
Diversity in Kemeny Rank Aggregation:
A Parameterized Approach

Emmanuel Arrighi1 , Henning Fernau2 , Daniel Lokshtanov3

Mateus de Oliveira Oliveira1 , Petra Wolf 2

1University of Bergen, Norway
2University of Trier, Germany

3University of California Santa Barbara, CA, USA
{emmanuel.arrighi, mateus.oliveira}@uib.no, {fernau, wolfp}@informatik.uni-trier.de,

{daniello}@ucsb.edu

Abstract
In its most traditional setting, the main concern of
optimization theory is the search for optimal solu-
tions for instances of a given computational prob-
lem. A recent trend of research in artificial intelli-
gence, called solution diversity, has focused on the
development of notions of optimality that may be
more appropriate in settings where subjectivity is
essential. The idea is instead of aiming at the devel-
opment of algorithms that output a single optimal
solution, the goal is to investigate algorithms out-
putting a small set of sufficiently good solutions that
are sufficiently diverse from one another. This way,
the user has the opportunity to choose the solution
being most appropriate to the context at hand. It
also displays the richness of the solution space.
When combined with techniques from parameter-
ized complexity theory, the paradigm of diversity
of solutions offers a powerful algorithmic frame-
work to address problems of practical relevance. In
this work, we investigate the impact of this com-
bination in the field of Kemeny Rank Aggregation,
a well-studied class of problems lying in the inter-
section of order theory and social choice theory and
also in the field of order theory itself. In particular,
we show that the Kemeny Rank Aggregation prob-
lem is fixed-parameter tractable with respect to nat-
ural parameters providing natural formalizations of
the notions of diversity and of the notion of a suffi-
ciently good solution. Our main results work both
when considering the traditional setting of aggre-
gation over linearly ordered votes, and in the more
general setting where votes are partially ordered.

1 Introduction
Traditionally, in optimization theory, when given an instance
of a computational problem, one is interested in computing
some optimal solution for the instance in question. For cer-
tain problems of practical relevance, this framework may not
be satisfactory because it precludes the user from the pos-
sibility of choosing among optimal solutions in case more

than one exists, or from choosing a slightly less optimal solu-
tion that may be a better fit for the intended application, due
to subjective factors. A recent upcoming trend of research
in artificial intelligence, called diversity of solutions [Petit
and Trapp, 2019; Baste et al., 2020; Ingmar et al., 2020;
Baste et al., 2019; Fomin et al., 2020], has focused on the
development of notions of optimality that may be more ap-
propriate in settings where subjectivity is essential. The idea
is that instead of aiming at the development of algorithms that
output a single optimal solution, the goal is to investigate al-
gorithms that output a small set of sufficiently good solutions
that are sufficiently diverse from one another. In this way, the
user has the opportunity to choose the solution that is most
appropriate to the context at hand. The intuition is that the
criteria employed by the user to decide what an appropriate
solution is may be subjective, and therefore, impractical or
even impossible to be formalized at the level of the problem
specification. Examples of such criteria are aesthetic, eco-
nomic, political, or environmental criteria. Another motiva-
tion comes from the problem of finding several good commit-
tees such that each committee member is not overloaded with
commitments, as described in [Bredereck et al., 2020]; again,
some diversity could be helpful.

One source of difficulty when trying to develop efficient
algorithms for diverse variants of computational problems is
the fact that these problems may be computationally hard.
In particular, many interesting computational problems that
are suitable for being studied from the perspective of diver-
sity of solutions are already NP-hard in the usual variant in
which one asks for a single solution. Additionally, it may be
the case that even problems that are polynomial-time solvable
in the single-solution version become NP-hard when consid-
ering diverse sets of solutions. One way to circumvent this
difficulty is to combine the framework of diversity of solu-
tions with the framework of fixed-parameter tractability the-
ory [Downey and Fellows, 1999]. A central notion in this
framework is the one of fixed-parameter tractability. An al-
gorithm for a given computational problem is said to be fixed-
parameter tractable with respect to parameters k1, . . . , kr if it
runs in time f(k1, . . . , kr) · nO(1), where n is the size of the
input and f is a computable function that depends only on the
parameters. The intuition is that if the range of the parameters
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is small on instances of practical relevance, then even if the
function f grows relatively fast, the algorithm can be consid-
ered to be fast enough for practical purposes.

