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Abstract sulfur and reactive bromine (Bry) play important roles in tropospheric chemistry and the global
radiation budget. The oxidation of dissolved SO, (S(IV)) by HOBr increases sulfate aerosol abundance and
may also impact the Br, budget, but is generally not included in global climate and chemistry models. In this
study, we implement HOBr + S(IV) reactions into the GEOS-Chem global chemical transport model and
evaluate the global impacts on both sulfur and Br,, budgets. Modeled HOBr mixing ratios on the order of
0.1-1.0 parts per trillion (ppt) lead to HOBr + S(IV) contributing to 8% of global sulfate production and up to
45% over some tropical ocean regions with high HOBr mixing ratios (0.6-0.9 ppt). Inclusion of HOBr + S(IV) in
the model leads to a global Br, decrease of 50%, initiated by the decrease in bromide recycling in cloud
droplets. Observations of HOBr are necessary to better understand the role of HOBr + S(IV) in tropospheric
sulfur and Br, cycles.

1. Introduction

Reactive bromine (Br, = BrO + Br + Br, + HOBr + BrCl + HBr + BrNO; + BrNO,) has multiple impacts on
tropospheric chemistry, including Os depletion, HO, and NO, perturbations, and oxidation of reduced sulfur
species, volatile organic compounds (VOCs), and mercury [Vogt et al., 1996; von Glasow et al., 2004; Parrella
et al.,, 2012; Simpson et al., 2015; Schmidt et al., 2016]. The O3 destruction driven by Br, and the oxidation of
SO, and VOCs by Br,, to produce sulfate and organic aerosols have implications for the radiative balance of
the atmosphere and thus climate [von Glasow et al., 2002; Saiz-Lopez et al., 2012; Ofner et al., 2012]. Box
and 1-D modeling studies suggest that aqueous-phase oxidation of dissolved SO, (S(IV) = HSO; + SO%’)
by HOBr accounts for ~20% of sulfate production in the marine boundary layer (MBL) [Vogt et al., 1996;
von Glasow et al., 2002]. This reaction is not included in global models of atmospheric chemistry due to
uncertainties in reaction rates, which stem mainly from uncertainties in the abundance of HOBr [Chen
et al., 2016]. Recently, Chen et al. [2016] provided the first observational constraint on the importance of
HOBr/HOCI + S(IV) for sulfate production in the remote, Southern Hemisphere MBL in spring and summer
and found that hypohalous acids are responsible for 33-50% of sulfate formation. No studies have examined
the implications of these reactions on the tropospheric Br, budget.

The main sources of tropospheric Br, are oxidation (by OH) and photolysis of bromocarbons (CH3Br, CH,Br,
and CHBrs3) and sea salt aerosol (SSA) debromination [Parrella et al., 2012; Carpenter et al., 2014]. In polar
regions, debromination has been proposed to occur on halide surface such as frost flowers [Rankin et al.,
2002], first-year sea ice [Simpson et al., 2007a], blowing snow [Yang et al., 2008], and snowpacks above tundra
and first-year sea ice [Pratt et al., 2013]. In addition, Br, is transported from the stratosphere to the tropo-
sphere, but this source is minor globally [Schmidt et al., 2016]. SSA debromination is thought to occur via
uptake of HOBr followed by acid-catalyzed heterogeneous reaction with sea salt Br— and CI~ (R1)-(R6)
[Fan and Jacob, 1992; Vogt et al., 1996] to produce Br, (~90%) and BrCl (~10%) [Fickert et al., 1999]. Br,, is
mainly removed from the troposphere via wet and dry deposition to the Earth’s surface and uptake by SSA
to form Br™ [Schmidt et al., 2016].

