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Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can
no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local
operators, which is expected to decay to 0 with time. However, for systems of finite size, out-of-time-
ordered correlators do not decay exactly to O and in this paper we show that the residual value can provide
useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the
out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the
system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without
energy conservation. We provide both analytical arguments and numerical simulations to support this

conclusion.
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Nonintegrable quantum many-body systems are
expected to exhibit chaotic dynamics, which not only leads
to thermalization but also scrambles local information into
a nonlocal form. In the Heisenberg picture, the support of
A(t) = e"Ae~'H" for a local operator A should grow with
time under the chaotic dynamics. This growth is reflected in
the noncommutativity of A(¢) and another local operator B
at a different site, which leads to the decay of the out-of-
time-ordered correlator (OTOC) Re(A'(1)BA(¢)B) [1-15].
Assume for simplicity that A and B are unitary. Then,

Re(AT(1)B'A(1)B) = 1 = ([A(1). B]'[A(1). B)/2 (1)

so that when the commutator [- - -] grows, OTOC decays.
The chaotic nature of the dynamics is reflected in the fast
decay of OTOC away from 1 in a relatively short time
period and the approaching of OTOC to 0 at late times.

Why does chaotic dynamics lead to such decaying
behavior of OTOC? While it is not possible to solve exactly
the dynamics of nonintegrable systems in general, we might
be able to extract some universal features, at least in certain
limits. In a large class of chaotic systems without spatial
locality (e.g., large-N theories), OTOC at early time # is given
by 1 — ee’t!, where € is a small prefactor and 4, is a constant.
Such an exponential deviation from the initial value is
reminiscent of the so-called sensitive dependence on initial
conditions in classical chaos. Thus, 4; may be interpreted as
the Lyapunov exponent for quantum systems [3]. In chaotic
systems with spatial locality, OTOC of two local operators
starts to decay only after a delay that is proportional to the
distance between the operators [1,2,9,10,15]. This is a
consequence of the Lieb-Robinson bound [16-18].

In this paper, we study the behavior of OTOC at late
times. For simplicity, consider a system of n qubits at
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infinite temperature so that (- - -) = tr(---)/2". In the limit
t — oo, a naive understanding of why OTOC approaches
0 is as follows. We expand the time-evolved operator in the
n-qubit Pauli basis {6y = I,0,.0,,0,}%",

A(t) = g by k, Ok, Ok, * Ok, - (2)
(ky k... .k, ) E{0,x,y.2}"

The unitarity of A(r) implies Y, o |ag g, |* = 1.
After undergoing chaotic evolution for a sufficiently long
time, the support of A(z) should be the whole system, and
one might expect that the coefficients ay, ..., behave like
random variables due to the chaotic nature of the dynamics.
If we choose B to be the Pauli operator o, of qubit 1, then
half of the terms in the expansion (2) of A(¢) commute with
B and half of them do not. Thus,

([AG0). BI'AM).B) =4 Y layp, -,

[N
~4x05=2. (3)

2 2
+ 1@ kkyek,

The approximation step follows from the fact that we sum
over half of the random variables. Substituting (3) into (1),
we see that OTOC approaches 0 at late times.

Equation (2) with random coefficients is a very simple
way to approximate A(¢) for large ¢ in chaotic systems and
it is oversimplified in some respects. For example, one
major difference between this approximation and the exact
evolution A(7) = e''Ae=H! is that the latter preserves the
spectrum of A while the former does not. How does this
discrepancy affect our understanding of the late-time
behavior of OTOC? Is it necessary to use more refined
and sophisticated approximations in order to fully capture
the essence of chaotic dynamics at late times?
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We focus on the scaling of late-time OTOC with system
size. In finite-size systems, OTOC may converge to a small
but finite value, which goes to 0 when the system size goes
to infinity. One might expect this residual value to be
exponentially small in the system size because we sum over
an exponential number of random variables in (3).
However, using a more refined approximation we show
that the finite-size scaling of generic late-time OTOC
should be inverse polynomial. In fact, the power-law
scaling is closely related to energy conservation during
the time evolution, which is not captured by simply setting
the coefficients in the expansion (2) to be random.

Results.—We introduce basic definitions and provide a
summary of results.

