools for kernelization, J.
ACM, 67 (2020), pp. 16:1–16:50.

[40] A. Kulik and H. Shachnai, Analysis of two-variable
recurrence relations with application to parameterized
approximations, CoRR, abs/1911.02653 (2019).

[41] J. Lagergren, Efficient parallel algorithms for graphs
of bounded tree-width, J. Algorithms, 20 (1996), pp. 20–
44.

[42] M. Lampis, Parameterized approximation schemes us-
ing graph widths, in Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I, J. Esparza, P. Fraigniaud, T. Husfeldt, and

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited217

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

E. Koutsoupias, eds., vol. 8572 of Lecture Notes in
Computer Science, Springer, 2014, pp. 775–786.

[43] E. Lee, Partitioning a graph into small pieces with
applications to path transversal, Math. Program., 177
(2019), pp. 1–19.

[44] F. T. Leighton and S. Rao, Multicommodity max-
flow min-cut theorems and their use in designing
approximation algorithms, J. ACM, 46 (1999), pp. 787–
832.

[45] B. Lin, The parameterized complexity of the k-biclique
problem, J. ACM, 65 (2018), pp. 34:1–34:23.

[46] , A simple gap-producing reduction for the param-
eterized set cover problem, in 46th International Col-
loquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, C. Baier,
I. Chatzigiannakis, P. Flocchini, and S. Leonardi, eds.,
vol. 132 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 81:1–81:15.

[47] D. Lokshtanov, D. Marx, and S. Saurabh, Known
algorithms on graphs of bounded treewidth are probably
optimal, ACM Trans. Algorithms, 14 (2018), pp. 13:1–
13:30.

[48] , Slightly superexponential parameterized problems,
SIAM J. Comput., 47 (2018), pp. 675–702.

[49] D. Lokshtanov, F. Panolan, M. S. Ramanujan,
and S. Saurabh, Lossy kernelization, in Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, 2017, pp. 224–237.

[50] D. Lokshtanov, M. S. Ramanujan, and S. Saurabh,
When recursion is better than iteration: A linear-time
algorithm for acyclicity with few error vertices, in
Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, A. Czumaj, ed.,
SIAM, 2018, pp. 1916–1933.

[51] D. Lokshtanov, M. S. Ramanujan, S. Saurabh,
and M. Zehavi, Parameterized complexity and approx-
imability of directed odd cycle transversal, in Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, Jan-
uary 5-8, 2020, S. Chawla, ed., SIAM, 2020, pp. 2181–
2200.

[52] D. Lokshtanov, S. Saurabh, and V. Suria-
narayanan, A parameterized approximation scheme
for min k-cut, CoRR, to appear in FOCS 2020,
abs/2005.00134 (2020).

[53] P. Manurangsi, A note on max k-vertex cover: Faster
fpt-as, smaller approximate kernel and improved approx-
imation, in 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA,
USA, J. T. Fineman and M. Mitzenmacher, eds., vol. 69
of OASICS, Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2019, pp. 15:1–15:21.

[54] D. Marx, Minimum sum multicoloring on the edges
of planar graphs and partial k-trees, in Approximation
and Online Algorithms, Second International Workshop,
WAOA 2004, Bergen, Norway, September 14-16, 2004,

Revised Selected Papers, G. Persiano and R. Solis-Oba,
eds., vol. 3351 of Lecture Notes in Computer Science,
Springer, 2004, pp. 9–22.

[55] , Parameterized complexity and approximation
algorithms, Comput. J., 51 (2008), pp. 60–78.

[56] D. Marx and I. Razgon, Constant ratio fixed-
parameter approximation of the edge multicut problem,
Inf. Process. Lett., 109 (2009), pp. 1161–1166.

[57] D. Marx and I. Razgon, Fixed-parameter tractability
of multicut parameterized by the size of the cutset, SIAM
J. Comput., 43 (2014), pp. 355–388.

[58] R. Niedermeier, Invitation to Fixed-Parameter Algo-
rithms, Oxford University Press, 2006.

[59] M. Pilipczuk, E. J. van Leeuwen, and A. Wiese,
Approximation and parameterized algorithms for geo-
metric independent set with shrinking, in 42nd Inter-
national Symposium on Mathematical Foundations of
Computer Science, MFCS 2017, August 21-25, 2017 -
Aalborg, Denmark, K. G. Larsen, H. L. Bodlaender,
and J. Raskin, eds., vol. 83 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017, pp. 42:1–42:13.

[60] B. A. Reed, Finding approximate separators and
computing tree width quickly, in Proceedings of the 24th
Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada,
S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A.
Ellis, eds., ACM, 1992, pp. 221–228.

[61] N. Robertson and P. D. Seymour, Graph minors
.xiii. the disjoint paths problem, J. Comb. Theory, Ser.
B, 63 (1995), pp. 65–110.

[62] P. Skowron and P. Faliszewski, Chamberlin-courant
rule with approval ballots: Approximating the maxcover
problem with bounded frequencies in FPT time, J. Artif.
Intell. Res., 60 (2017), pp. 687–716.

[63] O. Svensson, Hardness of vertex deletion and project
scheduling, in Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Tech-
niques, Springer, 2012, pp. 301–312.

[64] V. V. Vazirani, Approximation algorithms, Springer,
2001.

[65] A. Wiese, A (1+epsilon)-approximation for unsplittable
flow on a path in fixed-parameter running time, in 44th
International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland, I. Chatzigiannakis, P. Indyk, F. Kuhn, and
A. Muscholl, eds., vol. 80 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, pp. 67:1–67:13.

[66] D. P. Williamson and D. B. Shmoys, The Design of
Approximation Algorithms, Cambridge University Press,
2011.

[67] M. Wlodarczyk, Parameterized inapproximability for
steiner orientation by gap amplification, in 47th Interna-
tional Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), A. Czumaj, A. Dawar,
and E. Merelli, eds., vol. 168 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020, pp. 104:1–
104:19.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited218

D
ow

nl
oa

de
d

09
/3

0/
21

 to
 1

69
.2

31
.1

14
.2

15
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