(R1) HOBr.q + Br™ + H™ < Bryaq + H,0

(R2) HOBr.q + CI™ + H* <> BrCl,q + H,0
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(R3) BrClaq + Br™ <> BryCl™
(R4) BryCl™ > Brypq + CI”
(R5) Bryaq <> Brog
(R6) Brog + hv— 2Br

HOBr serves as one of the most abundant Br, reservoirs in the troposphere during daytime, with modeled
global tropospheric annual mean mixing ratio on the order of 0.1-1 parts per trillion (ppt = pmol/mol)
[Fernandez et al., 2014; Schmidt et al., 2016]. Observations of HOBr abundance in the troposphere are sparse,
with daytime concentrations ranging from 2 ppt (flight tracks over the tropical Western Pacific) [Le Breton
et al., 2017] to 10 ppt (surface observations in Alaska) [Liao et al., 2012]. The effective Henry's law constant
of HOBr (Hyog,) is estimated to be between 93 and 6100 M atm™' [Sander, 2015; Chen et al., 2016], so that
>90% of HOBr is present in the gas phase even in the cloudy MBL. The small fraction of HOBr dissolved in
aerosol or cloud liquid water reacts with CI~ and Br~ to produce Br, and BrCl, rapidly recycling reactive
bromine (R1)-(R6), and with S(IV) to produce sulfate (R7)-(R9) [Troy and Margerum, 1991; Liu, 2000].

(R7) HOBr + SO3~ — OH™ + BrSO3
(R8) HOBr + HSO3 — H,0 + BrSO5
(R9) BrSO; + H,0 — SO~ +Br~ +2H"

In this study, we implement HOBr + S(IV) in Goddard Earth Observing System (GEOS)-Chem to investigate the
effects of these reactions on both the sulfur and Br, budgets.

2. GEOS-Chem Model

The model used in this study, GEOS-Chem v9-02, driven by GEOS-5 assimilated meteorological data from the
NASA Goddard Earth Observing System, is a global three-dimensional chemical transport model (http://www.
geos-chem.org/) of coupled aerosol-oxidant chemistry containing detailed HO,-NO,-VOC-ozone-BrO, tropo-
spheric chemistry [Schmidt et al., 2016]. All simulations were performed at 4° X5° horizontal resolution and 47
vertical levels up to 0.01 hPa. In order to compare the reactive bromine results presented in this study with
those in Parrella et al. [2012] and Schmidt et al. [2016], we run all simulations for the year 2007, after spinning
up the model for 1 year (2006). We run two main simulations: (i) without HOBr + S(IV) reactions, (ii) with
HOBr + S(IV) reactions, and several sensitivity simulations by modifying sulfur emissions, SSA, and cloud prop-
erties to examine the effects of model uncertainties on the impacts of HOBr + S(IV) on tropospheric sulfur and
Br, budgets (Table S3 in the supporting information).

In the model, sulfate is produced via gas-phase oxidation of SO, by OH; in-cloud aqueous-phase oxidations of
S(IV) by H,0,, O3, and O, catalyzed by the transition metals iron and manganese [Park et al., 2004; Alexander
et al., 2009, 2012]; and oxidation of S(IV) by Oz on SSA [Alexander et al., 2005]. The bulk cloud water pH is
calculated as described in Alexander et al. [2012]. In this study, we have added in-cloud HOBr + S(IV) reactions
to the model assuming first-order loss of HOBr via uptake by cloud droplets:

d[sO;"] d[HOBr| cy
— — - H
dt dt 2 SIHOBT
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Figure 1. The global model budgets of tropospheric sulfur and Bry for simulations without (blue color) and with (red color)
HOBr + S(IV). Inventories (inside the boxes) are in units of Gg S for sulfur and Gg Br for By, The solid arrows represent
gas-phase reactions, while the dashed arrows represent aqueous-phase reactions. Production rates and Ioss rates of Bry,
(below the big box) are in units of Gg Bra 1. Loss rates for HOBr (next to the arrows) are in units of Gg Bra " Read 7. 5(3) as
7.5 x 10°. HOBr + S(IV) accounts for 8% of sulfate production.

where y (unitless) is the reactive uptake coefficient of HOBr that involves gas diffusion, mass accommodation,
and chemical reaction in the cloud droplets; ¢ is the average thermal velocity of HOBr (unit: cm s™'); S is
the total surface area concentration of cloud droplets (unit: em? cm™3). The reaction rate coefficient
for the HOBr + HSO; reaction (kHOBr+HSO ) and the HOBr + SO2~ reaction (Kiiosr+s0z-) is 3. 2x10° M1 57!
[Liu, 2000] and 5.0 x10° M~' s™' [Troy and Margerum, 1991], respectively. More details about the
implementation of HOBr + S(IV) in the model are shown in the supporting information. We neglect
HOBr + S(IV) on SSA since most HOBr will react with ClI™ in SSA due to the much higher aqueous-phase
concentration of CI™ (SI).

