Performance Evaluation 151 (2021) 102236

journal homepage: www.elsevier.com/locate/peva e

Contents lists available at ScienceDirect

Performance Evaluation

Fundamental scaling laws of covert DDoS attacks A

Amir Reza Ramtin *", Philippe Nain ", Daniel Sadoc Menasche ¢, Don Towsley ¢,

Edmundo de Souza e Silva“

2 University of Massachusetts, Amherst, USA
b Inria, Sophia Antipolis, France
¢ Federal University of Rio de Janeiro, Brazil

Check for
updates

ARTICLE INFO

ABSTRACT

Article history:
Available online 29 September 2021

Keywords:
Hypothesis testing
Scaling laws
Gaussian mixture
Covertness

DDoS attack

Botnets such as Mirai use insecure home devices to conduct distributed denial of service
attacks on the Internet infrastructure. Although some of those attacks involve large
amounts of traffic, they are generated from a large number of homes, which hampers
their early detection. In this paper, our goal is to answer the following question:
what is the maximum amount of damage that a DDoS attacker can produce at the
network edge without being detected? To that aim, we consider a statistical hypothesis
testing approach for attack detection at the network edge. The proposed system assesses
the goodness of fit of traffic models based on the ratio of their likelihoods. Under

Home networks such a model, we show that the amount of traffic that can be generated by a covert

attacker scales according to the square root of the number of compromised homes. We
evaluate and validate the theoretical results using real data collected from thousands of
home-routers connected to a mid-sized ISP.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The Internet has become an indispensable commodity in the last several years. This achievement was parallel to the
growth of sophistication that home networks have undergone, nowadays hosting a variety of devices such as PCs, tablets,
mobile phones and specialized apparatus such as smart thermostats and other Internet of things (IoT) devices. While
these devices offer users an array of services and conveniences, they come at the cost of increasing the attack surface of
the home network [ 1-3]. Because of the vulnerabilities of such devices, they have been increasingly used as the source of
Distributed Denial-of-Service (DDoS) attacks [4]. According to the European Union Agency for Cybersecurity the number of
DDoS attacks has increased significantly in 2020 and the trend continues [5]. These attacks are most harmful to services,
and very costly to organizations, both in terms of time and money, since they may cripple key system’s resources.

DDoS attacks are difficult to prevent, because they are launched from a large number of infected devices connected
to the Internet, collectively known as botnets. The attacker compromises devices by injecting malicious code (malware),
which allows the attacker to perform actions at a later time using these devices as sources of harmful traffic without
knowledge of the device’s owner. The traffic generated by some botnets is typically composed of millions of small flows [1].

Despite all the continuing efforts to detect and mitigate these attacks, their number have not decreased and it has been
predicted that this number will double from 2018 to 2023 [6]. In fact, the number of DDoS attacks drastically increased in
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2020 [7]. Roughly, DDoS attacks are produced by launching a burst of packets simultaneously from a very large number
of devices towards a given target. Examples of common attack types include: (a) UDP-flood attacks: ports of a remote
host are flooded with UDP packets which can cripple the target by draining resources to process the arriving packets;
(b) ICMP-flood attacks: the target is flooded with ICMP packets as fast as possible to produce a response from the target
which, in turn, may cause a considerable system slowdown; (c) SYN-flood attacks: the victim is flooded with TCP SYN
packets and, for each packet received, a SYN-ACK is produced and the target waits for acknowledgment from the source
that will never arrive, committing resources for the faked connection; (d) HTTP-flood attacks, which employ GET or POST
requests to a web service. In most cases, the attacker uses either a large number of control packets to overwhelm the
victim and exhaust its resources, or packets that do not respect flow control and consume bandwidth resources in the
neighborhood of the target.

Needless to say, early identification of these attacks and their sources is of prime concern of companies. However, it
is also imperative to discover if there are fundamental tradeoffs between the amount of damage an attacker can inflict
to services and the attacker’s ability to remain undetected. If these fundamental laws exist, they could shed some light
concerning covertness versus damage and they could be used to help building effective DDoS countermeasures.

It should be evident that the objective of the attacker is to inflict as much damage as possible by generating enough
traffic (for instance, generating a large amount of control packets) to wear out the victim’s resources and, consequently,
to disrupt user’s services. The malicious traffic originates from home network devices with limited capacity. As such, the
attack generated from a single home is far from sufficient to cause any damage. Then, necessarily, the attacker tries to use
as many homes as possible, remotely activating a large number of controlled devices (the bots) that have been previously
infected. Furthermore, it is advantageous for the attacker to remain covert (undiscovered) while attacking.

It is hard to differentiate attack traffic originating from a single home network from the regular home user traffic. This
is probably why most network-based DDoS detection methods rely on detailed network traffic information (e.g., packet
header data), which is in general computationally expensive and also raises concerns about user privacy. To avoid these
drawbacks, methods based solely on metrics such as byte/packet counts should be preferred [8,9]. A lightweight approach
that employs network interface byte/packet counts also scales, and is oblivious to botnet-specific attack signatures and
encryption.

Clearly, the larger the number of compromised devices in different home networks, the greater the amount of damage
the attacker who controls these bots can potentially cause. The work of [8] proposes a method to detect an ongoing attack
from a home-router without resorting to packet inspection, and also shows that the likelihood of detecting a DDoS attack
can be improved with the number of participant bots in the attack. A fundamental question then arises: Can a DDoS attack
be covert and if so, what is the damage it is expected to cause?

Goals. We want to avoid packet inspection as in [8]. Furthermore, it should be evident that the damage caused by
common DDoS attacks (such as Mirai) is proportional to the number of infected devices (equivalently the number homes)
participating in the attack. In addition, from the administrator’s point of view, the number of false alarms should be kept
to a minimum, since there is no point in detecting occasional attacks if the number of false alarms is unbearably high.

We then pose the following questions related to the attacker’s ability to cause as much damage as possible and the
likelihood to remain undetected:

1. Is there any fundamental limit on the damage an attacker can cause to the victim while remaining covert?
2. If such limit exists, how is it related to the false alarm rate?

To answer the above questions, we propose an analytical model to capture the essence of these attacks. The model
comprises two components, characterizing regular traffic and traffic when an attack is underway. In particular, we focus
on the simplest case wherein each component is associated with a single feature, such as byte counts or packet counts
observed per time slot.

At a high level, we posit that an attacker is covert if admin running a detector (also known as a classifier) cannot
determine if an attack is in progress by observing the traffic (byte or packet rate) from a set of homes. Formally, consider
that admin runs an optimal statistical hypothesis test and uses it to compute the probability of false alarm (pgs) and the
probability of miss detection (pyp), both probabilities formally defined in Section 2.2. In this setting, the sum of errors
DPra+pup lies in [0, 1], as shown in Section 2.3. Following the definition in [ 10], we then say (Definition 2.1) that an attack
is covert if the attacker has a strategy that makes the sum pgs + pyp arbitrarily close to one. We stress that our goal is
not to devise a deployable detection method but rather to discover fundamental laws that govern the covertness ‘game’
played between the attacker and admin and to understand the limits on the damage an attacker can cause.

Our model assumptions are backed by real data collected at home-routers from a mid-sized ISP, with whom we
partnered to gather statistics about baseline regular traffic. Our dataset includes packets and byte counts collected at
thousands of home-routers over several months. Our analysis of the dataset shows that regular traffic can be modeled by
a mixture of Gaussian distributions. We also use a dataset of attack traffic, generated by controlled experiments using real
botnet code [8]. The traffic distribution of the attack traffic can also be approximately modeled by a mixture of Gaussian
distributions.

We establish that the amount of traffic that an attacker can issue while remaining covert grows as 0(./n), where n is
the number of compromised homes controlled by the attacker in the network. We also obtain conditions under which
this bound is tight. We confirm these results using the real data mentioned earlier.
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Prior art. The covertness criterion considered in this paper was proposed in the context of low probability of detection
(LPD) communications. Although there are a number of papers in this area [10-14], to the best of our knowledge no
previous work has discussed hypothesis testing methods for DDoS detection in home networks, particularly focusing on
covertness. We are also unaware of prior work analyzing the fundamental laws of covert DDoS attacks through theoretical
bounds derived from optimal statistical hypothesis tests.

Contributions. In summary, our contributions are threefold:

e Analytical model to assess damage: We develop an analytical model to assess the maximum damage that the
attacker can cause from home networks. Our results are based on statistical hypothesis testing under the constraint
that the attacker is covert (Section 3);

e Square root law: Under the proposed model, we show that the damage caused by the attacker follows a square
root law. The amount of malicious packets per time unit a covert attacker can inject during the attack grows as the
square root of the number of home-routers in large networks (Section 4);

o Evaluation: The main theoretical results are asymptotic when the number of compromised home-routers goes to
infinity. Using real traffic traces collected from thousands of home-routers, we show that the asymptotic results are
robust when the number of compromised homes is finite, for different system parameter values. Our evaluation
considers two scenarios: in the first, the administrator knows the attack traffic distribution and, in the second, the
administrator does not have any knowledge concerning the distribution of the attack traffic (Section 5).

