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Summary

Episodic memory retrieval is thought to rely on reactivation of the same content-sensitive neural

activity patterns initially expressed during memory encoding1–6. Yet, there are emerging ex-

amples of content representations expressed in different brain regions during encoding versus

retrieval7–14. While these differences have been observed by comparing encoding and retrieval

tasks that differ in terms of perceptual experience and cognitive demands, there are many real-

world contexts–e.g., meeting a new colleague who reminds you of an old acquaintance–where

the memory system may be intrinsically biased either toward encoding (the new colleague) or

retrieval (the old acquaintance)15,16. Here, we test whether intrinsic memory states, indepen-

dent of task demands, determine the cortical location of content representations. In a human

fMRI study, subjects (n = 33) viewed object images and were instructed to either encode the

current object or retrieve a similar object from memory. Using pattern classifiers, we show that

biases toward encoding versus retrieval were reflected in large-scale attentional networks17–19.

Critically, memory states decoded from these networks – even when entirely independent from

task instructions – predicted shifts of object representations from visual cortex (encoding) to ven-

tral parietal cortex (retrieval). Finally, visual versus ventral parietal cortices exhibited differential

connectivity with the hippocampus during memory encoding versus retrieval, consistent with the

idea that the hippocampus mediates cortical shifts in content representations. Collectively, these

findings demonstrate that intrinsic biases toward memory encoding versus retrieval determine

the specific cortical locations that express content information.

Results

The main experiment was divided into two phases: List 1 (prior to fMRI scanning) and List 2

(during fMRI scanning; Figure 1). In List 1, subjects learned a set of 24 object images (e.g.,

bench, fan, etc.). In List 2, subjects saw a new set of 24 object images. Critically, each List 2

image was from the same category as a List 1 image (e.g., a new bench, a new fan) and was

preceded by a cue instructing subjects to either encode the current stimulus (encode instruction)

or retrieve the corresponding List 1 stimulus (retrieve instruction; Figure 1). Each List 2 image
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was presented 16 times across 8 fMRI scan runs and always with the same instruction cue

(encode or retrieve). No behavioral response was required for either trial type.

Cortical location of object representations shifts with changes in memory states

We first tested whether the cortical location of stimulus-specific object representations was influ-

enced by encode vs. retrieve instructions. We measured stimulus representations in visual and

parietal cortices, using eight previously-described regions of interest (ROIs)11. These eight ROIs

corresponded to visual cortical regions [early visual cortex (V1), lateral occipital cortex (LO), and

ventral temporal cortex (VTC)], ventral parietal regions [the ventral aspect of lateral intraparietal

sulcus (vLatIPS), angular gyrus (AnG), ventral intraparietal sulcus (vIPS)] and dorsal parietal

regions [posterior intraparietal sulcus (pIPS) and the dorsal aspect of lateral intraparietal sulcus

(dLatIPS)]. Based on prior findings11,20, we predicted that ventral parietal regions (in particular,

angular gyrus) would exhibit a relative bias toward representing past experiences whereas

visual regions would exhibit a relative bias toward representing current perceptual experience.

In other words, we predicted that encode versus retrieve instructions would differentially

influence object representations in ventral parietal versus visual regions. While we did not

have specific predictions about dorsal parietal regions, we included these ROIs for consistency

with prior work11 and as a point of contrast given evidence of functional dissociations between

ventral and dorsal parietal regions11,21,22. To test for stimulus-specific representations, we

correlated activity patterns corresponding to the same object (within-object correlations) and,

from this value, subtracted the mean correlation for activity patterns corresponding to different

object (across-object correlations; Figure 2A). All correlations were performed using data from

independent runs (see Methods). The difference between within-stimulus and between-stimulus

correlations was our critical dependent measure, with values greater than 0 constituting positive

evidence for stimulus-specific representations.

Figure 2B shows stimulus-specific representations as a function of instruction across the eight

ROIs. We first focused on visual versus ventral parietal regions. Consistent with our prediction,

a repeated measures ANOVA with factors of instruction (encode, retrieve) and cortical location

(visual, ventral parietal) revealed a significant interaction between instruction and cortical loca-
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tion (F 1,32 = 6.185, p = 0.0183). In other words, instructions differentially influenced stimulus

representations in visual regions versus ventral parietal regions (also see Supplementary Figure

1A). Within ventral parietal regions, significant stimulus-specific representations were observed

during retrieve trials (mean z = 0.0136, SD = 0.0225; t32 = 3.4654, p = 0.0015), but not during

encode trials (mean z = 0.0018, SD = 0.0221; t32 = 0.4701, p = 0.641) and representations

were significantly stronger during retrieve than encode trials (t-test: t32 = 2.1585, p = 0.0385;

Figure 2C). In contrast, within visual regions stimulus-specific representations were significant

both during encode trials (t32 = 8.7788, p < 0.001) and retrieve trials (t32 = 9.9331, p < 0.001)

with no difference between encode and retrieve trials (t32 = 0.2430, p = 0.8096, Figure 2C).

A separate repeated measures ANOVA also revealed that instructions differentially influenced

stimulus representations in ventral versus dorsal parietal regions (F 1,32 = 6.185, p = 0.0046).

Within dorsal parietal regions, stimulus-specific representations were significant both during

encode trials (t32 = 2.5078, p = 0.0174) and retrieve trials (t32 = 2.6561, p = 0.0122), with

no difference between encode and retrieve trials (t32 = 0.1361, p = 0.8926, Figure 2C).

Thus, there was a clear dissociation between ventral and dorsal parietal regions, with ventral

regions selectively exhibiting a bias toward stronger stimulus representations during retrieve

than encode trials. Notably, when considering univariate effects of instruction, an opposite

dissociation was observed: there was a significant difference (retrieve > encode) in dorsal, but

not ventral parietal regions (Supplementary Figure 2B).

Memory states are decodable from large-scale attentional networks

We next tested whether memory states (encoding vs. retrieval) are reflected in patterns of

activity within three large-scale attentional networks: the frontoparietal control network (FPCN),

the dorsal attention network (DAN) and the ventral attention network (VAN)23. These attentional

networks have previously been shown to carry information about task states24, to be involved

in establishing internal attention25, and to reflect distinct memory states in broadly distributed

patterns of activation17,18,26. To test whether the attentional networks carried unique information

about intrinsic memory states, we also included the visual network (VisN)23 as a ‘control’

network. We predicted that while VisN would be sensitive to superficial differences between
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encode versus retrieve trials (in particular, the instruction cue), it would not reflect higher-level,

intrinsic memory states24.

