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ABSTRACT
For an integer 𝑡 , a graph 𝐺 is called 𝐶>𝑡 -free if 𝐺 does not contain
any induced cycle on more than 𝑡 vertices. We prove the follow-
ing statement: for every pair of integers 𝑑 and 𝑡 and a CMSO2
statement 𝜑 , there exists an algorithm that, given an 𝑛-vertex 𝐶>𝑡 -
free graph 𝐺 with weights on vertices, finds in time 𝑛O(log3 𝑛) a
maximum-weight vertex subset 𝑆 such that 𝐺 [𝑆] has degeneracy
at most 𝑑 and satisfies 𝜑 . The running time can be improved to
𝑛O(log2 𝑛) assuming 𝐺 is 𝑃𝑡 -free, that is, 𝐺 does not contain an
induced path on 𝑡 vertices. This expands the recent results of the
authors [FOCS 2020 and SOSA 2021] on the Maximum Weight
Independent Set problem on 𝑃𝑡 -free graphs in two directions: by
encompassing the more general setting of 𝐶>𝑡 -free graphs, and by
being applicable to a much wider variety of problems, such as Max-
imum Weight Induced Forest or Maximum Weight Induced
Planar Graph.
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1 INTRODUCTION
Consider the Maximum Weight Independent Set (MWIS) prob-
lem: given a vertex-weighted graph𝐺 , find an independent set in𝐺
that has the largest possible weight. While NP-hard in general, the
problem becomes more tractable when structural restrictions are
imposed on the input graph𝐺 . In this work we consider restricting
𝐺 to come from a fixed hereditary (closed under taking induced
subgraphs) class C. The goal is to understand how the complexity
of MWIS, and of related problems, changes with the class C. A
concrete instance of this question is to consider 𝐻 -free graphs —
graphs that exclude a fixed graph 𝐻 as an induced subgraph — and
classify for which 𝐻 , MWIS becomes polynomial-time solvable in
𝐻 -free graphs.

Somewhat surprisingly, we still do not know the complete an-
swer to this question. A classic argument of Alekseev [2] shows
that MWIS is NP-hard in 𝐻 -free graphs, unless 𝐻 is a forest of
paths and subdivided claws: graphs obtained from the claw 𝐾1,3 by
subdividing each of its edges an arbitrary number of times. The
remaining cases are still open apart from several small ones: of
𝑃5-free graphs [19], 𝑃6-free graphs [16], claw-free graphs [21, 26],
and fork-free graphs [3, 20]. Here and further on, 𝑃𝑡 denotes a path
on 𝑡 vertices.

On the other hand, there are multiple indications that MWIS
indeed has a much lower complexity in 𝐻 -free graphs, whenever
𝐻 is a forest of paths and subdivided claws, than in general graphs.
Concretely, in this setting the problem is known to admit both a
subexponential-time algorithm [5, 7] and a QPTAS [7, 8]; note that
the existence of such algorithms for general graphs is excluded
under standard complexity assumptions. Very recently, the first
two authors gave a quasipolynomial-time algorithm for MWIS in 𝑃𝑡 -
free graphs, for every fixed 𝑡 [13]. The running time was 𝑛O(log3 𝑛) ,
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which was subsequently improved to 𝑛O(log2 𝑛) by the last three
authors [24].

A key fact that underlies most of the results stated above is that
𝑃𝑡 -free graphs admit the following balanced separator theorem (see
Theorem 2.1): In every 𝑃𝑡 -free graph, we can find a connected set
𝑋 consisting of at most 𝑡 vertices, such that the number of vertices
in every connected component of 𝐺 − 𝑁 [𝑋 ] is at most half of the
number of vertices of 𝐺 . It has been observed by Chudnovsky et
al. [8] that the same statement is true also in the class of 𝐶>𝑡 -free

graphs: graphs that do not contain an induced cycle on more than 𝑡
vertices. Note here that, on one hand, every 𝑃𝑡 -free graph is 𝐶>𝑡 -
free as well, and, on the other hand, 𝐶>𝑡 -free graphs generalize
the well-studied class of chordal graphs, which are exactly 𝐶>3-
free. Using the separator theorem, Chudnovsky et al. [7, 8] gave a
subexponential-time algorithm and a QPTAS for MWIS on𝐶>𝑡 -free
graphs, for every fixed 𝑡 .

The basic toolbox developed for MWIS can also be applied to
other problems of similar nature. Consider, for instance, the Maxi-
mumWeight Induced Forest problem: in a given vertex-weighted
graph 𝐺 , find a maximum-weight vertex subset that induces a for-
est; note that by duality, this problem is equivalent to Feedback
Vertex Set. By lifting techniques used to solve MWIS in polyno-
mial time in 𝑃5-free and 𝑃6-free graphs [16, 19], Abrishami et al. [1]
showed that Maximum Weight Induced Forest is polynomial-
time solvable both in 𝑃5-free and in 𝐶>4-free graphs. In fact, the
result is even more general: it applies to every problem of the form
“find a maximum-weight induced subgraph of treewidth at most
𝑘”; MWIS and Maximum Weight Induced Forest are particular
instantiations for 𝑘 = 0 and 𝑘 = 1, respectively.

As far as subexponential-time algorithms are concerned, Novotná
et al. [23] showed how to use separator theorems to get subexponential-
time algorithms for any problem of the form “find the largest in-
duced subgraph belonging to C”, where C is a fixed hereditary
class of graphs that have a linear number of edges. The technique
applies both to 𝑃𝑡 -free and 𝐶>𝑡 -free graphs under the condition
that the problem in question admits an algorithm which is single-
exponential in the treewidth of the instance graph.

Our results. We extend the recent results on quasipolynomial-
time algorithms for MWIS in 𝑃𝑡 -free graphs [13, 24] in two direc-
tions:

(a) We expand the area of applicability of the techniques to
𝐶>𝑡 -free graphs.

(b) We show how to solve in quasipolynomial time not only the
MWIS problems, but a whole family of problems that can be,
roughly speaking, described as finding a maximum-weight
induced subgraph that is sparse and satisfies a prescribed
property.

Both of these extensions require a significant number of new ideas.
Formally, we prove the following.

Theorem 1.1. Fix a pair of integers𝑑 and 𝑡 and aCMSO2 sentence
𝜑 . Then there exists an algorithm that, given a𝐶>𝑡 -free𝑛-vertex graph

𝐺 and a weight function 𝔴 : 𝑉 (𝐺) → N, in time 𝑛O(log3 𝑛)
finds a

subset 𝑆 of vertices such that 𝐺 [𝑆] is 𝑑-degenerate, 𝐺 [𝑆] satisfies 𝜑 ,
and, subject to the above, 𝔴(𝑆) is maximum possible; the algorithm

may also conclude that no such vertex subset exists. The running time

can be improved to 𝑛O(log2 𝑛)
if 𝐺 is 𝑃𝑡 -free.

Recall here that a graph 𝐺 is 𝑑-degenerate if every subgraph of
𝐺 contains a vertex of degree at most 𝑑 ; for instance, 1-degenerate
graphs are exactly forests and every planar graph is 5-degenerate.
Also, CMSO2 is the Monadic Second Order logic of graphs with
quantification over edge subsets and modular predicates, which is
a standard logical language for formulating graph properties. In
essence, the logic allows quantification over single vertices and
edges as well as over subsets of vertices and of edges. In atomic
expressions one can check whether an edge is incident to a vertex,
whether a vertex/edge belongs to a vertex/edge subset, and whether
the cardinality of some set is divisible by a fixed modulus. We refer
to [10] for a broader introduction.

Corollaries. By applying Theorem 1.1 for different sentences
𝜑 , we can model various problems of interest. For instance, as
1-degenerate graphs are exactly forests, we immediately obtain
a quasipolynomial-time algorithm for the Maximum Weight In-
duced Forest problem in𝐶>𝑡 -free graphs. Further, as being planar
is expressible in CMSO2 and planar graphs are 5-degenerate, we
can conclude that the problem of finding a maximum-weight in-
duced planar subgraph can be solved in quasipolynomial time on
𝐶>𝑡 -free graphs. We also give a generalization of Theorem 1.1 that
allows counting the weights only on a subset of 𝑆 . From this gener-
alization it follows that for instance the following problem can be
solved in quasipolynomial time on𝐶>𝑡 -free graphs: find the largest
collection of pairwise nonadjacent induced cycles.

Let us point out a particular corollary of Theorem 1.1 of a more
general nature. It is known that for every pair of integers 𝑑 and 𝑡
there exists ℓ = ℓ (𝑑, 𝑡) such that every graph that contains 𝑃ℓ as
a subgraph, contains either 𝐾𝑑+2, or 𝐾𝑑+1,𝑑+1, or 𝑃𝑡 as an induced
subgraph [4]. Since the degeneracy of 𝐾𝑑+2 and 𝐾𝑑+1,𝑑+1 is larger
than 𝑑 , we conclude that every 𝑃𝑡 -free graph of degeneracy at most
𝑑 does not contain 𝑃ℓ as a subgraph. On the other hand, for every
integer ℓ , the class of graphs that do not contain 𝑃ℓ as a subgraph is
well-quasi-ordered by the induced subgraph relation [11]. It follows
that for every pair of integers 𝑡 and 𝑑 and every hereditary class
C𝑑 such that every graph in C𝑑 has degeneracy at most 𝑑 , the class
C𝑑 ∩ (𝑃𝑡 -free) of 𝑃𝑡 -free graphs from C𝑑 is characterized by a finite
number of forbidden induced subgraphs: there exists a finite list F
of graphs such that a graph𝐺 belongs to C𝑑 ∩ (𝑃𝑡 -free) if and only
if𝐺 does not contain any graph from F as an induced subgraph. As
admitting a graph from F as an induced subgraph can be expressed
by a CMSO2 sentence, from Theorem 1.1 we can conclude the
following.

Theorem 1.2. Let C be a hereditary graph class such that each

member of C is 𝑑-degenerate, for some integer 𝑑 . Then for every

integer 𝑡 there exists algorithm that, given a 𝑃𝑡 -free 𝑛-vertex graph

𝐺 and a weight function 𝔴 : 𝑉 (𝐺) → N, in time 𝑛O(log2 𝑛)
finds a

subset 𝑆 of vertices such that 𝐺 [𝑆] ∈ C and, subject to this, 𝔴(𝑆) is
maximum possible.

Degeneracy and treewidth. Readers familiar with the literature
on algorithmic results for CMSO2 logic might be slightly surprised
by the statement of Theorem 1.1. Namely, CMSO2 is usually asso-
ciated with graphs of bounded treewidth, where the tractability of
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problems expressible in this logic is asserted by Courcelle’s Theo-
rem [9]. Theorem 1.1, however, speaks about CMSO2-expressible
properties of graphs of bounded degeneracy. While degeneracy
is upper-bounded by treewidth, in general there are graphs that
have bounded degeneracy and arbitrarily high treewidth. However,
we prove that in the case of 𝐶>𝑡 -free graphs, the two notions are
functionally equivalent.

