Finding Large Induced Sparse Subgraphs in C.;-Free Graphs in
Quasipolynomial Time’

Peter Gartland
petergartland@ucsb.edu
University of California

Santa Barbara, USA

Michat Pilipczuk
michal.pilipczuk@mimuw.edu.pl
Institute of Informatics,
University of Warsaw
Warsaw, Poland

ABSTRACT

For an integer ¢, a graph G is called Cs;-free if G does not contain
any induced cycle on more than t vertices. We prove the follow-
ing statement: for every pair of integers d and t and a CMSO,
statement ¢, there exists an algorithm that, given an n-vertex Cs;-
free graph G with weights on vertices, finds in time nOog’n) 4
maximum-weight vertex subset S such that G[S] has degeneracy
at most d and satisfies ¢. The running time can be improved to
O (log? n) assuming G is P;-free, that is, G does not contain an
induced path on ¢ vertices. This expands the recent results of the
authors [FOCS 2020 and SOSA 2021] on the MaxiMmum WEIGHT
INDEPENDENT SET problem on P;-free graphs in two directions: by
encompassing the more general setting of Cs;-free graphs, and by
being applicable to a much wider variety of problems, such as Max-
IMUM WEIGHT INDUCED FOREST or MAXIMUM WEIGHT INDUCED
PLANAR GRAPH.

CCS CONCEPTS

« Theory of computation — Graph algorithms analysis; «
Mathematics of computing — Graph theory.

KEYWORDS
independent set, feedback vertex set, P;-free graphs, Cs;-free graphs

ACM Reference Format:
Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk,
and Pawel Rzazewski. 2021. Finding Large Induced Sparse Subgraphs in

“Due to space limits, most of technicals details are omitted or just sketched. The full

version of the paper is available on arXiv [14].

This work is licensed under a Creative Commons Attribution International 4.0 License.

STOC °21, June 21-25, 2021, Virtual, Italy

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8053-9/21/06.
https://doi.org/10.1145/3406325.3451034

Daniel Lokshtanov
daniello@ucsb.edu
University of California
Santa Barbara, USA

330

Marcin Pilipczuk
malcin@mimuw.edu.pl
Institute of Informatics,

University of Warsaw
Warsaw, Poland

Pawel Rzazewski
p-rzazewski@mini.pw.edu.pl
Warsaw University of Technology,
Faculty of Mathematics and
Information Science
and Institute of Informatics,
University of Warsaw
Warsaw, Poland

Cs;-Free Graphs in Quasipolynomial Time. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC 21), June 21-25,
2021, Virtual, Italy. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3406325.3451034

1 INTRODUCTION

Consider the MAXIMUM WEIGHT INDEPENDENT SET (MWIS) prob-
lem: given a vertex-weighted graph G, find an independent set in G
that has the largest possible weight. While NP-hard in general, the
problem becomes more tractable when structural restrictions are
imposed on the input graph G. In this work we consider restricting
G to come from a fixed hereditary (closed under taking induced
subgraphs) class C. The goal is to understand how the complexity
of MWIS, and of related problems, changes with the class C. A
concrete instance of this question is to consider H-free graphs —
graphs that exclude a fixed graph H as an induced subgraph — and
classify for which H, MWIS becomes polynomial-time solvable in
H-free graphs.

Somewhat surprisingly, we still do not know the complete an-
swer to this question. A classic argument of Alekseev [2] shows
that MWIS is NP-hard in H-free graphs, unless H is a forest of
paths and subdivided claws: graphs obtained from the claw Kj 3 by
subdividing each of its edges an arbitrary number of times. The
remaining cases are still open apart from several small ones: of
Ps-free graphs [19], Pg-free graphs [16], claw-free graphs [21, 26],
and fork-free graphs [3, 20]. Here and further on, P; denotes a path
on t vertices.

On the other hand, there are multiple indications that MWIS
indeed has a much lower complexity in H-free graphs, whenever
H is a forest of paths and subdivided claws, than in general graphs.
Concretely, in this setting the problem is known to admit both a
subexponential-time algorithm [5, 7] and a QPTAS [7, 8]; note that
the existence of such algorithms for general graphs is excluded
under standard complexity assumptions. Very recently, the first
two authors gave a quasipolynomial-time algorithm for MWIS in P;-

free graphs, for every fixed ¢t [13]. The running time was nOog’n),

https://doi.org/10.1145/3406325.3451034
https://doi.org/10.1145/3406325.3451034
https://doi.org/10.1145/3406325.3451034
https://creativecommons.org/licenses/by/4.0/

STOC ’21, June 21-25, 2021, Virtual, Italy

which was subsequently improved to nOlog’ n) by the last three
authors [24].

A key fact that underlies most of the results stated above is that
P;-free graphs admit the following balanced separator theorem (see
Theorem 2.1): In every P;-free graph, we can find a connected set
X consisting of at most ¢ vertices, such that the number of vertices
in every connected component of G — N[X] is at most half of the
number of vertices of G. It has been observed by Chudnovsky et
al. [8] that the same statement is true also in the class of Cs;-free
graphs: graphs that do not contain an induced cycle on more than ¢
vertices. Note here that, on one hand, every P;-free graph is Cs;-
free as well, and, on the other hand, Cs;-free graphs generalize
the well-studied class of chordal graphs, which are exactly Cs3-
free. Using the separator theorem, Chudnovsky et al. [7, 8] gave a
subexponential-time algorithm and a QPTAS for MWIS on Cs ;-free
graphs, for every fixed t.

The basic toolbox developed for MWIS can also be applied to
other problems of similar nature. Consider, for instance, the Maxi-
MUM WEIGHT INDUCED FOREST problem: in a given vertex-weighted
graph G, find a maximum-weight vertex subset that induces a for-
est; note that by duality, this problem is equivalent to FEEDBACK
VERTEX SET. By lifting techniques used to solve MWIS in polyno-
mial time in Ps-free and Pg-free graphs [16, 19], Abrishami et al. [1]
showed that MaxiMmuMm WEIGHT INDUCED FOREST is polynomial-
time solvable both in Ps-free and in Cs4-free graphs. In fact, the
result is even more general: it applies to every problem of the form
“find a maximum-weight induced subgraph of treewidth at most
k”; MWIS and MaxiMuM WEIGHT INDUCED FOREST are particular
instantiations for k = 0 and k = 1, respectively.

As far as subexponential-time algorithms are concerned, Novotna

etal. [23] showed how to use separator theorems to get subexponential-

time algorithms for any problem of the form “find the largest in-
duced subgraph belonging to C”, where C is a fixed hereditary
class of graphs that have a linear number of edges. The technique
applies both to P;-free and Cs;-free graphs under the condition
that the problem in question admits an algorithm which is single-
exponential in the treewidth of the instance graph.

Our results. We extend the recent results on quasipolynomial-
time algorithms for MWIS in P;-free graphs [13, 24] in two direc-
tions:

(a) We expand the area of applicability of the techniques to

Cs¢-free graphs.

(b) We show how to solve in quasipolynomial time not only the
MWIS problems, but a whole family of problems that can be,
roughly speaking, described as finding a maximum-weight
induced subgraph that is sparse and satisfies a prescribed
property.

Both of these extensions require a significant number of new ideas.
Formally, we prove the following.

THEOREM 1.1. Fix a pair of integersd andt and a CMSO;, sentence
@. Then there exists an algorithm that, given a Cs;-free n-vertex graph
G and a weight function w: V(G) — N, in time nO(log’ n) finds a
subset S of vertices such that G[S] is d-degenerate, G[S] satisfies ¢,
and, subject to the above, w(S) is maximum possible; the algorithm

331

Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Pawet Rzazewski

may also conclude that no such vertex subset exists. The running time
2
can be improved to n® 108" ™ if G is P;-free.

Recall here that a graph G is d-degenerate if every subgraph of
G contains a vertex of degree at most d; for instance, 1-degenerate
graphs are exactly forests and every planar graph is 5-degenerate.
Also, CMSO;, is the Monadic Second Order logic of graphs with
quantification over edge subsets and modular predicates, which is
a standard logical language for formulating graph properties. In
essence, the logic allows quantification over single vertices and
edges as well as over subsets of vertices and of edges. In atomic
expressions one can check whether an edge is incident to a vertex,
whether a vertex/edge belongs to a vertex/edge subset, and whether
the cardinality of some set is divisible by a fixed modulus. We refer
to [10] for a broader introduction.

Corollaries. By applying Theorem 1.1 for different sentences
¢, we can model various problems of interest. For instance, as
1-degenerate graphs are exactly forests, we immediately obtain
a quasipolynomial-time algorithm for the Maximum WEIGHT IN-
DUCED FOREST problem in Cs;-free graphs. Further, as being planar
is expressible in CMSO; and planar graphs are 5-degenerate, we
can conclude that the problem of finding a maximum-weight in-
duced planar subgraph can be solved in quasipolynomial time on
Cs;-free graphs. We also give a generalization of Theorem 1.1 that
allows counting the weights only on a subset of S. From this gener-
alization it follows that for instance the following problem can be
solved in quasipolynomial time on Cs;-free graphs: find the largest
collection of pairwise nonadjacent induced cycles.

