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Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can
no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local
operators, which is expected to decay to 0 with time. However, for systems of finite size, out-of-time-
ordered correlators do not decay exactly to 0 and in this paper we show that the residual value can provide
useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the
out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the
system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without
energy conservation. We provide both analytical arguments and numerical simulations to support this
conclusion.
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Nonintegrable quantum many-body systems are
expected to exhibit chaotic dynamics, which not only leads
to thermalization but also scrambles local information into
a nonlocal form. In the Heisenberg picture, the support of
AðtÞ ≔ eiHtAe−iHt for a local operator A should grow with
time under the chaotic dynamics. This growth is reflected in
the noncommutativity of AðtÞ and another local operator B
at a different site, which leads to the decay of the out-of-
time-ordered correlator (OTOC) RehA†ðtÞB†AðtÞBi [1–15].
Assume for simplicity that A and B are unitary. Then,

RehA†ðtÞB†AðtÞBi ¼ 1 − h½AðtÞ; B�†½AðtÞ; B�i=2 ð1Þ

so that when the commutator ½� � �� grows, OTOC decays.
The chaotic nature of the dynamics is reflected in the fast
decay of OTOC away from 1 in a relatively short time
period and the approaching of OTOC to 0 at late times.
Why does chaotic dynamics lead to such decaying

behavior of OTOC? While it is not possible to solve exactly
the dynamics of nonintegrable systems in general, we might
be able to extract some universal features, at least in certain
limits. In a large class of chaotic systems without spatial
locality (e.g., large-N theories), OTOCat early time t is given
by 1 − ϵeλLt, where ϵ is a small prefactor and λL is a constant.
Such an exponential deviation from the initial value is
reminiscent of the so-called sensitive dependence on initial
conditions in classical chaos. Thus, λL may be interpreted as
the Lyapunov exponent for quantum systems [3]. In chaotic
systems with spatial locality, OTOC of two local operators
starts to decay only after a delay that is proportional to the
distance between the operators [1,2,9,10,15]. This is a
consequence of the Lieb-Robinson bound [16–18].
In this paper, we study the behavior of OTOC at late

times. For simplicity, consider a system of n qubits at

infinite temperature so that h� � �i ¼ trð� � �Þ=2n. In the limit
t → ∞, a naive understanding of why OTOC approaches
0 is as follows. We expand the time-evolved operator in the
n-qubit Pauli basis fσ0 ¼ I; σx; σy; σzg⊗n,

AðtÞ ¼
X

ðk1;k2;…;knÞ∈f0;x;y;zgn
ak1k2���knσk1σk2 � � � σkn : ð2Þ

The unitarity of AðtÞ implies
P

k1;k2;…;kn jak1k2���kn j2 ¼ 1.
After undergoing chaotic evolution for a sufficiently long
time, the support of AðtÞ should be the whole system, and
one might expect that the coefficients ak1k2���kn behave like
random variables due to the chaotic nature of the dynamics.
If we choose B to be the Pauli operator σx of qubit 1, then
half of the terms in the expansion (2) of AðtÞ commute with
B and half of them do not. Thus,

h½AðtÞ; B�†½AðtÞ; B�i ¼ 4
X

k2;k3;…;kn

jayk2k3���kn j2 þ jazk2k3���kn j2

≈ 4 × 0.5 ¼ 2: ð3Þ

The approximation step follows from the fact that we sum
over half of the random variables. Substituting (3) into (1),
we see that OTOC approaches 0 at late times.
Equation (2) with random coefficients is a very simple

way to approximate AðtÞ for large t in chaotic systems and
it is oversimplified in some respects. For example, one
major difference between this approximation and the exact
evolution AðtÞ ¼ eiHtAe−iHt is that the latter preserves the
spectrum of A while the former does not. How does this
discrepancy affect our understanding of the late-time
behavior of OTOC? Is it necessary to use more refined
and sophisticated approximations in order to fully capture
the essence of chaotic dynamics at late times?
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We focus on the scaling of late-time OTOC with system
size. In finite-size systems, OTOC may converge to a small
but finite value, which goes to 0 when the system size goes
to infinity. One might expect this residual value to be
exponentially small in the system size because we sum over
an exponential number of random variables in (3).
However, using a more refined approximation we show
that the finite-size scaling of generic late-time OTOC
should be inverse polynomial. In fact, the power-law
scaling is closely related to energy conservation during
the time evolution, which is not captured by simply setting
the coefficients in the expansion (2) to be random.
Results.—We introduce basic definitions and provide a