We describe the system under study in Section 2. Sections 3 to 5 follow the outline presented in the summary of
contributions above. Section 6 reports related work and Section 7 concludes.

2. System description and background

In this section we describe the system that is the focus of our work. We follow this with terminology and basic concepts
pertaining to statistical hypothesis tests and covertness.

2.1. System description

As mentioned in the introductory section, an attacker injects data into the network through previously compromised
devices residing in homes. The attacker installs malicious code (malware) at the devices and assumes remote control over
them. Examples of such devices include televisions, media stations, etc. Henceforth, we will refer to a home wherein there
are compromised devices as a compromised home. A set of compromised homes forms a botnet.

The attacker controls the botnet, and may use all bots, or a fraction of them, to issue attacks against its target. In the
remainder of this work, we focus on home networks as the major source of attacks, referring to the compromised homes
that can be used by the attacker to issue DDoS attacks simply as homes.

The attacker faces the problem of determining which homes to activate and at what rates to inject traffic into the
network. Attack data is the traffic the attacker transmits through the network, from selected homes to a target. The attack
rate is the rate at which the attacker transmits attack data, measured in bytes or packets per second. Usually the attacker
pushes as much traffic (UDP packets or control packets) through the infected device’s interface as possible to increase the
damage a botnet can cause. However, in this work, we also allow the attacker to control the rate at which it injects traffic
as an additional option to keep the attack covert. In summary, the attacker has two options - namely, determining the
number of homes to activate and/or the rate at which each home should inject attack traffic into the network.

From the defense standpoint, monitors are typically installed at gateways to protect against DDoS attacks. Usually they
employ packet inspection and keep track of different traffic features such as IP addresses and HTTP headers. We focus
on a lightweight approach avoiding any information typically obtained from packet inspection as in [8] and rely only on
packet (or byte) counts.

The system we study is shown in Fig. 1. In the figure, the blue dotted arrows represent measurement data collected at
home routers and sent periodically to a data fusion center for analysis. In fact, the data that we had access to and used in
Section 5 was obtained by a measurement effort in which packet and byte counts of upload/download traffic are collected
at participant home-routers at minute intervals and sent to a fusion center. Blue arrows represent regular upload traffic,
and the widths of the arrows indicate distinct traffic statistics. The botmaster can issue commands to the infected houses
(in red) but, as shown in the figure, the attacker can choose not to use all the houses he controls to initiate an attack, to
cause significant damage and yet remain covert.

2.2. Statistical hypothesis testing

Consider a collection of n homes where each, using its home-router, continuously measures upload traffic during a
time slot, and sends this information to an ISP fusion center where detection takes place. We assume that there is an
attacker who may or may not launch an attack during a time window.

The system administrator (henceforth known as admin) performs a hypothesis test on observations with the null
hypothesis Hy being that the attacker does not launch an attack and the alternate hypothesis H; that he does launch an
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Fig. 1. System outline. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

attack. We are interested in the following question: can the attacker launch an attack without being detected by admin and,
if so, how large can such an attack be?

Admin can tolerate some false positives, or cases when the statistical test incorrectly concludes an attack is under
way. When correct, this rejection of Hy is known as a false alarm, and, following standard nomenclature, we denote its
probability by pra. Admin’s test may also fail to indicate that an attack is taking place. Acceptance of Hy when it is false is
known as a missed detection, and we denote its probability by pyp. Then, the sum pgs + pyp characterizes the necessary
tradeoff between false alarms and missed detections in the design of a hypothesis test.

Denote the upload traffic probability distribution in the absence of an attack (i.e. when Hy is true) as fo(x), and
in presence of attack (i.e. when H; is true) as fi(x). When fy(x) and fi(x) are known to admin, he can construct an
optimal statistical hypothesis test (such as the Neyman-Pearson or likelihood ratio test) that minimizes the sum of error
probabilities [15, Ch. 13],

Sg = Dra + Dmp- (1

2.3. Covertness

Next, we formally introduce the covertness criterion used throughout this work. This covertness criterion was proposed
in the context of low probability of detection (LPD) communications in [10].

Definition 2.1. An attack is covert provided that, for any € > 0, the attacker has a strategy for each n such that

HminfS; > 1 —e. )
n

The justification for this definition is the following. Assume that the optimal statistical hypothesis test that admin runs
is such that Sg > 1. Then,

St = pra + pmp = P(accept Hy | Hp is true) + P(accept Hy | Hy is true) > 1,
which yields

P(accept Hy | Hy is true) > P(accept H; | Hy is true)
and

P(accept Hy | Hy is true) > P(accept Hy | Hy is true).

Such a statistical hypothesis test cannot be optimal as if the attacker decreases the attack traffic the probability of errors
calculated by admin should not increase. Hence, Sg € [0, 1], which shows that Definition 2.1 ensures that the maximal
value of S¢ should be reached for covertness, which agrees with the intuition.

Note that a sufficient condition for the attack not to be covert is if, for some € € (0, 1), there exists a detector such
that

limsup Sg < e. (3)
n

According to Definition 2.1 a successful attacker must be covert for any target pga.
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Table 1

Glossary of notations.

Variable Description

n Number of home-routers (compromised nodes)

q(n) Probability a home-router participates in the attack

A Time window (or slot) duration (=1 min)

for(x) pdf under Hy of traffic injected in a slot by home-router r

v(x, n) pdf traffic injected in a slot by attacker

fir(x,n) pdf of regular and attack traffic injected in a slot by home-router r
g(x,n) pdf under H; of regular and attack injected in a slot by home-router r
Ho.r Mean traffic injected in a slot by home-router r (packets)

ooz_r Variance of traffic injected in a slot by home-router r

wa(n) Mean traffic injected in a slot by attacker (packets)

ai(n) Variance of traffic injected in a slot by attacker

I Number of mixture components of traffic of home-router r, resp.

J Number of mixture components for attack traffic

Wo,ir Mixture weight for component i of regular traffic of home r (i=1, ..., k)
wij Mixture weight for component j of attack traffic G =1,...,])

Ho.ir Mean of component i of traffic of home-router r

i Variance of component i of traffic of home-router r

wyj(n) Mean of component j of attack traffic

crjz(n) Variance of component j of attack traffic

z Average overall traffic in a given time window

3. DDOS model

We introduce our model to tackle the interplay between DDoS covert attacks and lightweight defenses. As described in
Section 2.1, we consider a population of n home-routers equipped with monitors, that periodically collect byte and packet
counts of upload/download traffic that flows through each home-router. Time is divided into time slots (also called time
windows) of duration of A seconds. At each time slot, one sample is collected from each home and transmitted to a server
(fusion center). We start by considering the problem of determining the maximum damage that an attacker can cause
without being detected.

Consider n observations collected during a time slot, where each observation corresponds to a different home-router.
The models of regular and attack traffic at a given time slot are characterized by the following two random variables (rvs).
Herer =1,...,n.

e X,, the amount of regular traffic, measured in packets or bytes, uploaded from the rth home;
e Y, the amount of attack traffic, measured in packets or bytes, uploaded from the rth home.

Given an attack takes place, let x, be a rv that takes value 1 if home r is used by the botmaster in the attack (see
Fig. 1) and O otherwise, with

q(n) =P(x, = 1). (4)
Let Z, denote the amount of observed traffic at home-router r in a given time slot,

7 X, if no attack occurs,
"7 X, + x Y, otherwise.

Intuitively, if the attacker is too aggressive the probability of error by the admin detector will be zero. Alternatively, if the
attacker is timid, he will not be detected, but the average total amount of data that he injects, g(n) Zf:1 E[Y;], will be
limited. The objective of this paper is to quantity these intuitions. To this end, we formulate DDoS detection as a statistical
hypothesis testing problem where the null and alternative hypotheses are given as follows,

e Hj (no attack taking place): Z, = X,,
e H; (attack taking place): Z, = X; + x:Y;.

Table 1 contains a glossary of notations used throughout this paper.

In order to derive achievability and converse results, we need to specify the distribution of the regular and attack
traffic. For achievability results we assume that both traffic are modeled by Gaussian mixtures (see below). The Gaussian
mixture model is motivated by an exploratory analysis of the dataset we had access to. A general traffic model will be
allowed for the converse (see Section 4).

We now introduce both the regular and attack traffic models under which our achievability results will be obtained
(cf. Theorems 4.1-4.2). We assume that the regular traffic X, generated by home-router r in a time window is modeled
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by a mixture of I, Gaussians with probability density function (pdf) given by

Ir _(x l‘Olr)2
Wo,i, o2
for) =) ———e  ir (5)
i=1 /271002,”
with
Ir
O<woir<1, Y woir=1, o0y >0, i=1,...1. (6)

The pdf of the attack traffic Y, at home-router r is independent of r and is given by the Gaussian mixture with pdf
x=pqim)?

