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Combinatorial optimization
by weight annealing in memristive
hopfield networks

Z. Fahimi3*, M. R. Mahmoodi*3*¢, H. Nili%, Valentin Polishchuk? & D. B. Strukov*

The increasing utility of specialized circuits and growing applications of optimization call for the
development of efficient hardware accelerator for solving optimization problems. Hopfield neural
network is a promising approach for solving combinatorial optimization problems due to the recent
demonstrations of efficient mixed-signal implementation based on emerging non-volatile memory
devices. Such mixed-signal accelerators also enable very efficient implementation of various annealing
techniques, which are essential for finding optimal solutions. Here we propose a “weight annealing”
approach, whose main idea is to ease convergence to the global minima by keeping the network close
to its ground state. This is achieved by initially setting all synaptic weights to zero, thus ensuring

a quick transition of the Hopfield network to its trivial global minima state and then graduvally
introducing weights during the annealing process. The extensive numerical simulations show that our
approach leads to a better, on average, solutions for several representative combinatorial problems
compared to prior Hopfield neural network solvers with chaotic or stochastic annealing. As a proof

of concept, a 13-node graph partitioning problem and a 7-node maximum-weight independent set
problem are solved experimentally using mixed-signal circuits based on, correspondingly, a20x 20
analog-grade TiO, memristive crossbar and a 12 x10 eFlash memory array.

Combinational optimization is an essential subset of mathematical optimization methods with numerous applica-
tions in various delds, including operation research, machine learning, and scientidc computing’—. A typical goal
of combinatorial optimization is to dnd an optimal solution within a dnite set of possible solutions. For example,
graph partitioning, that is, the problem of minimizing the cutsize when partitioning a graph into two sections of
nearly equal weight, dnds applications in distributed computing and digital VLSI design flow.

For most combinatorial problems, the exhaustive brute-force search is often not practical, and developing
efficient heuristic and meta-heuristic methods is of utmost importance®®. The enormous computational power
required to solve large-scale optimization problems also poses a great challenge. The problem is exacerbated by
the sequential structure of general-purpose processors, which are very energy-demanding and inefficient in run-
ning large-scale, massively parallel algorithms. Hence, hardware accelerators, e.g., based on superconductors®”’,
digital CMOS>®*?, nanomagnetic!®, and photonic !! technologies, are proposed to solve optimization problems
using heuristic methods efficiently.Hopdeld neural network (HNN)'?~!* is also a heuristic method that extended
the application of neural networks from classidcation to optimization and associative memory. A particular class
of recurrent HNNG is the discrete-time asynchronous model, which operates based on a single neuron update
at a time mechanism. For a network featuring N binary neurons, a randomly-selected jth neuron is updated at
time £ + 1 using

N
Uit + 1) =f(; wii(OUi(t) + T}’), (1)

where Uj(t) is the binary state of the jth neuron at time ¢, w;(t) is the synaptic strength between neurons i and j
b

at iteration t, T} is the bias strength of the jth neuron, and f(.) is the binary threshold function. The key features
of HNNSs are their activation dynamics and energy function, which are proven to be monotonically descending
during the runtime'® (see Supplementary Section 1 for more details). Hence, by mapping the cost function of the
optimization problem into the energy of the network and the variables to neuron states, the recurrent dynamic
of the network optimizes the cost function and solves the optimization problem in the runtime.
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«Figure 1. Neuro-optimization with the weight annealing: (a) The 7-node weighted graph partitioning problem
that is used to illustrate the mechanism of weight annealing. The blue/green coloring shows the optimum
solution (Supplementary Materials S3 includes the actual weights). (b) The energy evolution of each state during
weight annealing for 200 epochs and T = 40. The black spheres mark the transitory ground state of the system,
which is also projected to the energy-epoch plane. The magenta curve shows the average transitory energy over
128 runs, which shows that the proposed weight annealing tracks the transitory globally optimum state of the
system. (c) The average energy of the network annealed with different techniques over 128 runs. (d) Top-1 and
Top-5 success rates of varying annealing techniques versus problem size (B: baseline, i.e., the standard Hopéeld
network without annealing, S: stochastic (temperature reduced from 100 to 0.01), C: chaotic (temperature
reduced from 250 to 0.001), and E: exponential weight annealing). For each graph size, we consider 200
randomly weighted problems and provide the parameters in supplementary S4. Note that the best response is
the global optimum, and Top-5 counts if the dnal response is among the best top-5 solutions. Panel (e) shows
the distribution of the dnal average energy, offset by a constant for clarity, for the same graphs used in panel
(d). The circles represent graph size. (f) The boxplot of the average dnal energy vs. epoch size for 200 random
condgurations of 25-node graph partitioning problems.