When studying a given computational problem from the
point of view of solution diversity, it is crucial to have in
hands a notion of distance between solutions for that prob-
lem. The diversity of a set of solutions S is then defined as the
sum of distances between pairs of solutions in S. We denote
this measure by d. Intuitively, diversity is a global measure
for how representative a set of solutions is among the space
of solutions. Three natural parameters can be used to quan-
tify how good a diverse set of solutions is: the number r of
solutions in the set, the maximum distance δ between the cost
of a solution in the set and the cost of an optimal solution (we
call this parameter the solution imperfection of the set), and
the minimum required distance s between any two solutions
in the set. This last parameter is also known in the literature
as the scatteredness of S [Galle, 1989].

In this work, we investigate the impact of the notions of di-
versity of solutions and of fixed parameter tractability theory
in the context of social choice theory. In particular, we focus
on the framework of preference list aggregation introduced by
Kemeny in the late fifties [Kemeny, 1959]. Intuitively, prefer-
ence lists are a formalism used in social choice theory to cap-
ture information about choice in applications involving the
selection of candidates, products, etc. by a group of voters.
The task is then to find a ranking of the candidates that maxi-
mizes the overall satisfaction among the voters. This problem
is commonly referred to in modern terminology as the Ke-
meny rank aggregation (KRA) problem. In its most general
setting, the ranking cast by each voter is a partial order on the
set of candidates. The distance measure we use to define our
diverse version for KRA is the Kendall-Tau distance which is
widely used in the context of preference aggregation. Its pop-
ularity is underlined by articles describing these issues for the
interested public audience; see [Farkas and Timotity, 2019].

Our main result is a multi-parametric algorithm for DI-
VERSE KRA over partially ordered votes that runs in time
f(w, r, δ, s) · d · n · log(n2 · m), where n is the number of
candidates, m is the number of votes, r, δ, s and d are the pa-
rameters discussed above, and w is the unanimity width of
the votes. That is to say, the pathwidth of the cocomparabil-
ity graph of the unanimity order of the input votes (Corol-
lary 11). Intuitively, this width measure is a quantification of
the amount of disagreement between votes. Note that path-
width and treewidth coincide for the class of cocomparability
graphs [Habib and Möhring, 1994].

On the path towards obtaining our results for Kemeny
Rank Aggregation, we also make contributions to problems
of independent interest arising in the theory of cocompara-
bility graphs. First, by leveraging on classic results from
[Habib and Möhring, 1994], we show that the problem of
constructing a ρ-consistent path decomposition of approxi-
mately minimum width for the cocomparability graph Gρ of
a given partial-order ρ is fixed-parameter tractable with re-
spect to the pathwidth of Gρ. While it was known that the
pathwidth and the ρ-consistent pathwidth of Gρ are always
the same [Arrighi et al., 2020], and fixed-parameter tractable
algorithms for computing path decompositions of approxi-

mately minimum width exists due to structural properties of
cocomparability graphs [Bouchitté et al., 2004], the problem
of computing such a decomposition satisfying the additional
ρ-consistent requirement was open [Arrighi et al., 2020].

Second, we note that the notion of Kendall-Tau distance
between partial orders (formally defined in Section 3), which
is used to define our notion of diversity, can be applied
equally well in the more general context of the COMPLE-
TION OF AN ORDERING problem (CO), a problem of funda-
mental importance in order theory that unifies several prob-
lems of relevance for artificial intelligence, such as KRA,
ONE-SIDED CROSSING MINIMIZATION (an important sub-
routine used in the search for good hierarchical representa-
tions of graphs), and GROUPING BY SWAPPING (a relevant
problem in the field of memory management) [Wong and
Reingold, 1991]. For a matter of generality, we first develop a
f(w, r, δ, s)·d·n·log(n2·m) time algorithm for DIVERSE CO
(Theorem 10) and then obtain our main result for DIVERSE
KRA as a corollary. In the more general context of CO, the
parameter w is the width of the cocomparability graph of the
partial order given at the input.

Finally, building on recent advances in the theory of Ck-
free graphs [Chudnovsky et al., 2020] we establish an up-
per bound for the pathwidth of a cocomparability graph in
terms of the number of edges of the graph. As a by-product
of this result, we obtain the first algorithm running in time
O∗(2O(

√
k)) (Theorem 12) for the positive completion of an

ordering problem (PCO), a special case of CO which still
generalizes KRA and other important combinatorial prob-
lems. Previous to our work, the best algorithm for this prob-
lem parameterized by cost had asymptotic time complexity
O∗(kO(

√
k)) = O∗(2

√
k log k). We remove the log-factor in

the exponent; according to Thm. 18 in [Arrighi et al., 2020]
this is optimal under ETH (Exponential Time Hypothesis).