Theorem 1.3. For every pair of integers 𝑑 and 𝑡 , there exists an

integer 𝑘 = (𝑑𝑡)O(𝑡 )
such that every 𝐶>𝑡 -free graph of degeneracy

at most 𝑑 has treewidth at most 𝑘 .

As the properties of having treewidth at most 𝑘 and having
degeneracy at most 𝑑 are expressible in CMSO2, from Theorem 1.3
it follows that in the statement of Theorem 1.1, assumptions “𝐺 [𝑆]
has degeneracy at most 𝑑” and “𝐺 [𝑆] has treewidth at most 𝑘” could
be replaced by one another. Actually, both ways of thinking will
become useful in the proof.

Simple QPTASes. As an auxiliary result, we also show a simple
technique for turning algorithms for MWIS in 𝑃𝑡 -free and𝐶>𝑡 -free
graphs into approximation schemes for (unweighted) problems
of the following form: in a given graph, find the largest induced
subgraph belonging to C, where C is a fixed graph class that is
closed under taking disjoint unions and induced subgraphs and is
weakly hyperfinite [22, Section 16.2]. This last property is formally
defined as follows: for every 𝜀 > 0, there exists a constant 𝑐 (𝜀)
such that from every graph 𝐺 ∈ C one can remove an 𝜀 fraction
of vertices so that every connected component of the remaining
graph has at most 𝑐 (𝜀) vertices. Weak hyperfiniteness is essentially
equivalent to admitting sublinear balanced separators, so all the
well-known classes of sparse graphs, e.g. planar graphs or all proper
minor-closed classes, are weakly hyperfinite. We present these
results in Section 4.

3-Coloring. In [24], it is shown how tomodify the quasipolynomial-
time algorithm for MWIS in 𝑃𝑡 -free graphs to obtain an algorithm
for 3-Coloring with the same asymptotic running time bound
in the same graph class. We remark here that the same modifica-
tion can be applied to the algorithm of Theorem 1.1, obtaining the
following:

Theorem 1.4. For every integer 𝑡 there exists an algorithm that,

given an 𝑛-vertex 𝐶>𝑡 -free graph 𝐺 , runs in time 𝑛O(log3 𝑛)
and

verifies whether 𝐺 is 3-colorable.

2 OVERVIEW OF THE MAIN RESULT
In this section we present an overview of the proof of our main
result, Theorem 1.1. We try to keep the description non-technical,
focusing on explaining the main ideas and intuitions. Complete and
formal proofs can be found in the full version of the paper [14].

2.1 Approach for 𝑃𝑡 -Free Graphs
We need to start by recalling the basic idea of the quasipolynomial-
time algorithm for MWIS in 𝑃𝑡 -free graphs [13, 24]; we choose
to follow the exposition of [24]. The main idea is to exploit the
following balanced separator theorem.

Theorem 2.1 (Gyárfás [17], Bacsó et al. [5]). Let 𝐺 be an 𝑛-

vertex 𝑃𝑡 -free graph. Then there exists a set 𝑋 consisting of at most

𝑡 vertices of 𝐺 such that 𝐺 [𝑋 ] is connected and every connected

component of 𝐺 − 𝑁 [𝑋 ] has at most 𝑛/2 vertices. Furthermore, such

a set can be found in polynomial time.

In the MWIS problem, there is a natural branching strategy
that can be applied on any vertex 𝑢. Namely, branch into two sub-
problems: in one subproblem — success branch — assume that 𝑢 is
included in an optimal solution, and in the other — failure branch

— assume it is not. In the success branch we can remove both 𝑢
and all its neighbors from the consideration, while in the failure
branch only 𝑢 can be removed. Hence, Theorem 2.1 suggests the
following naive Divide&Conquer strategy: find a set 𝑋 as provided
by the Theorem and branch on all the vertices of𝑋 as above in order
to try to disconnect the graph. This strategy does not lead to any
reasonable algorithm, because the graph would get shattered only
in the subproblem corresponding to success branches for all 𝑥 ∈ 𝑋 .
However, there is an intuition that elements of 𝑋 are reasonable
candidates for branching pivots: vertices such that branching on
them leads to a significant progress of the algorithm.

The main idea presented in [24] is to perform branching while
measuring the progress in disconnecting the graph in an indirect
way. Let𝐺 be the currently considered graph. For a pair of vertices
𝑢 and 𝑣 , let the bucket of 𝑢 and 𝑣 be defined as:

B𝐺
𝑢,𝑣 B { 𝑃 : 𝑃 is an induced path in 𝐺 with endpoints 𝑢 and 𝑣}.

Observe that since 𝐺 is 𝑃𝑡 -free, every element of B𝐺
𝑢,𝑣 is a path on

fewer than 𝑡 vertices, hence B𝐺
𝑢,𝑣 has always at most 𝑛𝑡−1 elements

and can be computed in polynomial time (for a fixed 𝑡 ). On the
other hand, B𝐺

𝑢,𝑣 is nonempty if and only if 𝑢 and 𝑣 are in the same
connected component of 𝐺 .

Let 𝑋 be a set whose existence is asserted by Theorem 2.1. Ob-
serve that if 𝑢 and 𝑣 are in different components of 𝐺 − 𝑁 [𝑋 ],
then all the paths of B𝐺

𝑢,𝑣 are intersected by 𝑁 [𝑋 ]. Moreover, as
every connected component of𝐺 −𝑁 [𝑋 ] has at most 𝑛/2 elements,
this happens for at least half of the pairs {𝑢, 𝑣} ∈

(𝑉 (𝐺)
2

)
. Since 𝑋

has only at most 𝑡 vertices, by a simple averaging argument we
conclude the following.

Claim 1. There is a vertex 𝑥 such that 𝑁 [𝑥] intersects at least a
1
𝑡 fraction of paths in at least

1
2𝑡 fraction of buckets.

A vertex 𝑥 having the property mentioned in Claim 1 shall be
called 1

2𝑡 -heavy, or just heavy. Then Claim 1 asserts that there is
always a heavy vertex; note that such a vertex can be found in
polynomial time by inspecting the vertices of 𝐺 one by one.

We may now present the algorithm:
(1) If 𝐺 is disconnected, then apply the algorithm to every con-

nected component of 𝐺 separately.
(2) Otherwise, find a heavy vertex in 𝐺 and branch on it.
We now sketch a proof of the following claim: on each root-to-

leaf path in the recursion tree, this algorithm may execute only
O(log2 𝑛) success branches. By Claim 1, in each success branch a
constant fraction of buckets get their sizes reduced by a constant
multiplicative factor. Since buckets are of polynomial size in the
first place, after Ω(log𝑛) success branches a 1

10 fraction of the
initial buckets must become empty. Since in a connected graph all
the buckets are nonempty, it follows that after Ω(log𝑛) success
branches, the vertex count of the connected graph we are working
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on must have decreased by at least a multiplicative factor of 0.01
with respect to the initial graph. As this can happen only O(log𝑛)
times, the claim follows.

Now the recursion tree has depth at most 𝑛 and each root-to-leaf
path contains at most O(log2 𝑛) success branches. Therefore, the
total size of the recursion tree is 𝑛O(log2 𝑛) , which implies the same
bound on the running time. This concludes the description of the
algorithm for 𝑃𝑡 -free graphs; let us recall that this algorithm was
already presented in [24].

2.2 Lifting the Technique to 𝐶>𝑡 -Free Graphs
We now explain how to lift the technique presented in the previous
section to the setting of 𝐶>𝑡 -free graphs. As we mentioned before,
the main ingredient — the balanced separator theorem — remains
true.

Theorem 2.2 (Gyárfás [17], Chudnovsky et al. [8]). Let 𝐺 be

an 𝑛-vertex 𝐶>𝑡 -free graph. Then there is a set 𝑋 consisting of at

most 𝑡 vertices of𝐺 such that𝐺 [𝑋 ] is connected and every connected

component of 𝐺 − 𝑁 [𝑋 ] has at most 𝑛/2 vertices. Furthermore, such

a set can be found in polynomial time.

However, in the previous section we used the 𝑃𝑡 -freeness of the
graph in question also in one other place: to argue that the buckets
B𝐺
𝑢,𝑣 are of polynomial size. This was crucial for the argument

that Ω(log𝑛) success branches on heavy vertices lead to emptying
a significant fraction of the buckets. Solving this issue requires
reworking the concept of buckets.

The idea is that in the 𝐶>𝑡 -free case, the objects placed in buck-
ets will connect triples of vertices, rather than pairs. Formally, a
connector is a graph formed from three disjoint paths 𝑄1, 𝑄2, 𝑄3 by
picking one endpoint 𝑎𝑖 of 𝑄𝑖 , for each 𝑖 = 1, 2, 3, and either identi-
fying vertices 𝑎1, 𝑎2, 𝑎3 into one vertex, or turning 𝑎1, 𝑎2, 𝑎3 into a
triangle; see Figure 1. The paths𝑄𝑖 are the legs of the connector, the
other endpoints of the legs are the tips, and the (identified or not)
vertices 𝑎1, 𝑎2, 𝑎3 are the center of the connector. We remark that
we allow the degenerate case when one or more paths 𝑄1, 𝑄2, 𝑄3
has only one vertex, but we require the tips to be pairwise distinct.

The following claim is easy to prove by considering any inclusion-
wise minimal connected induced subgraph containing 𝑢, 𝑣,𝑤 .

Claim 2. If vertices𝑢, 𝑣,𝑤 belong to the same connected component

of a graph𝐺 , then in𝐺 there is an induced connector with tips 𝑢, 𝑣,𝑤 .

A tripod is a connector in which every leg has length at most
𝑡/2+1 (w.l.o.g. 𝑡 is even). Every connector contains a core: the tripod
induced by the vertices at distance at most 𝑡/2 from the center. The
next claim is the key observation that justifies looking at connectors
and tripods.

Claim 3. Let𝐺 be a𝐶>𝑡 -free graph, let𝑇 be an induced connector

in𝐺 , and let𝑋 be a subset of vertices such that𝐺 [𝑋 ] is connected and
no two tips of 𝑇 are in the same connected component of𝐺 − 𝑁 [𝑋 ].
Then 𝑁 [𝑋 ] intersects the core of 𝑇 .
Proof of Claim.Since no two tips of 𝑇 lie in the same component of
𝐺 −𝑁 [𝑋 ], it follows that 𝑁 [𝑋 ] intersects at least two legs of𝑇 , say
𝑄1 and 𝑄2 at vertices 𝑞1 and 𝑞2, respectively. We may choose 𝑞1
and 𝑞2 among 𝑁 [𝑋 ] ∩𝑉 (𝑄1) and 𝑁 [𝑋 ] ∩𝑉 (𝑄2) so that they are
as close in𝑇 as possible to the center of𝑇 . Since𝐺 [𝑋 ] is connected,

a1 = a2 = a3b′1b1 b′2 b2

b3 = b′3

a1 a2

a3

b′1b1 b′2 b2

b3 = b′3

Figure 1: Two connectors with two long legs and one short leg;
one connector with 𝑎𝑖s identified and one with 𝑎𝑖s forming
a triangle. Gray outline depicts the core 𝑇 of the connector
(with tips 𝑏 ′

𝑖
).

there exists a path 𝑃 with endpoints 𝑞1 and 𝑞2 such that all the
internal vertices of 𝑃 belong to𝑋 . Now 𝑃 together with the shortest
𝑞1-𝑞2 path within 𝑇 form an induced cycle in𝐺 . As this cycle must
have at most 𝑡 vertices, we conclude that 𝑞1 or 𝑞2 belongs to the
core of 𝑇 . ⊳

Claim 3 suggests that in 𝐶>𝑡 -free graphs, cores of connectors
are objects likely to be hit by balanced separators provided by
Theorem 2.2, similarly as in 𝑃𝑡 -free graphs, induced paths were
likely to be hit by balanced separators given by Theorem 2.1. Let
us then use cores as objects for defining buckets.