To determine whether networks carried information about memory states, we used cross-

validated pattern classification analyses and permutation procedures to establish chance

performance (see Methods). Classification accuracy was above chance for each network

(FPCN: M = 57.81%, SD = 7.466%, t32= 5.907, p < 0.001; DAN: M = 62.58%, SD = 8.618%, t32=

8.278, p < 0.001; VAN: M = 54.49%, SD = 4.375%, t32= 5.817, p < 0.001; VisN, M = 62.76%, SD

= 6.751%, t32= 10.67, p < 0.001; Figure 3). Because we did not have a priori predictions about

differences between the attentional networks, all subsequent analyses combined data across

the three attentional networks but included network as a factor. For additional characterization

of networks and sub-networks, see Supplementary Figure 3.

Decoded memory states predict cortical location of stimulus representations

We next tested whether memory states decoded from the attentional networks predicted the

relative strength of stimulus-specific representations in ventral parietal versus visual regions.

Among the ventral parietal regions, here we specifically focused on angular gyrus (AnG)

because, in contrast to the other ventral parietal ROIs (vLatIPS, vIPS), AnG was largely

non-overlapping with the attentional networks (see Methods). Among the visual regions, we

specifically focused on VTC given prior evidence of functional dissociations between VTC and

angular gyrus20,27,28.

We first grouped objects according to evidence derived from the pattern classifiers (‘encoding

state’ or ‘retrieval state’) irrespective of the actual instruction (encode, retrieve) that objects were

associated with (see Methods). A repeated measures ANOVA with factors of cortical location

(AnG, VTC), decoded memory state (encoding, retrieval), and attentional network (FPCN, DAN,

VAN) revealed a significant two-way interaction between cortical location and decoded memory

state (F 1,32 = 9.481, p = 0.0042). This interaction was driven by relatively stronger stimulus

representations in AnG during retrieval than encoding states and relatively stronger stimulus

representations in VTC during encoding than retrieval states (Supplementary Figure 1B). The
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interaction between cortical location and decoded memory state did not significantly vary by

attentional network (three-way interaction: F 2,64 = 2.476, p = 0.0921). Critically, the finding

that AnG and VTC representations were differentially influenced by decoded memory states

mirrors the effects we observed across ventral parietal and visual regions when considering

actual trial instructions (Figure 2B and Supplementary Figure 1A). A significant and qualitatively

similar interaction between cortical location and decoded memory state was also observed

when memory states were decoded from VisN (F 1,32 = 5.841, p = 0.0215).

While the preceding analyses establish a critical relationship between decoded memory states

and the cortical location of object representations, the approach does not establish that the

classifiers indexed memory states that were independent from the actual instructions. In

other words, to the extent that the classifiers were generally accurate, then decoded memory

states may simply be redundant with trial instructions. However, prior behavioral studies have

demonstrated that fluctuations between encoding versus retrieval states can be dissociated

from current task demands15,16 and prior neuroimaging studies have shown that memory states

decoded from patterns of neural activity predict behavioral expressions of memory even when

controlling for instructions17,18 or in the absence of instructions altogether17,19. Motivated by

these prior findings, we next tested whether decoded memory states predicted the cortical

location of object representations even when controlling for the instruction on each trial. To do

this, we again generated encoding state and retrieval state groups, but we did so within each

instruction condition, thereby dissociating decoded memory states from task instructions (see

Figure 3B and Methods).

A repeated measures ANOVA with factors of cortical location (AnG, VTC), decoded memory

state (encoding, retrieval), instruction (encode, retrieve), and attentional network (FPCN, DAN,

VAN) again revealed a significant two-way interaction between cortical location and decoded

memory state (F 1,32 = 5.711, p = 0.0229). Qualitatively, the interaction mirrored the pattern

from the preceding analysis: stimulus-specific representations in AnG were relatively stronger

during retrieval than encoding states whereas representations in VTC were relatively stronger

during encoding than retrieval states (Figure 3C, D; Supplementary Figure 1C). The interaction
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between cortical location and decoded memory state did not differ according to the attentional

network from which memory states were decoded (F 2,64 = 0.399, p = 0.673; Figure 3C).

Moreover, the interaction between cortical location and decoded memory state also did not differ

as a function of actual instructions (F 1,32 = 0.26, p = 0.613; Figure 3D). Bayes Factor analysis

revealed that a model without instruction as a factor is preferred to a model with instruction by a

factor of 2.64. Thus, decoded memory states and instructions each had an influence on shifts

in cortical representations, but these influences were additive. Qualitatively, this was particularly

evident for stimulus representations in AnG which were numerically highest when the instruction

was to retrieve and the decoded memory state was retrieval and numerically lowest when the

instruction was to encode and the decoded memory state was encoding (Supplementary Figure

1D).

Notably, when controlling for instructions, the interaction between cortical location and decoded

memory state was not significant when memory states were decoded from VisN (F 1,32 = 0.051,

p = 0.822). Moreover, an ANOVA with factors of network (attentional vs. VisN), decoded

memory state, and cortical location revealed a significant three-way interaction (F 1,32 = 7.453,

p = 0.0102; Figure 3C). This interaction indicates that shifts in the cortical location of stimulus

representations were better predicted by memory states decoded from attentional networks

than by memory states decoded from VisN despite the fact that overall decoding accuracy was

quite high in VisN.

Medial temporal lobe stimulus representations and connectivity

Although we had an a priori interest in stimulus-specific representations in parietal vs. visual

regions11, recent evidence also suggests that representations in the medial temporal lobe (MTL)

are stronger during retrieval than during perception12. Accordingly, we assessed stimulus-

specific representations in two hippocampal regions (CA1; CA23/DG) and three cortical MTL

regions [entorhinal cortex (ERC), perirhinal cortex (PRC), parahippocampal cortex (PHC)].