Let us point out a particular corollary of Theorem 1.1 of a more
general nature. It is known that for every pair of integers d and ¢
there exists £ = £(d, t) such that every graph that contains Py as
a subgraph, contains either K., or K411 441, or P as an induced
subgraph [4]. Since the degeneracy of Kz,9 and K, 441 is larger
than d, we conclude that every P;-free graph of degeneracy at most
d does not contain Py as a subgraph. On the other hand, for every
integer £, the class of graphs that do not contain Py as a subgraph is
well-quasi-ordered by the induced subgraph relation [11]. It follows
that for every pair of integers t and d and every hereditary class
Cy such that every graph in C; has degeneracy at most d, the class
C4 N (Ps-free) of Ps-free graphs from Cy is characterized by a finite
number of forbidden induced subgraphs: there exists a finite list 7
of graphs such that a graph G belongs to C; N (Ps-free) if and only
if G does not contain any graph from ¥ as an induced subgraph. As
admitting a graph from 7 as an induced subgraph can be expressed
by a CMSO; sentence, from Theorem 1.1 we can conclude the
following.

THEOREM 1.2. Let C be a hereditary graph class such that each
member of C is d-degenerate, for some integer d. Then for every
integer t there exists algorithm that, given a P;-free n-vertex graph
G and a weight function w: V(G) — N, in time nO(log” n) finds a
subset S of vertices such that G[S] € C and, subject to this, w(S) is
maximum possible.

Degeneracy and treewidth. Readers familiar with the literature
on algorithmic results for CMSO3 logic might be slightly surprised
by the statement of Theorem 1.1. Namely, CMSO3, is usually asso-
ciated with graphs of bounded treewidth, where the tractability of

Finding Large Induced Sparse Subgraphs in Cs ;-Free Graphs in Quasipolynomial Time

problems expressible in this logic is asserted by Courcelle’s Theo-
rem [9]. Theorem 1.1, however, speaks about CMSO3-expressible
properties of graphs of bounded degeneracy. While degeneracy
is upper-bounded by treewidth, in general there are graphs that
have bounded degeneracy and arbitrarily high treewidth. However,
we prove that in the case of Cs;-free graphs, the two notions are
functionally equivalent.

THEOREM 1.3. For every pair of integers d and t, there exists an
integer k = (dt)O®) such that every Cs¢-free graph of degeneracy
at most d has treewidth at most k.

As the properties of having treewidth at most k and having
degeneracy at most d are expressible in CMSOz, from Theorem 1.3
it follows that in the statement of Theorem 1.1, assumptions “G[S]
has degeneracy at most d” and “G[S] has treewidth at most k” could
be replaced by one another. Actually, both ways of thinking will
become useful in the proof.

Simple QPTASes. As an auxiliary result, we also show a simple
technique for turning algorithms for MWIS in P;-free and Cs;-free
graphs into approximation schemes for (unweighted) problems
of the following form: in a given graph, find the largest induced
subgraph belonging to C, where C is a fixed graph class that is
closed under taking disjoint unions and induced subgraphs and is
weakly hyperfinite [22, Section 16.2]. This last property is formally
defined as follows: for every ¢ > 0, there exists a constant c(¢)
such that from every graph G € C one can remove an ¢ fraction
of vertices so that every connected component of the remaining
graph has at most ¢(¢) vertices. Weak hyperfiniteness is essentially
equivalent to admitting sublinear balanced separators, so all the
well-known classes of sparse graphs, e.g. planar graphs or all proper
minor-closed classes, are weakly hyperfinite. We present these
results in Section 4.

3-Coloring. In[24], itis shown how to modify the quasipolynomial-
time algorithm for MWIS in P;-free graphs to obtain an algorithm
for 3-CoLoRING with the same asymptotic running time bound
in the same graph class. We remark here that the same modifica-
tion can be applied to the algorithm of Theorem 1.1, obtaining the
following:

THEOREM 1.4. For every integert there exists an algorithm that,

0(log3 n)

given an n-vertex Cs;-free graph G, runs in time n and

verifies whether G is 3-colorable.

2 OVERVIEW OF THE MAIN RESULT

In this section we present an overview of the proof of our main
result, Theorem 1.1. We try to keep the description non-technical,
focusing on explaining the main ideas and intuitions. Complete and
formal proofs can be found in the full version of the paper [14].

2.1 Approach for P;-Free Graphs

We need to start by recalling the basic idea of the quasipolynomial-
time algorithm for MWIS in P;-free graphs [13, 24]; we choose
to follow the exposition of [24]. The main idea is to exploit the
following balanced separator theorem.

THEOREM 2.1 (GYARFAS [17], BACsO ET AL. [5]). Let G be an n-
vertex P;-free graph. Then there exists a set X consisting of at most

332

STOC ’21, June 21-25, 2021, Virtual, Italy

t vertices of G such that G[X] is connected and every connected
component of G — N[X] has at most n/2 vertices. Furthermore, such
a set can be found in polynomial time.

In the MWIS problem, there is a natural branching strategy
that can be applied on any vertex u. Namely, branch into two sub-
problems: in one subproblem — success branch — assume that u is
included in an optimal solution, and in the other — failure branch
— assume it is not. In the success branch we can remove both u
and all its neighbors from the consideration, while in the failure
branch only u can be removed. Hence, Theorem 2.1 suggests the
following naive Divide&Conquer strategy: find a set X as provided
by the Theorem and branch on all the vertices of X as above in order
to try to disconnect the graph. This strategy does not lead to any
reasonable algorithm, because the graph would get shattered only
in the subproblem corresponding to success branches for all x € X.
However, there is an intuition that elements of X are reasonable
candidates for branching pivots: vertices such that branching on
them leads to a significant progress of the algorithm.

The main idea presented in [24] is to perform branching while
measuring the progress in disconnecting the graph in an indirect
way. Let G be the currently considered graph. For a pair of vertices
u and v, let the bucket of u and v be defined as:

BS’U := { P : Pisan induced path in G with endpoints u and v}.

Observe that since G is P;-free, every element of Bg o is a path on
fewer than t vertices, hence Bgfu has always at most n’~! elements
and can be computed in polynomial time (for a fixed t). On the
other hand, B,?’ » is nonempty if and only if and v are in the same
connected component of G.

Let X be a set whose existence is asserted by Theorem 2.1. Ob-
serve that if u and v are in different components of G — N[X],
then all the paths of Bgv are intersected by N[X]. Moreover, as
every connected component of G — N[X] has at most n/2 elements,
this happens for at least half of the pairs {u,v} € (V(ZG)). Since X
has only at most ¢ vertices, by a simple averaging argument we
conclude the following.

CrAM 1. There is a vertex x such that N|x| intersects at least a
% fraction of paths in at least 2_11‘ fraction of buckets.

A vertex x having the property mentioned in Claim 1 shall be
called %—heavy, or just heavy. Then Claim 1 asserts that there is
always a heavy vertex; note that such a vertex can be found in
polynomial time by inspecting the vertices of G one by one.

We may now present the algorithm:

(1) If G is disconnected, then apply the algorithm to every con-

nected component of G separately.

(2) Otherwise, find a heavy vertex in G and branch on it.

We now sketch a proof of the following claim: on each root-to-
leaf path in the recursion tree, this algorithm may execute only
O(log? n) success branches. By Claim 1, in each success branch a
constant fraction of buckets get their sizes reduced by a constant
multiplicative factor. Since buckets are of polynomial size in the
first place, after Q(logn) success branches a % fraction of the
initial buckets must become empty. Since in a connected graph all
the buckets are nonempty, it follows that after Q(logn) success
branches, the vertex count of the connected graph we are working

STOC ’21, June 21-25, 2021, Virtual, Italy

on must have decreased by at least a multiplicative factor of 0.01
with respect to the initial graph. As this can happen only O(logn)
times, the claim follows.

Now the recursion tree has depth at most n and each root-to-leaf
path contains at most O (log® n) success branches. Therefore, the

total size of the recursion tree is nO(l"gz "), which implies the same
bound on the running time. This concludes the description of the
algorithm for P;-free graphs; let us recall that this algorithm was
already presented in [24].

2.2 Lifting the Technique to C.;-Free Graphs

We now explain how to lift the technique presented in the previous
section to the setting of Cs;-free graphs. As we mentioned before,
the main ingredient — the balanced separator theorem — remains
true.

THEOREM 2.2 (GYARFAS [17], CHUDNOVSKY ET AL. [8]). Let G be
an n-vertex Cs;-free graph. Then there is a set X consisting of at
most t vertices of G such that G[X] is connected and every connected
component of G — N[X] has at most n/2 vertices. Furthermore, such
a set can be found in polynomial time.

However, in the previous section we used the P;-freeness of the
graph in question also in one other place: to argue that the buckets
Bgv are of polynomial size. This was crucial for the argument
that Q(log n) success branches on heavy vertices lead to emptying
a significant fraction of the buckets. Solving this issue requires
reworking the concept of buckets.

The idea is that in the Cs ;-free case, the objects placed in buck-
ets will connect triples of vertices, rather than pairs. Formally, a
connector is a graph formed from three disjoint paths Q1, Q2, Q3 by
picking one endpoint a; of Q;, for each i = 1, 2, 3, and either identi-
fying vertices aj, az, az into one vertex, or turning ay, ag, a3 into a
triangle; see Figure 1. The paths Q; are the legs of the connector, the
other endpoints of the legs are the tips, and the (identified or not)
vertices aq, az, as are the center of the connector. We remark that
we allow the degenerate case when one or more paths Q1, Q2, O3
has only one vertex, but we require the tips to be pairwise distinct.