Similar to the Ising model and other greedy and local search methods, the critical shortcoming of HNN is
the presence of (many) local minima in their energy function. Simulated'®!” and chaotic'®-?° annealing are two
prominent techniques that tackle this issue by harnessing thermally controlled probabilistic jumps and embedded
chaos in HNNs with nonzero self-feedback weights, respectively. Therefore, an efficient HNN accelerator should
perform the frequent dot-product operation in Eq. 1 very fast and support an annealing technique to rescue the
network from trapping in local minima. This paper introduces a weight annealing technique in HNNs and its
efficient implementation, which is more effective and scalable than simulated and chaotic annealing methods.
Our approach dates back to methods like weight annealing?'~%*, noising®, space smoothing?*%, and dne-tuned
learning®®, where the core idea is to change in the energy landscape by modifying weights in the formula for the
energy. Here, the exact meaning of “weight” varies from method to method, as well as from problem to prob-
lem addressed—a weight may be associated with an input data point, a subproblem, etc.; similarly, a variety of
ways to modify the weights (random perturbation, adversarial change, etc.) has been explored. The common
crux of the methods is that they modify the weights differently in every timestep and in different areas of the
solution space; this way, the search is guided by weight changes adapted to the current state and reuses insights
gained from previous iterations. While the clever schemes for such adaptive weight modidcations underpin the
strengths of methods, mimicking this adaptivity within any hardware would likely be inefficient since perform-
ing individual changes to the weights consumes signidcant time and energy. Further, hardware implementation
of the algorithms that act differently in different parts of the solution space would require complicated circuitry,
leading to efficiency losses. Our proposed weight annealing circumvents both of the above: First, all weights are
scaled together at every iteration. Second, the weight modidcation is oblivious to the status of the solution space
exploration—the annealing schedule is pre-set in advance and does not depend on the state of the system (in
particular, the schedule does not depend on the value of the energy function—it is the hardware that takes care of
the derivatives, convergence, escaping local optima with stochastic decisions, etc.). We numerically demonstrate
the effectiveness of our approach on several benchmarks by solving graph partitioning, vertex cover, maximum-
weight independent set, and maximum-weight clique problems.

We also propose a very efficient implementation of weight annealing in HNNs harnessing analog-grade
non-volatile memories, which have become the mainstream devices for implementing fast, compact, and energy-
efficient dot-product engines?*2. The potentials for performing high-speed physical-level computing are perhaps
the most intriguing feature of these devices. Passive (0T1R) memristive devices are the most promising candi-
date for the next generation of analog computing systems in part due to their excellent scalability prospects and
superior integration density®-*°. Furthermore, recent breakthroughs in exploiting embedded eFlash memories
have opened the doors towards building large-scale industrial-grade neurocomputing systems*>*” as well. These
exciting opportunities have served as the motivations for several experimental proposals on Hopdeld networks,
simulated annealing, and related concepts.

Reference®® uses discrete Pt/TiO,_,/Pt memristive devices to implement a small-scale 4-bit data converter with
the Hopdeld model. Reference® implements a 3-bit associative memory based on digital HfO, memristors. In
Ref.*, simulation results demonstrate the effectiveness of using the inherent chaos in sub-100 nm NbO, mem-
ristors to implement simulated annealing within Hopdeld networks. Ref. 4! implements an 18-node restricted
Boltzmann machine based on a versatile stochastic dot-product engine using TiO, memristive crossbars*2. In
addition, Ref. #! demonstrates hardware implementation of simulated, chaotic, and adjustable annealing within
HNNs. Conceptually, the proposed weight annealing is similar to the adjustable technique as it relies on dynamic
scaling of the energy during runtime. However, the proposed method has a more straightforward implementa-
tion as it does not require extra circuitry, is not limited to the dynamic range of devices, and can be generally
applied to any HNN irrespective of the target optimization problem. Several works (e.g., see**~*) propose using
the inherently random switching mechanism of memories to implement stochastic sigmoid neuron functionality
and simulated annealing. However, this method suffers from the limited switching endurance, cycle-to-cycle and
device-to-device variations, and scalability issues. Finally, Ref. “ uses Y-flash memories to implement a 3-bit
associative memory based on the Hopdeld model.
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Results