- )

v(x,n) =

Mg

=1 ZnJ]J(n)

with0 <wyj<1forj=1,...,J and Z _, w1 = 1. We assume that inf,>, a”( n)>0forj=1,...,]J. Notice in (7) the
(potential) dependency on n of the parameters of the attack traffic.

Denote by uo, = E[X;] and 00 , = var(X;) the mean and variance of the regular traffic generated in a time window
by home-router r, and by w(n) = E[Y,;] and 01 n) = var(Y;) the mean and variance of the attack traffic generated in
a time window. Notice that the derivation of the theoretical results do not require the means po, (r = 1, n) and
1(n) to be nonnegative; in practice these means will be strictly positive (cf. Section 5). These quantities are given by
Mor = YLy Woiirkoir 0o, = 2oy Woir0g e (M) = 3o q waja(n), and o(n) = 31, w07 (n).

The sum of the regular and attack traffic X, + Y, at home-router r when an attack takes place has pdf

I (=g i1 j(m)

J e Lt il
Wo,i,rW1j
fuem) =3 %" e (8)

i=1 j=1 277(0—02.,‘1 + U%j(n))

Under Hy, the total traffic Z, uploaded from home-router r has pdf fy (x) and under H; the pdf of the total traffic Z,
uploaded from home-router r has pdf g.(x, n) given by

g (x,n) = (1 —q(n))fo.r(x) + q(n)fy r(x, n). 9)

To avoid unnecessary complications we require that all parameters in fp -(x) are uniformly bounded in r as n — oo,
namely,

(a) max; < oo, (b) sup|uo,| < oo, (c) 0< inﬁagr <supog, < 0. (10)
r= r>1 r=1 7 r>1

Conditions in (10) together with (6) imply

0< inf wq,, sup  |po,ir| < 00 (11a)
I<i<lr,r=1 i=1,...Ir,r>1

0< inf of,< sup o}, <oo. (11b)
e L

Also under (10) (see Appendix F)
sup E[IX; — po,r|’] < 00. (12)
r>1

In particular, conditions in (10)-(11) are satisfied if fo, € {¢5,i=1,...,K} forallr > 1, where ¢; (i=1,...,K, K < 00)
is the pdf of a Gaussian mixture or, equivalently if home-routers belong to K different classes in terms of the traffic that
they generate. Indeed, in this case all parameters of the Gaussian mixture in (5) take a finite number of (finite) values.

Denote by fé”) the joint density of the mutually independent random variables (rvs) X1, . .., X, and by g{™(x) the joint
density of the mutually independent rvs Z1, ..., Z,. We have (cf. (5)-(8))

n n
%) = [Tfortx.n). &™) =]]ex.n). (13)
r=1 r=1
for x = (x1,...,x,) € R".

Last, we consider two settings. The first is when admin knows the parameters (i.e. pdf) of the attack model and the
second is when these parameters are not known to admin. We present a classifier for each of these in Section 5.2, Type
I for the case the attack model is completely known and Type II for the case it is not known. The Gaussian mixture
representation of the network traffic in (5)-(7) is motivated and validated using real data in Section 5.
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4. Theoretical results
In this section we present our achievability and converse results.
4.1. Achievability

The first achievability result in Theorem 4.1 holds when both regular and attack traffic have Gaussian distributions. The
second and more general achievability result in Theorem 4.2 holds when both regular and attack traffic are represented
by mixtures of Gaussians. Both theorems exhibit square-root laws.

Theorem 4.1 (Achievability when Home 8Attacl< Traffic have Gaussian Distributions). Assume that X, and Y, have Gaussian
distributions, with mean o and variance ao . for X and with mean w1(n) and variance af(n)for Y;. We assume that admin
knows the distribution of the attack traffic. The attack traffic is covert if

ni(n)=0(1), 0 <supoj 2(n) < irjaoyr, (14)
and
q(mua(n) = 0(1//n),  q(n)oi(n) = O(1/v/n). (15)

Theorem 4.2 (Achievability when Home & Attack Traffic are Mixtures of Gaussians). Assume that the pdfs of X, and Y, are
given in (5) and (7), respectively, and that admin knows the parameters of the attack traffic distribution. Under (10) the attack
traffic is covert if (withj=1,...,])

pjm)=0(1), 0< sup o7n)< inf of; . (16)
1<j</,n>1 1<i<ly,r>1
and
q(mua(n) = 0(1/+/n),  q(n)oi(n) = O(1/+/n). (17)
When parameters of the attack traffic in ( ) do not depend on n, Theorem 4.2 says that the attack is covert when
maxo;;2 < inf  of;, and q(n)= O(1//n). (18)
1<j<J 1<i<lp,r>1 7

Theorems 4.1 and 4.2 imply that the total amount of traffic that an informed attacker can inject into the network grows
as 0(+/n). As n grows, a covert attacker must inject less traffic per home, but the total amount of traffic is still unbounded
as a function of the number of homes.

The proof of Theorem 4.1 is given in Appendix B. It uses the same argument as the proof of the more general result
in Theorem 4.2 - given in Appendix C - but has the advantage of being much shorter. Before sketching out these proofs
let us introduce some intermediary results.

Theorem 4.3 relates the minimum - denoted by S; - of the sum of error probabilities pgs and pyp to the total variance

distance between pdfs f"’ and g". We recall that f"(x) = []"_, fo(x) is the joint pdf of Zi, ...,Z, under Ho and
g™M(x) = T]r_, &(x:, n) is the joint pdf of Zy, ..., Z, under H; for x = (X1, ..., X,) € R" - see Section 3.

Theorem 4.3 (Theorem 13.1.1 in [15]). Using the observed values z, := (z1, ..., z,) of Z1, ..., Z,, any test accepting Hy if
fé”)(zn) < gM(z,) and rejecting Hy iffo(”)(zn) > g(™(z,) minimizes Sg. Furthermore, the minimum Sg is given by

st =1-1 (f". g”’)) ,
where Ty (u, v) f lu(x x)|dx is the total variance distance between pdfs u and v.

Following [10] we say that an attack is e-covert (0 < € < 1) if liminf, S; > 1 — ¢, or equivalently by Theorem 4.3, if
lim sup,, Ty ( ) g(m ) < €. Calculating Ty (u™, v!") is usually very difficult and our problem is no exception. Instead of

working directly with Ty ( 0 ) we use the upper bound reported in the lemma below.

Lemma 4.1 (Upper Bound on Total Variation Distance). For alln > 1,

_l n
T (f".8") = 5 E(l + q(nPC () — 1, (19)
where the nonnegative constant C.(n), known as the Fisher information constant [16], is defined by
C(n) = fm) (20)
r for(x)
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The proof of Lemma 4.1 is given in Appendix A.
Corollary 4.1. Fixe > 0.1f Y} __, log (1+ q(n)*C;(n)) = O(1) then
limsup Ty ( 0(”), g(”)) <€, (21)
n

in which case the attack is covert by the definition of covertness in (2.1) and Theorem 4.3.

Sketch of the proofs of Theorems 4.1 and 4.2: In Theorem 4.1 the Fisher constant C.(n) defined in (20) is given by (see
(B.2))

u%(m

Ci(n) = —1 4 o2 e%0r 1 /\/a(;{r — o4(n).

From this expression we show that nq?(n) SUP1<r<p G(n) = O(1) under (14)-(15) and the proof of Theorem 4.1 follows
by invoking Corollary 4.1. The proof of Theorem 4.2 is similar but the more complicated value obtained for C.(n) in (C.1)
makes it more tedious.

4.2. Converse

Denote by z the average traffic collected from the n homes in a given time slot. Given that z increases in the face of
attacks, the test has the following threshold structure,
Zz T, (22)
where t is a threshold to determine if there is an attack in the network based on z.
The converse theorem below holds for any probability distribution of the regular traffic X; and of the attack traffic Y;.

Theorem 4.4 (Converse, General Distributions). Assume arbitrary probability distributions for the mutually independent rvs
X1, ..., Xn, with mean o, and strictly positive variance a&r for X.. We assume that Yy, ..., Y, are independent and identically
distributed rvs with mean wq(n) and variance af(n). We assume that admin does not know the attack distribution. We further
assume that

sup |por| < 00, 0 < infog, <supog, < 0o, SUpE[|X, — uo,|’] < 0. (23)
r>1 r=1 = r>1 r>1

The attacker is not covert if!
lim /nq(n)ju1(n) = +o00, var(x:Y;) = q(n) (o7(n) + (1 — qn))i(n)) = O(1). (24)

Let us specialize Theorem 4.4 to the case where X; and Y; have pdfs given in (5) and (7) and home-routers belong to a
finite number of classes. In this case, conditions (23) are satisfied (see discussion in Section 3) and Theorem 4.4 becomes,

Corollary 4.2 (Converse, Mixture of Gaussian Distributions). Assume that X, and Y, have pdfs given in (5) and (7) and that
home-routers belong to a finite number of classes. Assume admin does not know the parameters of v(x, n) in (7). The attacker
is not covert if

lim Vng(npa(n) = o0, var(xY;) = q(n) (of(n) + (1 — q(n)ui(n)) = 0(1). (25)

The proof of Theorem 4.4 is given in Appendix G. Let us briefly discuss it. It consists of finding an upper bound on the
error experienced by the classifier implementing threshold policy (22). To that aim, we first determine a threshold 7 such
that the corresponding probability of false alarm, pg, is upper bounded by a constant «. Then, given T we show that the
probability of miss-detection, pyp, can be made arbitrarily close to 0 as n grows to infinity provided conditions in (25)
hold. As the latter holds for any value of «, together those two bounds imply that the sum of error probabilities Sz can
be made arbitrarily close to 0 as n grows.