Let 𝐺 be a 𝐶>𝑡 -free graph. For an unordered triple {𝑢, 𝑣,𝑤} ∈(𝑉 (𝐺)
3

)
of distinct vertices, we define the bucket B𝐺

𝑢,𝑣,𝑤 as the set of
all cores of all induced connectors with tips𝑢, 𝑣,𝑤 . Let us stress here
that B𝐺

𝑢,𝑣,𝑤 is a set, not a multiset, of tripods: even if some tripod
is the core of multiple connectors with tips 𝑢, 𝑣,𝑤 , it is included in
B𝐺
𝑢,𝑣,𝑤 only once. Therefore, as each tripod has O(𝑡) vertices, the

buckets are again of size 𝑛O(𝑡 ) and can be enumerated in polyno-
mial time. By Claim 2, the bucket B𝐺

𝑢,𝑣,𝑤 is nonempty if and only if
𝑢, 𝑣,𝑤 are in the same connected component of 𝐺 . Moreover, from
Claim 3 we infer the following.

Claim 4. Let {𝑢, 𝑣,𝑤} ∈
(𝑉 (𝐺)

3
)
be a triple of vertices of𝐺 and let

𝑋 be a vertex subset such that 𝐺 [𝑋 ] is connected and no two vertices
out of 𝑢, 𝑣,𝑤 belong to the same connected component of 𝐺 − 𝑁 [𝑋 ].
Then 𝑁 [𝑋 ] intersects all the tripods in the bucket B𝐺

𝑢,𝑣,𝑤 .

Now we would like to obtain an analogue of Claim 1, that is, find
a vertex 𝑥 such that 𝑁 [𝑥] intersects a significant fraction of tripods
in a significant fraction of buckets. Let then 𝑋 be a set provided
by Theorem 2.2 for 𝐺 . For a moment, let us assume optimistically
that each connected component of𝐺 −𝑁 [𝑋 ] contains at most 𝑛/10
vertices, instead of 𝑛/2 as promised by Theorem 2.2. Observe that
if we choose a triple of distinct vertices uniformly at random, then
with probability at least 1

2 no two of these vertices will lie in the
same connected component of 𝐺 − 𝑁 [𝑋 ]. By Claim 3, this implies
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that 𝑁 [𝑋 ] intersects all the tripods in at least half of the buckets.
By the same averaging argument as before, we get the following.

Claim 5. Suppose that in𝐺 there is a set 𝑋 consisting of at most 𝑡

vertices such that 𝐺 [𝑋 ] is connected and every connected component

of 𝐺 − 𝑁 [𝑋 ] has at most 𝑛/10 vertices. Then there is a heavy vertex

in 𝐺 .

Here, we define a heavy vertex as before: it is a vertex 𝑥 such
that 𝑁 [𝑥] intersects at least a 1

𝑡 fraction of tripods in at least a 1
2𝑡

fraction of buckets.
Unfortunately, our assumption that every component of 𝐺 −

𝑁 [𝑋 ] contains at most𝑛/10 vertices, instead of at most𝑛/2 vertices,
is too optimistic. Consider the following example: 𝐺 is a path on 𝑛
vertices. The cores of connectors degenerate to subpaths consisting
of at most 𝑡 consecutive vertices of the path, and for every vertex
𝑥 , the set 𝑁 [𝑥] intersects any tripod in only an O(𝑡/𝑛) fraction of
the buckets. Therefore, in this example there is no heavy vertex at
all. We need to resort to a different strategy.

Secondary branching. So let us assume that the currently consid-
ered graph 𝐺 is connected and has no heavy vertex — otherwise
we may either recurse into connected components or branch on
the heavy vertex (detectable in polynomial time). We may even
assume that there is no (10−8/𝑡)-heavy vertex: a vertex 𝑥 such that
𝑁 [𝑥] intersects at least a (10−8/𝑡) fraction of tripods in at least a
(10−8/𝑡) fraction of buckets. Indeed, branching on such vertices
also leads to quasipolynomial running time (with all factors in the
analysis appropriately scaled).

Let us fix a set 𝑋 provided by Theorem 2.2 for 𝐺 ; then 𝐺 [𝑋 ]
is connected and each connected component of 𝐺 − 𝑁 [𝑋 ] has at
most 𝑛/2 vertices. By Claim 5, there must be some components of
𝐺 − 𝑁 [𝑋 ] that have more than 𝑛/10 vertices, for otherwise there
would be a heavy vertex. Let 𝐶 be such a component and let us
apply Theorem 2.2 again, this time to𝐺 [𝐶], obtaining a connected
set 𝑌 of size at most 𝑡 such that every connected component of
𝐺 [𝐶] − 𝑁 [𝑌 ] has at most |𝐶 |/2 vertices. If the distance between 𝑋
and 𝑌 is small, say at most 10𝑡 , then one can replace 𝑋 with the
union of 𝑋 , 𝑌 , and a shortest path between 𝑋 and 𝑌 , and repeat
the argument. The new set 𝑋 is still of size O(𝑡), so the argument
of Claim 5 applies with adjusted constants, and the absence of a
heavy vertex gives another component 𝐶 ′ with more than 𝑛/10
vertices. This process can continue only for a constant number of
steps. Hence, at some moment we end up with a connected set 𝑋 of
size O(𝑡) such that every connected component of 𝐺 − 𝑁 [𝑋 ] has
at most 𝑛/2 vertices, a connected component 𝐶 of 𝐺 − 𝑁 [𝑋 ] with
more than 𝑛/10 vertices, a connected set 𝑌 ⊆ 𝐶 of size at most 𝑡
such that every connected component of𝐺 [𝐶] − 𝑁 [𝑌 ] has at most
|𝐶 |/2 vertices and the distance between 𝑋 and 𝑌 is more than 10𝑡 .

The crucial observation now is as follows: there exists exactly
one connected component of𝐺 [𝐶]−𝑁 [𝑌 ], call it𝐷0, that is adjacent
to a vertex of 𝑁 [𝑋 ]. The existence of at least one such component
follows from the connectivity of𝐺 . If there were two such compo-
nents, say 𝐷0 and 𝐷1, then one can construct an induced cycle in
𝐺 by going from 𝑋 via 𝐷0 to 𝑌 and back to 𝑋 via 𝐷1. This cycle is
long since the distance between 𝑋 and 𝑌 is more than 10𝑡 , which
contradicts 𝐺 being 𝐶⩾𝑡 -free. Denote 𝐵 := 𝐶 − 𝐷0. Note that 𝐵 is
connected and |𝐵 | = |𝐶 | − |𝐷0 | ⩾ |𝐶 | − |𝐶 |/2 = |𝐶 |/2 ⩾ 𝑛/20.

N [X]

X

N [Y ]

Y

D0

> 10t

B

C

Figure 2: The situation when the secondary branching is
invoked.

Repeating the same proof as in the previous observation, note
that for every induced subgraph 𝐺 ′ of 𝐺 , there is at most one com-
ponent of 𝐺 ′[𝑉 (𝐺 ′) ∩ 𝐶] that contains both a vertex of 𝐵 and a
neighbor of 𝑁 [𝑋 ]: If there were two such components, one could
construct a long induced cycle by going from 𝑋 via the first com-
ponent to 𝐵 and back to 𝑋 via the second one. If such a component
exist, we call it the chip of 𝐺 ′.

Note that if 𝐺 ′ has no chip, then every connected component of
𝐺 ′ contains at most 0.95𝑛 vertices as 𝑛/20 ⩽ |𝐵 | ⩽ 𝑛/2. Thus, the
goal of the secondary branching is to get to an induced subgraph
that contains no chip, that is, to separate 𝐵 from 𝑁 [𝑋 ]. The crucial
combinatorial insight that we discuss in the next paragraph is that
the area of the graph between 𝑁 [𝑋 ] and 𝐵 behaves like a 𝑃𝑡 -free
graph and is amenable to the branching strategy for 𝑃𝑡 -free graphs.

Consider the chip 𝐶 ′ in an induced subgraph 𝐺 ′ of 𝐺 . A 𝐶 ′
-link

is a path in 𝐺 ′ with endpoints in 𝑁 [𝑋 ] ∩ 𝑁𝐺′ (𝐶 ′) and all internal
vertices in𝐶 ′; this path should be induced, except that we allow the
existence of an edge between the endpoints. Observe the following:

Claim 6. Every 𝐶 ′
-link has at most 𝑡 vertices.

Proof of Claim.Let 𝑃 be a 𝐶 ′-link. Since the endpoints of 𝑃 are
in 𝑁 [𝑋 ] and 𝐺 [𝑋 ] is connected, there exists an induced path 𝑄
in 𝐺 [𝑁 [𝑋 ]] with same endpoints as 𝑃 such that all the internal
vertices of 𝑃 are in 𝑋 . Then 𝑃 ∪𝑄 is an induced cycle in 𝐺 , hence
both 𝑃 and 𝑄 must have at most 𝑡 vertices. ⊳

The idea is that in order to cut the chip away, we perform a
secondary branching procedure, but this time we use 𝐶 ′-links as
objects that are hit by neighborhoods of vertices. Formally, for a
pair {𝑢, 𝑣} ∈

(𝑁 [𝑋 ]∩𝑁𝐺′ (𝐶′)
2

)
, we consider the secondary bucket

L𝐺′
𝑢,𝑣 consisting of all 𝐶 ′-links with endpoints 𝑢 and 𝑣 . Again, by

Claim 6, each secondary bucket is of size at most 𝑛𝑡 and can be
enumerated in polynomial time. Note that L𝐺′

𝑢,𝑣 is nonempty for
every distinct vertices 𝑢, 𝑣 ∈ 𝑁𝐺′ (𝐶 ′).

We shall say that a vertex 𝑧 of 𝐺 is secondary-heavy if 𝑁 [𝑧]
intersects at least a 1

𝑡 fraction of links in at least a 1
2𝑡 fraction of

nonempty secondary buckets.