Throughout this Letter, asymptotic notations are used
extensively. Let f, g:R*T — R™ be two positive functions.
One writes f(x) = O(g(x)) if and only if there exist positive
numbers M, x, such that f(x) < Mg(x) for all x > x;
f(x) = Q(g(x)) if and only if there exist positive numbers
M, xy such that f(x) > Mg(x) for all x> xq; f(x)=
©(g(x)) if and only if there exist positive numbers M,
M, xosuchthat M, g(x) < f(x) < M,g(x)forallx > x,. To
simplify the notation, we use a tilde to hide a polylogar-
ithmic factor, e.g., O(f(x)) := O(f(x)poly log f(x)).

For concreteness, consider a chain of n qubits or spin-
1/2’s with total Hilbert space dimension d = 2" governed
by a translationally invariant Hamiltonian H = )" | H,,
where H; acts on spins i, i + 1 (nearest-neighbor interac-
tion). While our discussion is based on a one-dimensional
spin system, our results do not rely on the dimensionality of
the system or the degrees of freedom being spins. A minor
modification of our method leads to similar results in other
settings, e.g., fermionic systems in higher dimensions.
Assume without loss of generality that trH; = 0 (traceless)
and ||H;|| £ 1 (bounded operator norm).

Let A, B, C, D be local (not necessarily unitary)
operators with unit operator norm. The residual value of
late-time OTOC is

OTOCALECL = {im 1/1 dt{AB(t)CD(t)), 4)

=00 T [

where (X) := (1/d)trX denotes the expectation value of an
operator at infinite temperature.

Let {[1),2),...,|d)} be a complete set of eigenstates of
H with corresponding energies £ < E, <---<FE; in
nondescending order. Let X = (j|X|k) be the matrix
element of an operator in the energy eigenbasis. Define

+A;;Cj;(BD);; = Aj;B;;CiiDjj;. (5)

In strongly chaotic systems, we propose the following
formula for late-time OTOC:

1
OTOCAECP » v > (A.B.C.D),. (6)

J

Based on this formula, we argue for (i) OTOCA? A" B! for
traceless local operators A, B vanishes in the thermody-
namic limit n — oco. (i) In finite-size systems, OTOC
(AB(t)ATB' (1)) saturates to ©(1/n) if either A or B (or
both) has a finite overlap with the Hamiltonian H. We not
only derive the prefactor hidden in the big-Theta notation,
but also provide a (not necessarily tight) upper bound on
the remainder,

(AAT)|(HB)|* + (BB")|(HA)|?
(HH;)n
+ 0(n~19). (7)

OTOCAPA B —

This is our main result. It is an example where certain
properties of quantum chaotic systems can be calculated
analytically. For comparison, Table I summarizes the finite-
size scaling of late-time OTOC of generic traceless local
operators for various types of quantum dynamics.

In the remainder of this Letter, by assuming a “generic”
energy spectrum we first present a simple derivation of (7)
for the special case where the local operators in OTOC are
terms in the Hamiltonian. Then, we extend this approach to
the general case using the eigenstate thermalization hypoth-
esis (ETH) [26-28]. Thus, we give a rigorous proof of
Egs. (6) and (7) based on two very mild assumptions for
chaotic systems: a generic spectrum and ETH. Next, we
propose a heuristic physical picture for our results from the
perspective of interpreting chaotic dynamics with random
unitaries. We introduce a previous approach, which takes
into account the unitarity of the dynamics by approximat-
ing the time-evolution operator e~’ with a random
unitary. Unfortunately, this approximation remains too
crude, for it still suggests that the residual value of late-
time OTOC is exponentially small in the system size. We
show that once energy conservation is also taken into
account by requiring the random unitary to act within small
energy windows, the finite-size scaling of late-time OTOC
becomes inverse polynomial. Finally, we support our
analytical arguments with numerical simulations of a
nonintegrable spin chain. The numerical results suggest
that the remainder in (7) can be improved to O(n=2).

Special case.—In the case where the local operators in
OTOC are terms in the Hamiltonian, we give a simple
rigorous proof of (7) assuming only a generic spectrum.

TABLE 1. Finite-size scaling of generic late-time OTOC for
various types of quantum dynamics.