Note that the proof of tightness is constructive, in the sense that it follows, in essence, the methodology to parametrize
a Neyman-Pearson classifier [17]. The threshold selected by the Neyman-Pearson classifier is typically chosen to satisfy
a constraint on the probability of false alarms, noting that the probability of miss-detection is minimized. As indicated
above, we show that if conditions in (25) hold such a minimum can be made arbitrarily close to 0 as n grows to infinity,
for any given upper bound on the probability of false alarm.

Theorems 4.2 and 4.4 highlight a phase transition at 1/,/n which is apparent through the first conditions in (17) and
(25), namely, the attack is covert if the expected attack traffic injected at a home-router in a slot behaves as 1/4/n when
n is large whereas it is not convert if this quantity decreases to zero not as fast as 1/4/n; note, however, that the variance
of the attack traffic also plays a role (see second conditions in (17) and (25)) in the transition ‘covert - not covert’.

1 First condition in (24) can be replaced by q(n)u1(n) = w(1/+/n) if liminf,=q wq(n) > 0.
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Fig. 2. (a) Histogram of upload traffic (packet per second) measured in one minute slot, kernel and Gaussian mixture models fit it; (b) five components
of that mixture model; (c) histogram of attack traffic, models, and three Gaussian components fit it.

Remark 1. If admin knows the attack distribution it can implement a test such that Hy is accepted if fo(")(-) < gM(.) and

Hy is rejected iffo(”)(~) > g{(.) so that Theorem 4.3 can be used to prove Theorems 4.1-4.2. However, it should be clear
that these theorems keep holding when admin does not know the parameters of attack traffic distribution as it cannot
perform better with less knowledge.

Theorem 4.4 (and Corollary 4.2) has been obtained for the test in (22), a test that does not use information on the
attack traffic distribution. We used this test for its simplicity (recall that to establish a converse result it is enough to
exhibit a test yielding non covertness). However, it should also be clear that Theorem 4.4 keeps holding when admin
knows the attack traffic distribution as it cannot perform less effectively with more knowledge.

5. Evaluation

Results obtained in Section 4 are asymptotic results, holding when n, the number of homes, goes to infinity. It is
therefore interesting to investigate the “robustness” of these results when n is finite as is always the case in practice. To
do so, we have relied on real data for the regular traffic and synthetic data for the attack traffic. Real data was collected by a
mid-sized ISP network, with whom we partnered to collect traffic from home-routers.? To carry out this program, namely
check the validity of Theorems 4.1, 4.2, and 4.4 when n is finite, we first need to identify the regular and attack traffic
distributions (Section 5.1) and build detectors (Section 5.2) enabling admin to detect whether or not an attack has taken
place. Two detectors are considered: one that uses knowledge about the distribution of the attack traffic and another
where such knowledge is not required. For finite values of n, Sg sharply changes as a function of either the fraction of
homes used by the attacker or the amount of injected traffic (Section 5.3). These results are in agreement with the square
root law we discovered, allowing us to assess the minimum population size required to reach asymptotic results.

5.1. Regular and attack traffic distributions

We use data collected from network interfaces of more than 5000 home-routers. The selected home-routers were
equipped with monitoring software to conduct a data collection campaign at home gateways. These routers gather
information about network usage. For the purpose of this work, we use packet counts. The measurements correspond to
the traffics uploaded by every user at all one-minute time slots between March 1st 2020 and April 30th 2020 (inclusive).
Fig. 2(a) shows the histogram of measurements and how Gaussian mixture distribution fits to it. Although the theory
holds for the general case where traffic from homes have different distributions, to facilitate our experiments we assume
that the home traffic distributions are identical (i.e. fo, = fo for all r,r’ > 1).

We used the EM (Expectation—-Maximization) algorithm [18] to fit data to a Gaussian mixture model. Assessing
goodness-of-fits using Kolmogorov-Smirnov (KS) test [ 19], we observed that traffic data can be characterized by a mixture
of five Gaussian distributions (Fig. 2(b)). Table 2 presents the estimates of model parameters for each component of this
mixture.

In addition to measurements collected from the ISP network, we used a dataset for attack traffic generated by controlled
experiments done in [8] using real Mirai code and estimate the distribution of traffic generated by a typical DDoS attack.
The Mirai attacks use default parameters from one of its publicly available source codes.? Fig. 2(c) shows the histogram
of attack traffic in packets, where a mixture of three Gaussians provides an excellent fit to it.

2 10 preserve anonymity, we will disclose the ISP in the final version of the paper.
3 https://github.com/jgamblin/Mirai- Source-Code/pull/38.
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Table 2
Weights and parameters of Gaussian mixture model fitted to regular traffic data
(pkts/sec).
i Woi Ho.i 00.i
1 0.26 7.69 5.09
2 0.15 253.19 122.75
3 0.30 30.90 14.97
4 0.26 88.09 39.37
5 0.03 1017.14 737.28
Table 3
Parameters of Gaussian mixture model fitted to attack traffic data (pkts/sec).
i Wi C1i Co.i
1 0.29 13.91 5.35
2 0.28 71.64 8.42
3 0.43 32.29 8.92

Motivated by the aforementioned attack in a controlled environment, we generate attack traffic from a Gaussian
mixture distribution with three components, where

w1i(n) = 8cyn™® and o (n)* =8c,n ™%, i=1,2,3. (26)

Estimates of the other parameters are reported in Table 3.

When the attacker uses all homes (q(n) = 1), it sends on average a total amount of 60 x § Z?:l wy,iC1,in' "¢ packets
from the n homes per slot (recall that each slot corresponds to 60 s). When considering an attacker that issues an attack
from a fraction of the homes, we let

q(n) = cgn”. (27)

Parameters « and 8 will vary according to our experimental goals.

It is worth mentioning that the regular traffic considered in our evaluation is obtained directly from our real traces.
We used Gaussian mixture models only to characterize attack traffic generated by Mirai (Eq. (26)) and to compute the
likelihood ratios needed to parametrize the first detector introduced in the sequel.

5.2. Attack identification

Once the data has been collected, we need a detector” to decide whether or not an attack has taken place. We will
consider two detectors, one which uses the attack traffic distribution (Type I) and another one which does not (Type II).
Introduce the likelihood ratio

H?:]fo,r(zr)
=, q(n) =1,
Az, zn) = | Pty (28)
T &z’ q(n) € (0, 1),
where pdfs fo -(x), f1.r(x, n), and g;(x, n) are defined in (5), (8), and (9), respectively. The first case (i.e., g(n) = 1) accounts
for when the attacker launches an attack from all homes and the second case (i.e., q(n) € (0, 1)) is when it chooses a
fraction of homes to launch an attack from. In (28) z; is one realization of the rv Z, (see Section 3), the amount of traffic
measured at home-router r in one slot.
The Type I detector is given by the threshold policy

Az, ... z0) 2 T, (29)

where 7 is a threshold set to satisfy a desired probability of false alarm, pgs. This detector is optimal from Neyman and
Pearson Lemma [20, p. 491]. In the following A(zy, ..., z,) is denoted by A.

Given pga is set to a predefined value ¢, the threshold 7 is computed from the Monte Carlo algorithm described in
Algorithm 1. First, we generate one sample of the traffic from the real data (line 2). Then, we compute the corresponding
likelihood ratio A from (28) (line 3). This process is repeated M times and the collection of likelihood ratios is sorted in
ascending order, Ay < --- < Aq). This means that My = [¢M] values of A have been incorrectly classified as an
attack. The threshold 7 is then set to be Ay,).

Once the threshold t has been computed, we estimate the probability of miss detection, pyp, also via a Monte Carlo
iterative approach. The synthetic attack traffic (see Section 5.1) is added to the regular traffic. At each iteration, one sample

4 Referred to as a test in the theoretical part of this work as is usually the case in hypothesis testing theory.
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Algorithm 1: Computes T when pgy = ¢.