We use the tropospheric bromine mechanism described by Schmidt et al. [2016]. SSA debromination via
oxidation of Br~ by HOBr, O3, and CINOs on SSA was enabled as a sensitivity study in Schmidt et al. [2016]
and is used in this study. There is no snow source of Br, in the model.

3. Results and Discussion
3.1. Effects of HOBr + S(IV) Reactions on the Tropospheric Br, Budget

Figure 1 shows the comparison of the tropospheric Br, budgets between simulations with and without
HOBr + S(IV). The modeled Br, burden decreases by 50% after adding HOBr + S(IV) (additional sink of
HOBY), initiated by the large (55%) decrease in HOBr abundance. The decrease in HOBr abundance in turn
decreases SSA debromination, as more than 90% of SSA debromination occurred via reaction of HOBr with
Br™ in sea salt aerosols (Brgg,) (R1)-(R6) before adding HOBr + S(IV) to the model. The global Br, production
rate from SSA debromination is 6429 Gg Br a~' and 3466 Gg Br a_' for simulations without and with
HOBr + S(IV), respectively, with the latter magnitude closer to previous modeling estimates of 1150-
2900 Gg Br a~' [Yang et al., 2005; Parrella et al., 2012; Fernandez et al., 2014; Schmidt et al., 2016].
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Figure 2. Percentage decrease in modeled annual mean Br,, burden in the (top) troposphere and (bottom) below 1 km
after adding HOBr + S(IV).

Global bromocarbon decomposition rates are 545 Gg Bra~—"' and 552 Gg Bra~" for simulations without and
with HOBr + S(IV), respectively, which is similar to recent global estimates (520-550 Gg Bra™) [Parrella et al.,
2012; Schmidt et al., 2016]. The small difference between the two simulations is due to higher OH
concentrations in the model after adding HOBr + S(IV) due to lower Bry, as discussed below. The decrease
in HBr uptake by SSA, despite the slight increase in tropospheric burden of HBr, is because this process
occurs mainly in the MBL where HBr abundance decreases (Figure S1 in the supporting information).

The addition of HOBr + S(IV) in the model lowers the burdens of all Br, species, except HBr, by 28-75%
(Table S1). The slight increase in HBr burden is due to the decrease in HBr removal by HOBr and the produc-
tion of HBr (which is in equilibrium with Br™ in cloud droplets) from HOBr + S(IV) (R7)-(R9). HOBr + S(IV) com-
petes with HOBr+Br~ in cloud droplets such that less HOBr is available for oxidizing Br~ to produce Br,. In
our simulation with HOBr + S(IV), the amount of HOBr removed by reactions with S(IV) is 4.5 times that
removed by reaction with Br~ in cloud droplets. This lowers the Br radical production rate, resulting in
reductions in BrO and HOBr abundance. The lower HOBr abundance results in slower bromide recycling
in both cloud droplets and sulfate aerosols. The lower HOBr abundance also results in even lower debromi-
nation from SSA, which is the largest source of Br, in the lower troposphere. Previous studies have also
shown that the bromine recycling on aerosols and cloud droplets (HOBr + Br™) is critical for sustaining high
Br, levels in the troposphere [von Glasow et al., 2004; Yang et al., 2010; Parrella et al., 2012; Schmidt et al.,
2016]. In particular, Parrella et al. [2012] reported a factor of 2 decrease in BrO mixing ratios when they
turned off the HOBr + Br~ heterogeneous reaction in the model.
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Figure 3. Comparison of modeled tropospheric BrO column with GOME-2 satellite observations of tropospheric BrO
column (09:00-10:00) from Theys et al. [2011]. The error bars in the observations represent one standard deviation of
spatial averaging.