Late-time OTOC

=9 [11,19]
1/polyn [this work]
0(1) [20-25]

Types of dynamics

Haar random unitary
Chaotic Hamiltonian dynamics
Many-body localization
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In strongly chaotic systems, one might expect that the
energy spectrum satisfies the generic condition.

Assumption 1: (generic spectrum; see, e.g., Ref. [29]).
E,+E,=E,+E, implies (p=g¢) and (r=ys)) or
((p=ys) and (r = q)).

This assumption is necessary in the sense that it rules out
certain integrable (e.g., free-fermion) systems.

Writing out the matrix elements,

1
(AB(1)CD(1)) =~ > ApgBy,CpiDy e EEAEE)
p.q.r.s

(8)

Substituting into (4), we obtain

1
OTOCIQ&B’C’D = d Z AP‘! qursD\PéE +E, E,+Ey» )

p.q.r.s

where ¢ is the Kronecker delta. Assumption 1 implies

1
A,B,C,D
OTOC% E Aj; ,kakajJrgE AjiBiCyDjj
ik

ZAUBHC,,D,, (10)

Given a Hamiltonian H, there are multiple ways to write
it as a sum of local terms, H = ), H;. Without loss of
generality, we fix this ambiguity by expanding H in the
Pauli basis and assigning all Pauli string operators starting
at site i to H; [see (26) for an example]. This convention
implies tr(H ;H;) = 0 for j # k. Hence, (H?) = (HH,) =
(H?)/n for any i due to translational invariance. Using this
convention,

Theorem 1: Assumption 1 implies

OTOCL Mt — 2(H22 /n + O(n72).  (11)

Proof.—We use the observation that (H;),; = E;/n for
any i due to translational invariance. For the present choice
of local operators in OTOC, the first term on the right-hand
side of (10) reads

d
DEIHS |k>Ek<k|H,~)

j=1 k=1

_ wHHAH) _ 1 Z (H .H,HH,). (12)

In the last sum, there are n? terms, most of which are 0
because trH; = trH; = 0. Furthermore, the convention
stated above implies tr(H;Hy) = 0 for j # k. Hence, the
number of nonvanishing terms in the last sum of Eq. (12) is
n+ O(1) [n comes from the terms with j = k and O(1)
accounts for the remainder]. Equation (12) equals

%i(HjH,HjHQ +0(n72)
j=1
= (H})?/n+0(n™?) + 0(n™?)

— (H2)2/n + O(n™2). (13)

The second term on the right-hand side of (10) gives the
same result. The last term on the right-hand side of (10)
equals (1/d) Y Ej/n* = (H*)/n* = @(n™?) [30]. This
completes the proof. [

General case.—We sketch an argument for (6) and (7).
The argument is rigorous assuming a generic spectrum
and ETH.

Technically it suffices to assume ETH for most eigen-
states in the middle of the spectrum [30]. For simplicity,
here we assume it for all eigenstates in the full spectrum.

Assumption 2: (eigenstate thermalization hypothesis).
For any local operator X with || X|| < 1, there is a function
fx :[=1,1] = [=1,1] such that

1X;; — fx(E;/n)| < 1/polyn (14)

for all j. We assume that fy is smooth in the sense of
having a Taylor expansion to some low order.

It was proposed analytically [29] and supported by
numerical simulations [31] that the right-hand side of
(14) can be improved to e=("), For our purposes, however,
a (much weaker) inverse polynomial upper bound suffices.

Lemma 1: ([30]). For any traceless local operator A,
assumption 2 implies

Fan (0) = Zr(aa"),
tr(HA)?
dz| il = d|nrtr HI)LI|)+O(n_2)' (15)

Let JCR be an energy interval.
>_j:E,es 1) {j] as the projector onto J.
Lemma 2. ([32]). Let € < ¢’. For any local operator X,

Define P; =

1P (—o.0) X P o)l < | X [Je= ). (16)

This lemma states that local operators cannot (up to an
exponentially small error) connect projectors that are far
away from each other in the spectrum.