2 Preliminaries
If n is a positive integer, [n] = {1, . . . , n} denotes the dis-
crete interval of the first n positive integers, and [n]0 =
[n] ∪ {0}. N denotes the non-negative integers.

Let C be a set. A partial order over C is a reflexive, anti-
symmetric and transitive binary relation ρ ⊆ C × C. We say
that ρ is a linear order if additionally, for each (x, y) ∈ C×C,
either (x, y) ∈ ρ or (y, x) ∈ ρ. The comparability relation
sc(ρ) of ρ is the symmetric closure of ρ, i.e., (x, y) ∈ sc(ρ)
iff (x, y) ∈ ρ or (y, x) ∈ ρ. For instance, sc(ρ) = C × C iff
ρ is a linear order. If ρ ⊆ C×C is a partial order, then<ρ de-
notes the corresponding strict order, which is irreflexive and
transitive. Linear orders over C can be given by bijections
π : [|C|] → C. Hence, <π (or ≤π) is used to denote the
corresponding strict (or partial) linear order. Given a binary
relation α, we denote by tc(α) the transitive closure of α.

Definition 1 (Cocomparability graph (F1)). Given a partial
order ρ ⊆ C × C, we let Gρ =̇ (C,C × C \ sc(ρ)) be the
cocomparability graph of ρ.

Given an undirected graphG = (V,E) and a vertex v ∈ V ,
we let N(v) =̇ {u | u ∈ V, (v, u) ∈ E} be the neighborhood
of v. A path decomposition of a graph G = (V,E) is a se-
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quence P = (B1, B2, . . . , Bl) of subsets of V , such that the
following conditions are satisfied.

•
⋃

1≤i≤lBi = V .

• For each edge (u, v) ∈ E, there is an i ∈ [l] such that
u, v ∈ Bi.

• For each i, j, k ∈ [l] with i < j < k, Bi
⋂
Bk ⊆ Bj .

For each position p ∈ {2, . . . , l}, for each vertex v ∈ Bp \
Bp−1, we say that Bp introduces v (v is introduced by Bp)
and for each vertex v ∈ Bp−1 \Bp, we say that Bp forgets v
(v is forgotten byBp). For a position p ∈ {1, . . . , l}, we write
intro(p) (resp. forg(p)) for the set of all vertices introduced
(resp. forgotten) by Bp, and we let Lp =

⋃
1≤i≤p forg(p) be

the set of vertices that have been forgotten up to position p.
The width of P is defined as w(P) = maxi∈[l] |Bi| − 1. The
pathwidth, pw(G), of G is the minimum width of a path de-
composition of G.

The pathwidth of the cocomparability graph of a partial or-
der may be regarded as a measure of how close the order is
from being a linear order. The cocomparability graph of a
linear order τ on n elements is the graph with n vertices and
no edges. This graph has pathwidth 0. On the other hand, if τ
is a partial order where all n elements are unrelated, then the
cocomparability graph of τ is the n-clique, which has path-
width n − 1 (the highest possible pathwidth in an n-vertex
graph).

3 The Kemeny Rank Aggregation Problem
Let C be a finite set, which in this paper will denote a set of
candidates, or alternatives. A partial vote over C is a partial
order over C. The KT-distance between two partial votes π1
and π2, denoted by KT-dist(π1, π2), is the number of pairs of
candidates that are ordered differently in the two partial votes:
KT-dist(π1, π2) = |{(c, c′) ∈ C×C | c <π1

c′∧c′ <π2
c}| .

Observe that when the votes are totally ordered, the
Kendall-Tau distance can be seen as the ‘bubble sort’ dis-
tance, i.e., the number of pairwise adjacent transpositions
needed to transform one linear order into the other. Given a
linear order π over a set of candidates C and a set Π of votes
over C, the Kemeny score of π with respect to Π is defined
as the sum of the Kendall-Tau distances between π and each
vote in Π. In this work, we consider the following problem.
Problem name: KEMENY RANK AGGREGATION (KRA)
Given: A list of partial votes Π over a set of candidates C,
a non-negative integer k.
Output: Is there a linear order π on C such that the sum of
the KT-distances of π from all the partial votes is ≤ k?

Hence, given partial votes π1, . . . , πm of C and a non-
negative integer k, the question is if there exists a linear order
π ⊆ C × C such that

∑m
i=1 KT-dist(π, πi) ≤ k .

Definition 2. Given a set Π of partial votes, the unanimity
order of Π is simply the partial order ρ obtained as the inter-
section of all partial orders in Π. In other words, a candidate
c1 has higher precedence than a candidate c2 in ρ if and only
if c1 precedes c2 in each vote in Π.