For the hippocampal ROIs, a repeated measures ANOVA with factors of instruction (encode,

retrieve) and region (CA1, CA23/DG) revealed a significant main effect of instruction (F 1,32 =

5.796, p = 0.022; Figure 4A), with greater stimulus representations during retrieve compared
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to encode instruction trials. Similarly, for the MTL cortical ROIs, a repeated measures ANOVA

with factors of instruction and region (ERC, PRC, PHC) also revealed a main effect of instruction

(F 1,32 = 4.726, p = 0.0372; Figure 4A), again with stronger stimulus representations during

retrieve compared to encode instruction trials.

Interestingly, instructions did not have any influence on univariate responses in the hippocampus

or cortical MTL ROIs, nor did any of these ROIs support successful classification of memory

states (Supplementary Figure 4A, B). However, given the putative role of the hippocampus in

establishing memory states15,16,29 and given the proposal that parietal regions exhibit a bias

toward representing retrieved content due to their connectivity with the hippocampus14, we

conducted a beta series correlation30 to test whether connectivity between the hippocampus

and cortical targets (visual vs. ventral parietal regions) differed for encode versus retrieve

trials. Specifically, we correlated trial-level beta values in CA1 and CA23/DG with each visual

and ventral parietal ROI, separately for encode and retrieve instruction trials. A repeated

measures ANOVA with factors of hippocampal subfield (CA1, CA23/DG), instruction (encode,

retrieve), and cortical target (V1, LO, VTC, vLatIPS, AnG, vIPS) revealed a significant interaction

between instruction and cortical target (F 5,160 = 3.792, p = 0.0028; Figure 4B). Qualitatively, this

interaction was driven by greater connectivity between the hippocampus and ventral parietal

regions during retrieve compared to encode trials whereas connectivity with visual regions

showed little difference across instruction conditions. A more targeted analysis which averaged

across the visual ROIs (V1, LO, VTC) and the ventral parietal ROIs (vLatIPS, AnG, vIPS) again

revealed an interaction between instruction and cortical target (F 1,32 = 5.467, p = 0.0258), with

ventral parietal regions exhibiting significantly greater connectivity with the hippocampus during

retrieve than encode trials (t32 = 2.2634, p = 0.0305) while connectivity between visual regions

and the hippocampus did not significantly differ for encode versus retrieve trials (t32 = 0.1154,

p = 0.9082). Finally, considering AnG, specifically, connectivity with the hippocampus was

markedly stronger during retrieve than encode trials (t32 = 3.1896, p = 0.0032).
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Discussion

Here we show that the cortical representations of visual objects shift with changes in memory

states. This effect was most pronounced in ventral parietal cortex, where stimulus-specific rep-

resentations were markedly stronger during memory retrieval compared to memory encoding.

The shift in content representations was evident when comparing stimulus representations as a

function of task instructions (encode versus retrieve) despite a lack of perceptual or behavioral

differences between these trials. Moreover–and critically–the same shift was also evident when

comparing stimulus representations as a function of memory states (encoding, retrieval) that

were decoded from large-scale attentional networks–even when decoded memory states were

entirely independent from task instructions.

The fact that ventral parietal cortex contained content representations during memory retrieval

but not during memory encoding (Figure 2B) is a striking aspect of our findings. This find-

ing bears a strong resemblance to recent evidence that rodent parietal cortex preferentially

represents sensory information from past environmental states over sensory information from

current environmental states10. Importantly, the idea that some brain regions preferentially,

or even selectively, represent past experiences over present experience is not accounted for

by the phenomenon of reactivation which, by definition, explains representations at retrieval

as a re-expression of encoding-related activity patterns1–6. While our findings do not argue

against the idea that reactivation occurs – and our experimental design did not directly test for

reactivation – our findings support the emerging idea of systematic differences in the cortical

location of content representations during memory encoding versus memory retrieval7–14. In

particular, our findings are consistent with recent arguments of a spatial transformation wherein

representations initially encoded by visual cortex are systematically re-expressed in parietal cor-

tex during memory retrieval9–11. More broadly, our findings are also consistent with the idea that

angular gyrus plays an important role in processing internally-generated information31, which

may include memories11,28, thoughts32 or even simulations of future events33. However, whereas

traditional views proposed that these contributions reflect content-general processes34,35, our

findings underscore that angular gyrus maintains detailed (stimulus-specific) representations of
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internally-generated content11,28,36.

Why does ventral parietal cortex preferentially represent content retrieved from memory as

compared to content encoded from the current environment? Although there are multiple

potential accounts of such biases (for detailed consideration of these accounts, see14), one

account that is particularly consistent with the present results is that a bias toward retrieved

content is the result of strong connectivity with–or drive from–the hippocampus7,14. This

account is motivated by evidence that the default mode network, of which angular gyrus is a

core component, is functionally coupled with the hippocampus37,38, particularly during memory

retrieval39,40. Here, we provide direct and unique support for this account by demonstrating,

within a single experimental paradigm, that (a) patterns of activity in angular gyrus exhibited a

bias toward representing retrieved content over encoded content and (b) evoked responses in

angular gyrus were more strongly correlated with responses in the hippocampus during memory

retrieval than during memory encoding. More generally, given the diversity of connections

between the hippocampus and neocortex41, and given the putative role of the hippocampus

in establishing biases between encoding versus retrieval states42–44, the hippocampus is well

positioned to mediate transformations in the cortical expressions of mnemonic content.

In designing our experimental paradigm, a point of emphasis was to minimize differences

between encode and retrieve trials so as to constrain potential accounts of why content

representations might shift across these conditions. In particular, to support our argument

that content representations shift with intrinsic memory states, it was important to rule out the

possibility that the shift in content representations was an artifact of differences in the specific

tasks that were used. To this end, encode and retrieve trials were perceptually matched (cf.9,11)

and neither trial type required a behavioral response. The lack of behavioral response is notable

in that retrieval tasks often involve a stronger decision-making component than encoding tasks,

which could explain a greater involvement of parietal cortex during retrieval4,45,46. Even in

the absence of behavioral responses, however, it is still possible that retrieve trials were more

effortful than encode trials. Yet, it is notable that effortful memory retrieval decisions have

specifically been associated with dorsal parietal regions and not ventral parietal regions21,
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whereas the bias toward retrieved content that we observed was significantly stronger and

selectively present in ventral parietal regions. However, the most compelling evidence in support

of an account based on intrinsic memory states comes from our use of pattern classification

analyses to index fluctuations between encoding and retrieval states. Strikingly, the pattern of

results we observed when memory states were decoded from attentional networks–even when

these states were fully independent from task instructions–was qualitatively identical to the

pattern of results we observed when considering explicit trial instructions (Figure 3D). The fact

that decoded memory states predicted shifts in content representations that were independent

of task instructions provides critical support for our argument that shifts in the cortical location of

content representations were not a product of differences in encoding versus retrieval tasks, but

of differences in intrinsic memory states. This point is important and relevant when considering

that biases toward memory encoding versus retrieval are often independent of any explicit task

demands15,16.