Proof.—(Justification of (6)). Consider the first term on
the right-hand side of (10),
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DD

J k:|E—E;| small

1
NEZ Z J] JC ij

J k:|Ex—E;| small

ZAJ] Ji Jkaj

ZAJJ JJ //’ (17)

where we used lemma 2 in the first and third steps: The
presence of off-diagonal matrix elements B, D;; allows us
to upper bound the total contribution of all terms for which
|E — E;|is not small. In the second step of (17), we replace
Ci by Cj; using ETH (assumption 2), which states that
eigenstates with similar energies have similar local expect-
ation values. A detailed and rigorous error analysis for (17)
with a quantitative definition of smallness is given in the
full version [30] of the present paper.

Equation (17) shows that the first term on the right-hand
side of (10) corresponds to the second term on the right-hand
side of (5). Similarly, the second term on the right-hand side
of (10) corresponds to the first term on the right-hand side of
(5). Obviously, the third terms on the right-hand sides of (5)
and (10) are the same. Thus, we obtain (6). [

Lemma 3. (concentration of eigenvalues [30]). Almost
all eigenstates have zero energy density,

1
p > AjiBjiCuDyj ~ A;iBj C Dy
i

{2 |Ej| 2 n®'}/d < nmet), (18)

This lemma is related to the fact that E;’s approach a
normal distribution in the thermodynamic limit n — oo
= O(y/n) for almost all j.

Proof.—(Justification of (7)). Specializing to
(AB(1)ATB' (1)), Eq. (6) reads

A,B,A*,B*~1
OTOC% Nazj:( ") ,1BjiI?
+14;1*(BBY);; = |A;;B;; . (19)
Consider the first term on the right-hand side,
! AAT) ..|B 21 B,.?
SO AA B A ST (AAT) 1By
j j‘|E»\<nO-51
Z faar(0 jj|2
J IE \<n‘”‘
o
AA Z|BH|2
tr(AA")|or(HB
anwnp | 20)

dzl’ltr(HHi)

where we used lemma 3 in the first and third steps, the
continuity of f,,+(x) at x =0 in the second step, and
lemma 1 in the last step.

The second term on the right-hand side of (19) can be
estimated similarly. The third term on the right-hand side of
(19) is of higher order in 1/n [30]. Thus, Eq. (7) is proved
based on assumptions 1 and 2. [

Physical picture—We rederive (6) using techniques
from the theory of random unitaries. The derivation is
not rigorous, but provides a heuristic picture showing the
extent to which chaotic dynamics can be approximated by a
random unitary.

To improve the approximation described by (2), we first
take into account the unitarity of the dynamics. In strongly
chaotic systems, it is tempting to expect

Assumption 3: The time-evolution operator e~ for
large ¢ behaves like a random unitary.

Based on this assumption, late-time OTOC can be
estimated from

OTOC&ECP = / dU(A(UTBU)C(UTDU)),  (21)

where U is taken from the unitary group U(d) with respect
to the Haar measure.

Lemma 4: ([11,19]).
/dU(AUTBUCU"'DU> = (A,B,C,D) —%,
(22)
where (XY), := (XY) — (X)(Y) is the connected correlator
and
(A,B,C,D)

=(AC)(B)(D) +(A)(C)(BD) = {A)(B)(C)(D). ~ (23)
Note that the right-hand side of (5) resembles that of (23)
in the sense of replacing every (---) (expectation value at
infinite temperature) by (j|---|j) (expectation value in an
eigenstate).
Corollary 1: ([11,19]). Assumption 3 and lemma 4

imply

(AC) (BD),

2 -1

=(A,B,C,D) — (24)
Therefore, (i) OTOC/.ﬁ‘C;B'AT'BT for traceless operators A, B
vanishes in the thermodynamic limit n# — co. (ii) In finite-
size systems, the saturation value of OTOC (AB(¢)ATB' (1))
is exponentially small in the system size (because d = 2").

The approximation stated in assumption 3 is still too
crude. We propose a refined version of assumption 3 by
incorporating energy conservation and argue (nonrigor-
ously) that Eq. (6) follows from this refinement.
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We observe that the time evolution conserves energy and
that local operators can only additively change the energy
of a state by O(1) (lemma 2). Thus, the action of OTOC
AB(t)CD(t) is approximately restricted to each micro-
canonical ensemble. This observation motivates a refine-
ment of assumption 3 in strongly chaotic systems.

Assumption 4: The time-evolution operator e~ for
large ¢ behaves like a random unitary in each micro-
canonical ensemble.