summary of results.
Throughout this Letter, asymptotic notations are used

extensively. Let f; g∶Rþ → Rþ be two positive functions.
Onewrites fðxÞ ¼ OðgðxÞÞ if and only if there exist positive
numbers M; x0 such that fðxÞ ≤ MgðxÞ for all x > x0;
fðxÞ ¼ ΩðgðxÞÞ if and only if there exist positive numbers
M; x0 such that fðxÞ ≥ MgðxÞ for all x > x0; fðxÞ ¼
ΘðgðxÞÞ if and only if there exist positive numbers M1,
M2, x0 such thatM1gðxÞ ≤ fðxÞ ≤ M2gðxÞ for all x > x0. To
simplify the notation, we use a tilde to hide a polylogar-
ithmic factor, e.g., ÕðfðxÞÞ ≔ OðfðxÞpoly log fðxÞÞ.
For concreteness, consider a chain of n qubits or spin-

1=2’s with total Hilbert space dimension d ¼ 2n governed
by a translationally invariant Hamiltonian H ¼ P

n
i¼1Hi,

where Hi acts on spins i, iþ 1 (nearest-neighbor interac-
tion). While our discussion is based on a one-dimensional
spin system, our results do not rely on the dimensionality of
the system or the degrees of freedom being spins. A minor
modification of our method leads to similar results in other
settings, e.g., fermionic systems in higher dimensions.
Assume without loss of generality that trHi ¼ 0 (traceless)
and kHik ≤ 1 (bounded operator norm).
Let A, B, C, D be local (not necessarily unitary)

operators with unit operator norm. The residual value of
late-time OTOC is

OTOCA;B;C;D
∞ ≔ lim

τ→∞

1

τ

Z
τ

0

dthABðtÞCDðtÞi; ð4Þ

where hXi ≔ ð1=dÞtrX denotes the expectation value of an
operator at infinite temperature.
Let fj1i; j2i;…; jdig be a complete set of eigenstates of

H with corresponding energies E1 ≤ E2 ≤ � � � ≤ Ed in
nondescending order. Let Xjk ¼ hjjXjki be the matrix
element of an operator in the energy eigenbasis. Define

hA; B;C;Dij ¼ ðACÞjjBjjDjj

þ AjjCjjðBDÞjj − AjjBjjCjjDjj: ð5Þ

In strongly chaotic systems, we propose the following
formula for late-time OTOC:

OTOCA;B;C;D
∞ ≈

1

d

X
j

hA;B;C;Dij: ð6Þ

Based on this formula, we argue for (i) OTOCA;B;A†;B†
∞ for

traceless local operators A, B vanishes in the thermody-
namic limit n → ∞. (ii) In finite-size systems, OTOC
hABðtÞA†B†ðtÞi saturates to Θð1=nÞ if either A or B (or
both) has a finite overlap with the Hamiltonian H. We not
only derive the prefactor hidden in the big-Theta notation,
but also provide a (not necessarily tight) upper bound on
the remainder,

OTOCA;B;A†;B†
∞ ¼ hAA†ijhHBij2 þ hBB†ijhHAij2

hHHiin
þ Õðn−1.5Þ: ð7Þ

This is our main result. It is an example where certain
properties of quantum chaotic systems can be calculated
analytically. For comparison, Table I summarizes the finite-
size scaling of late-time OTOC of generic traceless local
operators for various types of quantum dynamics.
In the remainder of this Letter, by assuming a “generic”