Claim 7. If |𝑁𝐺′ (𝐶 ′) | ⩾ 2, then there is a secondary-heavy vertex.
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Proof of Claim (Sketch).We apply a weighted variant of Theorem 2.2
to the graph𝐺 ′[𝑁𝐺′ [𝐶 ′]] in order to find a set 𝑍 ⊆ 𝑁𝐺′ [𝐶 ′] of size
at most 𝑡 such that every connected component of 𝐺 ′[𝑁𝐺′ [𝐶 ′]] −
𝑁 [𝑍 ] contains at most half of the vertices of 𝑁𝐺′ (𝐶 ′). Then 𝑁 [𝑍 ]
intersects all the links in at least half of the buckets. The same
averaging argument as used before shows that one of vertices of 𝑍
is secondary-heavy. ⊳

The secondary branching procedure now branches on a secondary-
heavy vertex (detectable in polynomial time). This is always pos-
sible by Claim 7 as long as 𝑁𝐺′ (𝐶 ′) contains at least two vertices.
If 𝑁𝐺′ (𝐶 ′) = {𝑣} for some vertex 𝑣 , we choose 𝑣 as the branching
pivot and observe that both in the success and the failure branch
there is no chip.

The same analysis as in Section 2.1 shows that branching on
secondary-heavy vertices results in a recursion tree with 𝑛O(log2 𝑛)

leaves. In each of these leaves there is no chip, so every connected
component of 𝐺 ′ contains at most 0.95𝑛 vertices.

To summarize, we perform branching on (10−8/𝑡)-heavy vertices
and recursing on connected components as long as a (10−8/𝑡)-
heavy vertex can be found. When this ceases to be the case, we
resort to the secondary branching. Such an application of secondary
branching results in producing 𝑛O(log2 𝑛) subinstances to solve,
and in each of these subinstances the size of the largest connected
component is at most 95% of the vertex count of the graph for
which the secondary branching was initiated. We infer that the
running time is 𝑛O(log3 𝑛) . This concludes the description of an
𝑛O(log3 𝑛) -time algorithm for MWIS on 𝐶>𝑡 -free graphs.

2.3 Degeneracy Branching
Our goal in this section is to generalize the approach presented in
the previous section to an algorithm solving the following problem:
given a vertex-weighted𝐶>𝑡 -free graph𝐺 , find a maximum-weight
subset of vertices 𝑆 such that𝐺 [𝑆] is 𝑑-degenerate. Here 𝑑 and 𝑡 are
considered fixed constants. Thus we allow the solution to be just
sparse instead of independent, but, compared to Theorem 1.1, so far
we do not introduce CMSO2-expressible properties. Let us call the
considered problem Maximum Weight Induced 𝑑-Degenerate
Graph (MWID).

Recall that a graph 𝐺 is 𝑑-degenerate if every subgraph of 𝐺
has a vertex of degree at most 𝑑 . We will rely on the following
characterization of degeneracy, which is easy to prove.

Claim 8. A graph 𝐺 is 𝑑-degenerate if and only if there exists

a function 𝜂 : 𝑉 (𝐺) → N such that for every 𝑢𝑣 ∈ 𝐸 (𝐺) we have
𝜂 (𝑢) ≠ 𝜂 (𝑣) and for each 𝑢 ∈ 𝑉 (𝐺), 𝑢 has at most 𝑑 neighbors 𝑣 with

𝜂 (𝑣) < 𝜂 (𝑢).

A function 𝜂 (·) satisfying the premise of Claim 8 shall be called
a degeneracy ordering. Note that we only require that a degeneracy
ordering is injective on every edge of the graph, and not necessarily
on the whole vertex set. For a vertex𝑢, the value 𝜂 (𝑢) is the position
of 𝑢 and the set neighbors of 𝑢 with smaller positions is the left
neighborhood of 𝑢.

We shall now present a branching algorithm for the MWID
problem. For convenience of exposition, let us fix the given 𝐶>𝑡 -
free graph 𝐺 , an optimum solution 𝑆★ in 𝐺 , and a degeneracy

ordering 𝜂★ of 𝐺 [𝑆★]. We may assume that the co-domain of 𝜂★ is
[𝑛] B {1, . . . , 𝑛}.

Recall that when performing branching for the MWIS problem,
say on a vertex 𝑥 , in the failure branch we were removing 𝑥 from
the graph, while in the success branch we were removing both 𝑥
and its neighbors. When working with MWID, we cannot proceed
in the same way in the second case, because the neighbors of 𝑥 can
be still included in the solution. Therefore, instead of modifying the
graph 𝐺 along the recursion, we keep track of two disjoint sets 𝐴
and𝑊 : 𝐴 consists of vertices already decided to be included in the
solution, while𝑊 is the set of vertices that are still allowed to be
taken to the solution in further steps. Initially,𝐴 = ∅ and𝑊 = 𝑉 (𝐺).
We shall always branch on a vertex 𝑥 ∈𝑊 : in the failure branch
we remove 𝑥 from𝑊 , while in the success branch we move 𝑥 from
𝑊 to 𝐴. The intuition is that moving 𝑥 to 𝐴 puts more restrictions
on the neighbors of 𝑥 that are still in𝑊 . This is because they are
now adjacent to one more vertex in 𝐴, and they cannot be adjacent
to too many, at least as far as vertices with smaller positions are
concerned.

For the positions, during branching we will maintain the follow-
ing two pieces of information:

• a function 𝜂 : 𝐴 → [𝑛] that is our guess on the restriction of
𝜂★ to 𝐴; and

• a function 𝜁 :𝑊 → [𝑛] which signifies a lower bound on the
position of each vertex of𝑊 , assuming it is to be included
in the solution.

Initially, we set 𝜁 (𝑣) = 1 for each 𝑣 ∈ 𝑉 (𝐺). The quadruple
(𝐴,𝑊 ,𝜂, 𝜁 ) as above describes a subproblem solved during the re-
cursion.Wewill say that such a subproblem is lucky if all the choices
made so far are compliant with 𝑆★ and 𝜂★, that is,

𝐴 ⊆ 𝑆★ ⊆ 𝐴 ∪𝑊,

𝜂 = 𝜂★ |𝐴,
and 𝜂★(𝑢) ⩾ 𝜁 (𝑢) for each 𝑢 ∈ 𝑆★ ∩𝑊 .

Additionally to the above, from a lucky subproblem we also require
the following property:

for each 𝑣 ∈ 𝐴 and 𝑢 ∈ 𝑁 (𝑣) ∩𝑊 such that 𝜁 (𝑢) ⩽ 𝜂★(𝑣), (1)
we have 𝑢 ∈ 𝑆★ and 𝜂★(𝑢) < 𝜂★(𝑣) .

In other words, all the neighbors of a vertex 𝑣 ∈ 𝐴 should have
their lower bounds larger than the guessed position of 𝑣 , unless
they will be actually included in the solution at positions smaller
than that of 𝑣 . The significance of this property will become clear
in a moment.

First, observe that if𝐺 [𝑊 ] is disconnected, then we can treat the
different connected components of𝐺 [𝑊 ] separately: for each com-
ponent𝐷 of𝐺 [𝑊 ] we solve the subproblem (𝐴, 𝐷, 𝜂, 𝜁 |𝐷 ) obtaining
a solution 𝑆𝐷 , and we return

⋃
𝐷 𝑆𝐷 as the solution to (𝐴,𝑊 ,𝜂, 𝜁 ).

Property (1) is used to guarantee the correctness of this step: it
implies that when taking the union of solutions 𝑆𝐷 , the vertices of
𝐴 do not end up with too many left neighbors.

Thus, we may assume that 𝐺 [𝑊 ] is connected. In this case we
execute branching on a vertex of𝑊 . For the choice of the branching
pivot 𝑥 we use exactly the same strategy as described in the previous
section: having defined the buckets in exactly the same way, we
always pick 𝑥 to be a heavy vertex in𝐺 [𝑊 ], or resort to secondary
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branching in 𝐺 [𝑊 ] (which picks secondary-heavy pivots) in the
absence of heavy vertices.

An important observation is that in the success branch — when
the vertex 𝑥 ∈𝑊 is moved to 𝐴 — the algorithm notes a significant
progress that allows room for additional guessing (by branching).
More precisely, on every root-to-leaf path in the recursion tree there
are only O(log3 𝑛) success branches, which means that following
each success branch we can branch further into 𝑛O(1) options, and
the size of the recursion tree will be still 𝑛O(log3 𝑛) . We use this
power to guess (by branching) the following objects when deciding
that 𝑥 should be included in the solution 𝑆★ (here, we assume that
the current subproblem is lucky):

• the position 𝜂★(𝑥);
• the set of left neighbors

𝐿 = {𝑣 ∈𝑊 ∩ 𝑁 (𝑥) | 𝜂★(𝑣) < 𝜂★(𝑥)}

• the positions (𝜂★(𝑣) : 𝑣 ∈ 𝐿); and
• for each 𝑣 ∈ 𝐿, its left neighbors

𝐿𝑣 B {𝑢 ∈𝑊 ∩ 𝑁 (𝑣) | 𝜂★(𝑢) < 𝜂★(𝑣)}.

This guess is reflected by the following clean-up operations in the
subproblem:

• Move {𝑥} ∪ 𝐿 from𝑊 to 𝐴 and set their positions in 𝜂 (·) as
the guess prescribes. Note that the vertices of

⋃
𝑣∈𝐿 𝐿𝑣 are

not being moved to 𝐴.
• For each𝑤 ∈ (𝑁 (𝑥) ∩𝑊 ) − 𝐿, increase 𝜁 (𝑤) to
max(𝜁 (𝑤), 𝜂 (𝑥) + 1).

• For each 𝑣 ∈ 𝐿 and𝑤 ∈ (𝑁 (𝑣) ∩𝑊 ) − 𝐿𝑣 , increase 𝜁 (𝑤) to
max(𝜁 (𝑤), 𝜂 (𝑣) + 1).

It is easy to see that if (𝐴,𝑊 ,𝜂, 𝜁 ) was lucky, then at least one of
the guesses leads to considering a lucky subproblem. In particular,
property (1) is satisfied in this subproblem. This completes the
description of a branching step.

It remains to argue why it is still true that on every root-to-
leaf path in the recursion tree there are at most O(log3 𝑛) success
branches. Before, the key argument was that when a success branch
is executed, a constant fraction of buckets (either primary or sec-
ondary) loses a constant fraction of elements. Now, the progress
is explained by the following claim, which follows easily from the
way we perform branching.

Claim 9. Suppose (𝐴,𝑊 ,𝜂, 𝜁 ) is a lucky subproblem in which

branching on 𝑥 is executed, and let (𝐴′,𝑊 ′, 𝜂 ′, 𝜁 ′) be any of the

obtained child subproblems. Then for every 𝑦 ∈ 𝑁 (𝑥) ∩𝑊 , we either

have

𝑦 ∉𝑊 ′
or

|{𝑧 ∈ 𝐴 ∩ 𝑁 (𝑦) | 𝜂 (𝑧) < 𝜁 (𝑦)}| < |{𝑧 ∈ 𝐴′ ∩ 𝑁 (𝑦) | 𝜂 ′(𝑧) < 𝜁 ′(𝑦)}|.