Figure 2 shows the global annual mean distribution of percentage decreases in Br, burden (ABr,) in the total
troposphere (Figure 2, top) and below 1 km (Figure 2, bottom) after adding HOBr + S(IV). The spatial pattern
of the magnitude of the decrease in Br, depends mainly on the amount of clouds for HOBr + S(IV) to occur
and SSA abundance for debromination. In general, cloud fraction and cloud liquid water content (LWC) are
high over the equator and high-latitude oceans such as Southern Ocean and low over the subtropics [Molod
et al., 2012; Sud et al., 2013], while SSA burden is high over subtropics and high-latitude oceans and lower
elsewhere [Jaeglé et al., 2011]. Consequently, large decreases in Br, occur over high-latitude oceans, espe-
cially Southern Ocean. A large decrease of Br, over high-latitude oceans results in a large decrease of Br,
in polar regions from where Br, is mainly transported. Note that there is no snow source of Br, in the model.
In the subtropics, Br,, is not as sensitive to HOBr + S(IV) because of low cloud amount, regardless of the high
SSA abundance. In the lower troposphere (below 1 km), the decrease in Br, is more significant, as
HOBr + S(IV) mainly occur in the lower troposphere where clouds are present. The difference in ABr,
between low-latitude oceans and high-latitude oceans for the total troposphere is larger than that for
MBL below 1 km, as upper troposphere Br, reduction is smaller at low latitudes due to higher bromocar-
bon decomposition rates.

Figure 3 shows a comparison of modeled tropospheric BrO column with Global Ozone Monitoring
Experiment (GOME)-2 satellite observations of tropospheric BrO column from Theys et al. [2011]. The addition
of HOBr + S(IV) lowers modeled tropospheric BrO column globally throughout the year, with the impact
increasing with increasing latitude. At low latitudes (30°S-30°N), the modeled BrO column is generally biased
high for simulation without HOBr + S(IV) and biased low for the simulation with HOBr + S(IV), although both
simulations are within the range of the observations. The addition of HOBr + S(IV) improves agreement with
observations at midlatitudes (30°-60°). At high latitudes (60°-90°), the addition of HOBr + S(IV) causes the
model to underestimate the observations by 60-80% (annual mean), where prior to adding HOBr + S(IV)
the model underestimated the observations by only 7% at 90°-60°N and overestimated the observations
by 2% at 60°S-90°S (annual mean). We expect the model to significantly underestimate observed BrO at high
latitudes due to the lack of debromination in polar regions [Simpson et al., 2007b]. We also note that the
model does not include reactive iodine chemistry and includes very simple gas phase reactive chlorine
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chemistry. Addition of reactive iodine and chlorine chemistry to the model will likely increase modeled BrO
(and Br,) abundances through CI-Br-l interactions such as reactions of HOCI, HOI, ICl, and IBr with Br™ in aero-
sols and cloud droplets to sustain more efficient Br, recycling [Vogt et al., 1999; Ammann et al., 2013; Sherwen
et al., 2016]. We expect this impact to be larger over midlatitude and high-latitude oceans where SSA abun-
dance is high and clouds are frequent.

3.2. Effects of HOBr + S(IV) Reactions on the Tropospheric Sulfur Budget

Adding HOBr + S(IV) to the model increases both the global sulfate production rate and global sulfate burden
by 6% (Figure 1). The global SO, burden decreases by only 2%, owing to the enhanced SO, production from
oxidation of dimethyl sulfide (DMS) by OH. The global annual mean tropospheric OH concentration increases
by 5% in the simulations with HOBr + S(IV) due to reductions in Br,, resulting in an increase in the DMS oxida-
tion rate by 6%. Vogt et al. [1996] suggested that oxidation of S(IV) by HOBr and HOCI on preexisting particles
reduces the amount of SO, available for gas-phase oxidation and the formation of new cloud-condensation
nuclei (CCN). The increase of OH abundance caused by reductions in Br, after adding HOBr + S(IV) to the
model, which was not considered in Vogt et al. [1996], could mitigate this CCN reduction effect via enhancing
the SO, production rate from oxidation of DMS by OH. In our study, the change in the global sulfate produc-
tion rate via the gas-phase reaction SO, + OH is negligible (<1%) after adding HOBr + S(IV) in the model.