As a consequence, the more disagreements there are among
the voters with respect to the relative orders of pairs of can-
didates, the denser the cocomparability graph of ρ will be
and therefore the greater its pathwidth will be. Therefore, the
pathwidth of the cocomparability graph of the unanimity or-
der of Π may be seen as a quantification of the amount of
disagreement among the votes in Π.

The notion of diversity of solutions for computationally
hard problems has been considered under a variety of frame-
works. In this work, we define a notion of diversity for the
KEMENY RANK AGGREGATION problem which is analo-
gous to the notion of diversity of vertex sets used in [Baste
et al., 2020]. More precisely, if R is a set of partial or-
ders, then we define the Kendall-Tau diversity of R as the
sum of Kendall-Tau distances between votes in the set R.
KT-Div(R) =

∑
π1,π2∈R KT-dist(π1, π2).

We note that the restricted version of the KRA problem
where all votes are linear orders, the requirements that a set of
solutions is at the same time diverse and only contains rank-
ings with small Kemeny score are clashing. The problem is
that the very existence of two distinct rankings with small Ke-
meny score is an impossible task. If two candidates c1 and c2
occur with the order (c1, c2) in one of the solutions and in the
order (c2, c1) in the other solution, then at least one of these
solutions will have a Kemeny score of at least half the num-
ber of votes. However this opposition between diversity and
small Kemeny score is not present in the setting where votes
are allowed to be partial. The generalization to partial votes
is one possible way to circumvent this conflict of desiderata.
Another way we will be looking at is not to consider the cost
of the solutions directly but the difference between the cost
of solutions and the cost of an optimal solution. In this case,
we can have diversity and a small difference between the cost
and the cost of an optimal solution.
Problem name: DIVERSE KEMENY RANK AGGREGA-
TION (DIVERSE-KRA)
Given: A list of partial votes Π over a set of candidates C,
and k, r, d ∈ N.
Output: Is there a setR = {π1, . . . , πr} of linear orders on
C such that the Kemeny score for each order πi is at most
k and KT-Div(R) ≥ d?

The problem KEMENY RANK AGGREGATION is known
to be NP-complete [Bartholdi et al., 1989], even if only four
votes are given at the input [Dwork et al., 2001]. For this rea-
son, KRA has been studied from the perspective of param-
eterized complexity theory under a variety of parameteriza-
tions. Below, we consider two prominent parameterizations
for this problem.

The first parameter we consider is the cost of a solu-
tion. Simjour [2009] obtained an algorithm for the prob-
lem that runs in time O∗(1.403k). There are also sub-
exponential algorithms for KEMENY RANK AGGREGATION
under this parameterization: Karpinski and Schudy [Karpin-
ski and Schudy, 2010] obtained an algorithm for KEMENY

RANK AGGREGATION that runs in O∗(2O(
√
k)) time, while

the algorithm of Fernau et al. [Fernau et al., 2011; Fer-
nau et al., 2014], based on a different methodology, runs in
O∗(kO(

√
k)) time. Recently, in [Arrighi et al., 2020], it was

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

12



shown that KRA on instances with only m = 4 votes on
some candidate set C and some integer k bounding the sum
of the Kendall-Tau distances to a solution cannot be solved
neither in time O∗

(
2o(|C|)

)
nor in time O∗

(
2o(
√
k)
)

, un-
less ETH fails. The mentioned NP-hardness of KRA im-
mediately translates to NP-hardness results of KRA and of
DIVERSE-KRA, in the latter case by setting r = 1 and d = 0.

The second parameter we consider is the unanimity width
of the set of votes, which is based on the notion of unanim-
ity order of a set of votes [Charon and Hudry, 2007]. The
unanimity width of Π is defined as the pathwidth of the co-
comparability graph of ρ.

4 Completion of an Ordering
In this section, we will introduce the COMPLETION OF AN
ORDERING problem, a generalization of the POSITIVE COM-
PLETION OF AN ORDERING (PCO) problem originally con-
sidered in [Dujmovic et al., 2003, Sec. 8] and [Fernau, 2005,
Sec. 6.4].
Problem name: COMPLETION OF AN ORDERING (CO)
Given: A partial order ρ ⊆ C × C over a set C, a cost
function c : C × C → N, and some k ∈ N.
Output: Is there a linear order τ ⊇ ρ with c(τ \ ρ) =∑

(x,y)∈τ\ρ c(x, y) ≤ k?

