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Abstract
We first propose an ultra-compact energy-efficient time-domain vector-by-matrix multiplier
(VMM) based on commercial 3D-NAND flash memory structure. The proposed 3D-VMM uses a
novel resistive successive integrate and re-scaling (RSIR) scheme to eliminate the stringent
requirement of a bulky load capacitor which otherwise dominates the area- and energy-landscape
of the conventional time-domain VMMs. Our rigorous analysis, performed at the 55 nm
technology node, shows that RSIR-3D-VMM achieves a record-breaking area efficiency of
∼0.02 μm2/Byte and the energy efficiency of ∼6 f J/Op for a 500 × 500 4-bit VMM, representing
5× and 1.3× improvements over the previously reported 3D-VMM approach. Moreover, unlike
the previous approach, the proposed VMM can be efficiently tailored to work in a smaller current
output range. Our second major contribution is the development of 3D-aCortex, a multi-purpose
neuromorphic inference processor that utilizes the proposed 3D-VMM block as its core processing
unit. Rigorous performance modeling of the 3D-aCortex targeting several state-of-the-art neural
network benchmarks has shown that it may provide a record-breaking 30.7 MB mm−2 storage
efficiency, 113.3 TOp/J peak energy efficiency, and 10.66 TOp/s computational throughput. The
system-level analysis indicates that the gain in the area-efficiency of RSIR leads to a smaller data
transfer delay, which compensates for the reduction in the VMM throughput due to an increased
input time window.

1. Introduction

The recent boost in the availability of labeled data and processing power has led to the development of vari-

ous high-performance neural networks and their deployment in a wide range of tasks, including IoT/mobile

devices [1–6]. The urgent need to realize efficient hardware neural processing platforms to accelerate these

applications has resulted in the development of vector-by-matrix multiplier (VMM) circuits, which form

the core operator/kernel in neural processors, and the exploration of optimal architectures for their system-

level deployment. The majority of today’s commercial and experimental VMM circuits and their architectural

implementations in the neuroprocessors are inherently digital [7–14]. The performance of such processors on

VMM-heavy benchmarks is much higher than that of the standard CPUs, in part due to the use of low-precision

operations, sufficient for most neuromorphic inference tasks [15–17]. However, such digital approaches to

the VMM lead to a relatively sparse design, which necessitates storing most of the synaptic weights off-chip,

consequently paying a substantial performance penalty for memory access [18].

Mixed-signal VMMs in which the advanced analog-grade non-volatile memory (NVM) devices are

employed as both storage elements for weight kernels and multiply-and-accumulate operators have emerged

as a promising solution to outperform the digital platforms in terms of area, energy, and speed [19–32].

Indeed, prior works on NVM-based mixed-signal VMM engines have demonstrated the possibility of a rather
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dramatic, orders-of-magnitude advantages in energy, speed, throughput, and circuit density, over their dig-
ital counterparts [18, 19, 26, 28]. However, the device-to-device variations and the large cell current of the
ReRAM devices [19–22], or the relatively large footprint of the floating-gate memory cells [25, 33] hinder the
realization of a scalable system-level design.

The 3D-NAND flash memory technology, while still advancing rapidly, exhibits a record-breaking effective
bit density, an ultra-low fabrication cost per bit, and multi-level cell programming capability [34–39]. The
time-domain VMM approach (which outperforms the current-mode VMM approach [27, 40–42] in terms of
area- and energy-efficiency) is inherently compatible with the complex 3D-NAND flash memory architecture
without their modification. We recently proposed a compact time-domain VMM accelerator based on 3D-
NAND flash memory [43]. Unlike the previously proposed current-mode approach, this approach does not
require a major technological effort in redesigning the 3D wiring of the highly optimized 3D-NAND memory
matrix.

One common issue in 3D-NAND memory is large parasitic capacitances, which requires a large load capac-
itor to minimize the coupling error in the charge-based time-domain VMM implementation. Large load capac-
itor significantly degrades their area/energy efficiency [43]. Furthermore, the VMM operations with relatively
small output range are desired for many DNN/RNN models to minimize output quantization error. Designing
a VMM for such output ranges while maintaining an appropriate computational precision becomes extremely
challenging in the presence of large parasitic capacitances since the load capacitor cannot be arbitrarily shrunk
due to the significant capacitive coupling.