The proposed idea is to slowly modulate the energy landscape of the HNN, starting from a funnel shape with a
deep global optimum where the ground state is easily accessible. The network traps in it in the early stages and
tends to remain in ground states during the runtime. In our proposed method, we change the synaptic weights

=t
slowly by considering w;j = Tj;( 1 — eT) where 7>0 is the annealing schedule, and T is the ultimate synaptic
weight matrix. The Lyapunov energy associated with a certain state of the network at ¢ is given by

N N N

1
Et) == > wiOUiOUj0) = > TP U @), @)

i=1 j=1 i=1

At the beginning and while t<<rt is very small, the arst term [in Eq. (2) ] is negligible, and the total energy
of the network is — Zfil ij Uj(t). At this stage, the network dnds a straightforward solution after few updates.
The ground state, for example, is located at U; = 1 for the jth neuron that has TP > 0. As the network evolves,
wi;(t) gradually moves toward Tj;(¢) and the drst term in Eq. (2) becomes more signidcant until the network
stabilizes in the equilibrium state. During this runtime, the ground state of the network changes many times,
but the network tends to capture it and closely follows the transitory ground state.

We consider graph partitioning problems (see Supplementary Section 2) that dnd applications, e.g., in graph-
based electronic structure theory applied to quantum molecular dynamic simulations*. To demonstrate a clear
visual representation of ground state evolution, we use a 7-node graph partitioning problem with randomly
selected weights and edges, as shown in Fig. 1a (see Supplementary Sect. 3 for the actual vertex and edge weights).
Figure 1b shows the semi-exponential energy change of all possible states during the annealing (r = 40). The
energy associated with each state is exponentially increasing as expected. The black sphere points (projected to
the bottom plane for clarity) represent the ground state of the system during the annealing. The global optimum
is —389.5459 and locates at state 97 (decimal equivalent of “1,100,001”). The transitory state of the system is
specided by listing the N values of U; and represented by a binary word of N bits'* and its decimal version for
simplicity. At¢ = 0, the global minimum is recognizable (state 118, E=-917.76). While the network is steadily
evolving, the ground state of the system increases, and its location changes several times. The average transitory
energy of the system (dedned over the transitory synaptic weights) is also shown for 128 initialization schemes
and 200 epochs (Ngp = 200) in magenta. The network ands the initial ground state very quickly (regardless of
the initial state) owing to the annealing mechanism and tracks it during the evolution. Other simulation details,
including w;; evolution are provided in Supplementary Sect. 3.

Figure 1c shows the performance of the proposed annealing technique versus stochastic annealing with a
probabilistic sigmoid neuron (the temperature is reduced exponentially from 100 to 0.01) and chaotic anneal-
ing (the self-feedback weights are decreased exponentially from 250 to 0.001). In this experiment and after 200
epochs, the success rate (the relative number of cases led to the global optima) is 57.8%, 59.37%, 94.53% for
chaotic, stochastic, and weight annealing techniques, respectively, and it is 28.12% for the standard Hopaeld
model (baseline). It is noteworthy that the stochastic annealed network converges to E=-387.98 and scores a
98.6% success rate when 30 k epochs are used, and the temperature is scaled from 100 k to 0.01.

To further investigate the performance of the proposed approach, 200 randomly populated condgurations
of 5, 10, 15, 20, and 25-node graphs are considered. Supplementary Sect. 4 discusses the parameters used in
the simulations. The annealing schedule parameter is manually optimized for the drst problem and used in all
condgurations. The scalability of our approach is compared with simulated annealing on three scenarios: drst,
Ngp = 300 is assumed for all sizes, then it is exponentially increased for a dxed-size graph (N =25), and then,
NEp is exponentially increased with respect to the linear increase of the problem size.