For the model simulation with HOBr + S(IV), oxidation of S(IV) by HOBr accounts for 8% of sulfate production
globally, mostly (96%) via the HOBr+HSO3 channel as HSO3 is the dominant S(IV) species (>93%) in clouds at
typical marine cloud pH between 3 and 6 [Faloona, 2009]. The corresponding tropospheric mean HOBr mix-
ing ratio is about 0.4 ppt. In contrast, using the coupled chemistry-global climate model Community
Atmosphere Model v4.6.33, Long et al. [2014] found that HOBr + S(IV) accounts for <1% of tropospheric sul-
fate formation globally (0.8% in clouds and 0.2% on SSA), despite similar HOBr mixing ratios (~0.3 ppt). A pos-
sible reason that Long et al. [2014] shows a small HOX + S(IV) contribution to sulfate formation could be that
cloud chemistry is computed after gas phase chemistry in their model so that there is not a continuous supply
of HOBr from the gas to the aqueous phase within the chemistry time step, as shown in their companion
paper [Long et al., 2013]. HOBr + S(IV) in cloud droplets in our study is coupled with gas phase chemistry,
allowing for a continuous supply of HOBr produced from gas-phase reactions (e.g., BrO + HO;). To confirm
this explanation, we performed one sensitivity study in which HOBr + S(IV) in clouds was computed
separately after gas phase chemistry and found that HOBr + S(IV) accounts for about 1% of sulfate formation
globally, consistent with Long et al. [2014].

The percentage of sulfate produced from HOBr + S(IV) (fso4-Hog;) Varies from 0 to 45% (Figure 4a) in the lower
troposphere, depending on a variety of factors including the abundance of different oxidants (mainly OH,
H,0,, O3, and HOBY), cloud fraction, cloud pH, and the concentrations of CI”and Br™ in cloud droplets that
compete with HOBr + S(IV). In general, fsosHog, is smaller than 5% over the continents due to relatively
low cloud fraction, high H,0,, and relatively low HOBr mixing ratios. Over the tropical oceans, fsos-Hosr
reaches up to 45% where HOBr mixing ratios are high (Figure 4b). Higher HOBr mixing ratios do not guaran-
tee higher fso4.nosr however. Over the Arabian Sea west of India, the HOBr mixing ratio reaches about 0.8 ppt,
but fso4-Hogr is only about 10% due to the limited amount of clouds. Over the South Atlantic Ocean west of
Angola ([0°-20°S, 0°-20°E]), the HOBr mixing ratio reaches about 0.5 ppt, but fso4-Hog: is only about 15% due
to relatively high H,0, abundance.

Observations and calculations from Chen et al. [2016] suggested that 33-50% of sulfate in the Southern
Hemisphere MBL during austral spring and summer (November-March) is produced via oxidation of S(IV)
by HOBr and HOCI, suggesting daily mean HOBr + HOCI mixing ratio on the order of 0.01-0.1 ppt. In compar-
ison, our model results show that only 7% of sulfate is produced via HOBr + S(IV) over the Southern
Hemisphere MBL below 1 km during austral spring and summer, with a daily mean HOBr mixing ratio of
0.15 ppt. The difference in the calculated importance of S(IV) oxidation by hypohalous acids in these two
studies, despite similar order-of-magnitude estimates of hypohalous acid abundance, is due to the fact that
the gas-phase diffusion limitation of HOBr and HOCI was not considered in Chen et al. [2016] when
calculating aqueous-phase production rates. Aqueous-phase reactions of HOBr with CI~, Br—, and S(IV) are
very rapid so that uptake of HOBr on the cloud droplets is limited by gas diffusion. Additionally, after HOBr
enters the cloud droplets, CI~ and Br~ remove HOBr and limit the availability of HOBr for S(IV) oxidation.
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Figure 4. Global distribution of the percentage of annual mean sulfate produced via (top) HOBr oxidation (fso4-nogy) and
(bottom) HOBr mixing ratio below 1 km for the model simulations with HOBr + S(IV).