In this paper, we address these challenges by proposing novel VMM circuits. We further use such circuits to
develop inference processor based on 3D-NAND memory technology. The specific major contributions are:

• A novel compact resistive successive integrate and re-scaling (RSIR) approach that allows for efficient
implementation of time-domain VMM, including VMMs with sub-maximal output ranges.

• 3D-VMM design employing RSIR approach, and its detailed modeling, considering shot/thermal noise,
DIBL, capacitive coupling, and process variations in CMOS circuitry. The proposed VMM design is
suitable for a native 3D-NAND memory in that it does not require modification of its highly optimized
memory matrix.

• The design of 3D-aCortex, a multi-purpose mixed-signal neuromorphic inference accelerator based on
3D-NAND memory, and detailed performance modeling for the common neural network benchmarks.
The modeling results shows superior storage efficiency at slightly worse energy-efficiency and throughput
compared to the mixed-signal 2D counterparts (table 1).

2. RSIR time-domain 3D-VMM

Optimizing the output quantization range is a crucial step in low-precision mixed-signal VMM design for
neural applications. Such optimization maximizes the information content in the output of the analog-to-
digital converters and reduces the impact of quantization on the network’s functional performance. The output
distribution in a particular layer of the neural network is often limited to a sub-maximal range, well below
ymax = K × wmax × xmax where K , wmax, and xmax are the number of inputs, the maximum weight, and the
maximum input, respectively [46]. Tailoring the charge-based VMM with 3D-NAND flash [43] (supplemen-
tary section I, available online at https://stacks.iop.org/NCE/1/014001/mmedia) for such sub-maximal output
range while maintaining the original computing precision requires increasing the input/output time window,
T. However, this leads to a reduction in the throughput of the VMM. Other probable solutions for designing
the VMM with sub-maximal output range is to decrease drain voltage swing (ΔVD) or shrink the load capaci-
tor. Both result in a degradation of the computational precision due to variation/noise and capacitive coupling,
respectively [43]. Therefore, an alternative approach that facilitates the VMM operation with sub-maximal out-
put cell current range without significant degradation in the throughput is necessary. Also, the load capacitor
typically dominates the footprint of the conventional charge-based time-domain VMM approach and hence
needs to be minimized.

To this end, inspired by our recent work [55], we propose a novel resistive successive integrate and re-scaling
(RSIR) based time-domain VMM scheme with resistive load. It is based on an alternate representation of the
dot-product in the digital domain. In the digital domain, the dot-product operation can be represented as:

yj =
P−1∑

p=0

2p
K∑

i=1

xi(p)wij, (1)

where xi(p) is the pth bit (with p = 0 corresponding to the LSB) of the ith digital input, and P is the input
bit-precision. A scaled version of this dot-product, namely 2−pyj, can be obtained in an iterative manner as:
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Figure 1. (a) Basic structure of the resistive successive integrate and re-scaling (RSIR) time-domain approach, and (b)
illustration of the timing diagram of its operation, assuming 4-bit input conversion precision. For clarity, the figure shows
operation when memory cells are sourcing current. In 3D-NAND memories, the memory cells would typically sink the current.
In this case, the output circuitry is connected to the bit-line side of the memory cell string. The output would be pre-charged to a
certain voltage, similar to the scheme discussed in reference [27], and then discharged during RSIR operation.

y(p)
j =

K∑

i=1

xi(p)wij +
1

2
y(p−1)

j (2)

where yj
(−1) is initialized to zero, and subsequent intermediate results (yj

(p)) are successively computed by
adding the weighted sum of the pth bits of input vector elements xi(p), starting from the least significant
bit, to half of the previous intermediate result yj

(p−1). After P − 1 such successive dot-product calculation
(‘integration’) and re-scaling (‘division’) operations, we get yj

(p−1) = 2−pyj, which forms the basis for the
proposed RSIR scheme.