The success rate achieved by different methods on various problem sizes for Ngp = 300 is shown in Fig. 1d.
The performance of weight annealing is on par with simulated annealing for N=5; however, the energy gap
becomes signidcantly wider for larger problem sizes. More interestingly, for N=15, among the 200 conagura-
tions, the 20 percentiles success rate of weight annealing is better than the 80 percentiles of all other methods.
Note that due to the analog-grade behavior of our memristors, weighted graph problems are considered, and it
would be unfair to compare our results (in terms of success rate) with previous implementations, which focus
on sparse graphs with binary weights. Figure le shows the average dnal energy for the same graphs. The gap
between the solution quality (dnal energy) of exponential weight annealing and other methods becomes wider
in more massive graphs. In Fig. 1f, the computational runtime (epoch number) is increased for 200 condagura-
tions of 25-node graphs. As expected, the performance of all annealing techniques, including weight annealing,
improves by increasing the number of epochs (in part due to slower cooling, which allows the networks to search
for better solutions). The performance of weight annealing no longer improves for Ngp > 3200, while simulated
annealing techniques, with noticeable inferior performance, benedt from the longer computational time and
slower annealing. This is partly due to the inherent differences between the underlying mechanism of simulated
and exponential weight annealing. Stochastic annealing requires more time to explore larger searching spaces.
While for the weight annealing, it is simply not the case. The accuracy saturation stems from the fact that the
slower learning of weights no longer creates a more optimum path. Note that weight annealing achieves the
same solution quality 10 x faster than simulated annealing techniques. Supplementary Sect. 4 extends the graph
partitioning simulations. Three other combinatorial optimization problems are considered in Supplementary
Sect. 5, and the results signify the superiority of weight annealing, particularly in large scale problems.
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Figure 2. The current-mode recurrent circuit that implements the weight annealing of discrete-time Hopdeld
networks with programmable analog memories. The green circles show the bias weights (T) while the black
circles implement self-feedback weights (T3;), and the rest of them denote the main synaptic weights (Tj; ix;).

A constant ‘on’ voltage, which is the same as the tuning voltage, drives the bias column. We control the applied
voltage to the rest of the devices during the runtime to adjust the synaptic weights (exponentially). Note that Vcp,
is only added to emphasize that the circuit operate on a single-V44. Values R, C, and I depend on the problem
size and technology, and determine the annealing schedule. Switch S resets the network to the initial condition.
The selected neuron is determined by the input address to the decoder, and the operation is synchronized with
the sampling clock (¢) in dynamic comparator. Note that we have omitted the tuning circuits in the dgure for
clarity.

Experimental results

The proposed technique is demonstrated by addressing two optimization problems based on the most prospec-
tive analog-grade memory technologies. The central merit of weight annealing lies in its very straightforward
and compact implementation. Experimental results of hardware implementation are demonstrated by solving a
16-node graph partitioning problem using a 20 x 20 passively integrated analog-grade memristive crossbar and
a 7-node maximum-weighted independent set on a 12 x 10 embedded array of eFlash memories.

Figure 2 shows the implementation of the weight annealing technique. The corresponding hardware reali-
zation of Eq. (1) is discussed in the method section for both cases. The main challenge in realizing the weight
annealing is scaling the synaptic weights. Let us emphasize that direct modidcation of (analog) states is impracti-
cal in part because of the limited endurance, device-to-device, and cycle-to-cycle variations. This challenge can
be resolved in resistive memories by using a simple control circuit (the pre-synaptic drivers), which scales all
synaptic weights simultaneously (see Fig. 2). Here, V. is exponentially increased toward V,;, at which all devices
are tuned. The current neuron state determines which devices should be driven by V1. The post-synaptic circuits
include trivial circuits such as transimpedance ampliders (e.g., a buffered version of Ref.*”) that senses currents
and a dynamic voltage comparator (see, e.g.,*s) that updates the selected neuron state. These circuit functionali-
ties are emulated with Agilent characterization tools in the present demonstration.

In split-gate embedded Flash memories, the situation is more straightforward as we can bias the memories in
the weak inversion regime, making their states (i.e., currents) semi-exponentially dependent on the select-gate
voltage. Then, Vi is applied to the shared select-gates and linearly increased toward the Vyp,

In the drst experiment, a 13-node graph partitioning problem is implemented using passively-integrated
memristive crossbars. Note that, to the best of our knowledge, this work is the largest Hopdeld network imple-
mented with passive memristors. Figure 3a shows the wire-bonded chip, crossbar TEM image, and an SEM
image of a memristive device. This crossbar has been previously used for the demonstration of a multilayer
perceptron®, integrated spiking neural network for coincident detection®, and a hardware security primitive
design®*®!. The method section includes a brief description of fabrication steps. More relevant details are also
available in our previous work®.