Input : ¢ (prefined value of pg), number of homes n, counter M
Output: threshold

1fori=1— Mdo

2 generate zy, ..., z, from real data (i.e. regular traffic only);

3 compute likelihood ratio A;

4 list(i) = A;

5 end

6 T = the [¢M|th smallest value of list.

Z1, ..., 2y is collected from the data and A is calculated from (28). This process is repeated L times. We then calculate the
number of A’s that are larger than z, say Ly, and pyyp is obtained as pyp = Lo/L.

The Type II detector does not have any knowledge on the attack traffic. We will however assume that when admin
uses it will know if conditions in (23) are satisfied. As already mentioned in Section 4 we will work with the Type II
detector given by

oz T (30)

with z, := % Zf:] zr. Note that the null and alternative hypotheses subsumed by this Type II detector corresponds to
Ho : ;& = po(n) and Hy : u > po(n), respectively. The threshold ¢ when the probability of false alarm is set is to ¢ can
be determined by using Algorithm 1 upon replacing A by z,, and from there one obtains py;p as explained for the Type I
detector.

5.3. Phase transition and square root law

This section focuses on phase transition (transition from a regime wherein the attacker is detected with high probability
to a regime wherein the attacker cannot be detected) and its square root law companion identified in the theoretical
results in Section 4.

Fig. 3(a) displays Sg, the sum of pgs and pyp, when pgs = 0.01, as a function of the fraction of infected homes used by
the attacker, q(n) = n~#. We let 8 vary from 0 to 1, § = 4 and « = 0 so that the rate at which each active home injects
attack traffic does not depend on n (see (26)).

Fig. 3(b) displays Sg with pgs = 0.01 and § = 2, this time as a function of the total average attack traffic uq(n) =
60 x 2 x Z?Zl w1 c1,n' ™% injected in a slot when « varies from 0 to 1 and when all homes are used by the attacker
(g(n) =1).

Plots in each figure correspond to different values of n, the number of homes, with n e {10%, 103, 104, 10°}. Both
figures have been obtained with the Type I detector in (29).

To interpret the results we need to have in mind that very small values of Sg imply that the attack will be detected,
otherwise the attack will be undetected. The first observation is that all curves exhibit a “phase transition”, which becomes
sharper as n increases. For n > 103 the transition occurs in Fig. 3(b) around o = 0.5 which corresponds to p1(n) being
of the order of 1/4/n, in agreement with the theory. For n = 10° the transition occurs in Fig. 3(a) around g8 = 0.5
corresponding to g(n) = 1/./n, again in agreement with the theory.

Fig. 4 reports results on the square root law and phase transitions accounting for the Type II detector, in a reference
scenario with § = 20, ¢; = 1, and pgs = 0.01. Fig. 4(a) shows Sg as a function of g, letting @ = 0. As § increases the total
attack traffic decreases and Sg transitions from O to 1. The larger the number of homes, the sharper the transition. When
n = 1000 the phase transition is already noticeable, and when n = 10° the sharp transition occurs at & = 0.5, which
corresponds to q(n) = 1/4/n, in agreement with the square root law. Fig. 4(b) shows the error probability accounting for
an attacker that issues the attack from all homes (8 = 0 and gq(n) = 1), and controls the rate at which traffic is injected
from each home. The average total traffic injected by the attacker is given by 60 x § Z?:l w1 ic1,n' 7%, where § = 20. As
o increases, the attacker becomes less aggressive, and Sg increases. When n = 10® we already observe a sharp transition
in the sum of probabilities of errors (Sg) at & = 0.5, which corresponds to j1(n) being of the order of 1/.4/n, again in
agreement with the theory.

As Type I detectors make use of more information, the phase transition occurs for small values of n. Indeed, for § < 4
the Type I detectors shown in Fig. 3 already exhibit asymptotic behavior for values of n greater than 104. Type II detectors,
in contrast, require a larger number of homes to reach asymptotic behavior in that setting (not shown in the paper). For
this rea350n, in Fig. 4 we set § = 20, which corresponds to a more aggressive attacker, evidencing the phase transition for
n > 10°.

Next, we consider an attacker that can jointly control the attack rate per home and the fraction of active homes. The
attacker controls the rate at which each home injects traffic into the network and the fraction of homes issuing an attack
through parameters « and S (Egs. (26) and (27)), respectively. Noting that the average amount of traffic injected into the

11
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Fig. 3. Phase transition analysis for Type I detectors, with pg = 0.01. (a): fraction of homes used by attacker given by q(n) =n~%, « =0, § = 4;
as B grows, total attack traffic decreases and the sum of probabilities of errors (Sg) transitions from 0 to 1. For n = 10° phase transition occurs
around B = 0.5, in agreement with square root law. (b): all homes used by attacker (q(n) = 1), average total traffic injected by the attacker given by
60 x & 2?21 wlv,»c“n""' where § = 2; as a grows total attack traffic decreases, and Sg transitions from 0 to 1. For n > 103, sharp phase transition
occurs around « = 0.5, in agreement with square root law.
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Fig. 4. Phase transition analysis for Type II detectors, with pgs = 0.01. (a): fraction of homes used by attacker given by q(n) =n~#, « =0, § = 20;
as B grows, total attack traffic decreases and the sum of probabilities of errors (Sg) transitions from 0 to 1. For n = 10° phase transition occurs
around B = 0.5, in agreement with square root law. (b): all homes used by attacker (q(n) = 1), average total traffic injected by the attacker given by
60 x & 21'3:1 wyic1in' "%, where § = 20; as « grows total attack traffic decreases, and S transitions from 0 to 1. For n > 103, sharp phase transition
occurs around « = 0.5, in agreement with square root law.

network during an attack is proportional to n'=*~#, Fig. 5 shows the error probability as a function of « and 8. It indicates
a phase transition close to the line where o + 8 = 0.5. In light of Type II detectors, the effect of « and 8 on the error
probabilities occurs through their sum « + 8, in agreement with the theory.

Finally, we examine a more realistic scenario where in each iteration of Algorithm 1 (lines 1-5), the generated regular
traffics zq, . .., z, are restricted to the real data of a random single time slot. Fig. 6(a) and (b) show Sg as a function of «
accounting for the Type I detector with § = 1 and Type II detector with § = 20, respectively, where 8 = 0, ¢; = 1, and
pra = 0.01. We observe that the phase transition is evident at « = 0.5, in agreement with the square root law, although
the distribution of the data during each single time slot is not necessarily the same as the distribution of all data.

6. Related work

In this section, we briefly review related literature on the three main topics pertaining this work: volume-based DDoS
attacks, covertness and statistical hypothesis testing.
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Fig. 5. Joint control of fraction of active homes and rate per home, through « and B, respectively, (i.e., g(n) = c;n™#, 1 & §n=%, and o7; & §n™%),
accounting for Type II detectors, with pss = 0.01, ¢; =1, § = 20, and n = 10%. There is a phase transition close to the line where o + 8 = 0.5, in
agreement with the theory.
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Fig. 6. Phase transition analysis for (a) Type I detector with § = 1 and (b) Type II detector with § = 20, where regular traffics correspond to the
real data of random single time slots and the attacker selects all homes.

6.1. DDoS detection

The prevalence of volume-based DDoS attacks motivates a vast literature on their properties [21,22] and early
detection [23-25]. Fundamental limits of DDoS attacks have been investigated by Fu and Modiano [21] assuming a graph
topology comprising attackers and servers behind a load balancer. The authors establish conditions under which attackers
can make the network unstable, without accounting for covertness.

Machine learning is typically used for DDoS detection, e.g., for feature selection [26] or to leverage specific aspects of
control protocols used by botnets [27,28]. Most of the works in this line of research consider deep packet inspection as
a viable alternative, a notable exception being [8]. In [8] the authors consider lightweight strategies for attack detection
solely based on statistics of byte counts and packet counts. In this paper we focus on such privacy-preserving methods
that would still work with encrypted traffic, and study the covertness of attackers against volume-based detectors.

6.2. Covertness

Our work is related to recent work on low probability of detection (LPD) communications, which has been mostly
studied in the realm of wireless communications [ 10-13]. The LPD problem focuses on determining the maximum amount
of information that a party, Alice, can reliably transmit to a receiver, Bob, subject to a constraint on the detection
probability by a warden, Willy [14].

Bash et al. [10] show that LPD communication on wireless Gaussian channels yields a square root law. Although the
square root law found in the wireless setting is similar in spirit to the one derived in the present work, our work differs
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from [10] in at least two aspects. In the communications setting, the assumption is that Willy has complete information.
The warden can design a classifier with complete information about Alice’s power, which corresponds to our Type I
classifier. We account for a second type of classifier, that has no information regarding the attack traffic other than that
it is Gaussian Mixture distributed. Second, our application is DDoS attacks and determining how much traffic an attacker
can inject into the network, whereas [10] considers users interested in communicating through a wireless channel. In
addition, our theoretical results are evaluated and validated using real ISP traffic which is out of the scope of [10].