The following claim is easy to prove by considering any inclusion-
wise minimal connected induced subgraph containing u, v, w.

Cram 2. Ifverticesu,v, w belong to the same connected component
of a graph G, then in G there is an induced connector with tips u, v, w.

A tripod is a connector in which every leg has length at most
t/2+1 (wlo.g.t is even). Every connector contains a core: the tripod
induced by the vertices at distance at most /2 from the center. The
next claim is the key observation that justifies looking at connectors
and tripods.

Craim 3. Let G be a Cs;-free graph, let T be an induced connector
in G, and let X be a subset of vertices such that G[X] is connected and
no two tips of T are in the same connected component of G — N[X].
Then N [X] intersects the core of T.

Proof of Claim.Since no two tips of T lie in the same component of
G — N[X], it follows that N[X] intersects at least two legs of T, say
Q1 and Q3 at vertices g1 and g2, respectively. We may choose q;
and g2 among N[X] N V(Q1) and N[X] N V(Qz2) so that they are
as close in T as possible to the center of T. Since G[X] is connected,

333

Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Pawet Rzazewski

b1 a) = az = as

bs = b}

b1 5/6/1

Figure 1: Two connectors with two long legs and one short leg;
one connector with g;s identified and one with g;s forming
a triangle. Gray outline depicts the core T of the connector
(with tips b)).

there exists a path P with endpoints q; and g2 such that all the
internal vertices of P belong to X. Now P together with the shortest
q1-q2 path within T form an induced cycle in G. As this cycle must
have at most ¢ vertices, we conclude that g; or g2 belongs to the
core of T. <

Claim 3 suggests that in Cs;-free graphs, cores of connectors
are objects likely to be hit by balanced separators provided by
Theorem 2.2, similarly as in P;-free graphs, induced paths were
likely to be hit by balanced separators given by Theorem 2.1. Let
us then use cores as objects for defining buckets.

Let G be a Cs-free graph. For an unordered triple {u,v, w} €
(V%G)) of distinct vertices, we define the bucket Bgv,w as the set of
all cores of all induced connectors with tips u, v, w. Let us stress here
that Bgv’w is a set, not a multiset, of tripods: even if some tripod
is the core of multiple connectors with tips u, v, w, it is included in
Bf’v’w only once. Therefore, as each tripod has O(t) vertices, the
buckets are again of size n9(!) and can be enumerated in polyno-
mial time. By Claim 2, the bucket Bf,fv,w is nonempty if and only if
u, v, w are in the same connected component of G. Moreover, from
Claim 3 we infer the following.

Cramv 4. Let {u,0,w} € (V(3G)) be a triple of vertices of G and let
X be a vertex subset such that G[X] is connected and no two vertices
out of u,v, w belong to the same connected component of G — N[X].
Then N[X] intersects all the tripods in the bucket B,fv,w.

Now we would like to obtain an analogue of Claim 1, that is, find
a vertex x such that N[x] intersects a significant fraction of tripods
in a significant fraction of buckets. Let then X be a set provided
by Theorem 2.2 for G. For a moment, let us assume optimistically
that each connected component of G — N[X] contains at most n/10
vertices, instead of n/2 as promised by Theorem 2.2. Observe that
if we choose a triple of distinct vertices uniformly at random, then
with probability at least % no two of these vertices will lie in the
same connected component of G — N[X]. By Claim 3, this implies

Finding Large Induced Sparse Subgraphs in Cs ;-Free Graphs in Quasipolynomial Time

that N[X] intersects all the tripods in at least half of the buckets.
By the same averaging argument as before, we get the following.

CraIM 5. Suppose that in G there is a set X consisting of at most t
vertices such that G[X] is connected and every connected component
of G — N[X] has at most n/10 vertices. Then there is a heavy vertex
inG.

Here, we define a heavy vertex as before: it is a vertex x such
that N[x] intersects at least a % fraction of tripods in at least a th
fraction of buckets.

Unfortunately, our assumption that every component of G —
N[X] contains at most n/10 vertices, instead of at most n/2 vertices,
is too optimistic. Consider the following example: G is a path on n
vertices. The cores of connectors degenerate to subpaths consisting
of at most ¢ consecutive vertices of the path, and for every vertex
x, the set N[x] intersects any tripod in only an O(t/n) fraction of
the buckets. Therefore, in this example there is no heavy vertex at
all. We need to resort to a different strategy.

Secondary branching. So let us assume that the currently consid-
ered graph G is connected and has no heavy vertex — otherwise
we may either recurse into connected components or branch on
the heavy vertex (detectable in polynomial time). We may even
assume that there is no (1078/t)-heavy vertex: a vertex x such that
N|[x] intersects at least a (1078 /) fraction of tripods in at least a
(1078/t) fraction of buckets. Indeed, branching on such vertices
also leads to quasipolynomial running time (with all factors in the
analysis appropriately scaled).

Let us fix a set X provided by Theorem 2.2 for G; then G[X]
is connected and each connected component of G — N[X] has at
most n/2 vertices. By Claim 5, there must be some components of
G — N[X] that have more than n/10 vertices, for otherwise there
would be a heavy vertex. Let C be such a component and let us
apply Theorem 2.2 again, this time to G[C], obtaining a connected
set Y of size at most ¢ such that every connected component of
G[C] — N[Y] has at most |C|/2 vertices. If the distance between X
and Y is small, say at most 10¢, then one can replace X with the
union of X, Y, and a shortest path between X and Y, and repeat
the argument. The new set X is still of size O(t), so the argument
of Claim 5 applies with adjusted constants, and the absence of a
heavy vertex gives another component C’ with more than n/10
vertices. This process can continue only for a constant number of
steps. Hence, at some moment we end up with a connected set X of
size O(t) such that every connected component of G — N[X] has
at most n/2 vertices, a connected component C of G — N[X] with
more than n/10 vertices, a connected set Y C C of size at most ¢
such that every connected component of G[C| — N[Y] has at most
|C|/2 vertices and the distance between X and Y is more than 10¢.

The crucial observation now is as follows: there exists exactly
one connected component of G[C]-N|[Y], call it Dy, that is adjacent
to a vertex of N[X]. The existence of at least one such component
follows from the connectivity of G. If there were two such compo-
nents, say Dy and Dj, then one can construct an induced cycle in
G by going from X via Dy to Y and back to X via D;. This cycle is
long since the distance between X and Y is more than 10t, which
contradicts G being Cy;-free. Denote B := C — Dy. Note that B is
connected and |B| = |C| — |Dg| > |C| — |C|/2 = |C|/2 > n/20.

334

STOC ’21, June 21-25, 2021, Virtual, Italy

C

B
/—/%

N[X] N[Y]
||
A

LJ LJ

Figure 2: The situation when the secondary branching is
invoked.

Repeating the same proof as in the previous observation, note
that for every induced subgraph G’ of G, there is at most one com-
ponent of G’[V(G’) N C] that contains both a vertex of B and a
neighbor of N[X]: If there were two such components, one could
construct a long induced cycle by going from X via the first com-
ponent to B and back to X via the second one. If such a component
exist, we call it the chip of G’.

Note that if G’ has no chip, then every connected component of
G’ contains at most 0.95n vertices as n/20 < |B| < n/2. Thus, the
goal of the secondary branching is to get to an induced subgraph
that contains no chip, that is, to separate B from N [X]. The crucial
combinatorial insight that we discuss in the next paragraph is that
the area of the graph between N[X] and B behaves like a P;-free
graph and is amenable to the branching strategy for P;-free graphs.

Consider the chip C’ in an induced subgraph G’ of G. A C’-link
is a path in G’ with endpoints in N[X] N Ng/(C”) and all internal
vertices in C’; this path should be induced, except that we allow the
existence of an edge between the endpoints. Observe the following:

CLAmM 6. Every C’-link has at most t vertices.

Proof of Claim.Let P be a C’-link. Since the endpoints of P are
in N[X] and G[X] is connected, there exists an induced path Q
in G[N[X]] with same endpoints as P such that all the internal
vertices of P are in X. Then P U Q is an induced cycle in G, hence
both P and Q must have at most ¢ vertices. <

The idea is that in order to cut the chip away, we perform a
secondary branching procedure, but this time we use C’-links as
objects that are hit by neighborhoods of vertices. Formally, for a

pair {u,0} € (N[X]mé\IG/(C’))

, we consider the secondary bucket
.El(Z " consisting of all C’-links with endpoints u and v. Again, by
Claim 6, each secondary bucket is of size at most n’ and can be
enumerated in polynomial time. Note that .E,?Iv is nonempty for
every distinct vertices u,v € Ng/ (C”).

We shall say that a vertex z of G is secondary-heavy if N|z]
intersects at least a % fraction of links in at least a 2_1t fraction of
nonempty secondary buckets.

Cramm 7. If|Ng/(C’)| > 2, then there is a secondary-heavy vertex.

STOC ’21, June 21-25, 2021, Virtual, Italy

Proof of Claim (Sketch). We apply a weighted variant of Theorem 2.2
to the graph G’[Ng/[C’]] in order to find a set Z C Ng/[C’] of size
at most ¢ such that every connected component of G’[Ng/ [C']] —
N[Z] contains at most half of the vertices of Ng/(C”). Then N[Z]
intersects all the links in at least half of the buckets. The same
averaging argument as used before shows that one of vertices of Z
is secondary-heavy. <

The secondary branching procedure now branches on a secondary-
heavy vertex (detectable in polynomial time). This is always pos-
sible by Claim 7 as long as N/ (C’) contains at least two vertices.
If Ng/(C”) = {v} for some vertex v, we choose v as the branching
pivot and observe that both in the success and the failure branch
there is no chip.