Note that for 𝑦 ∈𝑊 , if 𝑦 gets included in the solution, then the
whole set

𝑀𝑦 B {𝑧 ∈ 𝐴 ∩ 𝑁 (𝑦) | 𝜂 (𝑧) < 𝜁 (𝑦)}
must become the left neighbors of 𝑦. So if the size of𝑀𝑦 exceeds
𝑑 , then we can conclude that 𝑦 cannot be included in the solution
and we can safely remove 𝑦 from 𝑊 . Thus, the increase of the
cardinality of𝑀𝑦 for all neighbors 𝑦 of 𝑥 that do not get excluded
from consideration is the progress achieved by the algorithm.

Formally, we do as follows. Recall that before, we measured the
progress in emptying a bucket B𝐺

𝑢,𝑣,𝑤 by monitoring its size. Now,
we monitor the potential of B𝐺

𝑢,𝑣,𝑤 defined as

Φ(B𝐺
𝑢,𝑣,𝑤) B

∑︁
𝑇 ∈B𝐺 (𝑢,𝑣,𝑤)

∑︁
𝑦∈𝑉 (𝑇 )

(𝑑 − |𝑀𝑦 |) .

Thus, Φ(B𝐺 (𝑢, 𝑣,𝑤)) measures how much the vertices of tripods
of B𝐺

𝑢,𝑣,𝑤 have left till saturating their “quotas” for the number of
left neighbors. From Claim 9 it can be easily inferred that when
branching on a heavy vertex, a constant fraction of buckets lose
a constant fraction of their potential, and the same complexity
analysis as before goes through.

2.4 CMSO2 Properties
We now extend the approach presented in the previous section to a
sketch of a proof of Theorem 1.1 in full generality. That is, we also
take into account CMSO2-expressible properties.

Degeneracy and treewidth. The first step is to argue that degen-
eracy and treewidth are functionally equivalent in𝐶>𝑡 -free graphs,
i.e., to prove Theorem 1.3. This part of the reasoning is presented
in Section 3.

The argument goes roughly as follows. Suppose, for contra-
diction, that 𝐺 is a 𝐶>𝑡 -free 𝑑-degenerate graph that has huge
treewidth (in terms of 𝑑 and 𝑡 ). Using known results [18], in 𝐺 we
can find a huge bramble B — a family of connected subgraphs that
pairwise either intersect or are adjacent — such that every vertex
of 𝐺 is in at most two elements of B. This property means that B
gives rise to a huge clique minor in 𝐺 ′, the graph obtained from
𝐺 by adding a copy of every vertex (the copy is a true twin of the
original). Note that 𝐺 ′ is still 𝐶>𝑡 -free and is 2𝑑 + 1-degenerate.
Now, we can easily prove that the obtained clique minor in𝐺 ′ can
be assumed to have depth at most 𝑡 : every branch set induces a
subgraph of radius at most 𝑡 . Using known facts about bounded-
depth minors [25, Lemma 2.19 and Corollary 2.20], it follows that
𝐺 ′ contains a topological minor model of a large clique that has
depth at most 3𝑡 + 1: every path representing an edge has length at
most 6𝑡 + 3. Finally, we show that if we pick at random 𝑡 + 1 roots
𝑣0, . . . , 𝑣𝑡 of this topological minor model, and we connect them in
order into a cycle in 𝐺 ′ using the paths from the model, then with
high probability this cycle will be induced. This is because 𝐺 ′ is
(2𝑑 + 1)-degenerate, so two paths of the model chosen uniformly at
random are with high probability nonadjacent, due to their short-
ness. Thus, we uncovered an induced cycle on more than 𝑡 vertices
in 𝐺 ′, a contradiction.

Boundaried graphs and types. We proceed to the proof of Theo-
rem 1.1. By Theorem 1.3, the subgraph𝐺 [𝑆] induced by the solution
has treewidth smaller than 𝑘 , where 𝑘 is a constant that depends
only on 𝑑 and 𝑡 . Therefore, we will use known compositionality
properties of CMSO2 logic on graphs of bounded treewidth.

For an integer ℓ , an ℓ-boundaried graph is a pair (𝐻, 𝜄), where
𝐻 is a graph and 𝜄 is an injective partial function from 𝑉 (𝐻 ) to
[ℓ], called the labelling. The domain of 𝜄 is the boundary of (𝐻, 𝜄)
and if 𝜄 (𝑢) = 𝛼 , then 𝑢 is a boundary vertex with label 𝛼 . On ℓ-
boundaried graphs we have two natural operations: forgetting a
label — removing a vertex with this label from the domain of 𝜄 —
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and gluing two boundaried graphs — taking their disjoint union
and fusing boundary vertices with the same labels. It is not hard
to see that a graph has treewidth less than ℓ if and only if it can
be constructed from two-vertex ℓ-boundaried graphs by means of
these operations.

The crucial, well-known fact about CMSO2 is that this logic
behaves in a compositional way under the operations on boundaried
graphs. Precisely, for each fixed ℓ and CMSO2 sentence 𝜑 there is
a finite set Types of types such that to every ℓ-boundaried graph
(𝐻, 𝜄) we can assign type(𝐻, 𝜄) ∈ Types so that:

• Whether 𝐻 |= 𝜑 can be uniquely determined by examining
type(𝐻, 𝜄).

• The type of the result of gluing two ℓ-boundaried graphs
depends only on the types of those graphs.

• The type of the result of forgetting a label in an ℓ-boundaried
graph depends only on the label in question and the type of
this graph.

In our proof we will use ℓ B 6𝑘 , that is, the boundaries will by a
bit larger than the promised bound on the treewidth.

Enriching branching with types. We now sketch how to enrich
the algorithm from the previous section to the final branching
procedure.The idea is that we perform branching as in the previous
section (with significant augmentations, as will be described in a
moment), but in order to make sure that the constructed induced
subgraph 𝐺 [𝑆] satisfies 𝜑 , we enrich each subproblem with the
following information:

• A rooted tree decomposition (𝑇, 𝛽) of𝐺 [𝐴] of width at most
ℓ (𝛽 : 𝑉 (𝑇 ) → 𝐴 is the bag function).

• For each node 𝑎 of 𝑇 , a projected type type𝑎 ∈ Types.
Again, we fix some optimum solution 𝑆★ togetherwith a𝑑-degeneracy
ordering 𝜂★ of 𝐺 [𝑆★]. Compared to the approach of the previous
section, we extend the definition of a subproblem being lucky as
follows:

• For each connected component 𝐷 of𝐺 [𝑊 ∩ 𝑆★], we require
that 𝑁 (𝐷) ∩ 𝐴 is a set of size at most 4𝑘 such that there
exists a bag of (𝑇, 𝛽) that entirely contains it. For such a
component 𝐷 , let 𝑎(𝐷) be the topmost node of 𝑇 satisfying
𝑁 (𝐷) ∩𝐴 ⊆ 𝛽 (𝑎(𝐷)).

• For each node 𝑎 of 𝑇 , consider the graph 𝐻𝑎 induced by
𝛽 (𝑎) and the union of all those components 𝐷 of𝐺 [𝑊 ∩𝑆★]
for which 𝑎(𝐷) = 𝑎. Then the type of 𝐻𝑎 with 𝛽 (𝑎) as the
boundary is equal to type𝑎 .

Thus, one can imagine the solution 𝑆★ as 𝐴 plus several extensions
into 𝑊 — vertex sets of components of 𝐺 [𝑊 ∩ 𝑆★]. Each such
extension 𝐷 is hanged under a single node 𝑎(𝐷) of (𝑇, 𝛽) and is
attached to it through a neighborhood of size at most 4𝑘 . For each
node 𝑎 of 𝑇 , we store the projected combined type type𝑎 of all the
extensions 𝐷 for which 𝑎 is the topmost node to which 𝐷 attaches.
Note that since the algorithm will always make only logO(1) 𝑛
success branches along each root-to-leaf path, we maintain the
invariant that |𝐴| ⩽ logO(1) 𝑛, which implies the same bound on
the number of nodes of 𝑇 .

Recall that in the algorithm presented in the previous section,
two basic operations were performed: (a) recursing on connected
components of 𝐺 [𝑊 ] once this graph becomes disconnected; and
(b) branching on a node 𝑥 ∈𝑊 .

Lifting (a) to the new setting is conceptually simple. Namely,
each graph 𝐻𝑎 is correspondingly split among the components of
𝐺 [𝑊 ], so we guess the projected types of those parts of 𝐻𝑎 so that
they compose to type𝑎 . The caveat is that in order to make the time
complexity analysis sound, we can perform such guessing only
when a significant progress is achieved by the algorithm. This is
done by performing (a) only when each connected component of
𝐺 [𝑊 ] contains at most 99% of all the vertices of𝑊 , which means
that the number of active vertices after this step will drop by 1% in
each branch. This requires technical care.

More substantial changes have to be applied to lift operation (b),
branching on a node 𝑥 ∈𝑊 . Failure branch works the same way as
before: we just remove 𝑥 from𝑊 . As for success branches, recall
that in each of them together with 𝑥 wemove to𝐴 the whole set 𝐿 of
left neighbors of 𝑥 in𝑊 . Clearly, the vertices of 𝐿∪{𝑥} belong to the
same component of𝐺 [𝐴∩𝑆★], say 𝐷 . It would be natural to reflect
the move of 𝐿 ∪ {𝑥} to 𝐴 in the decomposition (𝑇, 𝛽) as follows:
create a new node 𝑏 with 𝛽 (𝑏) = (𝐿∪ {𝑥}) ∪ (𝑁 (𝐷) ∩𝐴) and make
it a child of 𝑎(𝐷) in 𝑇 . Note that thus, |𝛽 (𝑏) | ⩽ 𝑑 + 1 + 4𝑘 ⩽ 5𝑘 , so
the bound on the width of (𝑇, 𝛽) is maintained (even with a margin).
However, there is a problem: if by 𝐴′ we denote the updated 𝐴, i.e.,
𝐴′ = 𝐴∪(𝐿∪{𝑥}), then the removal of 𝐿∪{𝑥} breaks𝐷 into several
connected components whose neighborhoods in 𝐴′ are contained
in (𝑁 (𝐷) ∩ 𝐴) ∪ (𝐿 ∪ {𝑥}). This set, however, may have size as
large as 4𝑘 + 𝑑 + 1, so we do not maintain the invariant that every
connected component of𝐺 [𝑊 ∩ 𝑆★] has at most 4𝑘 neighbors in 𝐴.