In [29], we track a different setting where the admin can leverage several network traffic features to improve detection
accuracy. Then, under the assumption that the joint distribution of those features is multivariate Gaussian, we show
that an DDoS attack is covert if its corresponding traffic features scale according to the square root of the number of
compromised homes.

6.3. Statistical hypothesis testing

Statistical hypothesis testing and its extensions, including sequential hypothesis testing and sequential probability
ratio tests (SPRT), are the pillars of statistical inference. SPRT has found its applications in the security field for port scan
detection [30] and detection of attacks in mobile wireless networks [31,32], to name a few.

One of the key ingredients of statistical hypothesis tests is a notion of distance between distributions, e.g., to determine
if the normal traffic distribution is “close” to a given sample. The literature on detection systems based on statistical
hypothesis testing [33-38] encompasses many notions of distance between distributions, including those based on Hartley
entropy, Shannon entropy, Renyi entropy [39], and its variations [40], as well as KL divergence [41] and other measures
of information gap between distributions. In this paper, we rely on the total variation distance, noting that future work
involves considering other measures to assess distance between distributions, e.g., to derive non-asymptotic bounds.

In its simplest form, statistical hypothesis testing involves the characterization of the normal behavior of a system
through a statistical model, followed by statistical tests to determine if the unknown samples are well captured by the
model. In [30], for instance, the authors characterize port scans using random walks. The detection of attacks is based
on determining if an observed random walk across the ports of a system can be well described by one of two stochastic
processes, corresponding to malicious or authorized remote hosts scanning the network. In our work, we focus on the
willingness of the attacker to remain covert, reporting results that are complementary to [30-32].

7. Conclusion

Botnets have reached impressive sizes counting with thousands of compromised nodes. Although an early detection
of malicious traffic from those nodes can potentially prevent them from producing spectacular attacks, the fundamental
limits on the accuracy of traffic classifiers must be taken into account when assessing their potential benefits. In this paper
we established fundamental laws on the amount of traffic that an attacker can inject into a network, as a function of the
size of the botnet, while still remaining covert. In particular, we show that in a scenario where all traffic is encrypted, and
volume-based detectors are the sole viable solution, the amount of covert traffic can grow as the square root of the size of
the botnet. Through numerical experiments parametrized with traffic collected from a mid-sized ISP, we have indicated
that the established laws capture the behavior of the considered classifiers in realistic settings, paving the way towards
a foundational understanding of the intrinsic DDoS attack regimes.
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Appendix A. Proof of Lemma 4.1

Throughout the proof (U, ..., U,) are mutually independent rvs with pdf f, , for U;. Introduce
Jrr(x)
pr(x) = -1 (A1)
' Jo.r(x)
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where fo r and f; , are defined in (5) and (8), respectively. The (possibly infinite) constant
G = Elp}(Uy)]

will play a key role in the following. It is known as the Fisher information constant at origin [ 16] - hereafter simply called
the Fisher constant - and can be rewritten as

(o.r(X) = fi.r ()P £2,)
G= | =5 d&x=- ——dx. A2
/R o = ™ (A2)

For later use, notice from (A.1) that

E[or(Z:)] = 0. (A.3)

Proof of Lemma 4.1. Lemma 4.1 is true if G = oo for some r > 1. Assume from now on that sup,.; G; < oo. We have

(cf. (13), (9), (A.1)),

2Ty f(n) (n / ’ Hfo r(Xr) — l_lgr Xr)
1= [0+ atman(x) [T,
r=1

/]R;n r=1

=E [\1 o +q(n)pr(ur))ﬂ .

r=1

dX]

Using the inequality E[|U|] < /E[U?], we obtain

n 2
(2T (f g“”)) <E (1—]_[(l+qp(Ur))>

=1-2E []‘[(1 + qpr(ur))] +E [1"[(1 + q(n)p(ur)f}

r=1 r=1

= 1= 2] JEl1 +am)pUn)] + [ TE[(1 + q(m)pr(Un))]

r=1 i=1

= ]"[E [(1+q(n)or(U))’] = 1 by using (A3)
= l_[ + @*(ME[p(U;)]) — 1 again by using (A.3)

= ﬂ<1 +(n)G) — 1,
r=1

which completes the proof. ®

Appendix B. Proof of Theorem 4.1

—(x—no,r)? /202,
In the setting of Theorem 4.1 fp (x) = e 0 T and (obtained from (8) when I, =] =1, uo.1.r = Ko.r, a&]’r = a&r,

2
2 %G

ft1,1(n) = pa(n), and o7 1 (n) = of(n))

 (x=pg,r =y (m)?

e 203 +o(m)

fir(x,n) =

271(0&, + alz(n)).
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The proof uses Corollary 4.1 in Section 4. We first calculate C.(n) defined in (20). We obtain

27 U&r 7(Xﬂt20,r71121(ﬂ))2 +(x—ug_r>2
— / e aO,r+Ul (n) 2(701
277(00,,‘ + 04 (n)) R
/ 2
2 nq(n)
27‘[0’01 2 102(,1)

= —1 + ﬁe or “1
27 (og, + op(n))

2

o —odn) 1o,r (08 ;~o R M2 (n)od .
202 (oF ol (m) x )

x [ e “or, } dx,

R

which is well defined under the second condition in (14). With fR e—dt=b? gy — /7 /a we easily get from (B.1) that

G(n)=—-1+ dx

(B.1)

2 w3(m)
Oo.r o2 —o2(n)
Gn)=-1+ : e or 1, (B.2)
oér - 0]4(n)
Define h(s, t) = —- Zeﬁ and note that
1—t
C(n) = =14 h(ui(n)/og,., o (n)/og,) . (B.3)

Since h has partial derivatives of all orders in R x (—1, 1), we know by Taylor theorem that there exists 8 € (0, 1),
depending on s and t, such that

ad ad
h(s, t) = h(0, 0) + —h(0, 0)s + —h(0, 0)t
as at

+ (o h(0s, 0t)s*> + 2 » h(0s, 6t)st + o* h(0s, 0t)t>
2 \ 952 ’ asot ’ ot? ’

14s4 -0t s? N 2st 1 N 1 N Os
B 21022 (1—6t2  1—6t\1—-62t2  1—6t (1—06tQ

N 30%t4 202st3 t? N 20st? N 02s%t?
(1—6262)2  (1—022) (1 —0t2 1—622  (1—6t3 ' (1—0t)
fz Os
=14+s— =0t 4+ R(s, t), (B.4)

21— 22y

where

REs. 1) T s? N 2st 1 N 1 N s
s, t) =
2J1=622| (1—=0t2  1-0t \1-622  1-6t (1-06t)?
3924 20%st3 205t> 02522 ]

(1 —62t2)2 B (1—02t2)(1 — 0t)>? + (1—6t)3 + (1— 6t (B.5)

Define o« = infr>1 0, and o7, = sup,; o7(n). Note that o7, < o under the second condition in (14). By setting

s = puj(n)/og, and t = of(n)/og, in (B.4) we obtain from (B.3)

ng*(n)C:(n) =
H;L%(H)
2 2 o2 st
M) _ ngemyaitn)—2 " 4 ng?mRua(n). or ()
00, 2(og, — Ooy(n))2
#3(n)
nqz(n)u%(n) 2 4 O-02 sup eag'mf_glz’sulj )
= 2 + ng-(n)o, (n)ﬁ + ng*(n)[R(ua(n), o1(n))l. (B.6)
90,inf 200, inf = 1 sup)?

Assumptions in (14)-(15) imply that the first two terms in (B.6) are O(1); in particular, the first condition in (14) ensures
that the exponent of the exponential is ©(1). It is also easily seen that under (14)-(15) ng*(n)|R(p1(n), o1(n))| = O(1),
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which shows that ng?(n) SUP1<r<n Gr(n) = O(1). The latter necessary implies that q?(n) SUpy<r<n Gr(n) = o(1). Hence,

Zlog + g% Zlog <1 + ¢?(n) sup C,(n))

1<r<n
=nlog (1 +q?(n) sup Cr(n)>
1<r<n

~n ng*(n) sup C:(n) since g*(n) sup C;(n) = o(1),

1<r<n 1<r<n

=0(1)

since nq?(n) SUP1<,<p G(n) = O(1). The proof is concluded by invoking Corollary 4.1.  ®
Appendix C. Proof of Theorem 4.2

The proof is a generalization of the proof of Theorem 4.1 given in Section Appendix B. It consists of finding the limiting
behavior of ng?(n) Sup;<;<n Gr(n) as n grows and of applying Corollary 4.1.
With (5)-(8) the Fisher constant C; in (A.2) writes

(=g, =i j)

1 Woirwi e 2oy ; o7 {)
=— +f— br 714 dx. (C.1)
Frlp»s

i=1 j=1 271(00”—1-0”( n))

To simplify the notation, from now on we drop the argument n in w1 j(n) and oy j(n). Define

1  (x=pg,ir—5)?
2
hyir(s, t) = ————e 20" (C2)

27(0g;, +1)

From Taylor theorem there exists 6y, € (0, 1), hereafter simply denoted by 6, such that

ad d
hx,i,r(ss t) = hX,i,r(Ov 0) + —hyi r(O 0)5 + 7h)(,i,r(07 0)t

as ot
+ 1o hy.i (05, 6t)s® + il —hy; (s, 6t)st + = 107 —hyi (65, 06)t° (C.3)
2352 X, 1,1 ) 9sot X,i,r 23 X,0,1 .
This formula holds for all x,s € R and for all t € R such that t + 002‘” > O0fori=1,...,I, r > 1, namely, for all
t>— inflSiSIr,rzl{U(]z,i,r}‘ Easy algebra gives
(X V-Olr)z
e 2"()xr
hy.i+(0,0) = T (C4)
V 27-“70,1',r
_ (=i
2

P e Poir

—hyi+(0,0) = ——— (X — Woir)

s x,z,r( ) \/ﬂd&m ( MO,l,r)

_xmmgi)?