energy spectrum we first present a simple derivation of (7)
for the special case where the local operators in OTOC are
terms in the Hamiltonian. Then, we extend this approach to
the general case using the eigenstate thermalization hypoth-
esis (ETH) [26–28]. Thus, we give a rigorous proof of
Eqs. (6) and (7) based on two very mild assumptions for
chaotic systems: a generic spectrum and ETH. Next, we
propose a heuristic physical picture for our results from the
perspective of interpreting chaotic dynamics with random
unitaries. We introduce a previous approach, which takes
into account the unitarity of the dynamics by approximat-
ing the time-evolution operator e−iHt with a random
unitary. Unfortunately, this approximation remains too
crude, for it still suggests that the residual value of late-
time OTOC is exponentially small in the system size. We
show that once energy conservation is also taken into
account by requiring the random unitary to act within small
energy windows, the finite-size scaling of late-time OTOC
becomes inverse polynomial. Finally, we support our
analytical arguments with numerical simulations of a
nonintegrable spin chain. The numerical results suggest
that the remainder in (7) can be improved to Oðn−2Þ.
Special case.—In the case where the local operators in

OTOC are terms in the Hamiltonian, we give a simple
rigorous proof of (7) assuming only a generic spectrum.

TABLE I. Finite-size scaling of generic late-time OTOC for
various types of quantum dynamics.

Types of dynamics Late-time OTOC

Haar random unitary e−ΘðnÞ [11,19]
Chaotic Hamiltonian dynamics 1=polyn [this work]
Many-body localization Θð1Þ [20–25]
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In strongly chaotic systems, one might expect that the
energy spectrum satisfies the generic condition.
Assumption 1: (generic spectrum; see, e.g., Ref. [29]).

Ep þ Er ¼ Eq þ Es implies (ðp ¼ qÞ and ðr ¼ sÞ) or
(ðp ¼ sÞ and ðr ¼ qÞ).

This assumption is necessary in the sense that it rules out
certain integrable (e.g., free-fermion) systems.
Writing out the matrix elements,

hABðtÞCDðtÞi ¼ 1

d

X
p;q;r;s

ApqBqrCrsDspeiðEq−ErþEs−EpÞt:

ð8Þ
Substituting into (4), we obtain

OTOCA;B;C;D
∞ ¼ 1

d

X
p;q;r;s

ApqBqrCrsDspδEpþEr;EqþEs
; ð9Þ

where δ is the Kronecker delta. Assumption 1 implies

OTOCA;B;C;D
∞ ¼ 1

d

X
j;k

AjjBjkCkkDkj þ
1

d

X
j;k

AjkBkkCkjDjj

−
1

d

X
j

AjjBjjCjjDjj: ð10Þ

Given a Hamiltonian H, there are multiple ways to write
it as a sum of local terms, H ¼ P

i Hi. Without loss of
generality, we fix this ambiguity by expanding H in the
Pauli basis and assigning all Pauli string operators starting
at site i to Hi [see (26) for an example]. This convention
implies trðHjHkÞ ¼ 0 for j ≠ k. Hence, hH2

i i ¼ hHHii ¼
hH2i=n for any i due to translational invariance. Using this
convention,
Theorem 1: Assumption 1 implies

OTOCH1;Hi;H1;Hi
∞ ¼ 2hH2

i i2=nþOðn−2Þ: ð11Þ
Proof.—We use the observation that ðHiÞjj ¼ Ej=n for

any i due to translational invariance. For the present choice
of local operators in OTOC, the first term on the right-hand
side of (10) reads

1

d

Xd
j;k¼1

ðH1ÞjjðHiÞjkðH1ÞkkðHiÞkj

¼ 1

dn2
Xd
j;k¼1

EjhjjHijkiEkhkjHijji

¼ 1

dn2
tr

�Xd
j¼1

jjiEjhjjHi

Xd
k¼1

jkiEkhkjHi

�

¼ trðHHiHHiÞ
dn2

¼ 1

n2
Xn
j;k¼1

hHjHiHkHii: ð12Þ

In the last sum, there are n2 terms, most of which are 0
because trHj ¼ trHk ¼ 0. Furthermore, the convention
stated above implies trðHjHkÞ ¼ 0 for j ≠ k. Hence, the
number of nonvanishing terms in the last sum of Eq. (12) is
nþOð1Þ [n comes from the terms with j ¼ k and Oð1Þ
accounts for the remainder]. Equation (12) equals

1

n2
Xn
j¼1

hHjHiHjHii þOðn−2Þ

¼ hH2
i i2=nþOðn−2Þ þOðn−2Þ

¼ hH2
i i2=nþOðn−2Þ: ð13Þ

The second term on the right-hand side of (10) gives the
same result. The last term on the right-hand side of (10)
equals ð1=dÞPj E

4
j=n

4 ¼ hH4i=n4 ¼ Θðn−2Þ [30]. This
completes the proof. ▪
General case.—We sketch an argument for (6) and (7).