Intuitively, given a partial order ρ and a cost function c,
the goal is to find a linear extension of ρ incurring a cost of
at most k. The only difference between CO and the original
PCO problem introduced in [Dujmovic et al., 2003; Fernau,
2005] is that, in the latter, for every pair (x, y) ∈ C × C
such that x and y are incomparable in ρ, the cost of (x, y) is
strictly positive (c(x, y) > 0) whereas in CO, the cost can be
zero (c(x, y) = 0).

We note that the notion of Kendall-Tau diversity introduced
in Section 3 can also be used as a notion of diversity for CO,
i.e., given a set R of (not necessarily optimal) solutions for a
given instance (ρ, c) of CO, we let KT-Div(R) be the diver-
sity of this set.
Problem name: DIVERSE COMPLETION OF AN ORDER-
ING (DIVERSE-CO)
Given: A partial order ρ ⊆ C×C over a set C, a cost func-
tion c : C × C → N, and non-negative integers k, r, d ∈ N.
Output: Is there a set R = {τ1, . . . , τr} of linear exten-
sions of ρ such that c(τi \ ρ) ≤ k for each i ∈ [r], and
KT-Div(R) ≥ d ?

Next, we give a rather straightforward reduction from
KRA to CO. Given an instance (Π, C) of KRA with partial
votes Π = (π1, . . . , πm) and candidates C = {c1, . . . , cn},
we construct an instance (ρ, c) of CO by letting ρ be the
unanimity order of Π, and by defining the cost function
c : C × C → N as follows. For every pair of candidates
(c, c′), we define its cost, c(c, c′), as the number of votes that
order c′ before c. More formally, c(c, c′) = |{i ∈ [m] |
c′ <πi c}|. With this reduction, it is straightforward to check
that a given linear order π of the candidates has Kemeny score∑m
i=1 KT-dist(π, πi) =

∑n
j=1

∑n
k=1 c(ck, cj)[ck <π cj ].

Here, for a logical proposition p, we use the bracket nota-
tion [p] to denote the integer 1 if p is true the integer 0 if p is

false. In other words,
∑m
i=1 KT-dist(π, πi) is the cost of π

as a linear extension of the ordering ρ.
It is important to note that if all votes in Π are linear orders

then (ρ, c) is actually an instance of PCO. In other words, if
two candidates c and c′ are incomparable in the unanimity or-
der, then the cost assigned by c to both pairs (c, c′) and (c′, c)
are strictly positive. This property will be used crucially in
the development of our sub-exponential time algorithm for
KRA parameterized by cost.

We also note that since our reduction is solution preserving,
it is also immediate that it is diversity preserving. In other
words, R is a set of solutions of diversity d for an instance of
KRA if and only if it is also a set of solutions of diversity d
for the corresponding instance of CO.

5 Diverse CO Parameterized by Pathwidth
In this section, we devise a fixed parameter tractable algo-
rithm for DIVERSE CO parameterized by solution imperfec-
tion, number of solutions, scatteredness, and pathwidth of the
cocomparability graph of the input instance. Given our re-
duction that preserves solution and parameters from KRA to
CO introduced in Section 4, this algorithm immediately im-
plies that DIVERSE KRA is fixed parameter tractable when
parameterized by solution imperfection, number of solutions,
scatteredness, and unanimity width.

We start by defining a suitable notion of consistency be-
tween a path decomposition and a given partial order. Let
G = (C,E) be a graph and ρ ⊆ C × C be a partial or-
der on the vertices of G. We say that a path decomposition
D = (B1, . . . , Bl) is ρ-consistent if there is no pair of ver-
tices (x, y) ∈ ρ such that

max({i ∈ [l] | y ∈ Bi}) < min({i ∈ [l] | x ∈ Bi}).
In other words, if x is smaller than y in ρ, then y cannot be
forgotten in D before x is introduced in D. The ρ-consistent
pathwidth ofG, denoted by cpw(G, ρ), is the minimum width
of a ρ-consistent path decomposition of G.

It has been shown recently that for any partial order ρ ⊆
C × C, the pathwidth of the cocomparability graph Gρ is
equal to the consistent pathwidth of Gρ [Arrighi et al., 2020].
The proof of this result was based on the fact that the consis-
tent pathwidth of a cocomparability graph of a partial order is
equal to the interval width of the order [Habib and Möhring,
1994]. Nevertheless, the problem of constructing, or even
approximating, a minimum-width consistent path decompo-
sition in FPT time was left open in [Arrighi et al., 2020].