The modeled underestimate of BrO (Figure 3), especially in the high southern latitudes, suggests that the
modeled underestimate of the fraction of sulfate produced from HOBr and HOCI is due to a modeled low
bias in HOBr, in addition to the lack of S(IV) oxidation by HOCI in the model.

4, Implications

The large impacts of HOBr + S(IV) on the reactive bromine budget in the model have further implications
for the oxidation capacity of the atmosphere via its impacts on the burden of Oz and the partitioning of
HO, (OH + HO;) and NO, (NO + NO,) [von Glasow et al., 2004]. Reactive bromine destroys O3 through the
Br-BrO cycle. A 50% reduction of Br, burden after adding HOBr + S(IV) results in a 5 ppb increase in global
mean tropospheric Oz (up to 10 ppb over Southern Ocean and Antarctica). Reactive bromine perturbs HO,
partitioning via BrO + HO, to produce HOBr and subsequent photolysis of HOBr to produce Br and OH.
Based on this, a reduction of Br, burden after adding HOBr + S(IV) should result in a decrease in OH.
However, this effect is compensated by the increase in Os. As such, tropospheric OH abundance increases
by 5% after adding HOBr + S(IV). This is consistent with the previous finding that the impact of Br, on OH
occurs mainly via the Oz destruction channel rather than the HO, conversion by BrO channel [Parrella
et al., 2012; Wang et al., 2015]. Reactive bromine removes NO, via BrO + NO, to produce BrNO3 and subse-
quent hydrolysis of BrNOs; to produce nitrate. After adding HOBr + S(IV), tropospheric NO, burden
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increases by 3% globally, up to 90% over Southern Ocean, although the absolute abundance of NO, is very
low in this region (several parts per trillion).

The important role of HOBr + S(IV) on the Br, budget suggests that changes in sulfur emissions could impact
the oxidative capacity of the troposphere. We conduct two sensitivity studies using our model simulations
with HOBr + S(IV) to examine potential impacts of changes in sulfur emissions on Br, and oxidant budgets.
First, we examine the impacts of anthropogenic emissions of sulfur by switching off anthropogenic sulfur
emissions in the model, which reduces the total emissions of sulfur (SO, + DMS) by 73%. The change in
the Br, burden is less than 1% globally, with regional increases up to 5% over China and regional decrease
up to 4% over the north Indian Ocean. The change in tropospheric O3 mixing ratio is less than 1.1 ppb every-
where. The small change in Br, and oxidant budgets when turning off anthropogenic sulfur emissions is due
to the fact that most anthropogenic emissions occur over continents where HOBr is relatively low and clouds
are few, and because the resulting increase in cloud pH due to a reduction in SO, emissions slows down the
acid-catalyzed HOBr + Br~ reaction in cloud droplets. In a second sensitivity simulation, we examine the
impact of changing sulfur emissions on tropospheric Br, and oxidant budgets during preindustrial times
by doubling DMS emission together with turning off anthropogenic sulfur emissions in the model. The
change in Br, burden is also less than 1% globally, with regional increases up to 3% over Southern Ocean
where pH decreases by 0.4 and regional decrease up to 2% over some Northern Hemisphere ocean regions
where pH decreases by less than 0.2. Thus, changes in sulfur emissions have a small impact on the global Br,
budget due to compensating effects of changes in the sink of HOBr (via HOBr + S(IV)) and changes in the acid-
catalyzed production rate of Br, (R1)-(R6). This emphasizes the importance of explicitly considering changes
in cloud pH when evaluating potential impacts on changing sulfur emissions on the global Br, budget. It
should be noted from Figure 1 that a change in cloud pH after adding HOBr + S(IV) in the model is negligible
in this study as the sulfate burden change is only 6%.