The fact that attentional networks, in particular, carried information about intrinsic memory

states is notable for several reasons. First, this finding complements recent evidence that

internal attention specifically involves interactions between attentional networks and the default

mode network (of which angular gyrus is a core component)25,47. Second, although we did not

observe differences across the attentional networks (FPCN, DAN, VAN) in terms of the degree

to which these networks predicted shifts in the cortical location of stimulus representations

(Figure 3C), we did observe a statistical dissociation between the attentional networks and the

visual network. Namely, memory states decoded from the visual network (when controlling for

trial instructions) did not predict cortical shifts in content representations (Figure 3C). Our inter-

pretation is that although the visual network supported robust classification of encode versus

retrieve trials (Figure 3A), this classification was at least partly driven by superficial differences

between the conditions (e.g., the visual word form of the instruction cue). In contrast, activity

patterns in the attentional networks were, putatively, less sensitive to superficial differences

between encode versus retrieve trials and more sensitive to intrinsic memory states. Third, and

relatedly, the fact that memory states decoded from attentional networks predicted cortical shifts

in content representations that were independent from actual trial instructions demonstrates that
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these networks were not simply tracking explicit task demands. This point is important in light

of evidence, in other contexts, that memory states decoded from frontoparietal regions can be

largely driven by explicit task demands26.

Taken together, our findings indicate that the cortical location of content representations is funda-

mentally determined by whether attention is internally oriented to memories or externally oriented

to current perceptual experience. These findings have important implications for understanding

how the memory system orchestrates the encoding of new experience with the retrieval of past

experience.
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Figure 1. Task Design. During List 1, subjects studied images of individual objects (e.g. bench, fan).
All List 1 objects were studied four times, across four unscanned runs. During List 2, subjects saw novel
objects that were from the same categories as the items shown in List 1 (e.g., a new bench, a new fan).
Preceding each List 2 object was an instruction cue: either “NEW” or “OLD.” The NEW cue signaled that
subjects were to encode the current item (e.g., the new bench). The OLD cue signaled that subjects
were to retrieve the corresponding item from List 1 (e.g., the old fan). We refer to these two trial types
as ‘encode instruction’ and ‘retrieve instruction,’ respectively. Each List 2 object was presented twice in
each of eight scanned runs. The instruction cue associated with each List 2 object remained consistent
throughout the experiment (always encode or always retrieve).
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Figure 2. Stimulus-specific representations across cortical regions as a function of instruction.
(A) Object representations were indexed by performing Pearson correlations between spatial patterns of
activity (beta values) from odd and even scan runs. Stimulus-specific representations were calculated
by subtracting the mean correlation between different objects (across-object correlations) from the mean
correlation between the same objects (within-object correlations). Across-object correlations were always
performed within instruction condition. (B) Stimulus-specific representations for each cortical location as
a function of instruction condition (encode = orange, retrieve = teal). (C) Difference in the strength of
stimulus-specific representations for encode vs. retrieve instruction trials, for three broad cortical regions
(visual, dorsal parietal, ventral parietal). Values toward the left (< 0) reflect stronger stimulus representa-
tions during retrieve trials; values toward the right (> 0) reflect stronger stimulus representations during
encode trials. Stimulus representations in ventral parietal regions were significantly stronger during re-
trieve than encode trials and exhibited a significantly stronger bias toward retrieval than did visual regions
(ventral parietal vs. visual: p = 0.0183) or dorsal parietal regions (ventral parietal vs. dorsal parietal: p =
0.0046). * p < 0.05. Error bars are standard error of the mean. See also Supplementary Figure S2.

Figure 3. Memory state decoding and stimulus-specific representations. (A) Cross-validated classi-
fication of encode vs. retrieve instruction trials in three attentional networks (FPCN, DAN, VAN) and the
visual network (VisN). Decoding was significantly above chance, as determined by permutation proce-
dures, in each network. (B) To assess stimulus-specific representations as a function of decoded state
(encoding, retrieval) while controlling for actual instruction (encode, retrieve), the twelve objects within
each instruction condition were median-split into ‘encoding state’ and ‘retrieval state’ groups according
to the relative strength of classifier evidence (see Methods). Note: although illustrated separately here,
encode instruction trials (top) and retrieve instruction trials (bottom) were randomly intermixed in the ex-
periment. (C) Biases in stimulus-specific representations (encoding state > retrieval state) in AnG and
VTC as a function of the network from which memory states were decoded, controlling for instruction
condition as described in (B). A shift in stimulus representations from VTC (relatively stronger during en-
coding state) to AnG (relatively stronger during retrieval state) was observed when memory states were
decoded from the attentional networks (FPCN, DAN, VAN), but not when they were decoded from the
visual network (VisN). (D) Stimulus-specific representations for encoding states > retrieval states are
shown averaged across the three attentional networks (FPCN, DAN, VAN) and are separated by actual
instruction (encode, orange; retrieve, green). We found a significant interaction between cortical location
(AnG, VTC) and decoded memory state (p = 0.0229), indicating that the cortical location of object repre-
sentations was predicted by memory states decoded from attentional networks. Error bars are standard
error of the mean. *** p < 0.001. See also Supplementary Figures S1 and S3.
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Figure 4. Medial temporal lobe stimulus representations and connectivity. (A) Difference in the
strength of stimulus-specific representations for encode vs. retrieve instruction trials in the hippocampus
(CA1, CA23/DG) and medial temporal lobe cortical regions (entorhinal cortex, ERC; perirhinal cortex,
PRC; parahippocampal cortex, PHC). Values toward the left (< 0) reflect stronger stimulus representations
during retrieve trials; values toward the right (> 0) reflect stronger stimulus representations during encode
trials. For the hippocampus and medial temporal lobe cortical regions, stimulus representations were
significantly stronger during retrieve than encode trials. (B) Difference in correlation (encode - retrieve
trials) between trial-level univariate responses in the hippocampus (CA1 and CA23DG) and in visual and
ventral parietal regions. Values toward the left (<0) reflect stronger correlations with the hippocampus
during retrieve than encode trials. Values toward the right (> 0) reflect stronger correlations with the
hippocampus during encode than retrieve trials. Error bars are standard error of the mean. See also
Supplementary Figure S4.
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STAR Methods