By taking a closer look at the theory of cocomparability
graphs, we solve this open problem in a constructive way.
More precisely, in Lemma 3 we show that for any partial or-
der ρ, one can construct a ρ-consistent path decomposition
of the cocomparability graph Gρ in fixed-parameter tractable
time parameterized by the pathwidth of the graph Gρ.
Lemma 3. Let ρ ⊆ C × C be a partial order and Gρ be the
cocomparability graph of ρ. Then one can construct a nice ρ-
consistent path decomposition P of Gρ of width O(pw(Gρ))

in time 2O(pw(Gρ)) · |C|.
Let ρ be a partial order and P = (B1, B2, . . . , Bl) be a

ρ-consistent path decomposition of Gρ of width w. For each
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p ∈ [l], let Pp be the set of pairs of the form (S, τ) where
S is a subset of Bp that contains vertices introduced by Bp
(intro(p) ⊆ S ⊆ Bp), τ ⊇ ρ|S is a linear extension of the
restriction ρ|S =̇ S × S ∩ ρ of ρ to S.

Definition 4. Let p ∈ [l], δ ∈ N, and f : Pp → N. Then,
we let Tp(f, δ) be the set of all triples of the form (S, τ, γ),
where (S, τ) ∈ Pp and f(S, τ) ≤ γ ≤ f(S, τ) + δ.

Intuitively, the function f will be used by our dynamic pro-
gramming algorithm to record the optimal values of partial
solutions at each bag Bp when processing the path decompo-
sition from left to right (see Theorem 8 and Theorem 10) and
δ will be the allowed solution imperfection. In the case of a
unique solution, this value will be 0 but this parameter will
be useful in the diverse case as we allow sub-optimal linear
extensions. A partial solution up to the p-th bag is a linear
order σ of

⋃
j≤pBj . Vertices that will be introduced in fu-

ture bags can be inserted in σ, to extend it, only after vertices
already forgotten in the p-th bag. If u will be introduced in
a future bag and v is in some Bj but not in Bp, then by con-
sistency of the path decomposition with respect to ρ, we have
v <ρ u. Therefore, in Bp, we only need to remember the
“last” part of σ, which are the vertices that are inBp and after
all forgotten vertices in σ.

Remark 5. For each p ∈ [l], f : Pp → N and δ ∈ N, the size
of Tp(f, δ) is bounded by e · (δ + 1) · (w +1)!.

For each p ∈ [l − 1], f : Pp → N and δ ∈ N, we say
that a triple (S, τ, γ) ∈ Tp(f, δ) is compatible with a triple
(S′, τ ′, γ′) ∈ Tp+1(f, δ) if the following conditions hold.

C1 Let v = maxτ (S ∩ forg(p+ 1)) be the maximum vertex
of S forgotten by Bp+1 according to the linear order τ .
Then, we have the following equality S′ = intro(p+1)∪
{u ∈ S | v <τ u}. This means that one can build S′
from S by removing all vertices that are either forgotten
byBp+1 or smaller than some vertex forgotten byBp+1,
and subsequently, by adding all vertices that have been
introduced by Bp+1.

C2 τ |S∩S′ = τ ′|S∩S′ , i.e., τ and τ ′ agree on S ∩ S′.
C3 γ′ = γ +

∑
v∈intro(p+1)(

∑
u∈S′,u<τ′v

c(u, v) +∑
u∈S∩S′,v<τ′u

c(v, u) +
∑
u∈Bp+1\S′ c(u, v)). To

compute γ′, we add to γ the cost of adding the intro-
duced vertices in the order. The first two terms com-
pute the cost of each new vertex in τ ′ and the last one
computes the cost of placing the new vertices after all
vertices in Bp+1 \ S′.

A compatible sequence for P is a sequence of triples
γ = (S1, τ1, γ1) . . . (Sl, τl, γl) such that for each p ∈ [l],
(Sp, τp, γp) is compatible with (Sp−1, τp−1, γp−1).

Our interest in compatible sequences stems from the two
following lemmas.

Lemma 6. Let ρ ⊆ C × C be a partial order over C,
c : C × C → N be a cost function, and P be a ρ-consistent
path decomposition of the graph Gρ. Let γ = t1 . . . tl =
(S1, τ1, γ1) . . . (Sl, τl, γl) be a compatible sequence for P .
Then, the linear order π = tc(ρ ∪ τ1 ∪ · · · ∪ τl) is a lin-
ear extension of ρ of cost γl.