The same analysis as in Section 2.1 shows that branching on
secondary-heavy vertices results in a recursion tree with nOlog*n)
leaves. In each of these leaves there is no chip, so every connected
component of G’ contains at most 0.95n vertices.

To summarize, we perform branching on (1078 /t)-heavy vertices
and recursing on connected components as long as a (1078/t)-
heavy vertex can be found. When this ceases to be the case, we
resort to the secondary branching. Such an application of secondary
branching results in producing nOUog’ n) subinstances to solve,
and in each of these subinstances the size of the largest connected
component is at most 95% of the vertex count of the graph for
which the secondary branching was initiated. We infer that the
running time is nO00g’ ") This concludes the description of an

nO0g’n) time algorithm for MWIS on Cs;-free graphs.

2.3 Degeneracy Branching

Our goal in this section is to generalize the approach presented in
the previous section to an algorithm solving the following problem:
given a vertex-weighted Cs;-free graph G, find a maximum-weight
subset of vertices S such that G[S] is d-degenerate. Here d and t are
considered fixed constants. Thus we allow the solution to be just
sparse instead of independent, but, compared to Theorem 1.1, so far
we do not introduce CMSOz-expressible properties. Let us call the
considered problem MAXIMUM WEIGHT INDUCED d-DEGENERATE
GrarH (MWID).

Recall that a graph G is d-degenerate if every subgraph of G
has a vertex of degree at most d. We will rely on the following
characterization of degeneracy, which is easy to prove.

CrLamm 8. A graph G is d-degenerate if and only if there exists
a function n: V(G) — N such that for every uv € E(G) we have
n(u) # n(v) and for eachu € V(G), u has at most d neighborsv with
n(0) <n(u).

A function n(-) satisfying the premise of Claim 8 shall be called
a degeneracy ordering. Note that we only require that a degeneracy
ordering is injective on every edge of the graph, and not necessarily
on the whole vertex set. For a vertex u, the value n(u) is the position
of u and the set neighbors of u with smaller positions is the left
neighborhood of u.

We shall now present a branching algorithm for the MWID
problem. For convenience of exposition, let us fix the given Cs ;-
free graph G, an optimum solution S$* in G, and a degeneracy

335

Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Pawet Rzazewski

ordering n* of G[S*]. We may assume that the co-domain of n* is
[n] :=={1,...,n}.

Recall that when performing branching for the MWIS problem,
say on a vertex x, in the failure branch we were removing x from
the graph, while in the success branch we were removing both x
and its neighbors. When working with MWID, we cannot proceed
in the same way in the second case, because the neighbors of x can
be still included in the solution. Therefore, instead of modifying the
graph G along the recursion, we keep track of two disjoint sets A
and W: A consists of vertices already decided to be included in the
solution, while W is the set of vertices that are still allowed to be
taken to the solution in further steps. Initially, A = @ and W = V(G).
We shall always branch on a vertex x € W: in the failure branch
we remove x from W, while in the success branch we move x from
W to A. The intuition is that moving x to A puts more restrictions
on the neighbors of x that are still in W. This is because they are
now adjacent to one more vertex in A, and they cannot be adjacent
to too many, at least as far as vertices with smaller positions are
concerned.

For the positions, during branching we will maintain the follow-
ing two pieces of information:

e afunction n: A — [n] that is our guess on the restriction of
n* to A; and
e afunction {: W — [n] which signifies a lower bound on the
position of each vertex of W, assuming it is to be included
in the solution.
Initially, we set {(v) = 1 for each v € V(G). The quadruple
(A, W,n,{) as above describes a subproblem solved during the re-
cursion. We will say that such a subproblem is lucky if all the choices
made so far are compliant with S* and n*, that is,

ACS*CAUW,
n=n"a,
and n*(u) > {(u) foreachu € S* N'W.

Additionally to the above, from a lucky subproblem we also require
the following property:

for each v € A and u € N(v) N W such that (1) < n*(v), (1)
we have u € $* and n* (1) < n*(v).

In other words, all the neighbors of a vertex v € A should have
their lower bounds larger than the guessed position of v, unless
they will be actually included in the solution at positions smaller
than that of v. The significance of this property will become clear
in a moment.

First, observe that if G| W] is disconnected, then we can treat the
different connected components of G{W] separately: for each com-
ponent D of G[W] we solve the subproblem (A, D, n, {|p) obtaining
a solution Sp, and we return (Jp Sp as the solution to (A, W, 1, {).
Property (1) is used to guarantee the correctness of this step: it
implies that when taking the union of solutions Sp, the vertices of
A do not end up with too many left neighbors.

Thus, we may assume that G[W] is connected. In this case we
execute branching on a vertex of W. For the choice of the branching
pivot x we use exactly the same strategy as described in the previous
section: having defined the buckets in exactly the same way, we
always pick x to be a heavy vertex in G[W], or resort to secondary

Finding Large Induced Sparse Subgraphs in Cs ;-Free Graphs in Quasipolynomial Time

branching in G[W] (which picks secondary-heavy pivots) in the
absence of heavy vertices.

An important observation is that in the success branch — when
the vertex x € W is moved to A — the algorithm notes a significant
progress that allows room for additional guessing (by branching).
More precisely, on every root-to-leaf path in the recursion tree there
are only O(log® n) success branches, which means that following
each success branch we can branch further into n®() options, and
the size of the recursion tree will be still n0(1°8" ™) We use this
power to guess (by branching) the following objects when deciding
that x should be included in the solution S* (here, we assume that
the current subproblem is lucky):

e the position 7*(x);
o the set of left neighbors

L={o e WNN(x) | n*(v) < n*(x)}

e the positions (7*(v): v € L); and
o for each v € L, its left neighbors

Lo = {u € WNN(©) | n*(w) < n* (o)}

This guess is reflected by the following clean-up operations in the
subproblem:
e Move {x} UL from W to A and set their positions in 5(-) as
the guess prescribes. Note that the vertices of | J,¢f Ly are
not being moved to A.
e Foreachw € (N(x) N W) — L, increase {(w) to
max (¢ (w),n(x) +1).
e Foreachv € L and w € (N(v) N W) — Ly, increase {(w) to
max (¢ (w),n(v) +1).
It is easy to see that if (A, W, 5, {) was lucky, then at least one of
the guesses leads to considering a lucky subproblem. In particular,
property (1) is satisfied in this subproblem. This completes the
description of a branching step.

It remains to argue why it is still true that on every root-to-
leaf path in the recursion tree there are at most O(log® n) success
branches. Before, the key argument was that when a success branch
is executed, a constant fraction of buckets (either primary or sec-
ondary) loses a constant fraction of elements. Now, the progress
is explained by the following claim, which follows easily from the
way we perform branching.

Cramv 9. Suppose (A, W,n,{) is a lucky subproblem in which
branching on x is executed, and let (A", W’,n’,{’) be any of the
obtained child subproblems. Then for everyy € N(x) N W, we either
have

yew’ or
Hze ANN(y) | n(z) < ()} < {z€e A"NN(y) | n'(2) < ' (y)}I.

Note that for y € W, if y gets included in the solution, then the
whole set

My :={z€ ANN(y) [n(z) <{(y)}

must become the left neighbors of y. So if the size of My exceeds
d, then we can conclude that y cannot be included in the solution
and we can safely remove y from W. Thus, the increase of the
cardinality of My, for all neighbors y of x that do not get excluded
from consideration is the progress achieved by the algorithm.

336

STOC ’21, June 21-25, 2021, Virtual, Italy

Formally, we do as follows. Recall that before, we measured the
progress in emptying a bucket Bguw by monitoring its size. Now,
we monitor the potential of B,fv’w defined as

DD d- M),

TeBC (u,0,w) yeV(T)

(BGy) =

Thus, ®(BS (1, v, w)) measures how much the vertices of tripods
of BMG’U!W have left till saturating their “quotas” for the number of
left neighbors. From Claim 9 it can be easily inferred that when
branching on a heavy vertex, a constant fraction of buckets lose
a constant fraction of their potential, and the same complexity
analysis as before goes through.

2.4 CMSO, Properties

We now extend the approach presented in the previous section to a
sketch of a proof of Theorem 1.1 in full generality. That is, we also
take into account CMSOz-expressible properties.

Degeneracy and treewidth. The first step is to argue that degen-
eracy and treewidth are functionally equivalent in Cs ;-free graphs,
i.e., to prove Theorem 1.3. This part of the reasoning is presented
in Section 3.