The argument is rigorous assuming a generic spectrum
and ETH.
Technically it suffices to assume ETH for most eigen-

states in the middle of the spectrum [30]. For simplicity,
here we assume it for all eigenstates in the full spectrum.
Assumption 2: (eigenstate thermalization hypothesis).

For any local operator X with kXk ≤ 1, there is a function
fX ∶½−1; 1� → ½−1; 1� such that

jXjj − fXðEj=nÞj ≤ 1=polyn ð14Þ

for all j. We assume that fX is smooth in the sense of
having a Taylor expansion to some low order.
It was proposed analytically [29] and supported by

numerical simulations [31] that the right-hand side of
(14) can be improved to e−ΩðnÞ. For our purposes, however,
a (much weaker) inverse polynomial upper bound suffices.
Lemma 1: ([30]). For any traceless local operator A,

assumption 2 implies

fAA†ð0Þ ¼ 1

d
trðAA†Þ;

1

d

X
j

jAjjj2 ¼
jtrðHAÞj2
dntrðHHiÞ

þOðn−2Þ: ð15Þ

Let J ⊆ R be an energy interval. Define PJ ¼P
j∶Ej∈J jjihjj as the projector onto J.
Lemma 2. ([32]). Let ϵ < ϵ0. For any local operator X,

kPð−∞;ϵÞXPðϵ0;∞Þk ≤ kXke−Ωðϵ0−ϵÞ: ð16Þ

This lemma states that local operators cannot (up to an
exponentially small error) connect projectors that are far
away from each other in the spectrum.
Proof.—(Justification of (6)). Consider the first term on

the right-hand side of (10),
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1

d

X
j;k

AjjBjkCkkDkj ≈
1

d

X
j

X
k∶jEk−Ejj small

AjjBjkCkkDkj

≈
1

d

X
j

X
k∶jEk−Ejj small

AjjBjkCjjDkj

≈
1

d

X
j;k

AjjCjjBjkDkj

¼ 1

d

X
j

AjjCjjðBDÞjj; ð17Þ

where we used lemma 2 in the first and third steps: The
presence of off-diagonal matrix elements Bjk,Dkj allows us
to upper bound the total contribution of all terms for which
jEk − Ejj is not small. In the second step of (17), we replace
Ckk by Cjj using ETH (assumption 2), which states that
eigenstates with similar energies have similar local expect-
ation values. A detailed and rigorous error analysis for (17)
with a quantitative definition of smallness is given in the
full version [30] of the present paper.
Equation (17) shows that the first term on the right-hand

side of (10) corresponds to the second term on the right-hand
side of (5). Similarly, the second term on the right-hand side
of (10) corresponds to the first term on the right-hand side of
(5). Obviously, the third terms on the right-hand sides of (5)
and (10) are the same. Thus, we obtain (6). ▪
Lemma 3. (concentration of eigenvalues [30]). Almost

all eigenstates have zero energy density,

jfj∶jEjj ≥ n0.51gj=d ≤ n−ωð1Þ: ð18Þ

This lemma is related to the fact that Ej’s approach a
normal distribution in the thermodynamic limit n → ∞
[33,34]. Indeed, jEjj ¼ Θð ffiffiffi

n
p Þ for almost all j.