Lemma 7. Let ρ ⊆ C × C be a partial order over C,
c : C × C → N be a cost function, and P be a ρ-consistent
path decomposition of the graph Gρ. Let π be a linear exten-
sion of ρ, and γ = (S1, τ1, γ1) . . . (Sl, τl, γl) be a sequence
such that for each position p ∈ [l], Sp = {v ∈ Bp | v >π
maxπ(Lp)}, τp = π|Sp , and γp = c(π|Lp∪Bp). Then, γ is a
compatible sequence for P .

Lemma 6 and Lemma 7 immediately yield an FPT dy-
namic programming algorithm for computing a linear exten-
sion of ρ. To define the algorithm more precisely, we first
need to define the set of functions fp that we will use to de-
fine a set of triples with Tp. For each p ∈ [l], we define
fp : Pp → N as follows. For each (S, τ) ∈ Pp, we let γ be
the minimum cost of a partial solution π up to bag p such that
S = {v ∈ Bp | v >π maxπ(Lp)} and τ = π|Sp , then we let
fp(S, τ) = γ. Intuitively, fp associates to each linear order τ
the cost of an optimal partial solution “ending” by τ . Now,
we will describe the algorithm, we process the path decom-
position from left to right in l time steps, where at each time
step p, we construct the value of fp that we need and a subset
Qp ⊆ Tp(fp, 0) of promising triples, which are, intuitively,
triples that have a potential to lead to an optimal solution. At
time step 1, set Q1 = {(B1, τ, c(τ))}τ is a linear extension of ρ|B1

.
At each time step p ≥ 2,Qp is the set of all triples in Tp(fp, 0)
that are compatible with some triple in Qp−1. At the end of
the process, assuming that Qp is non-empty for each p ∈ [l],
we can reconstruct a compatible sequence by backtracking.
First, by selecting an arbitrary triple tl in Ql, then by se-
lecting an arbitrary triple tl−1 in Ql−1 compatible with tl,
and so on. Once we have constructed a compatible sequence
t1 . . . tl, we can extract a linear extension π of cost γl by set-
ting π = tc(ρ∪ τ1 ∪ . . . τl). This description gives rise to the
following theorem.
Theorem 8. Let ρ ⊆ C × C, let n = |C|, let w be the
pathwidth of the cocomparability graph of ρ, and c : C×C →
[m]0 be a cost function. Then, one can compute an optimal

solution in time O
(

w!O(1) · n · log(n ·m)
)

.

Now, leveraging on Lemma 6 and Lemma 7, we will
devise a fixed-parameter tractable algorithm for DIVERSE-
CO parameterized by solution imperfection, number of so-
lutions, scatteredness, and pathwidth of the cocomparability
graph of the input partial order. Let ρ be a partial order and
P = (B1, B2, . . . , Bl) be a ρ-consistent path decomposition
of Gρ of width w.
Definition 9. Let p ∈ [l], and f : Pp → N. Then, we let
Ip(f, δ) be the set of all tuples of the form

((S1, τ1, γ1), . . . , (Sr, τ r, γr), ∂, (ξ{i,j})1≤i<j≤r)

where ∂ ∈ [d+ 1]0, for each 1 ≤ i < j ≤ r, ξ{i,j} ∈ [s]0,
and for each i ∈ [r], (Si, τ i, γi) is a triple in Tp(f, δ).

Intuitively, ((Si, τ i, γi))i∈[r] are r partial linear exten-
sions, ∂ will be the diversity of the r partial linear extensions
and ξ will be the distance between all pairs of the r partial
linear extensions. A diversity-compatible sequence is a se-
quence of the form
{((S1

p , τ
1
p , γ

1
p), . . . , (Srp , τ

r
p , γ

r
p), ∂p, (ξ

p
{i,j})1≤i<j≤r

)}
p∈[l]

,
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where for each i ∈ [r], (Si1, τ
i
1, γ

i
1) . . . (Sil , τ

i
l , γ

i
l ) is a com-

patible sequence and for each p ∈ [l − 1], ∂p keeps track of
the amount of diversity observed up to position p, ξp{i,j} keeps
track of the distance between partial solutions i and j.

A diversity-compatible sequence is a representation of r
solutions for an instance (ρ, c, r, δ, d, s) of DIVERSE-CO. In-
tuitively, computing such a sequence corresponds to com-
puting r compatible sequences in parallel, by processing the
given path decomposition from left to right, while using an
additional register to keep track of the overall diversity at each
time step and all the pairwise distances.