The argument goes roughly as follows. Suppose, for contra-
diction, that G is a C>;-free d-degenerate graph that has huge
treewidth (in terms of d and t). Using known results [18], in G we
can find a huge bramble B — a family of connected subgraphs that
pairwise either intersect or are adjacent — such that every vertex
of G is in at most two elements of 8. This property means that 8
gives rise to a huge clique minor in G’, the graph obtained from
G by adding a copy of every vertex (the copy is a true twin of the
original). Note that G’ is still Cs;-free and is 2d + 1-degenerate.
Now, we can easily prove that the obtained clique minor in G’ can
be assumed to have depth at most ¢: every branch set induces a
subgraph of radius at most t. Using known facts about bounded-
depth minors [25, Lemma 2.19 and Corollary 2.20], it follows that
G’ contains a topological minor model of a large clique that has
depth at most 3¢ + 1: every path representing an edge has length at
most 6t + 3. Finally, we show that if we pick at random ¢ + 1 roots
09, . . ., vz of this topological minor model, and we connect them in
order into a cycle in G’ using the paths from the model, then with
high probability this cycle will be induced. This is because G’ is
(2d +1)-degenerate, so two paths of the model chosen uniformly at
random are with high probability nonadjacent, due to their short-
ness. Thus, we uncovered an induced cycle on more than ¢ vertices
in G’, a contradiction.

Boundaried graphs and types. We proceed to the proof of Theo-
rem 1.1. By Theorem 1.3, the subgraph G|[S] induced by the solution
has treewidth smaller than k, where k is a constant that depends
only on d and t. Therefore, we will use known compositionality
properties of CMSO3 logic on graphs of bounded treewidth.

For an integer ¢, an ¢-boundaried graph is a pair (H, 1), where
H is a graph and ! is an injective partial function from V(H) to
[£], called the labelling. The domain of ¢ is the boundary of (H, 1)
and if 1(u) = «, then u is a boundary vertex with label a. On ¢-
boundaried graphs we have two natural operations: forgetting a
label — removing a vertex with this label from the domain of 1 —

STOC ’21, June 21-25, 2021, Virtual, Italy

and gluing two boundaried graphs — taking their disjoint union
and fusing boundary vertices with the same labels. It is not hard
to see that a graph has treewidth less than ¢ if and only if it can
be constructed from two-vertex ¢-boundaried graphs by means of
these operations.

The crucial, well-known fact about CMSOj, is that this logic
behaves in a compositional way under the operations on boundaried
graphs. Precisely, for each fixed £ and CMSO; sentence ¢ there is
a finite set Types of types such that to every £-boundaried graph
(H, 1) we can assign type(H, 1) € Types so that:

e Whether H |= ¢ can be uniquely determined by examining
type(H, 1).

e The type of the result of gluing two ¢-boundaried graphs
depends only on the types of those graphs.

o The type of the result of forgetting a label in an £-boundaried
graph depends only on the label in question and the type of
this graph.

In our proof we will use ¢ := 6k, that is, the boundaries will by a
bit larger than the promised bound on the treewidth.

Enriching branching with types. We now sketch how to enrich
the algorithm from the previous section to the final branching
procedure.The idea is that we perform branching as in the previous
section (with significant augmentations, as will be described in a
moment), but in order to make sure that the constructed induced
subgraph G[S] satisfies ¢, we enrich each subproblem with the
following information:

e A rooted tree decomposition (T, ff) of G[A] of width at most
¢ (f: V(T) — Ais the bag function).

e For each node a of T, a projected type type, € Types.

Again, we fix some optimum solution S* together with a d-degeneracy
ordering n* of G[S*]. Compared to the approach of the previous
section, we extend the definition of a subproblem being lucky as
follows:

e For each connected component D of G[W N §*], we require
that N(D) N A is a set of size at most 4k such that there
exists a bag of (T, f) that entirely contains it. For such a
component D, let a(D) be the topmost node of T satisfying
N(D)nA C B(a(D)).

e For each node a of T, consider the graph H, induced by
B(a) and the union of all those components D of G[W N S*]
for which a(D) = a. Then the type of H, with $(a) as the
boundary is equal to type,,.

Thus, one can imagine the solution S* as A plus several extensions
into W — vertex sets of components of G{[W N S*]. Each such
extension D is hanged under a single node a(D) of (T, p) and is
attached to it through a neighborhood of size at most 4k. For each
node a of T, we store the projected combined type type,, of all the
extensions D for which a is the topmost node to which D attaches.
Note that since the algorithm will always make only logo(l) n
success branches along each root-to-leaf path, we maintain the
invariant that |A| < logo(l)
the number of nodes of T.

Recall that in the algorithm presented in the previous section,
two basic operations were performed: (a) recursing on connected
components of G[W] once this graph becomes disconnected; and
(b) branching on a node x € W.

n, which implies the same bound on

337

Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Pawet Rzazewski

Lifting (a) to the new setting is conceptually simple. Namely,
each graph H, is correspondingly split among the components of
G[W], so we guess the projected types of those parts of H, so that
they compose to type,. The caveat is that in order to make the time
complexity analysis sound, we can perform such guessing only
when a significant progress is achieved by the algorithm. This is
done by performing (a) only when each connected component of
G[W] contains at most 99% of all the vertices of W, which means
that the number of active vertices after this step will drop by 1% in
each branch. This requires technical care.

More substantial changes have to be applied to lift operation (b),
branching on a node x € W. Failure branch works the same way as
before: we just remove x from W. As for success branches, recall
that in each of them together with x we move to A the whole set L of
left neighbors of x in W. Clearly, the vertices of LU{x} belong to the
same component of G[A N S*], say D. It would be natural to reflect
the move of L U {x} to A in the decomposition (T, §) as follows:
create a new node b with f(b) = (LU {x}) U (N(D) N A) and make
it a child of a(D) in T. Note that thus, |f(b)| < d + 1 + 4k < 5k, so
the bound on the width of (T,) is maintained (even with a margin).
However, there is a problem: if by A” we denote the updated A, i.e.,
A’ = AU(LU{x}), then the removal of LU{x} breaks D into several
connected components whose neighborhoods in A” are contained
in (N(D) N A) U (L U {x}). This set, however, may have size as
large as 4k + d + 1, so we do not maintain the invariant that every
connected component of G{W N S*] has at most 4k neighbors in A.

We remedy this issue using a trick that is standard in the analysis
of bounded-treewidth graphs. Since the graph G[D U (N(D) N W)]
has treewidth smaller than k, there exists a set K consisting of at
most k vertices of D U (N(D) N W) such that every connected
component of D — K contains at most [N(D) N W|/2 vertices of
N(D) N W.The algorithm guesses K along with L, moves K to W
along with x and L, and and sets §(b) := (N(D)NA)U(LU{x})UK;
thus [f(b)| < 4k+ (d+1) +k < 6k. Now it is easy to see that due to
the inclusion of K, every connected component of D — (KULU{x})
has only at most 2k + k + (d + 1) < 4k neighbors in f(b), and the
problematic invariant is maintained.

This concludes the overview of the proof of Theorem 1.1.

3 C.;-FREE GRAPHS OF BOUNDED
DEGENERACY HAVE BOUNDED
TREEWIDTH

It is well known that if a graph G has treewidth k, then its degen-
eracy it at most k. However, these parameters can be arbitrarily
far away from each other: for instance, 3-regular expanders have
degeneracy 3 and treewidth linear in the number of vertices [15].
In this section we prove that if we restrict our attention to Cs;-free
graphs, the treewidth is bounded by a function of degeneracy. In
particular, we show Theorem 1.3.

THEOREM 1.3. For every pair of integers d and t, there exists an
integer k = (d)°®) such that every Cs;-free graph of degeneracy
at most d has treewidth at most k.

Before we proceed to the proof of Theorem 1.3, let us recall the
notion of brambles. Recall that two sets A, b are adjacent if either
AN B # 0 or there is an edge with one endpoint in A and the other

Finding Large Induced Sparse Subgraphs in Cs ;-Free Graphs in Quasipolynomial Time

in B. For brevity, we say that a set A is adjacent to a vertex v if A is
adjacent to {v}, i.e., either v € A or v is adjacent to some vertex of A.
A bramble of size p in a graph G is a collection 8 = (B1, By, . . ., Bp)
of nonempty vertex subsets such that each B; induces a connected
graph and all B;s are pairwise adjacent. The sets B; are called branch
sets. The order of a bramble B is the size of a smallest set of vertices
that hits all branch sets. Observe that the size of a bramble is always
at least its order. We will use the following result of Hatzel et al. [18],
which in a graph of large treewidth constructs a bramble of large
order in which no vertex participates in more than two branch sets.

THEOREM 3.1 (HATZEL ET AL. [18]). There exists a polynomial p(-)
such that for every positive integer k, every graph G of treewidth at
least k contains a bramble B of order at least \/E/p(log k) such that
each vertex of G is in at most two branch sets of B.

We now proceed to the proof of Theorem 1.3. Without loss of
generality we may assume that ¢ is even, t > 4, and d > 2. For
contradiction, suppose that G is a Cs;-free graph with degeneracy
at most d and treewidth larger that

k= (500 000 - d2t5)4t+4 ' [P(log((500 000- d2t5)4t+4))]4’

where p(-) is the polynomial provided by Theorem 3.1. Thus, by ap-
plying Theorem 3.1 to G we obtain a bramble 8 = (By, By, .. ,,Bp)
of order
— 2
p(logk)
Note that we can assume that each branch set of B is inclusion-
wise minimal (subject to 8 being a bramble), as otherwise we can
remove some vertices from branch sets. Therefore, for each branch
set B; and each vertex v of B;, either there is some branch set B;
which is adjacent to v but nonadjacent to B; — {v}, or v is a cutvertex
in G[B;] and its role is to keep the branch set connected.

)2t+2

P> (500 000 - d?t°

Cram 10. Foreachi € [p], and allu,v € Bj, the distance between
u and v in G[B;] is at most t.