We remedy this issue using a trick that is standard in the analysis
of bounded-treewidth graphs. Since the graph𝐺 [𝐷 ∪ (𝑁 (𝐷) ∩𝑊 )]
has treewidth smaller than 𝑘 , there exists a set 𝐾 consisting of at
most 𝑘 vertices of 𝐷 ∪ (𝑁 (𝐷) ∩𝑊 ) such that every connected
component of 𝐷 − 𝐾 contains at most |𝑁 (𝐷) ∩𝑊 |/2 vertices of
𝑁 (𝐷) ∩𝑊 .The algorithm guesses 𝐾 along with 𝐿, moves 𝐾 to𝑊
along with 𝑥 and 𝐿, and and sets 𝛽 (𝑏) B (𝑁 (𝐷)∩𝐴)∪(𝐿∪{𝑥})∪𝐾 ;
thus |𝛽 (𝑏) | ⩽ 4𝑘 + (𝑑 + 1) +𝑘 ⩽ 6𝑘 . Now it is easy to see that due to
the inclusion of𝐾 , every connected component of𝐷− (𝐾 ∪𝐿∪{𝑥})
has only at most 2𝑘 + 𝑘 + (𝑑 + 1) ⩽ 4𝑘 neighbors in 𝛽 (𝑏), and the
problematic invariant is maintained.

This concludes the overview of the proof of Theorem 1.1.

3 𝐶>𝑡 -FREE GRAPHS OF BOUNDED
DEGENERACY HAVE BOUNDED
TREEWIDTH

It is well known that if a graph 𝐺 has treewidth 𝑘 , then its degen-
eracy it at most 𝑘 . However, these parameters can be arbitrarily
far away from each other: for instance, 3-regular expanders have
degeneracy 3 and treewidth linear in the number of vertices [15].
In this section we prove that if we restrict our attention to𝐶>𝑡 -free
graphs, the treewidth is bounded by a function of degeneracy. In
particular, we show Theorem 1.3.

Theorem 1.3. For every pair of integers 𝑑 and 𝑡 , there exists an

integer 𝑘 = (𝑑𝑡)O(𝑡 )
such that every 𝐶>𝑡 -free graph of degeneracy

at most 𝑑 has treewidth at most 𝑘 .

Before we proceed to the proof of Theorem 1.3, let us recall the
notion of brambles. Recall that two sets 𝐴,𝑏 are adjacent if either
𝐴 ∩ 𝐵 ≠ ∅ or there is an edge with one endpoint in 𝐴 and the other
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in 𝐵. For brevity, we say that a set 𝐴 is adjacent to a vertex 𝑣 if 𝐴 is
adjacent to {𝑣}, i.e., either 𝑣 ∈ 𝐴 or 𝑣 is adjacent to some vertex of𝐴.
A bramble of size 𝑝 in a graph𝐺 is a collection B = (𝐵1, 𝐵2, . . . , 𝐵𝑝 )
of nonempty vertex subsets such that each 𝐵𝑖 induces a connected
graph and all 𝐵𝑖s are pairwise adjacent. The sets 𝐵𝑖 are called branch
sets. The order of a bramble B is the size of a smallest set of vertices
that hits all branch sets. Observe that the size of a bramble is always
at least its order. We will use the following result of Hatzel et al. [18],
which in a graph of large treewidth constructs a bramble of large
order in which no vertex participates in more than two branch sets.

Theorem 3.1 (Hatzel et al. [18]). There exists a polynomial p(·)
such that for every positive integer 𝑘 , every graph𝐺 of treewidth at

least 𝑘 contains a bramble B of order at least

√
𝑘/p(log𝑘) such that

each vertex of 𝐺 is in at most two branch sets of B.

We now proceed to the proof of Theorem 1.3. Without loss of
generality we may assume that 𝑡 is even, 𝑡 ⩾ 4, and 𝑑 ⩾ 2. For
contradiction, suppose that 𝐺 is a 𝐶>𝑡 -free graph with degeneracy
at most 𝑑 and treewidth larger that

𝑘 B
(
500 000 · 𝑑2𝑡5

)4𝑡+4
·
[
p
(
log

(
(500 000 · 𝑑2𝑡5)4𝑡+4

))]4
,

where p(·) is the polynomial provided by Theorem 3.1. Thus, by ap-
plying Theorem 3.1 to 𝐺 we obtain a bramble B = (𝐵1, 𝐵2, . . . , 𝐵𝑝 )
of order

𝑝 >

√
𝑘

p(log𝑘) ⩾
(
500 000 · 𝑑2𝑡5

)2𝑡+2
.

Note that we can assume that each branch set of B is inclusion-
wise minimal (subject to B being a bramble), as otherwise we can
remove some vertices from branch sets. Therefore, for each branch
set 𝐵𝑖 and each vertex 𝑣 of 𝐵𝑖 , either there is some branch set 𝐵 𝑗
which is adjacent to 𝑣 but nonadjacent to 𝐵𝑖 −{𝑣}, or 𝑣 is a cutvertex
in 𝐺 [𝐵𝑖 ] and its role is to keep the branch set connected.

Claim 10. For each 𝑖 ∈ [𝑝], and all𝑢, 𝑣 ∈ 𝐵𝑖 , the distance between
𝑢 and 𝑣 in 𝐺 [𝐵𝑖 ] is at most 𝑡 .

Proof of Claim.For contradiction, suppose that there is 𝐵𝑖 violating
the claim. Let 𝑢, 𝑣 be the vertices at maximum distance in 𝐺 [𝐵𝑖 ],
by assumption this distance is at least 𝑡 + 1. As 𝑢 and 𝑣 are the ends
of a maximal path in 𝐺 [𝐵𝑖 ], none of them is a cutvertex in 𝐺 [𝐵𝑖 ].
Thus there is a branch set 𝐵𝑢 which is adjacent only to 𝑢 in 𝐵𝑖 ,
and another branch set which is adjacent only to 𝑣 in 𝐵𝑖 . Recall
that 𝐵𝑢 ∪ 𝐵𝑣 is connected and nonadjacent to 𝐵𝑖 − {𝑢, 𝑣}. So by
concatenating a shortest 𝑢-𝑣-path in 𝐵𝑖 and a shortest 𝑢-𝑣-path in
𝐵𝑢 ∪ 𝐵𝑣 , we obtain an induced cycle with at least 𝑡 + 1 vertices, a
contradiction. ⊳

Let 𝐺 ′ be the lexicographic product 𝐺 • 𝐾2: the graph obtained
from 𝐺 by introducing, for each 𝑥 ∈ 𝑉 (𝐺), a copy 𝑥 ′ of 𝑥 and
making it adjacent to 𝑥 , all neighbors of 𝑥 , and all their copies. Note
that in 𝐺 ′, the copy 𝑥 ′ is a true twin of 𝑥 . Observe also that the
degeneracy of 𝐺 ′ is at most 2𝑑 + 1: we can modify a 𝑑-degeneracy
ordering of𝐺 into a (2𝑑 +1)-degeneracy ordering of𝐺 ′ by inserting
each vertex 𝑥 ′ immediately after 𝑥 .

Claim 11. The graph 𝐺 ′
contains 𝐾𝑝 as a depth-𝑡 minor.

Proof of Claim.We construct a family B′ = (𝐵′1, 𝐵
′
2, . . . , 𝐵

′
𝑝 ) as fol-

lows. We start with 𝐵′
𝑖
B 𝐵𝑖 for all 𝑖 ∈ [𝑝] and we iteratively

inspect every vertex 𝑥 of 𝐺 . If 𝑥 belongs to more than one of the
sets {𝐵1, . . . , 𝐵𝑝 }, then, by the properties given by Theorem 3.1, 𝑥
must belong to exactly two of them, say 𝑥 ∈ 𝐵𝑖 ∩ 𝐵 𝑗 for some 𝑖 ≠ 𝑗 .
Then replace 𝑥 with 𝑥 ′ in 𝐵′

𝑗
, thus making 𝐵′

𝑖
and 𝐵′

𝑗
not overlap

on 𝑥 .
It is clear that once this operation is applied to each vertex of 𝐺 ,

the resulting sets of B′ are pairwise disjoint and pairwise adjacent.
Further, for each 𝑖 ∈ [𝑝] the graph𝐺 ′[𝐵′

𝑖
] is isomorphic to𝐺 [𝐵𝑖 ], as

we only replaced some vertices by their true twins, so in particular
𝐺 ′[𝐵′

𝑖
] is connected. Therefore, B′ is a minor model of a clique of

order 𝑝 in 𝐺 ′. By Claim 10, the radius of each graph 𝐺 ′[𝐵′
𝑖
] is at

most 𝑡 , hence this model has depth at most 𝑡 . ⊳

The next result binds the maximum size of a bounded-depth
clique minor and the maximum size of a bounded-depth topological
clique minor that can be found in a graph. It is a fairly standard
fact used in the sparsity theory; for the proof, see e.g. [25, Lemma
2.19 and Corollary 2.20].

Proposition 3.2. Let𝐺 be a graph and let 𝑡, 𝑝, 𝑝 ′ be integers such
that 𝑝 ⩾ 1 + (𝑝 ′ + 1)2𝑡+2. If 𝐺 contains 𝐾𝑝 as a depth-𝑡 minor, then

𝐺 contains 𝐾𝑝′ as a depth-(3𝑡 + 1) topological minor.

By combining Claim 11 and Proposition 3.2, we conclude that
𝐺 ′′ contains 𝐾𝑝′ as a topological depth-(3𝑡 + 1) minor, where

𝑝 ′ B

⌊
𝑝

1
2𝑡+2

4

⌋
⩾ 100 000 · 𝑑2 · 𝑡5 .

Fix some topological depth-(3𝑡 + 1) minor model of 𝐾𝑝′ in 𝐺 ′.
Let 𝑅 be the set of roots of the minor model and consider the
graph𝐺 ′[𝑅]. It has 𝑝 ′ vertices and, as a subgraph of𝐺 ′, is (2𝑑 + 1)-
degenerate. Therefore, there is an independent set 𝑅′ in 𝐺 ′[𝑅] of
size at least

𝑝 ′′ B
⌈
𝑝 ′

2𝑑 + 2

⌉
⩾

100 000 · 𝑑2 · 𝑡5
2𝑑 + 2 ⩾ 20 000 · 𝑑 · 𝑡5 .

Observe that restricting our minor model only to the roots that are
in 𝑅′ and paths incident to them gives us a topological depth-(3𝑡+1)
minor model of 𝐾𝑝′′ with the additional property that the roots are
pairwise nonadjacent.

Let 𝐻 be the subgraph of 𝐺 ′ induced by the vertices used by the
topological minor model obtained in the previous step. Let 𝑋 be
the set of vertices of 𝐻 with degree larger than 200 · 𝑑 · 𝑡2, which
are not roots. Since 𝐻 is (2𝑑 + 1)-degenerate, we observe that

|𝑋 | ⩽ (2𝑑 + 1) |𝑉 (𝐻 ) |
100 · 𝑑𝑡2

⩽
(2𝑑 + 1) (6𝑡 + 3)

(𝑝′′
2
)

100 · 𝑑𝑡2
⩽

20
100𝑡

(
𝑝 ′′

2

)
=𝜀 ·

(
𝑝 ′′

2

)
, where 𝜀 B 1

5𝑡 .