9 e ir (X — o)

*hx.i,r(os 0) = — -1 ) (CS)

ot 2V/2mag;, 0Gir

_ (X’“Oj,r’gs)z

92 1 e 20 ((x— poir — 6s)

—hyir(0s,0t) = . ( Hoir Y ). (C6)

ds V21 (02, +01)2 g + 0Ot

2
——h,i(0s,0t) =
858t X,I,T( )
 (x—ng,ir—0s?
1 e uurt® (X — po,ir — O5)?
(= poir — 05) | 52— 0 3], (C7)
2V27 (02, + 01)3 " ogir 0t

17



A.R. Ramtin, P. Nain, D.S. Menasche et al. Performance Evaluation 151 (2021) 102236

32
ﬁhx,i,r(esv ot) =
_ (x—pg,ir=0s?
2
1 e 0™ f(x—pgir—0s)*  3(x— poir —0s) i
2V27 (02, +00)3 \ 2005, +0t) o2, +6t 2)
(C.8)
Introduce
Ir ] 52
Ar(X, ZZWOIer(za thlr(gl'l'ljvea]])“]]
i=1 j=1
92 1 02 .
+ 3s athx i, r(eﬂvl]v 9‘711)/““]01] + E@hx,i,r(eﬂl,ﬁ 90’1,1‘)0_,',1 , (Cg)
Ir B (=g ,i )
Wo,i,r 202 .
or(x) = —— (X — o.ir)€ Oir (C.10)
r ; oo/ 2m "
I; (x=pgir)
1< Wo,i,r (X - l/LO.i.r)2 B ZUZ.V
Br(x) = = = - —1]e oir (C.11)
2 ; crfo 27 ot)z,i,r
We have
[ _moir— u1j>2
Z Wo,i,r W1 j e 2(00” 1].)
i=1 j=1 4/ 2r(0g;, +07))
I ]
= Zw()lrwlj X,i,1 /1«1],(7]]) by (C.2),
i=1 j=1
= for(x) + ar(x)1(n) + Br(X)of(n) + Ar(x, n), (C12)
by using (C.4)-(C.11), so that by (C.1)
1
G (n) = —1 +/ ——(fo.r(X) + e (X)1(n) + Br(X)o7(n) + A(x, n))*dx
RfO,r(x)
2 2
2 oy () 4 B (X)
=M(n)f dx+o(n)/
! f r( ! fOr
+ 2u4(n) 01 n)/ i )d +al( n)K;(n), (C.13)
0,r
where
n)
Ki(n) := (Zfo,r(X) + 211 (n)er(x) + 207 (n)Br(x) + Ar(x, n))dx. (C14)
To derive (C. 13) we have used that [ o (x)dx = [ B;(x)dx = 0. Therefore,
2
sup G(n) < pu3(n) sup o (X )dx—i— #(n) sup ARG dx (C.15)
1<r<n 1<r<n Jr fo,r(X) 1<r<n Jr for(X)
2 ar(x)Br(X) 4
+ 2pq(n)oy(n) sup ————dx| + o/ (n) sup |K.(n)|. (C.16)
1<r<n |JR fo,r(X) 1<r<n

It is shown in Appendix D that the coefficients of M%(n) and af‘(n) in (C.15) and the coefficient of Ml(n)af(n) in (C.16)
are all O(1) quantities, and in Appendix E that sup,.,-, |K;(n)| = O(1). Hence, by multiplying both sides of (C.15)-(C.16)
by ng?(n) and by (17) we obtain that ng?(n) sup;.,., C:(n) = O(1). The same argument used to conclude the proof of
Theorem 4.1 in Appendix B can be duplicated to conclude the proof of Theorem 4.2.

Appendix D. Uniform boundedness of the three integrals in (C.13)

wo i r b — wO i,r 1 2
ir — and let 1= argmaX', {U ; }.
» Vir !
\/2 gi.r GOxr r =1 R0

Define q;, =

18
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(—pi 0.7
>
Since L”’;e *0ir >0forallx e Randi=1,...,1I, the definition of fy,(x) in (5) implies
TO0.i,r
(=g ;)
- o2 o
for(x) > ai e Moir | VxeR. (D.1)
Hence,
ar(X)Z
X

R fO,r(x)

=pg i) (—pg )

1 o2 o2
— [ 5 2 bbb oidx—made e i dy
R JO,r

1<i,I<Iy

1
=3 Z bi by f(X — Mo,i,r )X — to,rr)
i R

T 1<il<ly

2
0o omorr? | Ko
2 2 2
205 . 20, 205 .1
o oL O dx. (D2)

X e

The coefficient of x in the exponential in (D.2) is —3(o¢ . (02;, + 02,,) — 04:,04,.,); it is strictly negative from the
Dlr(x)z

2
" PR 2 2 2 9.1, . . . . - .
definition of if since o, . > 0g;, = 0, X T for all i, I. This shows that the integral [, Try00 dx is finite for each

r > 1. Under conditions in (10) and their consequences in (12) it is easily seen that sup; <, n>1 fR ;;’(r’&z) dx = O(1).
Similarly, one can show that the second and third integrals on the r.h.s. of (C.13) are uniformly bounded for n > 1.

Appendix E. Proof that ,/sup,,, |K.(n)| = O(1)

A(x, n) defined in (C.9) can be written as
Ar(x,n) = Ay (%, n) + Az (%, 1) + Az (X, n), (E.1)
with

(=p0,i,r =01,

2 2

Aqp(x,n) U Elr : 2 € Ao jrtoor )
1,riX, 1) == Wo,i,r E L N s —y
J Jo 2 243
2321 ‘S =1 (00,0 +6’cr1,j)2

2
(x — po,ir —Op1)
X 5 3 -1
oy +007;
7(*'_1"0,i.r_9/*1,j)2

2 2
2Aof; +007 )

Ir J
1 e
Az r(x,n) = Wo,i,r W1 j 41,07

5
(O’O,i,r + Qoﬁj)Z

(x — po,ir — O )
X (X = po,ir — Op1) 3 - 5 -3
oy +007;
(x—ng,ir—0n1 )

2 2
Z(GO,i,r+901 ,j)

Ir J
1 e
As(x,n) = E Wo,i E wi ot
42 5 = J

5
(GOZ,i,r + 9012,]')2

o [ Poir — Oui)t  3(X = poir — O ) 43
204, ogi, +007; 2/

Introducing (E.1) into (C.14) gives

K,(n)
=L [ A o 04 2+ 202(mBG) + A (x, )
O‘](n) R fO,r(X)
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N 1 i Az r(x, 1) [2f0.r(X) + 21 (Ma(x) + 202(n)B(x) + A,(x, n)ldx
o1(n)?* Jr for(x)
b L [ A )+ 2umat) + 202mBR) + Arx. m)ldx. (E2)

or(n)* Jr  for(x)
Denote by J; ;(n), J2.-(n), and J; ;(n) the three integrals on the r.h.s. of (E.2). By using the bound in (D.1) we obtain

1 2710

Wo,i,r
n) < . w
V()] < o wors Zf Z Z 1jH1,4(n

01rj1

x [/ 12fo,r(%) + 2p1(Ma(x) + 207 (M)B(x) + Ar(x, )|
R

(=i =0nq P | (x—paq(n)? ( (n))?
202 . +652(n) 202 , X — oir —Opa(n
x e 0.i,r 1 0,iF,r ’lr2 +‘1 dX . (EB)
%0.ir

Under the second condition in (16), the coefficients of x? in the various exponentials in (E.3) are always strictly negative,
which shows that the integral in (E.3) is finite for every r and n. We conclude from that and conditions in (10)-(11) and
in (16) that sup;, -, [/1.-(n)] = O(1).

A similar analysis yields sup;, <, lJ2,-(n)] = O(1) and sup;<,<, U3, (n)| = O(1).