Conceptually, this assumption is related to the so-called
random diagonal unitaries [35,36].

Based on assumption 4, we argue for (6). Since the
bandwidth of H is ©(n), we decompose the energy
spectrum into a disjoint union of @(n/A) microcanonical
ensembles with bandwidth A. Let J; := [kA, (k + 1)A)
and define [A,B,C, D], as the right-hand side of (23)
with every (---) replaced by the expectation value
tr(P,, - --)/trP,, inthe microcanonical ensemble. We expect

lim~ [“d

T—>00 T 0

tr(P; AB(t)CD(t))
! trP;,

1
~[A,B,C,D], ~

(A,B,C,D).. (25)
trP, j:E/ZEJk 1

The first step is a consequence of lemma 4 and assumption 4.
Indeed, it is just (24) restricted to the microcanonical
ensemble P;. The last step of (25) used ETH.
Equation (6) follows immediately from (25).

Numerics.—Finally, we support (7) with numerical
simulations. Consider the spin-1/2 chain

H= Zn:Hi,
i=1

— Z 2
H; = o0},

— 1056 + 0.56% + go'o (26)

¥4
it+1
with periodic boundary conditions (o;,, , := o), where
6¥,0), 05 are the Pauli matrices at site i. For g = 0, this
model is nonintegrable in the sense of Wigner-Dyson level
statistics [37,38]. Reference [9] calculated OTOC, focusing
on the butterfly effect rather than the late-time behavior.
Note that for g =0, most energy levels are twofold
degenerate so that assumption 1 does not hold.

We fix g = 0.1. Intuitively, the model is nonintegrable for
any value of g. We have numerically confirmed the validity of
assumption 1 forn = 5,6, ..., 12. Presumably, assumption 1

holds for any integer n > 5. Let F}, = OTOCZ;‘['J’Y’M‘['”;

o’,0%,0%,0°

F% := OTOCs """, whose values are independent of i. We
compute F7, F5 using exact diagonalization. The results are
shown in the top panel of Fig. 1.

The leading terms in the finite-size scaling of F7;, F% are
calculated analytically from (7),

and

L 140933

14 .40 0212
" 150" n

"T18n T n

(27)

o : :
g ——0.449n"07%7
5 — -1.047
O M 0.254n
£ T
[
S 102 : ‘ : ‘
5 10 15 20 25 30
——{.998n"1-946
S —0.117n"185!
S 102t )
(0] ° & o <
5 10 15 20 25 30
system size
FIG. 1. Top panel: Finite-size scaling of late-time OTOC F3,

(blue), F% (red) for n = 5,6, ..., 15. The lines are power-law fits
0.449n=0797 (blue), 0.254n="%47 (red) to the last few data points.
Bottom panel: Finite-size scaling of the errors |F}; — G| (blue),
|F% — G5| (red) for n = 5,6, ..., 15. The lines are power-law fits
1.998n~1946 (blue), 0.117n 183! (red) to the last few data points.

We expect that the noticeable differences between G3, G5
and the power-law fits to F7, F% are due to finite-size
effects. To justify this claim, we perform a scaling analysis
of the errors |F}, — G}|, |F% — G%| in the bottom panel of
Fig. 1. The numerics suggest that the errors should vanish
as ®(n7?) in the thermodynamic limit n — co.

Conclusion.—We propose that in order to better approxi-
mate the late-time behavior of chaotic dynamics generated
by a time-independent Hamiltonian, one needs to take into
account energy conservation. In particular, we show that
approximation schemes with and without energy conser-
vation make different predictions about OTOC at late times:
without energy conservation, late-time OTOC scales
inverse exponentially with system size; with energy con-
servation, the scaling is inverse polynomial. The latter
prediction has been rigorously confirmed based on two
very mild assumptions and is consistent with numerical
simulations of a nonintegrable spin chain.

An immediate open question is how good the energy-
preserving approximation scheme proposed in this Letter is
in predicting the late-time behavior of higher-order time-
ordered or out-of-time-ordered correlators. A more general
problem for future study is how to approximate the time-
evolution process and capture other universal features of
chaotic dynamics. See Refs. [39—42] for recent progress in
this direction.
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