In order to increase the demo size and without the loss of generality, we have ensured the weights and edges
(of the graph) are selected such that Tj; < 0 and b; > 0 (see Supplementary Sect. 6 for more details). This facili-
tates a single-ended time-multiplexed dot-product of a 13 x (13 + 1) network on our memristive crossbars. The
details of forming, tuning, and operation of the circuit, as well as the procedure of mapping the actual synaptic
weights (from software) to conductance values, are illustrated in the method section. After determining the
desired conductance map, the devices are programmed individually using the write-verify algorithm®. Fig-
ure 3b,c show the desired weight map of the network and the corresponding conductance map obtained after
tuning the crossbar, respectively. Most devices are tuned very close (within 5%) to the desired states, which is pos-
sible due to the tight distribution of switching thresholds in our analog-grade crossbar circuits. Figure 3d shows
the distribution of pre-activation readout currents for the baseline case (the inset indicates no bias in neuron
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Figure 3. The experimental demonstration with the integrated memristor crossbars. (a) The fabricated 20 x 20
integrated memristor crossbar®. (b) The desired ideal analog map for the 13-node graph partitioning problem,
and (c) the resultant conductance map of the devices after tuning the crossbar. (d) Distribution of the readout
current when solving the problem with the conventional (baseline) approach. The inset shows the histogram
of selected neurons (for updates) and indicates there is no bias in the neuron update. (e) The evolution of the
synaptic weights during the weight annealing. (f) The experimental versus simulation results of the neuro-
optimization with different techniques. The inset shows the zoomed-in average energy in the last 100 epochs.

selection). The input “on” voltage corresponding to binary input ‘1’ is V,,=0.1 V. Note that we exponentially
increase the “on” applied voltage from 0 to 0.1 V for the weight annealing. The measured synaptic strength of each
device during the weight annealing is shown in Fig. 3e. The experimental and simulation results are compared
in Fig. 3f. Specidcally, the average energy over 10° cases for 200 epochs is shown for various methods. Here, the
annealing schedule parameters are 10%, 10°, and 35 for chaotic, stochastic, and weight annealing, respectively.
The ground state locates at — 3796, and weight annealing (on both experiment and simulation) performs better
than other techniques and far better than the baseline.

In our second experimental demo, a 7-node maximum-weighted independent set is solved using an array
of 12 x 10 redesigned embedded Flash memories fabricated in Global Foundries 55 nm LPe CMOS process
(Fig. 4a). The redesigned array structure enables < 1% analog programmability** (see Fig. 6S). The circuit diagram
in Fig. 6Sd implements the weight annealing of Hopéeld networks with eFlash memories. Biasing conditions
(imposed during programming) ensure the subthreshold operation of the devices at all operating conditions. Fig-
ure 4b shows the implemented weighted graph. Similar to the drst demo, the weights and edges (of the graph) are
chosen randomly but constrained by T;; < 0and TP > 0. The original weight matrix is shown in Supplementary
Sect. 7. The ground state of the energy function locates at -5.5755 that corresponds to the neural state “0010001”.

The devices are programmed with < 1% accuracy (see the method section). Figure 4c shows the
resultant map o f s tate c urrents un der n ominal b iasing co nditions, i.e., ( Vwr, = 1.5V, Vgg = 2.5V,
VL = 1V, Vs, = 0V, and Vgg = 0V). The experiments and simulations are performed over 128 initialization
cases for 500 epochs and show the results in Fig. 4d. The results are averaged over 100 runs in the simulations.
The annealing schedule is 10, 10, and 100, and the average probability of hitting the global optimum is 0.76,
0.92, 0.82, and 0.99 for stochastic, chaotic, and weight annealing, respectively (Fig. 4e). We drive the devices
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Figure 4. Neuro-optimization with embedded analog-grade eFlash memories. Panel (a) shows the fabricated
10x 12 eFlash array chip in Global Foundries” standard LPe CMOS process®™. (b) A 7-node maximum-weighted
independent set problem. (c) The heat map of the synaptic weights for the devices that implement the neuron-
optimization. (d) The average energy versus epoch comparing experimental results with simulations over 100
runs. (e) The success rate of different annealing techniques on this problem over 100 runs.