Appendix F. E[|U — E[U]]?] if U is a mixture of Gaussians

Assume that the pdf of U is

)

with 0 < w; < 1, YI_, ¢i = 1, and o; > 0. Note that E[U] = Y_}_, wipi = p.
Let V be a Gaussian rv with mean « and variance 2. Then [42, Formula (18)]

2V 2v 1
EIV —al’] =/ f r(”; )

for v > —1, where I'(z) = [;~ t*"e~'dt. In particular,

282 286
BV —all =\ Bz a1 = g, mZ-aPi=2) 2 (E.1)

Therefore (Hint: |a + b|3 < |a]® + 3a?|b| + 3|a|b? + |b|?),

(x—, ;1)2
3,
/ Ix — ul’e
i= 1 1/2710
)

7 gy
f 6= )+ (i — wlle. % dx

E[|U — u’] =

I
>
=1 2710.2

Xu,)

2
IX—MIIe o dx

(x—uj)?

o2
IMI ul/ (x— wife >0 dx

I 00 enp?

Wi o2
+3) (m—mz/ = ile T dx
—00

i=1 \/2m0}

qu ul? f

(X /L)
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I I
/2
=2,/— Zw,-,/ai6 + 32 wilwi — u|0,—2
T3 i=1
5 I
+ 3\' T Zwi(ui —ulyo? + dem — P < oo.
i=1 i=1

Appendix G. Proof of Theorem 4.4

The proof uses the Berry-Esseen theorem (see e.g. [43, Theorem 2, p. 544]) which we state below for sake of
completeness.

Lemma G.1 (Berry-Esseen Theorem). Let Wy, ..., W, be mutually independent rvs with finite expectation, and strictly positive
and finite variance, and assume that E[|W; — E[W;]|?] is finite for i = 1, ..., n. For all x and n,

P

n L g n L 113
LiaWi—BWD ) g < 621:1HE[|W' E[Z/V;” ]
YL, var(Wi) (XL, var(wy))

where @(x) = \/% ff =324t is the cdf of the standard normal distribution.

Denote by &(x) = f [Ze e~2"dt the ccdf of the standard normal distribution.

Proofzof ThZeorem 4.4. Recall that Z, is the upload traffic generated by home r = 1, ..., n in a given time window. Define
Zn — 1+n+ n

The detector is z, < M(n) + U under Hy and z, > M(n) + U under H;, with z, the observed value of the rv Z, and
M(n) % Zle wo.r the average regular traffic generated by a home in a given time window. We have

Pra = P(Z, > M(n)+ U | Hp)

= P(:l ;:xr >M(n)+U>

—p r 1(Xe — o) nU
\/ 100, 2, 2106,
lp [ Xrm® —por)  nU % nu
V Z::l 002,r Y, Z?:l 0()2,r Z?:l 0()2,r
- nU
+& | ——
n
Zr:l O(ir
Under Assumptions in (23) and the strict positiveness of o& . the Berry-Esseen Theorem applies to {X;},, to give
63 " E[IX: — po,s’1 - nU
P < Zr:ln[l r2 5;)r| ]+¢ L. (G.1)
(Zr:l GO,r) er;] Uoz,r

Since

3/2 - 3/2
(Xr103,) Vn (7 2r=190)
the last two conditions in (23) imply that the r.h.s. of (G.2) can be made arbitrarily small by increasing n. Therefore, for
any « € (0, 1) there exists n; such that

1 3
Z::1 E[|IX; — MO,r|3] B 1 « n 2:21 E[IX; — porl”] (G2)

o - nU
DPra < 5 +Oo | — (G.3)

Z?:l G()z,r
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1,2
for all n > n;. Using now the inequality @(x) < f ¢ j , we get from (G.1) that
A/ n 2
DrA < g + — 1 V(n) 72U(n)’
2 2x /U
with V(n) .= 131 of..
2
For n fixed, the equation § = \/% V‘fv(”)ef o0 has a single root in y € (0, 0co). Call it c(n). Existence and uniqueness
2
of the solution follow from the fact that the mapping y — \/% ‘ﬁ")efﬁ n js strictly decreasing in (0, co) with
2 2
; 1V 7 . 1 V@) -
limy_,o T y(”)e Vi = +o00 and limy_, ;o E%e W = Q.
Take U = % Then,
Pr = «,
for n > nj.

Observe that sup,.; c(n) < oo. Indeed, by definition of c(n),

1 V(n) _cn?

g —_ e 2V(n)
2 2x c(n)
If limc(n) = oo the second condition in (23) would imply that the r.h.s. of (G.4) goes to 0 as n — oo, which would
contradict the fact that c(n) solves (G.4) for all n. This shows that sup,,.; c(n) < oo.
Let W, := X; + x: Y. Recall that the quantities E[X;] = o r, var(X;) = a&r, E[|X, — ,uo,,|3], E[Y:] = p1(n), var(Y;), and
E[|Y; — w1(n)?] are finite, that the rvs X, and Y; are independent, and that conditions (23) and (24) are assumed to hold.
Let us now focus on pyp, the probability of miss-detection. It is given by
c(n)

Pmp = II'EHP <Zn < M(n) + W | H1>

e (Z i+ 2)

i [ 2 We —EIW,D /() — ng(m)us(n)

r )
J>or var(Wy) Jor var(Wy)

by using E[W;] = uor + q(n)u1(n).
Let us show that the Berry-Esseen Theorem applies to the rvs {W,},. We have E[W,] = o, +q(n)u1(n) which is finite
and var(W;) = a&r + var(x.Y;) which is also finite since var(Y;) is finite and yx, € {0, 1}. Last,

(G4)

E[W; —EIW 1Pl = E[X; — ptor) + Ot Y — a(m)pa(m))°]
< E[|X; — MO,r|3] + 3var(xr)E[|XrYr —q(m)u1(n)l]
+ 3IEHXr - I‘LO,r”Var(XrYr) + ]E“Xryr - Q(”)M1(n)|3]
by using the inequality |a + b|?> < |a|*> + 3a?|b| + 3|a|b® + |b|>. From the inequality E[|U|] < vE[U2] we find

E[|W; — EIW;11’] < E[IX; — po.r|’] + 3var(X,)y/var(x, Y;)
+ 3y/var(X, var(xYr) + E[| x: Yy — q(n)u1(n)*] (G5)
= O(1) + Ell); Yy — q(m)us(n)?] (G6)

by using the second condition in (23) (which says that sup, var(X;) < oo) and the second condition in (24). Let us show
that (E[|x, Yy — q(n)w1(n)]*]) is finite. We have (Hint: var(U + a) = var(U) for any constant a and E[|U] < E[U?])
E[|x/Yr — Q(n)ﬂl(”)P] = E[(¢(Yr — ) + (e — Q(n))ﬂl(n)P]
< q(E[|Y, — u1()*] + 3q(n)r(n)var(Y,)E[| x, — q(n)|]
+ 3q(m)ui(n)y/var(YoE[(x — q(n)] + @ (mui(mEL | — q(n)P°] (G.7)

which is finite since |x, — q(n)| < 1. This proves that E[|W, — E[W;]|*] is finite and shows that the Berry-Esseen Theorem
applies to the rvs {W,},.
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Similarly to the derivation of (G.1), Berry-Esseen inequality yields

pwp < lim 6311 ElIW, — EIW: ) + lim¢ /ne(n) — nq(n)p(n)
o (Z?:] Val‘(Wr ))3/2 n Zle var(Wr)
T i L=t EIW: — E[W,]1°]
S (% ZL] o2, + var(x Y, 2
11m¢ — V/ng(n)ps(n) ' o

\/ Zr 100r+var(XrYr)

The second condition in (23) together with the finiteness of sup,. c(n) shown above, shows that

n) — /nq(n)

llm = —00

iz 100r+q( Jo?(n) + q(n)(1 — q(m))y<3(n)

when both conditions in (24) hold; hence

lim ¢ — Vnamu(n = $(—00) = 0, (G.9)

Jisn 1am+q< o2 (m) + q(n)(1 — q(m)a(n)
by continuity of the mapping ¢.

1S EW—EW P

(% Xy 03 +varGey ))3
that the denominator is O(1). By (G.5),

1 13 3"
=Y E[W, —EW,1P1< =) E[X — po,’1+ = ar(X,) x v/var(x, Y,
n; [IwW; Wi IP] < n; (X — ol ]+n;V (Xr) x y/var(x:Y;)

We now show that the term

> in (G.8) is finite. The second conditions in (23) and (24) imply

3 n
+ ) var(Xe) x var(eYy) + Ell Yy — qlmua(n)l’]
r=1

3 n
=0(1) x 1+E Elao,, (G.10)
r=

from the second and third conditions in (23) and the second condition in (24), and where the finiteness of E[|x; Y, — q(n)
ni(n )| ] was shown in (G. 7) From the inequality +/x < 1+ x, we conclude from the second condition in (23) and (G.10)
that Zr 1 E[IW;, — E[W, 1131 = ©(1). This concludes the proof that lim, pyp = 0 and proves the theorem. ®
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