Let 𝐻 ′ be obtained from 𝐻 by removing all vertices in 𝑋 , along
with all paths from the topological minor model which contain a
vertex from 𝑋 . Note that thus, we have removed at most 𝜀 ·

(𝑝′′
2
)

paths.
Observe that 𝐻 ′ still contains a depth-(3𝑡 + 1) topological minor

model of some graph 𝑍 with 𝑝 ′′ vertices and at least(
𝑝 ′′

2

)
− |𝑋 | ⩾

(
𝑝 ′′

2

)
− 𝜀

(
𝑝 ′′

2

)
= (1 − 𝜀)

(
𝑝 ′′

2

)
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edges. Thus, the average degree of a vertex in 𝑍 is at least (1 −
𝜀) (𝑝 ′′ − 1).

Let W = (𝑣0, 𝑣1, . . . , 𝑣𝑡/2) be a sequence of vertices of 𝑍 , cho-
sen independently and uniformly at random. In what follows, all
arithmetic operations on the indices of the vertices 𝑣𝑖 are computed
modulo 𝑡/2 + 1, in particular 𝑣𝑡/2+1 = 𝑣0.

We prove that with positive probability, W has the following
four properties:
(P1) The vertices 𝑣𝑖 are pairwise distinct.
(P2) For every 0 ⩽ 𝑖 ⩽ 𝑡/2, 𝑣𝑖𝑣𝑖+1 is an edge of 𝑍 ; let 𝑃𝑖 be the

corresponding path in 𝐻 ′.
(P3) For every 0 ⩽ 𝑖 ⩽ 𝑡/2 and 0 ⩽ 𝑗 ⩽ 𝑡/2 such that 𝑗 ∉ {𝑖, 𝑖 + 1},

the internal vertices on the path 𝑃𝑖 are anti-adjacent to 𝑣 𝑗 .
(P4) For all 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑡/2, the internal vertices of 𝑃𝑖 are anti-

adjacent to the internal vertices of 𝑃 𝑗 .
Observe that these four properties imply that the concatenation of
all paths 𝑃𝑖 is a hole of length more than 𝑡 in𝐺 ′ (recall here that the
roots of the minor model are independent in 𝐻 ′). The assumption
that 𝐺 is 𝐶>𝑡 -free implies that 𝐺 ′ is 𝐶>𝑡 -free as well, hence this
will be a contradiction.

For (P1), since 𝑝 ′′ ⩾ 20 000 · 𝑑 · 𝑡5, by the union bound the
probability that 𝑣𝑖 = 𝑣 𝑗 for some 𝑖 ≠ 𝑗 is at most

(𝑡
2
)
/𝑝 ′′ < 0.1.

For (P2), since 𝑣𝑖 and 𝑣𝑖+1 are independently chosen vertices, and
𝑍 has at least (1− 𝜀)

(𝑝′′
2
)
edges, the probability that 𝑣𝑖𝑣𝑖+1 is not an

edge of 𝑍 is bounded by 𝜀 = 1
5𝑡 . By the union bound, the probability

that (P2) does not hold is bounded by 𝜀 · (𝑡/2 + 1) ⩽ 0.2.
For (P3), fix 0 ⩽ 𝑖 ⩽ 𝑡/2 and assume 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 (𝑍 ) so that 𝑃𝑖 is

defined. Then, the total number of neighbors of the internal vertices
of 𝑃𝑖 is bounded by (6𝑡 + 3) · 200 · 𝑑 · 𝑡2 ⩽ 2000 · 𝑑 · 𝑡3. Since 𝑣 𝑗
is a vertex of 𝑉 (𝑍 ) chosen at random independently of the choice
of 𝑣𝑖 and 𝑣𝑖+1, the probability that 𝑣 𝑗 is among these neighbors is
bounded by 2000 ·𝑑𝑡3/𝑝 ′′ ⩽ 0.1/𝑡2. By the union bound, (P2) holds
but (P3) does not hold with probability at most 𝑡 (𝑡 − 2) · 0.1

𝑡2
⩽ 0.1.

For (P4), fix 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑡/2. Note that it may be possible that
𝑖 + 1 = 𝑗 or 𝑗 + 1 = 𝑖 (cyclically modulo 𝑡/2 + 1), but not both.
Hence, by symmetry between 𝑖 and 𝑗 , assume that the choice of
𝑣 𝑗+1 is independent of the choices of 𝑣𝑖 , 𝑣𝑖+1, and 𝑣 𝑗 . Assume that
𝑣𝑖𝑣𝑖+1 ∈ 𝐸 (𝑍 ) so that 𝑃𝑖 is defined. As in the previous paragraph,
there are at most 2000𝑑𝑡3 neighbors in 𝐻 ′ of the internal vertices
of 𝑃𝑖 . There are 𝑝 ′′ = |𝑉 (𝑍 ) | choices for 𝑣 𝑗+1, all of them leading to
either 𝑣 𝑗𝑣 𝑗+1 ∉ 𝐸 (𝑍 ) or to vertex-disjoint (except for 𝑣 𝑗 ) choices of
the path 𝑃 𝑗 . Hence, for at most 2000𝑑𝑡3 of these choices, we have
𝑣 𝑗𝑣 𝑗+1 ∈ 𝐸 (𝑍 ) but there is an edge between an internal vertex of
𝑃 𝑗 and an internal vertex of 𝑃𝑖 . By the union bound, (P2) holds but
(P4) does not hold with probability less than

(𝑡/2+1
2

)
· 2000𝑑𝑡3

𝑝′′ ⩽(𝑡/2+1
2

)
· 2000𝑑𝑡3
20 000𝑑𝑡5 ⩽ 0.1.

By the union bound over all the above cases, W satisfies all
properties (P1)–(P4) with probability at least 1−0.1−0.2−0.1−0.1 =
0.5. This gives the desired contradiction and completes the proof.

4 A SIMPLE TECHNIQUE FOR
APPROXIMATION SCHEMES

In this final section we present a simple technique for turning
polynomial-time and quasipolynomial-time algorithms for MWIS
on 𝑃𝑡 -free and𝐶>𝑡 -free graphs into PTASes and QPTASes for more

general problem, definable as looking for the largest induced sub-
graph that belongs to some weakly hyperfinite class. Let us stress
that this technique works only for unweighted problems.

We define the blob graph of a graph𝐺 , denoted𝐺◦, as the graph
defined as follows:

𝑉 (𝐺◦) B {𝑋 ⊆ 𝑉 (𝐺) | 𝐺 [𝑋 ] is connected},
𝐸 (𝐺◦) B {𝑋1𝑋2 | 𝑋1 and 𝑋2 are adjacent}.

The main combinatorial insight of this section is the following
combinatorial property of 𝐺◦. Let us point out that a similar result
could be derived from the work of Cameron and Hell [6], although
it is not stated there explicitly.

Theorem 4.1. Let 𝐺 be a graph. The following hold.

(S1) The length of a longest induced path in𝐺◦
is equal to the length

of a longest induced path in 𝐺 .

(S2) The length of a longest induced cycle in𝐺◦
is equal to the length

of a longest induced cycle in 𝐺 , with the exception that if 𝐺 has

no cycle at all (𝐺 is a forest), then𝐺◦
may contain triangles, but

it has no induced cycles of length larger than 3 (i.e. it is a chordal
graph).

Proof. Note that since 𝐺 is an induced subgraph of 𝐺◦ (as wit-
nessed by the mapping𝑢 ↦→ {𝑢}), we only need to upper-bound the
length of a longest induced path (resp., cycle) in 𝐺◦ by the length
of a longest induced path (resp. cycle) in 𝐺 .

Let 𝑃◦ = 𝑋1, 𝑋2, . . . , 𝑋𝑡 be an induced path in 𝐺◦. We observe
that the graph 𝐺 [⋃𝑡

𝑗=1 𝑋 𝑗 ] is connected and for each 𝑗 ′ ∈ [𝑡 − 2]
the sets

⋃𝑗 ′

𝑗=1 𝑋 𝑗 and
⋃𝑡

𝑗=𝑗 ′+2 𝑋 𝑗 are nonadjacent.
Fix an induced path 𝑃 = 𝑣1, 𝑣2, . . . , 𝑣𝑝 in 𝐺 [⋃𝑡

𝑖=1 𝑋𝑖 ]. We define
set(𝑖) B max{ 𝑗 | {𝑣1, 𝑣2, . . . , 𝑣𝑖 } ∩ 𝑋 𝑗 ≠ ∅}.

Claim 12. For all 𝑖 ∈ [𝑝−1] it holds that set(𝑖+1) ∈ {set(𝑖), set(𝑖)+
1}.

Proof of Claim.It is clear that set(𝑖 + 1) ⩾ set(𝑖), so suppose set(𝑖 +
1) ⩾ set(𝑖) + 2. Since 𝑣𝑖𝑣𝑖+1 is an edge of 𝐺 , we conclude that
there is an edge in 𝐺◦ between the sets {𝑋 𝑗 | 𝑗 ⩽ set(𝑖)} and
{𝑋 𝑗 | 𝑗 ⩾ set(𝑖) + 2}, a contradiction with 𝑃◦ being induced. ⊳

The following claim encapsulates the main idea of the proof.

Claim 13. Let 𝑃◦ = 𝑋1, 𝑋2, . . . , 𝑋𝑡 be an induced path in 𝐺◦
such

that 𝑋1 ⊈ 𝑋2. Let 𝑋 ′
1 ⊆ 𝑋1 − 𝑋2 and 𝑋 ′

𝑡 ⊆ 𝑋𝑡 be nonempty sets. Let

𝑃 = 𝑣1, 𝑣2, . . . , 𝑣𝑝 be a shortest path in𝐺 [⋃𝑡
𝑗=1 𝑋 𝑗 ] such that 𝑣1 ∈ 𝑋 ′

1
and 𝑣𝑝 ∈ 𝑋 ′

𝑡 . Then 𝑃 is induced, 𝑝 ⩾ 𝑡 , and {𝑣2, 𝑣3, . . . , 𝑣𝑝−1}∩ (𝑋 ′
1∪

𝑋 ′
𝑡 ) = ∅.

Proof of Claim.The path 𝑃 is induced and {𝑣2, 𝑣3, . . . , 𝑣𝑝−1} ∩ (𝑋 ′
1 ∪

𝑋 ′
𝑡 ) = ∅ by the minimality assumption. Recall that 𝑋1 must be

disjoint with
⋃𝑡

𝑗=3 𝑋 𝑗 . Thus set(1) = 1 and set(𝑝) = 𝑡 , so the claim
follows from Claim 12. ⊳

Now we are ready to prove (S1). Our goal is to prove that if 𝐺◦

contains an induced path on 𝑡 vertices, then so does 𝐺 . If 𝑡 = 1,
then the statement is trivial, so assume that 𝑡 ⩾ 2 and let 𝑃◦ =

𝑋1, 𝑋2, . . . , 𝑋𝑡 be an induced path in 𝐺◦.
If 𝑋1 ⊈ 𝑋2, then we are done by Claim 13 applied to 𝑃◦ for

𝑋 ′
1 = 𝑋1 − 𝑋2 and 𝑋

′
𝑡 = 𝑋𝑡 . So assume that 𝑋1 ⊆ 𝑋2 and note that

𝑋2 ⊈ 𝑋1, for 𝑋1 and 𝑋2 are two different vertices of 𝑃◦. If 𝑡 = 2,
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then any edge from 𝑋1 to 𝑋2 −𝑋1 is an induced path in𝐺 with two
vertices; such an edge exists as 𝐺 [𝑋2] is connected. So from now
on we may assume 𝑡 ⩾ 3.