Theorem 10. Let ρ ⊆ C × C, let n = |C| and w be the
pathwidth of the cocomparability graph of ρ, and c : C×C →
[m]0 be a cost function. Then, one can determine whether ρ
admits r linear extensions π1, . . . , πr at distance at most δ
from the optimum, diversity at least d, and scatteredness at
least s in time O

(
(w! · δ)O(r) · sr2 · d · n · log(n2 ·m)

)
.

By combining Theorem 8 with our reduction from KRA
to CO, we have an FPT algorithm for KRA, parameterized
by solution imperfection, number of solutions, scatteredness,
and unanimity width (Corollary 11).

Corollary 11. Let Π be a list of m partial votes over a set
of n candidates C. Let w be the unanimity width of Π.
Given Π and non-negative integers δ, r, s and d, one can
determine in time O

(
(w! · δ)O(r) · sr2 · d · n · log(n2 ·m)

)
whether there is a set R = {π1, . . . , πr} of r linear or-
ders on C such that the Kemeny score for each order πi
is at distance at most δ of the optimum, and we find that
KT-Div(R) ≥ d and that scatteredness is at least s.

6 Sub-Exponential Time Algorithm for PCO
For special cases of PCO, such as those arising from KRA or
the graph-drawing problem OSCM, single-exponential sub-
exponential time algorithms have been known, i.e., algo-
rithms with running times of the form O∗(2O(

√
k)). In con-

trast, for the more general problem of PCO, only algorithms
with running time O∗(k

√
k) were known before, where k is

the cost parameter [Fernau et al., 2014]. Here, we prove
that PCO also admits algorithms of the formO∗(2O(

√
k)), by

making use of several structural insights for cocomparability
graphs. More precisely, we prove the following theorem.

Theorem 12. Given a partial order ρ ⊆ C × C and a cost
function c : C × C → N, one can solve a PCO instance
(ρ, c, k) in time |C| · 2O(

√
k) +O(|C|2 · log(k)).

Our main technical result of this section is the following.

Lemma 13. Let G be a C≥5-free graph, let m be the number
of edges of G. Then, we have m = Ω(tw(G)2).

By combining Lemma 13 with the fact that treewidth
equals pathwidth for cocomparability graphs and with the fact
that cocomparability graphs are C≥5-free, we get the follow-
ing lemma.

Lemma 14. Let G be a cocomparability graph and let m be
the number of edges of G. Then, m = Ω(pw(G)2).

Now, in a PCO instance, each edge contributes at least 1
to the cost of any solution. Therefore, if a solution has cost
at most k, then the cocomparability graph of the input partial
order can have at most k edges. Therefore, this observation,
together with Lemma 14 yields the following lemma.
Lemma 15. Let (ρ, c, k) be an YES-instance of PCO. Then,
pw(Gρ) = O(

√
k).

To get the running time of Theorem 12, we need to either
compute a ρ-consistent path decomposition of width at most
O(
√
k), or to trigger an early rejection. For this, we will use

the following lemma which is based on Lemma 3.
Lemma 16. There is a polynomial-time algorithm that takes
an instance of (ρ, c, k) of PCO as input, and either constructs
a ρ-consistent path decomposition of the graph Gρ of width
O(
√
k), or answers that this instance is a NO-instance.

In Section 5, in order to define our algorithm for DIVERSE-
CO, we first devised a simpler algorithm for the single-
solution version of CO, that could be used as a building block
for the diverse algorithm. It turns out that if our only goal is to
solve the single-solution version of CO, then the basic algo-
rithm developed in Section 5 can be optimized, to become a
single-exponential time algorithm parameterized by the path-
width of the cocomparability graph of the input order. More
precisely, we have the following lemma.
Lemma 17 ([Arrighi et al., 2020] (Theorem 1)). Given an
instance (ρ, c, k) of CO and a ρ-consistent path decomposi-
tion P of the graph Gρ, one can solve this instance in time
|C| · 2O(pw(Gρ)) · log(k) +O(|C|2 · log(k)).

Now we are ready to prove the statement of Theorem 12.
Given an instance (ρ, c, k) of PCO, we apply the algorithm
stated in Lemma 16. This algorithm either determines that
the instance is a NO-instance, or constructs a ρ-consistent
path decomposition P of Gρ of width O(

√
k). In the first

case, we are done and simply answer NO. Otherwise, we
give both the instance (ρ, c, k) and the decomposition P
to the algorithm stated in Lemma 17 to determine in time
|C| · 2O(

√
k) + O(|C|2 · log(k)) whether (ρ, c, k) is a YES-

or a NO-instance of PCO. In case this is a YES-instance, the
algorithm also constructs a linear extension of ρ of cost at
most k. This concludes the proof of Theorem 12.
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