Proof.—(Justification of (7)). Specializing to
hABðtÞA†B†ðtÞi, Eq. (6) reads

OTOCA;B;A†;B†
∞ ≈

1

d

X
j

ðAA†ÞjjjBjjj2

þ jAjjj2ðBB†Þjj − jAjjBjjj2: ð19Þ

Consider the first term on the right-hand side,

1

d

X
j

ðAA†ÞjjjBjjj2 ≈
1

d

X
j∶jEjj<n0.51

ðAA†ÞjjjBjjj2

≈
1

d

X
j∶jEjj<n0.51

fAA†ð0ÞjBjjj2

≈
fAA†ð0Þ

d

X
j

jBjjj2

≈
trðAA†ÞjtrðHBÞj2

d2ntrðHHiÞ
; ð20Þ

where we used lemma 3 in the first and third steps, the
continuity of fAA†ðxÞ at x ¼ 0 in the second step, and
lemma 1 in the last step.
The second term on the right-hand side of (19) can be

estimated similarly. The third term on the right-hand side of
(19) is of higher order in 1=n [30]. Thus, Eq. (7) is proved
based on assumptions 1 and 2. ▪
Physical picture.—We rederive (6) using techniques

from the theory of random unitaries. The derivation is
not rigorous, but provides a heuristic picture showing the
extent to which chaotic dynamics can be approximated by a
random unitary.
To improve the approximation described by (2), we first

take into account the unitarity of the dynamics. In strongly
chaotic systems, it is tempting to expect
Assumption 3: The time-evolution operator e−iHt for

large t behaves like a random unitary.
Based on this assumption, late-time OTOC can be

estimated from

OTOCA;B;C;D
∞ ¼

Z
dUhAðU†BUÞCðU†DUÞi; ð21Þ

where U is taken from the unitary group UðdÞ with respect
to the Haar measure.
Lemma 4: ([11,19]).

Z
dUhAU†BUCU†DUi ¼ hA;B;C;Di − hACichBDic

d2 − 1
;

ð22Þ

where hXYic ≔ hXYi − hXihYi is the connected correlator
and

hA;B;C;Di
≔ hACihBihDiþhAihCihBDi− hAihBihCihDi: ð23Þ

Note that the right-hand side of (5) resembles that of (23)
in the sense of replacing every h� � �i (expectation value at
infinite temperature) by hjj � � � jji (expectation value in an
eigenstate).
Corollary 1: ([11,19]). Assumption 3 and lemma 4

imply

OTOCA;B;C;D
∞ ¼ hA;B;C;Di − hACichBDic

d2 − 1
: ð24Þ

Therefore, (i) OTOCA;B;A†;B†
∞ for traceless operators A, B

vanishes in the thermodynamic limit n → ∞. (ii) In finite-
size systems, the saturation value of OTOC hABðtÞA†B†ðtÞi
is exponentially small in the system size (because d ¼ 2n).
The approximation stated in assumption 3 is still too

crude. We propose a refined version of assumption 3 by
incorporating energy conservation and argue (nonrigor-
ously) that Eq. (6) follows from this refinement.
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We observe that the time evolution conserves energy and
that local operators can only additively change the energy
of a state by Oð1Þ (lemma 2). Thus, the action of OTOC
ABðtÞCDðtÞ is approximately restricted to each micro-
canonical ensemble. This observation motivates a refine-
ment of assumption 3 in strongly chaotic systems.
Assumption 4: The time-evolution operator e−iHt for

large t behaves like a random unitary in each micro-
canonical ensemble.
Conceptually, this assumption is related to the so-called

random diagonal unitaries [35,36].
Based on assumption 4, we argue for (6). Since the

bandwidth of H is ΘðnÞ, we decompose the energy
spectrum into a disjoint union of Θðn=ΔÞ microcanonical
ensembles with bandwidth Δ. Let Jk ≔ ½kΔ; ðkþ 1ÞΔÞ
and define ½A; B;C;D�k as the right-hand side of (23)
with every h� � �i replaced by the expectation value
trðPJk � � �Þ=trPJk in themicrocanonical ensemble.We expect

lim
τ→∞

1

τ

Z
τ

0

dt
trðPJkABðtÞCDðtÞÞ

trPJk

≈ ½A; B;C;D�k ≈
1

trPJk

X
j∶Ej∈Jk

hA; B;C;Dij: ð25Þ

The first step is a consequence of lemma 4 and assumption 4.
Indeed, it is just (24) restricted to the microcanonical
ensemble PJk . The last step of (25) used ETH.
Equation (6) follows immediately from (25).
Numerics.—Finally, we support (7) with numerical

simulations. Consider the spin-1=2 chain

H ¼
Xn
i¼1

Hi;