Let 𝑋 ′
2 ⊆ 𝑋2 − 𝑋1 be such that𝐺 [𝑋 ′

2] is a connected component
of 𝐺 [𝑋2 − 𝑋1] and 𝑋 ′

2 and 𝑋3 are adjacent. Such a set exists as 𝑋3
is adjacent to 𝑋2, but nonadjacent to 𝑋1. Note that 𝐺 [𝑋2] being
connected implies that there exists a nonempty set 𝑋 ′′

2 ⊆ 𝑋 ′
2, such

that every vertex from 𝑋 ′′
2 has a neighbor in 𝑋1. Furthermore,

𝑋 ′′
2 ∩ 𝑋3 = ∅, as 𝑋1 is nonadjacent to 𝑋3. Observe that 𝑃◦ B

𝑋 ′
2, 𝑋3, . . . , 𝑋𝑡 is an induced path in 𝐺◦ with at least 𝑡 − 1 ⩾ 2

vertices, such that 𝑋 ′
2 ⊈ 𝑋3. Let 𝑃

′ = 𝑣2, 𝑣3, . . . , 𝑣𝑝 be the induced
path in 𝐺 with at least 𝑡 − 1 vertices obtained by Claim 13 applied
to 𝑃◦, 𝑋 ′′

2 , and 𝑋𝑡 . Now recall that 𝑣2 ∈ 𝑋 ′′
2 , so there is 𝑣1 ∈ 𝑋1

adjacent to 𝑣2. Note that 𝑣1 is nonadjacent to every 𝑣𝑖 for 𝑖 > 2,
because 𝑣𝑖 ∉ 𝑋 ′′

2 for 𝑖 > 2. Thus 𝑃 B 𝑣1, 𝑣2, . . . , 𝑣𝑝 is an induced
path in 𝐺 with at least 𝑡 vertices.

Now let us prove (S2). We proceed similarly to the proof of
(S1). If 𝐺◦ is chordal (every induced cycle is of length 3), then we
are done by the exceptional case of the statement. Otherwise, let
𝐶◦ = 𝑋1, 𝑋2, . . . , 𝑋𝑡 be an induced cycle in 𝐺◦ for some 𝑡 ⩾ 4; we
want to find an induced cycle of length at least 𝑡 in 𝐺 . Note that
𝑋𝑡 ⊈ 𝑋𝑡−1 and𝑋𝑡 ⊈ 𝑋1, as otherwise𝐶◦ is not induced. We observe
that there are nonempty sets 𝑋 1

𝑡 ⊆ 𝑋𝑡 and 𝑋 𝑡−1
𝑡 ⊆ 𝑋𝑡 , such that

every vertex from 𝑋 1
𝑡 has a neighbor in 𝑋1 and every vertex from

𝑋 𝑡−1
𝑡 has a neighbor in 𝑋𝑡−1. Let 𝑄 be a shortest path contained in
𝑋𝑡 whose one endvertex, say 𝑥1 is in 𝑋 1

𝑡 and the other endvertex,
say 𝑥𝑡−1 is in 𝑋 𝑡−1

𝑡 . Note that it is possible that 𝑥1 = 𝑥𝑡−1. The
minimality of𝑄 implies that no vertex of𝑄 , except for 𝑥1, 𝑥𝑡−1, has
a neighbor in

⋃𝑡−1
𝑗=1 𝑋 𝑗 .

Let 𝑃◦ be the induced path𝑋1, 𝑋2, . . . , 𝑋𝑡−1. Denote𝑋 ′
1 B 𝑁 (𝑥1)∩

𝑋1 and 𝑋 ′
𝑡−1 B 𝑁 (𝑥𝑡−1) ∩ 𝑋𝑡−1. Recall that both these sets are

nonempty and𝑋 ′
1∩𝑋2 = ∅ and𝑋 ′

𝑡−1∩𝑋𝑡−2 = ∅. Let 𝑃 = 𝑣1, 𝑣2, . . . , 𝑣𝑝
be the induced path given by Claim 13 for 𝑃◦, 𝑋 ′

1, and 𝑋
′
𝑡−1. Recall

that 𝑝 ⩾ 𝑡 − 1. Now let 𝐶 be the cycle obtained by concatenating
𝑃 and 𝑄 , and observe that the cycle 𝐶 is induced. Furthermore, as
𝑃 has at least 𝑡 − 1 vertices and 𝑄 has at least one vertex, 𝐶 has at
least 𝑡 vertices, which completes the proof. □

Let us define an auxiliary problem called Maximum Induced
Packing. An instance of Maximum Induced Packing is a triple
(𝐺, F ,𝔴), where 𝐺 is a graph, F is a family of connected induced
subgraph of𝐺 , and 𝔴 : F → R+ is a weight function. A solution to
(𝐺, F ,𝔴) is a set 𝑋 ⊆ 𝑉 (𝐺), such that

• each connected component of 𝐺 [𝑋 ] belongs to F ; and
• ∑

𝐶 : component of𝐺 [𝑋 ] 𝔴(𝐶) is maximized.
We observe the following.

Theorem 4.2. Let (𝐺, F ,𝔴) be an instance of Maximum Induced

Packing, where |F | = 𝑁 .

(1) If 𝐺 is 𝑃𝑡 -free for some integer 𝑡 , then the instance (𝐺, F ,𝔴)
can be solved in time 𝑁 O(log2 𝑁 )

.

(2) If𝐺 is𝐶>𝑡 -free for some integer 𝑡 , then the instance (𝐺, F ,𝔴)
can be solved in time 𝑁 O(log3 𝑁 )

.

(3) If 𝐺 is 𝑃6-free or 𝐶>4-free, then the instance (𝐺, F ,𝔴) can be

solved in time 𝑁 O(1)
.

Proof. Let 𝐺 ′ be the subgraph of 𝐺◦ induced by F . Clearly, 𝐺 ′

has 𝑁 vertices. We observe that solving the instance (𝐺, F ,𝔴) of
Maximum Induced Packing is equivalent to solving the instance
(𝐺 ′,𝔴) of MWIS. Now the theorem follows from Theorem 4.1 and
the fact that MWIS can be solved in time 𝑛O(log2 𝑛) in 𝑛-vertex 𝑃𝑡 -
free graphs [13, 24], in time 𝑛O(log3 𝑛) in 𝑛-vertex 𝐶>𝑡 -free graphs,
using Theorem 1.1 only for MWIS, and in polynomial time in 𝑃6-
free [16] or 𝐶>4-free graphs [1]. □

As an example of an application of Theorem 4.2, we obtain the
following corollary.

Corollary 4.3. For every fixed 𝑑 and 𝑡 , given an 𝑛-vertex 𝑃𝑡 -free

graph 𝐺 , in time 𝑛O(log2 𝑛)
we can find the largest induced subgraph

of 𝐺 with maximum degree at most 𝑑 .

Proof. Note that every connected 𝑃𝑡 -free graph with maximum
degree at most 𝑑 has at most 𝑑𝑡 vertices. Thus, the family F of all
connected induced subgraphs of𝐺 with maximum degree at most
𝑑 has size at most 𝑁 B 𝑛𝑑

𝑡 and can be enumerated in polynomial
time. For each 𝐹 ∈ F set 𝔴(𝐹 ) B |𝑉 (𝐹 ) |. We may now apply
Theorem 4.2 to solve the instance (𝐺, F ,𝔴) of Maximum Induced
Packing in time 𝑁 O(log2 𝑁 ) = 𝑛O(log2 𝑛) . □

Note that the strategy we used to prove Theorem 4.2 cannot be
used to solve Max Induced Forest in quasipolynomial time, as
there can be arbitrarily larger 𝑃𝑡 -free tree; consider, for instance, the
family of stars. However, it is sufficient to obtain a simple QPTAS
for the unweighted version of the problem.

A class of graphs C is called weakly hyperfinite if for every
𝜀 > 0 there is 𝑐 (𝜀) ∈ N, such that in every graph 𝐹 ∈ C there
is a subset 𝑋 of at least (1 − 𝜀) |𝑉 (𝐹 ) | vertices such that every
connected component of 𝐹 [𝑋 ] has at most 𝑐 (𝜀) vertices [22, Section
16.2]. Weakly hyperfinite classes are also known under the name
fragmentable [12]. Every class closed under edge and vertex deletion
which has sublinear separators is weakly hyperfinite [22, Theorem
16.5], hence well-known classes of sparse graphs, such as planar
graphs, graphs of bounded genus, or in fact all proper minor-closed
classes, are weakly hyperfinite.

For a class C of graphs, by Largest Induced C-Graphwe denote
the following problem: given a graph 𝐺 , find a largest induced
subgraph of 𝐺 , which belongs to C. To make the problem well
defined, we will always assume that 𝐾1 ∈ C. We can now conclude
the following.

Theorem 4.4. Let C be a nonempty, weakly hyperfinite class of

graphs, which is closed under vertex deletion and disjoint union oper-

ations. Then, the Largest Induced C-Graph problem

(1) has a QPTAS in 𝐶>𝑡 -free graphs, for every fixed 𝑡 ; and

(2) has a PTAS in 𝑃6-free graphs and in 𝐶>4-free graphs.

Proof. Let 𝑛 be the number of vertices of the given graph𝐺 and
let 𝜀 be the desired accuracy, i.e., the goal is to find a solution whose
size is at least a (1 − 𝜀) fraction of the optimum. Let 𝑐 B 𝑐 (𝜀).

Let𝑋 ∗ be the vertex set of an optimum solution. By the properties
of C, there exists 𝑋 ′ ⊆ 𝑋 ∗ of size at least (1− 𝜀) |𝑋 ∗ | such that each
connected component of 𝐺 [𝑋 ′] has at most 𝑐 vertices. Let F be
the set of all connected induced subgraphs of𝐺 that have at most 𝑐
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vertices and belong toC. Clearly |F | ⩽ 𝑛𝑐 andF can be enumerated
in polynomial time. For each 𝐹 ∈ F , we set 𝔴(𝐹 ) B |𝑉 (𝐹 ) |.

Apply the algorithm of Theorem 4.2 to solve the instance (𝐺, F ,𝔴)
of Maximum Induced Packing in time 𝑛O(log3 𝑛𝑐 ) = 𝑛O(log3 𝑛) if
𝐺 is 𝐶>𝑡 -free, or in polynomial time if 𝐺 is 𝑃6-free or 𝐶>4-free.
Let 𝑋 be the optimum solution found by the algorithm. As C is
closed under the disjoint union operation, we observe that 𝐺 [𝑋 ]
is a feasible solution to Largest Induced C-Graph. Moreover we
have |𝑋 | ⩾ |𝑋 ′ | ⩾ (1 − 𝜀) |𝑋 ∗ |. □
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