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Nicole Long (niclong@virginia.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The raw, de-identified data and the associated experimental and analysis codes used in this

study can be accessed via the Open Science Foundation (https://osf.io/fdnh7/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects

35 (22 female; mean age = 21 years, range: 18 - 28 years) right-handed, native English speakers

from the University of Oregon community participated. All subjects had normal or corrected-to-

normal vision. Informed consent was obtained in accordance with the University of Oregon

Institutional Review Board. Two subjects were excluded from the final dataset for excessive

head motion during scanning. Thus, data are reported for the remaining 33 subjects.
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METHOD DETAILS

Stimuli and Design

Overview. The experiment was divided into three phases: List 1, List 2, and Recognition Test.

List 1 and List 2 were completed while subjects were in the MRI scanner and the Recognition

Test was completed after subjects exited the scanner.

Stimuli. Stimuli consisted of 96 object images drawn from a database of categorized images48.

Four exemplars were drawn from each of 24 object categories (e.g., 4 images of benches).

For each subject, one exemplar from each object category served as a List 1 item, one as a

List 2 item, and the two remaining exemplars served as lures for the recognition phase. Object

condition assignment was randomly generated for each subject.

List 1. On each trial, subjects saw a single object presented for 2000 ms followed by a 500 ms

inter-stimulus interval (ISI; Figure 1). Subjects were instructed to study the presented object in

anticipation for a later memory test. Subjects completed 4 runs of List 1 trials with 24 objects per

run, yielding a total of 96 List 1 trials. List 1 was completed during the high-resolution anatomical

T1 scan (see below).

List 2. Each List 2 trial began with an instruction cue – either “OLD” or “NEW” – which was

presented for 1000 ms. The cue was followed by an object image for 2000 ms. All objects in

List 2 were non-identical exemplars drawn from identical categories as the objects presented

in the immediately preceding List 1. For example, if a subject saw a bench and a fan during

List 1, a different bench and a different fan would be presented during List 2. On trials with

a NEW instruction subjects were asked to encode the presented object. We refer to these

trials as ‘encode instruction’ trials throughout the manuscript. On trials with an OLD instruction,

subjects were asked to retrieve the categorically-identical item from the preceding List 1 (e.g.,
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the previously-encoded fan). We refer to these trials as ‘retrieve instruction’ trials throughout the

manuscript. Importantly, the design prevented subjects from completely ignoring List 2 items

following retrieve instructions because subjects could only identify the to-be-retrieved object by

processing the current List 2 item. Note: neither the encode or retrieve instructions required a

behavioral response from subjects. After each object image, there was a 5000 ms ISI during

which subjects made odd/even judgments, via button press, for two individually-presented

single-digit numbers.

The List 2 trials were distributed across 8 fMRI scan runs with 2 presentations of each of the

24 List 2 objects in each run, yielding a grand total of 16 repetitions for each List 2 object.

Within each run, each of the 24 objects was presented once, in random order, before the

2nd presentation of any of the objects (which was also in random order). The instruction cue

associated with each object was fixed across the entire List 2 phase (e.g. bench would always

be presented with the encode instruction and fan would always be presented with the retrieve

instruction). Of the 24 List 2 objects, half were associated with a retrieve instruction and half with

an encode instruction. Object-instruction pairings were randomly assigned for each subject.

Recognition Test. After exiting the scanner, subjects completed a forced-choice recognition test.

On each trial, subjects saw two exemplars from the same object category (e.g. two benches).

One object had previously been encountered either during List 1 or 2. The other object was a

lure and had not been presented during the experiment. Subjects selected (via mouse click)

the previously presented object. Subjects had 4000 ms to respond and all responses were

made within this time window. Trials were separated by a 1000 ms ISI. There were a total of

48 recognition trials (corresponding to the 24 List 1 items and 24 List 2 items). Note: List 1

and List 2 items never appeared in the same trial together, thus subjects never had to choose

between two previously presented items. List 1 and List 2 items were randomly intermixed in the

recognition test. Accuracy on the recognition test was 100% for every subject and is therefore

not analyzed further.
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fMRI Data Acquisition

Imaging data were collected on a Siemens 3T Skyra scanner at the Robert and Beverly Lewis

Center for NeuroImaging at the University of Oregon. Before the functional imaging, a whole-

brain high-resolution anatomical scan was conducted for each subject using a T1-weighted pro-

tocol (grid size 256 ⇥ 256; 176 sagittal slices; voxel size 1 ⇥ 1 ⇥ 1 mm). Next, a custom anatom-

ical T2 coronal scan was conducted for each subject (TR = 13,520 ms; TE = 88 ms; flip angle

= 150�; grid size 512 ⇥ 512; 65 contiguous slices oriented perpendicularly to the main axis of

the hippocampus; interleaved acquisition; FOV=220 mm; voxel size=0.4⇥0.4⇥2 mm; GRAPPA

factor=2;49). Prior to the List 2 phase, a resting state scan was conducted (not analyzed here).

Functional images were collected using a T2*-weighted multi-band accelerated EPI sequence

(TR = 2s; TE = 36ms; flip angle = 90�; grid size 124 ⇥ 124; 72 contiguous slices oriented parallel

to the hippocampus; voxel size 1.7 ⇥ 1.7 ⇥ 1.7 mm). Note: because our primary focus was on

visual and parietal cortices, we used a high-resolution protocol for functional images that prior-

itized spatial resolution in posterior regions over whole brain coverage. In particular, for most

subjects a small portion of superior frontal cortex was omitted from the functional scans. Eight

functional scans were collected, each consisting of 198 volumes. Following the eight functional

scans, we collected a second resting state scan (not analyzed here).

fMRI Data Analysis

All fMRI preprocessing was performed using fMRIPrep 1.4.050,51, which is based on Nipype

1.2.052,53.