Hi ¼ σziσ
z
iþ1 − 1.05σxi þ 0.5σzi þ gσyi σ

z
iþ1 ð26Þ

with periodic boundary conditions (σznþ1 ≔ σz1), where
σxi ; σ

y
i ; σ

z
i are the Pauli matrices at site i. For g ¼ 0, this

model is nonintegrable in the sense of Wigner-Dyson level
statistics [37,38]. Reference [9] calculated OTOC, focusing
on the butterfly effect rather than the late-time behavior.
Note that for g ¼ 0, most energy levels are twofold
degenerate so that assumption 1 does not hold.
We fix g ¼ 0.1. Intuitively, the model is nonintegrable for

any value of g.Wehave numerically confirmed thevalidity of
assumption 1 for n ¼ 5; 6;…; 12. Presumably, assumption 1

holds for any integer n ≥ 5. Let Fx
n ≔ OTOC

σx
1
;σxi ;σ

x
1
;σxi

∞ and

Fz
n ≔ OTOC

σz
1
;σzi ;σ

z
1
;σzi

∞ , whosevalues are independent of i.We
compute Fx

n; Fz
n using exact diagonalization. The results are

shown in the top panel of Fig. 1.
The leading terms in the finite-size scaling of Fx

n; Fz
n are

calculated analytically from (7),

Gx
n ≔

14

15n
≈
0.933
n

; Gz
n ≔

40

189n
≈
0.212
n

: ð27Þ

We expect that the noticeable differences between Gx
n; Gz

n
and the power-law fits to Fx

n; Fz
n are due to finite-size

effects. To justify this claim, we perform a scaling analysis
of the errors jFx

n −Gx
nj, jFz

n − Gz
nj in the bottom panel of

Fig. 1. The numerics suggest that the errors should vanish
as Θðn−2Þ in the thermodynamic limit n → ∞.
Conclusion.—We propose that in order to better approxi-

mate the late-time behavior of chaotic dynamics generated
by a time-independent Hamiltonian, one needs to take into
account energy conservation. In particular, we show that
approximation schemes with and without energy conser-
vation make different predictions about OTOC at late times:
without energy conservation, late-time OTOC scales
inverse exponentially with system size; with energy con-
servation, the scaling is inverse polynomial. The latter
prediction has been rigorously confirmed based on two
very mild assumptions and is consistent with numerical
simulations of a nonintegrable spin chain.
An immediate open question is how good the energy-

preserving approximation scheme proposed in this Letter is
in predicting the late-time behavior of higher-order time-
ordered or out-of-time-ordered correlators. A more general
problem for future study is how to approximate the time-
evolution process and capture other universal features of
chaotic dynamics. See Refs. [39–42] for recent progress in
this direction.

We thank Xie Chen, Yingfei Gu, Nick Hunter-Jones,
Alexei Y. Kitaev, and Douglas Stanford for helpful dis-
cussions. We are especially grateful to X. C., who wrote a
substantial portion of this Letter. We acknowledge funding
provided by the Institute for Quantum Information and
Matter, an NSF Physics Frontiers Center (NSF Grant
No. PHY-1733907). Additional funding support was
provided by NSF Grant No. DMR-1654340 (Y. H. and
Y.-L. Z.).

10-2la
te

-t
im

e 
O

T
O

C

0.449n-0.797

0.254n-1.047

5 10 15 20 25 30

5 10 15 20 25 30

system size

10-2er
ro

r

1.998n-1.946

0.117n-1.851

FIG. 1. Top panel: Finite-size scaling of late-time OTOC Fx
n

(blue), Fz
n (red) for n ¼ 5; 6;…; 15. The lines are power-law fits

0.449n−0.797 (blue), 0.254n−1.047 (red) to the last few data points.
Bottom panel: Finite-size scaling of the errors jFx

n − Gx
nj (blue),

jFz
n − Gz

nj (red) for n ¼ 5; 6;…; 15. The lines are power-law fits
1.998n−1.946 (blue), 0.117n−1.851 (red) to the last few data points.
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