Other sensitivity scenarios (Table S3) examining the importance of model uncertainties on the impacts of
HOBr + S(IV) include doubling SSA emission, doubling SSA bromide concentrations ([Brg, 1), reducing
coarse-mode SSA pH by two units, reducing kuosr+Hso; by 2 orders of magnitude, doubling cloud LWC, redu-
cing cloud pH by one unit, and increasing both [CI™] and [Br~] concentrations in clouds by 1 order of mag-
nitude. For all these scenarios, the percentage increase in annual mean tropospheric sulfate burden (ASQ,)
varies from 6% to 8%, the percentage decrease in Br, (ABr,) varies from —42% to —57%, and the fraction
of sulfate abundance formed from HOBr + S(IV) (fsosnos/) Varies from 7% to 11% after adding
HOBr + S(IV), which do not differ significantly from the standard model runs (ASO4 = 6%; ABr, = —50%;
fsos-Hosr = 8%). Doubling SSA emissions does not result in a doubling of Br, abundance (only 18-38%
increase) because SSA also provides a surface for uptake of HBr, which partially compensates for the
increased SSA emissions flux by reducing the lifetime of HBr. Additionally, SSA is not the only source of Br,
in the troposphere. Doubling [Brg,] and reducing coarse-mode SSA pH by two units do not result in signifi-
cant changes in tropospheric Br, burden (<5%) because the uptake of HOBr by SSA is limited by gas phase
diffusion of HOBr in the MBL (SI). fsos-osr remains small (8%-9%) when doubling [Brg., ] and reducing
coarse-mode SSA pH because of the small changes in Br, abundance. Tropospheric sulfate and Br, burdens
are not very sensitive to the changes in kyopritso; (and Hyog), cloud LWC, cloud pH, and CI™ and
Br~concentrations in cloud droplets because uptake of HOBr by cloud droplets is limited by gas diffusion
of HOBr and HOBr + S(IV) is much faster (up to 5 orders of magnitude) than HOBr + CI~/Br™ in cloud droplets
(SI). In sum, the impact of adding HOBr + S(IV) to the model is not highly sensitive to the varied model para-
meters. We note that missing processes in the model such as interactions with reactive iodine or Br, sources
in polar regions could significantly impact Br, abundance and fso4-+ogr-

5. Conclusions

It has been proposed that hypohalous acids such as HOBr could be responsible for a large fraction of sulfate
production in the MBL [Vogt et al., 1996; von Glasow et al., 2002; Chen et al., 2016]. Here we implemented
HOBr + S(IV) reactions into GEOS-Chem for the first time to investigate the global impact of these reactions
on both tropospheric sulfur and reactive bromine budgets. Adding HOBr + S(IV) increased the global sulfate
production rate by 6% and decreased the global Br, burden by 50%. About 8% of sulfate is produced via
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HOBr oxidation globally, under a global mean HOBr mixing ratio of 0.4 ppt. The reduction in Br,, resulting
from adding HOBr + S(IV) to the model led to an increase in O3, OH, and NO, abundances. Increases in
OH resulted in an increased production rate of SO, from DMS + OH, compensating for reductions in SO,
from faster removal by HOBr + S(IV), leading to negligible change in the gas-phase sulfate production rate
from SO, + OH. Changes in sulfur emissions after adding HOBr + S(IV) did not significantly impact the global
Br, and oxidant budgets on the global scale because of compensating effects of cloud pH on acid-catalyzed
reactive bromine production. This study, combined with our previous study on A'’O of sulfate in the MBL
[Chen et al., 2016], suggests that reactive halogens could play an important role in sulfate production in
the MBL, even with HOBr mixing ratios as low as sub-ppt levels. Due to the large impacts of HOBr + S(IV)
reactions on tropospheric sulfur and reactive bromine budgets, we recommend including HOBr + S(IV) reac-
tions in global models of tropospheric chemistry and climate and prioritizing observations of tropospheric
HOBr abundance.
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