corresponding to bias weights (7:}’) by constant gate-voltages (Vwy, = 1.5V and Vcg = 2.5V), while other rows
(if their corresponding neuron is in the ‘on’ state) are driven by V;(¢). The impact of annealing schedule and
exponential versus linear voltage scaling are also studied in Fig. 7S. For the former, a slower annealing schedule
(Texp = 60) tackles the nonlinearities in the super-exponential dependency of synaptic current to voltage and
closely match the trends in the simulations. For the latter case, the slowest annealing process (Texp = Ngp = 500)
leads to the best response.

Discussion and summary

We have demonstrated weight annealing, a technique that improves the performance of asynchronous Hopdeld
neuro-optimizer. The weight annealing converges faster and to a better solution within studied runtime as
compared to other considered annealing approaches. The scalability of weight annealing (size and computa-
tional time) is investigated by solving several combinatorial problems, and its straightforward implementation
is demonstrated the using two state-of-the-art analog-grade non-volatile memories.

The passive integrated memristor technology offers the best scaling prospects and low fabrication cost. We
have recently developed a 4 K fully CMOS-compatible 0T1R array with excellent switching characteristics®. The
measured analog characteristics are promising for the development of large-scale neuro-optimization systems.
On the other hand, eFlash technology is much sparser, but it is currently commercially available and embedded
in standard CMOS processes (down to 28 nm). Our preliminary estimations (see Supplementary Sect. 8 for
more details) indicate impressive prospects of using metal-oxide memristors for the hardware implementation
of Hopdeld networks and weight annealing. Future works focus on the CMOS-integrated design of a weight
annealing optimizer, allowing us to perform a rigorous comparison with entirely fabricated annealing machines.

As opposed to most previous works*~** that focus on switching statistics of memristors, our proposed solution
offers very infrequent writes, which is justided assuming long runtimes of computationally extensive problems.
More importantly, our proposed neuro-optimizer offers analog (> 5 bits with memristive nanodevices and > 6
bits via eFlash technology) weights. This feature is not demonstrated in most previous Ising machines. Unlike
quantum computing machines that are susceptible to environmental noise, hard to scale, and must operate at
cryogenic temperatures, the proposed circuit is more scalable, and can operate at room temperatures.

In summary, the proposed weight annealing boosts the performance of HNN in solving combinatorial optimi-
zation problems. Using extensive simulations on four representative problems, we numerically demonstrate that
the proposed method outperforms the conventional Hopdeld network (baseline) and challenges the prominent
stochastic and chaotic annealing techniques in computational time and accuracy. Then, an efficient, scalable,
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and fast circuit implementation and experimentally verided based on two memory technologies. Large-scale
integrated implementation is demonstrated of weight annealing is a near-term future work.

Methods

In the drst experiment, we demonstrate the weight annealing with a 20x 20 array of passively integrated crossbars
of 600-nm pitch memristive devices (200-nm lines separated by 400-nm gaps) fabricated in the University of
California at Santa Barbara’s nanofabrication facility. The fabrication and characterization details are discussed
in ®#. In summary, we deposit the active bilayer by low-temperature reactive sputtering, evaporate electrodes
using oblique angle physical vapor deposition, pattern them by lift-off technique, and then contact them to
bonding pads. The crossbar is wire-bonded in a dual in-line package and mounted on a custom-made printed
circuit board, as shown in Supplementary Section 9.

The devices are in pristine states upon fabrication and require electroforming to become programmable
devices. An automated setup performs the current-controlled electroforming process device per device. A com-
pliance voltage (1.5 V to begin with, but it is dynamically updated) prevents the memristors from burning. For
every device, we sweep the applied current from 0 to 100 pA and monitor its resistance consistently. The process
continues until the device reaches an acceptable low resistance (typically 5 kQ-150 kQ). The devices are formed
individually and reset them after each forming success (to remove leakage for the rest of the crossbar). A dynamic
leakage removal procedure is also employed to reset the devices when the algorithm struggles to form several
devices in a row.