Proof of Claim.For contradiction, suppose that there is B; violating
the claim. Let u, v be the vertices at maximum distance in G[B;],
by assumption this distance is at least ¢ + 1. As u and v are the ends
of a maximal path in G[B;], none of them is a cutvertex in G[B;].
Thus there is a branch set B, which is adjacent only to u in B;,
and another branch set which is adjacent only to v in B;. Recall
that B, U B, is connected and nonadjacent to B; — {u,v}. So by
concatenating a shortest u-v-path in B; and a shortest u-v-path in
By, U By, we obtain an induced cycle with at least t + 1 vertices, a
contradiction. <

Let G’ be the lexicographic product G e K»: the graph obtained
from G by introducing, for each x € V(G), a copy x” of x and
making it adjacent to x, all neighbors of x, and all their copies. Note
that in G’, the copy x’ is a true twin of x. Observe also that the
degeneracy of G’ is at most 2d + 1: we can modify a d-degeneracy
ordering of G into a (2d+1)-degeneracy ordering of G’ by inserting
each vertex x” immediately after x.

Cram 11. The graph G’ contains Kp as a depth-t minor.

Proof of Claim.We construct a family 8" = (B{, By, ..., By) as fol-
lows. We start with B} := B; for all i € [p] and we iteratively

338

STOC ’21, June 21-25, 2021, Virtual, Italy

inspect every vertex x of G. If x belongs to more than one of the
sets {By, ..., Bp}, then, by the properties given by Theorem 3.1, x
must belong to exactly two of them, say x € B; N B; for some i # ;.
Then replace x with x” in B;., thus making B] and B} not overlap
on x.

It is clear that once this operation is applied to each vertex of G,
the resulting sets of B’ are pairwise disjoint and pairwise adjacent.
Further, for each i € [p] the graph G’[B]] is isomorphic to G[B;], as
we only replaced some vertices by their true twins, so in particular
G’[B]] is connected. Therefore, B’ is a minor model of a clique of
order p in G’. By Claim 10, the radius of each graph G’[B]] is at
most ¢, hence this model has depth at most . <

The next result binds the maximum size of a bounded-depth
clique minor and the maximum size of a bounded-depth topological
clique minor that can be found in a graph. It is a fairly standard
fact used in the sparsity theory; for the proof, see e.g. [25, Lemma
2.19 and Corollary 2.20].

PROPOSITION 3.2. Let G be a graph and let t, p, p’ be integers such
thatp > 1+ (p’ +)2*2. If G contains Kp as a depth-t minor, then
G contains Ky as a depth-(3t + 1) topological minor.

By combining Claim 11 and Proposition 3.2, we conclude that
G" contains K, as a topological depth-(3t + 1) minor, where

’

p

i
4

J > 100 000 - d2 - °.

Fix some topological depth-(3t + 1) minor model of K,y in G’.
Let R be the set of roots of the minor model and consider the
graph G’ [R]. It has p’ vertices and, as a subgraph of G’, is (2d + 1)-
degenerate. Therefore, there is an independent set R’ in G’[R] of
size at least

’

100 000 - d% -
- 2d +2

7 p
p= [2d+2

Observe that restricting our minor model only to the roots that are
in R’ and paths incident to them gives us a topological depth-(3¢+1)
minor model of Kj,~ with the additional property that the roots are
pairwise nonadjacent.

Let H be the subgraph of G” induced by the vertices used by the
topological minor model obtained in the previous step. Let X be
the set of vertices of H with degree larger than 200 - d - t?, which
are not roots. Since H is (2d + 1)-degenerate, we observe that

7
20 (p
100\ 2

>20000-d- 1.

X < (d+DV(H)| _ (2d+ (6t +3)(%)
100 - dt? 100 - dt?

’” 1
=¢- P , where ¢ .= —.
2 5t

Let H’ be obtained from H by removing all vertices in X, along
with all paths from the topological minor model which contain a
vertex from X. Note that thus, we have removed at most ¢ - (pz”)
paths.

Observe that H’ still contains a depth-(3t + 1) topological minor
model of some graph Z with p”” vertices and at least

[2)m> 2])=o)

STOC ’21, June 21-25, 2021, Virtual, Italy

edges. Thus, the average degree of a vertex in Z is at least (1 —
e’ -1).

Let W = (vg, 01, .. .,vt/z) be a sequence of vertices of Z, cho-
sen independently and uniformly at random. In what follows, all
arithmetic operations on the indices of the vertices v; are computed
modulo ¢/2 + 1, in particular v /5,1 = vo.

We prove that with positive probability, ‘W has the following
four properties:

(P1) The vertices v; are pairwise distinct.

(P2) For every 0 < i < t/2, v;ui41 is an edge of Z; let P; be the
corresponding path in H’.

(P3) Forevery 0 <i<t/2and0 < j <t/2suchthatj¢ {i,i+ 1},
the internal vertices on the path P; are anti-adjacent to v;.

(P4) For all 0 < i < j < t/2, the internal vertices of P; are anti-
adjacent to the internal vertices of P;.

Observe that these four properties imply that the concatenation of
all paths P; is a hole of length more than in G’ (recall here that the
roots of the minor model are independent in H’). The assumption
that G is Cs-free implies that G’ is C>;-free as well, hence this
will be a contradiction.

For (P1), since p”’ > 20 000 - d - t°, by the union bound the
probability that v; = o; for some i # j is at most (5)/p”" < 0.1.

For (P2), since v; and vj4; are independently chosen vertices, and
Z has at least (1 —¢) (pz”) edges, the probability that v;0;41 is not an
edge of Z is bounded by ¢ = % By the union bound, the probability
that (P2) does not hold is bounded by ¢ - (/2 + 1) < 0.2.

For (P3), fix 0 < i < t/2 and assume v;v;41 € E(Z) so that P; is
defined. Then, the total number of neighbors of the internal vertices
of P; is bounded by (6t + 3) - 200 - d - t* < 2000 - d - t3. Since vj
is a vertex of V(Z) chosen at random independently of the choice
of v; and v;41, the probability that v} is among these neighbors is
bounded by 2000 - dt3/p”’ < 0.1/t2. By the union bound, (P2) holds
but (P3) does not hold with probability at most ¢(t — 2) - % <0.1.

For (P4), fix 0 < i < j < t/2. Note that it may be possible that
i+1=jorj+1 =i/ (cyclically modulo #/2 + 1), but not both.
Hence, by symmetry between i and j, assume that the choice of
vj4+1 is independent of the choices of v, v;+1, and v;. Assume that
v;vi41 € E(Z) so that P; is defined. As in the previous paragraph,
there are at most 2000dt> neighbors in H’ of the internal vertices
of P;. There are p”’ = |V(Z)| choices for vj41, all of them leading to
either vj0j41 ¢ E(Z) or to vertex-disjoint (except for v;) choices of
the path P;. Hence, for at most 2000dt> of these choices, we have
vjvjs1 € E(Z) but there is an edge between an internal vertex of
Pj and an internal vertex of P;. By the union bound, (P2) holds but

(P4) does not hold with probability less than (t/ 3“) : 20(;#,,“1& <

t/2+1y . _2000dt?
(2) 20 000dt> <01 .
By the union bound over all the above cases, ‘W satisfies all

properties (P1)—-(P4) with probability at least 1-0.1-0.2—0.1-0.1 =
0.5. This gives the desired contradiction and completes the proof.

4 A SIMPLE TECHNIQUE FOR
APPROXIMATION SCHEMES
In this final section we present a simple technique for turning

polynomial-time and quasipolynomial-time algorithms for MWIS
on P;-free and Cs ;-free graphs into PTASes and QPTASes for more

339

Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Pawet Rzazewski

general problem, definable as looking for the largest induced sub-
graph that belongs to some weakly hyperfinite class. Let us stress
that this technique works only for unweighted problems.

We define the blob graph of a graph G, denoted G°, as the graph
defined as follows:

V(G°) := {X C V(G) | G[X] is connected},
E(G®) = {X1X; | X1 and X; are adjacent}.

The main combinatorial insight of this section is the following
combinatorial property of G°. Let us point out that a similar result
could be derived from the work of Cameron and Hell [6], although
it is not stated there explicitly.

THEOREM 4.1. Let G be a graph. The following hold.

(S1) The length of a longest induced path in G° is equal to the length
of a longest induced path in G.

(S2) The length of a longest induced cycle in G° is equal to the length
of a longest induced cycle in G, with the exception that if G has
no cycle at all (G is a forest), then G° may contain triangles, but
it has no induced cycles of length larger than 3 (i.e. it is a chordal
graph).

Proor. Note that since G is an induced subgraph of G° (as wit-
nessed by the mapping u +— {u}), we only need to upper-bound the
length of a longest induced path (resp., cycle) in G° by the length
of a longest induced path (resp. cycle) in G.

Let P° = X3, X3, ..., X be an induced path in G°. We observe
that the graph G[Uj.:1 Xj] is connected and for each j” € [t — 2]

the sets Uj,:l Xj and U;=j’+2 Xj are nonadjacent.
Fix an induced path P = 01, 0y,...,0 in G[Uf:1 Xi]. We define

set(i) = max{j | {v1,02,...,0:} N X; # 0}.

Cramm 12. Foralli € [p—1] it holds that set(i+1) € {set(i), set(i)+
1}.