Anatomical data preprocessing. The T1-weighted (T1w) image was corrected for intensity

non-uniformity with N4BiasFieldCorrection54, distributed with ANTs 2.2.055, and used as the

T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using OA-

SIS30ANTs as the target template. Brain tissue segmentation of cerebrospinal fluid (CSF),
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white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast

(FSL 5.0.9,56). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1,57) and the

brain mask generated from the T1w-reference was further refined using a custom variation

of Mindboggle’s method to reconcile ANTs-derived and FreeSurfer-derived segmentations

of the cortical gray-matter58. Volume-based spatial normalization to one standard space

(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration,

using brain-extracted versions of both the T1w reference and the T1w template. The following

template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template

version 2009c (59; TemplateFlow ID: MNI152NLin2009cAsym).

Functional data preprocessing. For each of the 8 functional runs per subject, the following

preprocessing was performed. First, a reference volume and its skull-stripped version were gen-

erated using a custom methodology of fMRIPrep. The BOLD reference was then co-registered

to the T1w reference using bbregister (FreeSurfer). Co-registration was configured with nine

degrees of freedom to account for distortions remaining in the BOLD reference. Head-motion

parameters with respect to the BOLD reference (transformation matrices, and six corresponding

rotation and translation parameters) were estimated before any spatiotemporal filtering using

mcflirt (FSL,60).

BOLD runs were slice-time corrected using 3dTshift from AFNI 2016020761. The BOLD time-

series were resampled to surfaces on the following spaces: fsnative, fsaverage. The BOLD

time-series (including slice-timing correction when applied) were resampled onto their original,

native space by applying a single, composite transform to correct for head-motion and suscepti-

bility distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD.

Several confounding time-series were calculated based on the preprocessed BOLD: framewise

displacement (FD), DVARS and three region-wise global signals. FD and DVARS were calcu-

lated for each functional run using their implementations in Nipype (following the definitions by62).

The three global signals were extracted within the CSF, the WM, and the whole-brain masks. Ad-

ditionally, a set of physiological regressors were extracted to allow for component-based noise
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correction (CompCor,63). Principal components were estimated after high-pass filtering the pre-

processed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two Comp-

Cor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components were

then calculated from the top 5% variable voxels within a mask covering the subcortical regions.

This subcortical mask was obtained by heavily eroding the brain mask, which ensures it does

not include cortical GM regions. For aCompCor, components were calculated within the inter-

section of the aforementioned mask and the union of CSF and WM masks calculated in T1w

space, after their projection to the native space of each functional run (using the inverse BOLD-

to-T1w transformation). Components were also calculated separately within the WM and CSF

masks. For each CompCor decomposition, the k components with the largest singular values

were retained, such that the retained components’ time series were sufficient to explain 50 per-

cent of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining

components were dropped from consideration. The head-motion estimates calculated in the

correction step were also placed within the corresponding confounds file. The confound time se-

ries derived from head motion estimates and global signals were expanded with the inclusion of

temporal derivatives and quadratic terms for each64. All resamplings were performed with a sin-

gle interpolation step by composing all the pertinent transformations (i.e. head-motion transform

matrices, susceptibility distortion correction when available, and co-registrations to anatomical

and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTrans-

forms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other

kernels65. Non-gridded (surface) resamplings were performed using mri vol2surf (FreeSurfer).

Network and region of interest selection

We decoded memory states in four previously-defined resting-state networks23. We focused

on three attentional networks (frontoparietal control network, FPCN; dorsal attention network,

DAN; ventral attention network, VAN) and the visual network (VisN). These networks have been

shown to represent both stimulus features and task goals24. The resting-state networks were

generated for each subject using their high-resolution anatomical image and the FreeSurfer
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cortical parcellation scheme (http://surfer.nmr.mgh.harvard.edu). The networks were then

co-registered to the functional data.

We assessed stimulus representations in eight regions of interest (ROIs): V1, lateral occipital

cortex (LO), ventral temporal cortex (VTC), posterior intraparietal sulcus (pIPS), dorsolateral

intraparietal sulcus (dLatIPS), ventral intraparietal sulcus (vIPS), angular gyrus (AnG), and

ventrolateral intraparietal sulcus (vLatIPS). These ROIs were generated in each subject’s native

space, following procedures described in our previous work11. Of particular note, the AnG

ROI was comprised of subcomponents of the default mode network, which was not one of the

networks from which memory states were decoded.

As in our prior study11, for some analyses we grouped the eight ROIs according to three broad

cortical regions: visual (V1, LO, VTC), dorsal parietal (pIPS, dLatIPS), and ventral parietal

(vIPS, AnG, vLatIPS). ROIs were first defined on the FreeSurfer average cortical surface and

then reverse-normalized to each subjects’ native anatomical surface. They were then projected

into the volume at the resolution of the functional data to produce binary masks.

For analyses that measured the cortical location of stimulus representations as a function

of decoded memory states, we focused on two specific cortical regions: AnG and VTC. We

selected these regions based on our previous work contrasting these specific regions20,27,28.

These regions were also minimally overlapping with the attentional networks from which memory

states were decoded. For AnG, 3.0% of the voxels in the ROI overlapped with FPCN, 6.5% with

DAN, and 0.06% with VAN. For VTC, 0.005% of the voxels overlapped with FPCN, 21.0% with

DAN, and 0% with VAN.

Using the automatic segmentation of hippocampal subfields (ASHS) machine learning toolbox66

applied to the T2 images, we extracted two hippocampal ROIs (CA1, CA23/DG) and three

extra-hippocampal medial temporal lobe ROIs (entorhinal cortex, ERC; perirhinal cortex, PRC;

22



parahippocampal cortex, PHC).

Univariate Analyses

Univariate data analyses were conducted under the assumptions of the general linear model

(GLM) using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). The model included regressors for every

List 2 trial (N = 384) as well as regressors for scan run and six motion parameters for each run.

Resulting trial-level beta values were used for both pattern similarity and pattern classification

analyses.