The devices are tuned using an ex-situ approach meaning that weights (T;;) and biases (T}) are obtained
from software simulations and later transferred to the crossbar. Indeed, after forming the entire crossbar, i.e., the
400 devices (yield is typically >99%), the memristors are tuned to the desired states individually using V/2 and
write-verify schemes. The automated algorithm progressively increases the pulse amplitude from 0.5 to 2 V (to
increase the conductance) and from 0.5 to 2.2 V (to reduce it). The pulse width is 1.1 ms during the program-
ming. Each device typically needs ~ 50 pulses to reach within 2% of the targeted state. The fabricated crossbar has
a reasonably uniform and tightly distributed switching thresholds ranging from 0.6 to 1.5 V (for set) and - 0.6
to —1.7 V (for reset), which provides us with the opportunity to harness the V/2 scheme and precisely tune the
devices. The devices have excellent retention characteristics, and accelerated retention tests report minor < 1%
change in after the projected 10 years of operation at room temperature. Additional details are provided in Ref?.

In order to increase our demo size (given our 20 x 20 crossbar size), we deliberately chose edges to be larger
than weights (the values are selected randomly in all experiments and simulations) to force all non-diagonal
synaptic weights (T}) to be negative and all biases to be positive. This technique allows us to implement a rela-
tively larger demo by assigning one device per weight (in comparison with the two-device per synapse needed
for fully differential design) and perform each the vector-by-vector multiplication in two cycles. Indeed, the
dot-product operation is implemented in a two-step time-multiplexed fashion; that is, in one cycle, we measure
the total current (> I7) associated with the input vector multiplied by the synaptic weight vector (from the
selected neuron), while the input bias voltage is zero. Then, we subtract it from the sensed current (> I'") from
the same bitline, while the main inputs are zero and apply V,p=0.1 V to the bias column. Besides, to increase
the dynamic range, all bias conductances are divided by 5 and compensated by applying an extra gain of 5 at
the neuron side. In other words, the dnal output is evaluated by hard thresholding (5> I" — " I7). (Note that
we have previously fully-differential single-shot dot-product engines are already demonstrated using the same
devices in our previous works—see, e.g.,***°), and this simple trick is employed only to enlarge the problem size.

Owing to the single-ended design, we use g;; = Gmax(Tij/ max (| Tmaxl)), where max (| Tryax|) is the maxi-
mum absolute weight and Gpax is the maximum absolute conductance (40 uS in our experiment). We ground
all bitlines (bottom electrode) except the one associated with the selected neuron, which is virtually grounded,
and its current is sensed using a B1530A fast measurement unit and a B1500A parameter analyzer. We apply
neuron voltages to the switch matrix, connected to both 20 rows and 20 columns of the crossbar. We link top
electrodes to the input neurons and bottom electrodes to the output neurons through an E5250A switch matrix.

The eFlash chip, fabricated in Global Foundries 55 nm LPe process, includes a 12 x 10 redesigned indus-
try-grade split-gate memory array. The packaged chip is previously used for developing a high-performance
dot-product engine®*. Agilent BI500A and B1530A tools are used for measurements and pulse generation.
We have developed a c ustom-made switch matrix on a printed circuit board controlled via a lightweight
microprocessor to interface Agilent tools with the chip. More details on the experimental setup, pro-
gramming, eraser, redesigned layout structure, half-select disturbance immunity, retention, and endur-
ance characteristics are available in Ref.*%. All eFlash memories are programmed to their targeted states at
Vwr =15V, Veg = 2.5V, Ve, =1V, Vg, = 0V,andVgg = 0V and operated at the same biasing condition.
Further, the devices are tuned one at a time by progressively increasing voltage pulses and using the write-verify
algorithm. We have discussed the details of pulse amplitudes and durations in the programming phase in Ref.*.

As discussed in the main text, weight annealing is implemented by increasing the Vi from 0.7 to 1.5V
linearly and exponentially, which would exponentially and superexponentially increase the synaptic weights,
respectively, since devices are operated in weak inversion (see Supplementary Materials S.7). Similar to the
memristor-based circuit, we use the single device per synapse topology and compute each update i? two cycles.
The weights are mapped from software to hardware by using Ii]T = Imaxl].z;—’iﬂ and I}’ = ImaxlTZ—jl in which
Imax = 11tA, Tmax = 2 is the maximum absolute synaptic weight, and Tr"; = 3.694 is the maximum absolute
bias.
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