Proof of Claim.It is clear that set(i + 1) > set(i), so suppose set(i +
1) > set(i) + 2. Since v;v;41 is an edge of G, we conclude that
there is an edge in G° between the sets {X; | j < set(i)} and
{Xj | j > set(i) + 2}, a contradiction with P° being induced. <

The following claim encapsulates the main idea of the proof.

Cramm 13. Let P° = X1, Xa, ..., X; be an induced path in G° such
that X1 ¢ Xp. Let X{ € X1 — Xy and X/ C X; be nonempty sets. Let
P =01,02,...,0p beashortest path in G| 5.:1 X such thatv; € X]
andvp € X;. Then P is induced, p > t, and {v2,03,...,0p-1} N (Xl’ U
X)) =0.

t

Proof of Claim.The path P is induced and {03, 93, ...,0p-1} N (Xl’ U
X/) = 0 by the minimality assumption. Recall that X; must be
disjoint with U§:3 X;. Thus set(1) = 1 and set(p) = t, so the claim
follows from Claim 12. <

Now we are ready to prove (S1). Our goal is to prove that if G°
contains an induced path on t vertices, then so does G. If t = 1,
then the statement is trivial, so assume that t > 2 and let P°
X3, X2, ..., X; be an induced path in G°.

If X3 ¢ X», then we are done by Claim 13 applied to P° for
X{ = X1 — Xz and X/ = X;. So assume that X; C X, and note that
Xs ¢ Xi, for X7 and X, are two different vertices of P°. If t = 2,

Finding Large Induced Sparse Subgraphs in Cs ;-Free Graphs in Quasipolynomial Time

then any edge from X7 to X3 — X is an induced path in G with two
vertices; such an edge exists as G[X3] is connected. So from now
on we may assume ¢ > 3.

Let X; C Xp — X1 be such that G[X7] is a connected component
of G[X; — X1] and X and X3 are adjacent. Such a set exists as X3
is adjacent to X3, but nonadjacent to X;. Note that G[X;] being
connected implies that there exists a nonempty set X;" € X7, such
that every vertex from X," has a neighbor in Xj. Furthermore,
Xz” N X3 = 0, as Xj is nonadjacent to X3. Observe that P° =
Xz’,Xg, ..., Xy is an induced path in G° with at least t — 1 > 2
vertices, such that XJ ¢ X3. Let P’ = 03, 03,...,0p be the induced
path in G with at least ¢ — 1 vertices obtained by Claim 13 applied
to P°, X', and X;. Now recall that v; € X}/, so there is 01 € X;
adjacent to vy. Note that v; is nonadjacent to every v; for i > 2,
because v; ¢ Xz" for i > 2. Thus P = 01,02,...,0p is an induced
path in G with at least ¢ vertices.

Now let us prove (S2). We proceed similarly to the proof of
(S1). If G° is chordal (every induced cycle is of length 3), then we
are done by the exceptional case of the statement. Otherwise, let
C° = X1, Xy, ..., Xt be an induced cycle in G° for some t > 4; we
want to find an induced cycle of length at least ¢ in G. Note that
Xy € X;—1and X; ¢ X1, as otherwise C° is not induced. We observe
that there are nonempty sets th C X; and Xttf1 C X, such that
every vertex from th has a neighbor in X; and every vertex from
Xtt_1 has a neighbor in X;_1. Let Q be a shortest path contained in
X whose one endvertex, say x!isin th and the other endvertex,
say x'~1 is in X;_l. Note that it is possible that x! = x!~1. The
minimality of Q implies that no vertex of Q, except for x1, x'~! has
a neighbor in U;;} Xj.

Let P° be the induced path X1, X5, ..., X;—1. Denote X/ = N(xHn
Xpand X/ | = N(x*71) N X;_1. Recall that both these sets are
nonempty and X;NXz = @and X, NX; 5 =0.LetP =01,03,...,0p
be the induced path given by Claim 13 for P°, Xl’, and Xt’_l. Recall
that p > t — 1. Now let C be the cycle obtained by concatenating
P and Q, and observe that the cycle C is induced. Furthermore, as
P has at least t — 1 vertices and Q has at least one vertex, C has at
least t vertices, which completes the proof. O

Let us define an auxiliary problem called MAXIMUM INDUCED
PACKING. An instance of MAXIMUM INDUCED PACKING is a triple
(G, ¥, w), where G is a graph, ¥ is a family of connected induced
subgraph of G, and w: ¥ — Ry is a weight function. A solution to
(G,F,w) is a set X C V(G), such that

e each connected component of G[X] belongs to ¥; and
e Xc: component of G[X] w(C) is maximized.

We observe the following.

THEOREM 4.2. Let (G, ¥, w) be an instance of MAXIMUM INDUCED
PACKING, where |F| = N.

(1) If G is Py-free for some integer t, then the instance (G, ¥, w)
can be solved in time NOUog"N)

(2) If G is Cs-free for some integer t, then the instance (G, F, w)
can be solved in time NO1og'N)

(3) If G is Ps-free or Cs4-free, then the instance (G, ¥, w) can be
solved in time N9,

340

STOC ’21, June 21-25, 2021, Virtual, Italy

Proor. Let G’ be the subgraph of G° induced by ¥. Clearly, G’
has N vertices. We observe that solving the instance (G, ¥, w) of
Max1imuMm INDUCED PACKING is equivalent to solving the instance
(G’, w) of MWIS. Now the theorem follows from Theorem 4.1 and
the fact that MWIS can be solved in time n@ (198 ™) in n-vertex P;-
free graphs [13, 24], in time no(l"g3 1) in n-vertex Cs-free graphs,
using Theorem 1.1 only for MWIS, and in polynomial time in Pe-
free [16] or Cs4-free graphs [1].]

As an example of an application of Theorem 4.2, we obtain the
following corollary.

COROLLARY 4.3. For every fixed d and t, given an n-vertex P;-free

graph G, in time nOo" 1) e can find the largest induced subgraph
of G with maximum degree at most d.

ProoF. Note that every connected P;-free graph with maximum
degree at most d has at most d* vertices. Thus, the family ¥ of all
connected induced subgraphs of G with maximum degree at most
d has size at most N := n?" and can be enumerated in polynomial
time. For each F € ¥ set w(F) := |V(F)|. We may now apply
Theorem 4.2 to solve the instance (G, F, w) of MaxiMuMm INDUCED
PACKING in time NO (108" N) = ,O(log" n) o

Note that the strategy we used to prove Theorem 4.2 cannot be
used to solve Max INDUCED FOREST in quasipolynomial time, as
there can be arbitrarily larger P;-free tree; consider, for instance, the
family of stars. However, it is sufficient to obtain a simple QPTAS
for the unweighted version of the problem.

A class of graphs C is called weakly hyperfinite if for every
& > 0 there is c¢(¢) € N, such that in every graph F € C there
is a subset X of at least (1 — ¢)|V(F)| vertices such that every
connected component of F[X] has at most c(¢) vertices [22, Section
16.2]. Weakly hyperfinite classes are also known under the name
fragmentable [12]. Every class closed under edge and vertex deletion
which has sublinear separators is weakly hyperfinite [22, Theorem
16.5], hence well-known classes of sparse graphs, such as planar
graphs, graphs of bounded genus, or in fact all proper minor-closed
classes, are weakly hyperfinite.

For a class C of graphs, by LARGEST INDUCED C-GRAPH we denote
the following problem: given a graph G, find a largest induced
subgraph of G, which belongs to C. To make the problem well
defined, we will always assume that K7 € C. We can now conclude
the following.

THEOREM 4.4. Let C be a nonempty, weakly hyperfinite class of
graphs, which is closed under vertex deletion and disjoint union oper-
ations. Then, the LARGEST INDUCED C-GRAPH problem

(1) has a QPTAS in Css-free graphs, for every fixed t; and
(2) has a PTAS in Ps-free graphs and in C~4-free graphs.

Proor. Let n be the number of vertices of the given graph G and
let ¢ be the desired accuracy, i.e., the goal is to find a solution whose
size is at least a (1 — ¢) fraction of the optimum. Let ¢ = c(¢).

Let X* be the vertex set of an optimum solution. By the properties
of C, there exists X’ C X* of size at least (1 — £)|X™| such that each
connected component of G[X’] has at most ¢ vertices. Let ¥ be
the set of all connected induced subgraphs of G that have at most ¢

STOC 21, June 21-25, 2021, Virtual, Italy

vertices and belong to C. Clearly || < n€ and F can be enumerated
in polynomial time. For each F € ¥, we set w(F) = |V (F)|.

Apply the algorithm of Theorem 4.2 to solve the instance (G, ¥, w)
of MAXIMUM INDUCED PACKING in time n© (108’ n) = yO(log’ n) jf
G is Cs;-free, or in polynomial time if G is Ps-free or Cs4-free.
Let X be the optimum solution found by the algorithm. As C is
closed under the disjoint union operation, we observe that G[X]
is a feasible solution to LARGEST INDUCED C-GRAPH. Moreover we
have |X| > |X'| = (1 - ¢)|X*|. m]

ACKNOWLEDGMENTS

Peter Gartland and Daniel Lokshtanov were supported by BSF
award 2018302 and and NSF award CCF-2008838.

The work of Marcin Pilipczuk and Michat Pilipczuk is a part of
projects CUTACOMBS (grant agreement No. 714704) and TOTAL
(grant agreement No. 677651) that have received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme.