Pattern Similarity Analyses

Stimulus-specific representations were measured by pattern similarity analyses, following the

general procedures from a prior study11. From the GLM, we obtained a beta value for every

presentation (16 each) of the 24 List 2 items. These betas were separated according to odd vs.

even run numbers. We then averaged the betas for each object across all the even runs and,

separately, across all the odd runs. This resulted in a single, mean beta value for each object for

the odd runs and the even runs. We then computed the Fisher z-transformed Pearson correlation

between the spatial pattern of beta values, within a given ROI, for each pair of objects across odd

and even runs (i.e., a correlation matrix). Correlations between the odd/even runs were divided

into two groups: within-stimulus correlations and across-stimulus correlations. Within-stimulus

correlations (‘on-diagonal correlations’) refer to correlations between the same stimulus [e.g.,

r (odd run bench, even run bench)]. Across-stimulus correlations (‘off-diagonal correlations’)

refer to correlations between different stimuli [e.g., r (odd run bench, even run suitcase)]. Impor-

tantly, across-stimulus correlations were restricted to objects from the same instruction condition

(encode or retrieve). The average across-stimulus correlation within each instruction condition

functioned as a baseline and was subtracted from the average within-stimulus correlation within

each instruction condition to produce a measure of stimulus-specific information. Values greater

than 0 constituted positive evidence for stimulus-specific representations. Stimulus-specific in-
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formation was separately computed for each subject, ROI, and instruction cue (encode, retrieve).

Pattern classification analyses

Pattern classification analyses were performed using penalized (L2) logistic regression (penalty

parameter = 1), implemented via the sklearn module in Python and custom Python code. For

each subject, and for individual networks/ROIs, leave-one-run-out cross validation was per-

formed, using the 8 List 2 scan runs, to test whether encode/retrieve instruction trials could

be reliably decoded. Classifiers were trained/tested using the spatial pattern of beta values

within a specified network or ROI and classification was performed on a trial-by-trial basis. Clas-

sifier performance was assessed in two ways: classification accuracy and classifier evidence.

Classification accuracy represents the percentage of trials for which the correct label (encode or

retrieve) was assigned. Classification accuracy was used for general assessment of classifier

performance (i.e., whether instructions could be decoded). Classifier evidence was a continuous

value reflecting the logit-transformed probability that the classifier assigned to the correct label

for each trial. Classifier evidence was used as a trial-specific, continuous measure of mem-

ory states, and was only used for testing whether stimulus-specific representations varied as a

function of decoded memory states (as described in the following section).

Stimulus-specific representations as a function of decoded memory states

To test whether stimulus-specific representations (as measured by pattern similarity analyses)

varied as a function of decoded memory states (indexed by pattern classifiers), we divided the

24 objects into two groups according to the strength of classifier evidence (for an encoding

vs. retrieval state). This was performed in two ways. First, all of the 24 objects (regardless of

whether they were presented with an encode or retrieve instruction) were median split according

to the mean classifier evidence for an encoding state that they generated (averaged across

the 16 presentations of each object). Objects with mean encoding evidence greater than the

median were comprised the ‘encoding state’ group and objects with mean evidence less than
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the median comprised the ‘retrieval state’ group. Note: the rationale for using a median-split of

classifier evidence (as opposed to using the categorical label generated by the classifier) is that

the median-split approach ensured an equal number of trials in the encoding state and retrieval

state groups.

The second way in which we performed this analysis was identical except that the median split

was performed within each instruction condition (encode, retrieve) in order to control for the

actual instruction on each trial. Specifically, the 12 objects that were presented with an encode

instruction were median-split into ‘encoding state’ and ‘retrieval state’ groups according to the

relative strength of classifier evidence for an encoding state (above or below the median, re-

spectively). Likewise, the 12 objects presented with a retrieve instruction were also median-split

into ‘encoding state’ and ‘retrieval state’ groups. The encoding state groups were then averaged

across the two instruction conditions to create a single encoding state group. Likewise, the

retrieval state groups were averaged across the two instruction conditions to create a single

retrieval state group. The critical feature of this analysis approach is that the objects assigned

to each group contained an equal number of trials from each instruction condition. Thus, the

encoding state and retrieval state groups differed with respect to the relative strength of classifier

evidence for encoding vs. retrieval, but they did not differ with respect to the proportion of trials

associated with an encode vs. retrieve instruction.

For both versions of this analyses, within-stimulus and across-stimulus pattern similarity analy-

ses were performed for each group (encoding state and retrieval state), following the same pro-

cedures described above (see Pattern Similarity Analyses). This yielded a measure of stimulus-

specific representations (within-stimulus � across-stimulus) as a function of decoded memory

state.
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Cross-region correlation analyses

To test whether activation in hippocampal regions was differentially correlated with activation

in visual and parietal cortical regions as a function of encode versus retrieve instructions, we

extracted trial-level univariate beta values from CA1 and CA23/DG and from the three visual

cortical ROIs (V1, LO, VTC) and the three ventral parietal ROIS (vIPS, AnG, vLatIPS). The beta

values from each of the hippocampal ROIs were then correlated with beta values from each

visual/parietal ROI, separately for encode and retrieve trials. The resulting Pearson’s r values

were Fisher Z transformed and subtracted (encode - retrieve), resulting in a single zRho value

for each hippocampal-cortical ROI pair and for each subject.

QUANTIFICATION AND STATISTICAL ANALYSIS

Repeated measures ANOVAs were used to assess stimulus-specific representations as a func-

tion of stimulus location (AnG, VTC) and as a function of either instruction or decoded state

(encoding, retrieval). Paired samples t-tests were also used for follow-up analyses of these

data. Classification accuracy was compared to chance performance using permutation tests.

Specifically, for each subject and network/ROI, the condition labels (encode or retrieve) were

shuffled and classification accuracy was then computed. This was repeated 1000 times for each

subject and network/ROI. The mean of these 1000 values was used as an empirically-derived,

subject-specific measure of chance performance. Paired samples t-tests were used to compare

the true (unshuffled) accuracies to the means of the shuffled accuracies.
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M., Neto, E. C., et al. Mindboggling morphometry of human brains. PLOS Computational

Biology, 13(2), 2017.

32



59 Fonov, V., Evans, A., McKinstry, R., Almli, C., and Collins, D. Unbiased nonlinear average age-

appropriate brain templates from birth to adulthood. NeuroImage, 47, Supplement 1:S102,

2009.

60 Jenkinson, M., Bannister, P., Brady, M., and Smith, S. Improved optimization for the robust and

accurate linear registration and motion correction of brain images. NeuroImage, 17(2):825–

841, 2002.

61 Cox, R. W. and Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR in

Biomedicine, 10:171–178, 1997.

62 Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., and Petersen, S. E.

Methods to detect, characterize, and remove motion artifact in resting state fmri. NeuroImage,

84:320–341, 2014.