European Research Council

Pawel Rzazewski was supported by Polish National Science Cen-
tre grant no. 2018/31/D/ST6/00062.

REFERENCES

[1] Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, Pawel Rzazewski, and
Paul D. Seymour. 2021. Induced subgraphs of bounded treewidth and the con-
tainer method. In Proceedings of the Fourth SIAM Symposium on Discrete Algo-
rithms (SODA), Alexandria, Virginia, USA, January 10-13, 2021 (Virtual conference).
SIAM, 1948-1964. https://doi.org/10.1137/1.9781611976465.116

Vladimir E. Alekseev. 1982. The effect of local constraints on the complexity
of determination of the graph independence number. Combinatorial-algebraic
methods in applied mathematics (1982), 3-13. (in Russian).

Vladimir E. Alekseev. 2004. Polynomial algorithm for finding the largest indepen-
dent sets in graphs without forks. Discrete Applied Mathematics 135, 1-3 (2004),
3-16. https://doi.org/10.1016/S0166-218X(02)00290-1

Aistis Atminas, Vadim V. Lozin, and Igor Razgon. 2012. Linear Time Algorithm for
Computing a Small Biclique in Graphs without Long Induced Paths. In Proceedings
of the 13th Scandinavian Symposium and Workshops Algorithm Theory, SWAT
2012 (Lecture Notes in Computer Science, Vol. 7357). Springer, 142-152. https:
//doi.org/10.1007/978-3-642-31155-0_13

Gabor Bacso, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Zsolt Tuza, and
Erik Jan van Leeuwen. 2019. Subexponential-Time Algorithms for Maximum
Independent Set in P;-Free and Broom-Free Graphs. Algorithmica 81, 2 (2019),
421-438. https://doi.org/10.1007/s00453-018-0479-5

Kathie Cameron and Pavol Hell. 2006. Independent packings in structured graphs.
Math. Program. 105, 2-3 (2006), 201-213. https://doi.org/10.1007/s10107-005-
0649-5

Maria Chudnovsky, Marcin Pilipczuk, Michat Pilipczuk, and Stéphan Thomassé.
2019. Quasi-polynomial time approximation schemes for the Maximum Weight
Independent Set Problem in H-free graphs. CoRR abs/1907.04585 (2019).
arXiv:1907.04585 http://arxiv.org/abs/1907.04585

&

[7

[

341

Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Pawet Rzazewski

[8] Maria Chudnovsky, Marcin Pilipczuk, Michat Pilipczuk, and Stéphan Thomassé.
2020. Quasi-polynomial time approximation schemes for the Maximum Weight
Independent Set Problem in H-free graphs. In Proceedings of the Thirty-First
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020. SIAM, 2260-2278.
https://doi.org/10.1137/1.9781611975994.139

Bruno Courcelle. 1990. The Monadic Second-Order Logic of Graphs. I. Rec-
ognizable Sets of Finite Graphs. Inf. Comput. 85, 1 (1990), 12-75. https:
//doi.org/10.1016/0890-5401(90)90043-H

Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-
Order Logic — A Language-Theoretic Approach. Encyclopedia of Mathematics and
its Applications, Vol. 138. Cambridge University Press. http://www.cambridge.
org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR

Guoli Ding. 1992. Subgraphs and well-quasi-ordering. J. Graph Theory 16, 5

(1992), 489-502. httgs://dotorg/10A1002/jgt,3190160509
Keith Edwards and Graham Farr. 2001. Fragmentability of Graphs. Journal of

Combinatorial Theory, Series B 82, 1 (2001), 30 — 37. https://doi.org/10.1006/jctb.
2000.2018

Peter Gartland and Daniel Lokshtanov. 2020. Independent Set on Pj.-Free Graphs
in Quasi-Polynomial Time. (2020), 613-624. https://doi.org/10.1109/FOCS46700.
2020.00063

Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and
Pawel Rzazewski. 2021. Finding large induced sparse subgraphs in Cs;-free
graphs in quasipolynomial time. CoRR abs/2007.11402 (2021). arXiv:2007.11402
https://arxiv.org/abs/2007.11402

Martin Grohe and Daniel Marx. 2009. On tree width, bramble size, and expansion.
J. Comb. Theory, Ser. B99, 1 (2009), 218-228. https://doi.org/10.1016/].jctb.2008.
06.004

Andrzej Grzesik, Tereza Klimosova, Marcin Pilipczuk, and Michat Pilipczuk.
2019. Polynomial-time algorithm for Maximum Weight Independent Set on
Pg-free graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019. SIAM, 1257-1271. https://doi.org/10.1137/1.
9781611975482.77

Andras Gyarfas. 1987. Problems from the world surrounding perfect graphs.
Applicationes Mathematicae 19 (1987), 413-441.

Meike Hatzel, Pawel Komosa, Marcin Pilipczuk, and Manuel Sorge. 2020. Constant
Congestion Brambles. CoRR abs/2008.02133 (2020). arXiv:2008.02133 https:
//arxiv.org/abs/2008.02133

Daniel Lokshtanov, Martin Vatshelle, and Yngve Villanger. 2014. Independent
Set in P5-Free Graphs in Polynomial Time. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014. SIAM, 570-581.
https://doi.org/10.1137/1.9781611973402.43

Vadim V. Lozin and Martin Milani¢. 2008. A polynomial algorithm to find an
independent set of maximum weight in a fork-free graph. J. Discrete Algorithms
6,4 (2008), 595-604. https://doi.org/10.1016/j.jda.2008.04.001

George J. Minty. 1980. On maximal independent sets of vertices in claw-free
graphs. J. Comb. Theory, Ser. B 28, 3 (1980), 284-304. https://doi.org/10.1016/0095-
8956(80)90074-X

Jaroslav Nesetfil and Patrice Ossona de Mendez. 2012. Sparsity — Graphs,
Structures, and Algorithms. Algorithms and combinatorics, Vol. 28. Springer.
https://doi.org/10.1007/978-3-642-27875-4

Jana Novotna, Karolina Okrasa, Michal Pilipczuk, Pawet Rzazewski, Erik Jan
van Leeuwen, and Bartosz Walczak. 2020. Subexponential-Time Algorithms
for Finding Large Induced Sparse Subgraphs. Algorithmica (July 2020). https:
//doi.org/10.1007/s00453-020-00745-2

Michat Pilipczuk, Marcin Pilipczuk, and Pawel Rzazewski. 2021. Quasi-
polynomial-time algorithm for Independent Set in P;-free graphs via shrink-
ing the space of induced paths. In Proceedings of the Fourth SIAM Symposium
on Simplicity in Algorithms (SOSA), Alexandria, Virginia, USA, January 11-12,
2021 (Virtual conference), Valerie King and Hung Viet Le (Eds.). SIAM, 204-209.
https://doi.org/10.1137/1.9781611976496.23

Marcin Pilipczuk, Michat Pilipczuk, and Sebastian Siebertz. Winter semester
2019/20. Lecture notes for the course Sparsity. available at: https://www.mimuw.
edu.pl/~mp248287/sparsity?2/.

Najiba Sbihi. 1980. Algorithme de recherche d’un stable de cardinalite maximum
dans un graphe sans etoile. Discrete Mathematics 29, 1 (1980), 53-76. (in French).

—_
o

[12

[13

[14

[15

[16]

(17

[18

[19

[20

[
-

[22

[23]

[24

[25

[26

https://doi.org/10.1137/1.9781611976465.116
https://doi.org/10.1016/S0166-218X(02)00290-1
https://doi.org/10.1007/978-3-642-31155-0_13
https://doi.org/10.1007/978-3-642-31155-0_13
https://doi.org/10.1007/s00453-018-0479-5
https://doi.org/10.1007/s10107-005-0649-5
https://doi.org/10.1007/s10107-005-0649-5
https://arxiv.org/abs/1907.04585
http://arxiv.org/abs/1907.04585
https://doi.org/10.1137/1.9781611975994.139
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.1006/jctb.2000.2018
https://doi.org/10.1006/jctb.2000.2018
https://doi.org/10.1109/FOCS46700.2020.00063
https://doi.org/10.1109/FOCS46700.2020.00063
https://arxiv.org/abs/2007.11402
https://arxiv.org/abs/2007.11402
https://doi.org/10.1016/j.jctb.2008.06.004
https://doi.org/10.1016/j.jctb.2008.06.004
https://doi.org/10.1137/1.9781611975482.77
https://doi.org/10.1137/1.9781611975482.77
https://arxiv.org/abs/2008.02133
https://arxiv.org/abs/2008.02133
https://arxiv.org/abs/2008.02133
https://doi.org/10.1137/1.9781611973402.43
https://doi.org/10.1016/j.jda.2008.04.001
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/s00453-020-00745-z
https://doi.org/10.1007/s00453-020-00745-z
https://doi.org/10.1137/1.9781611976496.23
https://www.mimuw.edu.pl/~mp248287/sparsity2/
https://www.mimuw.edu.pl/~mp248287/sparsity2/

	Abstract
	1 Introduction
	2 Overview of the main result
	2.1 Approach for Pt-Free Graphs
	2.2 Lifting the Technique to C>t-Free Graphs
	2.3 Degeneracy Branching
	2.4 CMSO2 Properties

	3 C>t-free graphs of bounded degeneracy have bounded treewidth
	4 A simple technique for approximation schemes
	Acknowledgments
	References