63 Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. A component based noise correction method

(CompCor) for BOLD and perfusion based fmri. NeuroImage, 37:90–101, 2007.

64 Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E.,

Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., et al. An improved framework for

confound regression and filtering for control of motion artifact in the preprocessing of resting-

state functional connectivity data. NeuroImage, 64:240–256, 2013.

65 Lanczos, C. Evaluation of noisy data. Journal of the Society for Industrial and Applied Mathe-

matics Series B Numerical Analysis, 1(1):76–85, 1964.

66 Yushkevich, P. A., Pluta, J. B., Wang, H., Xie, L., Ding, S.-L., Gertje, E. C., Mancuso, L. E.,

Kliot, D., Das, S. R., and Wolka, D. A. Automated volumetry and regional thickness analysis

of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment.

Human Brain Mapping, 36:258–287, 2014.

33



KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 
Raw data, experiment codes, 
analysis codes 

Open Science Foundation https://osf.io/fdnh7/ 

Software and Algorithms 
fMRIPrep 1.4.0 50,51 SCR_016216 
Nipype 1.2.0 52,53 SCR_002502 
ANTs 2.2.0 55 SCR_004757 
FSL 5.0.9 56 SCR_002823 
FreeSurfer 6.0.1 57 SCR_001847 
MindBoggle 58 SCR_002438 
ICBM 152 Nonlinear 
Asymmetrical template version 
2009c 

59 SCR_008796 

AFNI 20160207 61 SCR_005927 
SPM 12 Wellcome Department of Cognitive 

Neurology, London, United 
Kingdom 

https://www.fil.ion.ucl.ac.uk/spm/ 
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Figure S1. Stimulus-specific representations across angular gyrus and ventral temporal cortex.
Related to Figure 3. (A) Stimulus-specific representations for each cortical location (angular gyrus, AnG;
ventral temporal cortex, VTC) as a function of instruction (encode instruction = orange, retrieve instruction
= teal). The interaction between cortical location and instruction was significant (F 1,32 = 5.022, p =
0.0321). (B) Stimulus-specific representations for each cortical location as a function of memory state
decoded from the attentional networks (encoding state = orange, retrieval state = teal), not controlling for
actual instruction. As reported in the main text, the interaction between cortical location and decoded state
was significant (p < 0.01) (C) Stimulus-specific representations for each cortical location as a function of
memory state decoded from the attentional networks (encoding state = orange, retrieval state = teal),
controlling for actual instruction. As reported in the main text, the interaction between cortical location and
decoded state was significant (p < 0.05) (D) Stimulus-specific representations for each cortical location
as a function of memory state decoded from the attentional networks (encoding state = orange, retrieval
state = teal), separated by actual instruction (encode, retrieve). The interaction between cortical location
and decoded memory state did not further interact with instruction condition (p = 0.613). Error bars are
standard error of the mean.
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Figure S2. Univariate effects across cortical locations. Related to Figure 2. (A) Mean beta values
for each of the eight visual and parietal ROIs as a function of instruction condition (encode instruction =
orange, retrieve instruction = teal). A significant difference between instruction conditions was observed
in LO (encode > retrieve: t32 = 2.142, p = 0.0399) and dLatIPS (retrieve > encode: t32 = 3.166, p =
0.0034). (B) Difference in mean beta values as a function of instruction condition (encode retrieve) for
each of three broad cortical regions (visual [V1, LO, VTC]; dorsal parietal [pIPS, dLatIPS]; ventral parietal
[vLatIPS, AnG, vIPS]). Beta values did not differ for encode vs. retrieve trials in either the visual or ventral
parietal regions (t ’s < 1.3, p’s > 0.20). Beta values were significantly greater for retrieve compared
to encode trials in the dorsal parietal region (t32 = 3.166, p = 0.0034). (C) Correlation between the
mean beta value and the strength of stimulus-specific representation for each stimulus within each of the
eight visual and parietal ROIs, separated by instruction condition (encode instruction = orange, retrieve
instruction = teal). Significant correlations indicate that the strength of the univariate response for a given
stimulus was related to the strength of the stimulus-specific representation. * p < 0.05; ** p < 0.01; *** p
< 0.001.
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Figure S3. Effects of encode versus retrieve trials across cortical networks. Related to Figure 3.
(A) Difference in univariate response (mean beta values) for encode minus retrieve instruction trials in four
a priori cortical networks (frontoparietal control network, FPCN; dorsal attention network, DAN; ventral
attention network; VAN, visual network VisN). Beta values were significantly greater for retrieve compared
to encode instruction trials in FPCN, DAN, and VAN (t ’s > 2, p’s < 0.05). (B) 17 cortical sub-networks
from Yeo et al., 2011 (C) Cross-validated classification accuracy of encode vs. retrieve instruction trials
across the 17 cortical sub-networks. 1000 voxels from each network were randomly sampled over 100
iterations to match the number of voxels across networks. Decoding accuracy was significantly above
chance (50%), without correction for multiple comparisons, in all networks (t ’s > 3, p’s < 0.01) except
Network 10 (t32 = 1.6965, p = 0.0995) and Network 9 (t32 = 0.6672, p = 0.5094). (D) Difference in beta
values for encode minus retrieve instruction trials across the 17 cortical sub-networks. Beta values were
significantly greater for encode compared to retrieve trials in N1 (p = 0.0334) and significantly greater for
retrieve compared to encode instruction trials in N8 (p = 0.02) and N12 (p = 0.0004). ⇠ p < 0.1; * p <
0.05; ** p < 0.01; *** p < 0.001.
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Figure S4. Effects of encode versus retrieve trials in the medial temporal lobes. Related to Figure
4. (A) Univariate responses (mean beta values) for two hippocampal regions (CA1, CA23DG) and three
medial temporal lobe cortical regions [entorhinal cortex (ERC), perirhinal cortex (PRC), parahippocampal
cortex (PHC)] as a function of instruction condition (encode instruction = orange, retrieve instruction =
teal). None of the ROIs exhibited a significant difference between encode and retrieve trials (t ’s < 1.65,
p’s > 0.10). (B) Cross-validated classification of encode vs. retrieve instruction trials for the hippocampal
and medial temporal lobe cortical regions. Classification accuracy was not above chance (50%) for any
of the ROIs (t ’s < 1.2, p’s > 0.30).