The circuit schematic and the timing diagram of the RSIR VMM, which implements equation (2), are
shown in figure 1. The input bits are applied to the VMM one at a time, so phase I includes P steps for P-bit
input precision. Each step is completed by performing two operations: (a) integrate followed by (b) re-scaling,
which are clocked by two non-overlapping control signals φ2 and φ3. In the p’th step, the p’th bit of all the
inputs, starting from LSB, are selected using multiplexers and applied to the input lines. The application of
the inputs activates the adjustable current sources with current values proportional to the weights. At the end

of integrate operation, the voltage over the resistor RI, and on the capacitor CI, is equal to RI

K∑
i=1

xi(p)Iij, i.e.

proportional to the weighted sum of the pth bits of input vector elements. In the re-scaling operation, CI

is disconnected from RI and weight current sources, and then connected to an identical re-scaling capacitor
CR ≡ CI. Charge sharing between CI and CR results in a re-scaling of the intermediate results. Finally, the
voltage on both CI and CR at the end of p’th step is:

V(p)
c,j =

1

2
RI

K∑

i=1

xi

(
p
)

Iij +
1

2
V(p−1)

c,j , (3)

which is equivalent to equation (2) when using wij =
1
2 RIIij and y(p)

j = V(p)
c,j . After P integrate and re-scaling

operations during phase I, the voltage on CI and CR is proportional to the re-scaled version of the final dot-
product value. This voltage is then converted to a digital pulse in phase II of the RSIR scheme, similar to the
charge-based VMM scheme [43] (see supplementary section I for more details). For this conversion, the inte-
grate resistor is disconnected, and the capacitors are further charged using a sweeping current source. Once the
voltage at the capacitor exceeds the neuron’s threshold voltage (V th), a digital pulse with a duration propor-
tional to the weighted summation of the inputs is generated at the output of the neuron circuitry. Accordingly,
the total VMM operation time can be formulated as TVMM = TWL + P × Tstep + Tout, where TWL is the time
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needed to bias the WL of the selected layer to ‘read’ voltage, Tstep is the time spent in I and R steps, and Tout is
the time spent in the final output sweep.

The RSIR approach can be implemented on the commercial 3D-NAND memory blocks without the need
for any modification in the memory structure and wiring. This approach utilizes similar peripheral circuit con-
nectivity as compared to the charge-based time-domain scheme [43]—see figure S2(a) (supplementary section
I). The weights are realized by tuning the threshold voltage (which dictates the string current) of the cells in
different strings of a layer in the 3D-NAND flash memory. Also, since the 3D-NAND flash strings sink currents
(rather than sourcing), the reference voltage, i.e. initial voltage of the resistor/capacitors in figure 1(a), is set to
Vreset = Vth +ΔVD.

A major advantage of this resistive load based scheme is that the charges injected to the integrate capacitor
due to the parasitic capacitive coupling from input strings are discharged through the load resistor over the
transient period. Therefore, the disturbance charges during the switching transients are eliminated and do not
impact the voltage on the integrate capacitor. This alleviates the stringent need for large output capacitors to
maintain computing accuracy in time-domain VMM designs based on 3D-NAND flash memory. As a result,
in the proposed RSIR scheme, the value of the output capacitors (CI and CR) are independent of the parasitic
capacitance components of the 3D-NAND string and determined only by the coupling capacitors of the pass-
transistor based switches, which are significantly smaller.

Also, a smaller load capacitor demands a lower sweeping current during phase II of VMM operation. This
reduced sweeping current can be provided by encoding cells of some rows within the same WL layer to the
maximum string current value and enabling them by applying high input to their BSL only in phase II of
computation. Such an option is not available in the charge-based approach in which the top layer memory
cells need to be selected to provide the relatively large sweeping currents. Therefore, the energy/delay overhead
of switching the WL layers for phase II of the VMM operation to provide the sweeping current is also eliminated
when utilizing the RSIR approach.

The other advantage of RSIR approach is its suitability for VMM operation with sub-maximal output range
that is essential for reducing quantization error. Indeed, the value of RI is determined by the range of the string
current and the target voltage swing on the drain (ΔVD). Hence, VMM with smaller output ranges can be
implemented by simply increasing RI value.

To cover a broad spectrum of practical VMM output ranges, we consider three scenarios. In the first, full-
range (FR) scenario, the VMM output is the top P most significant bits of the maximal output range. In other
words, assuming that the hypothetical, full precision binary representation of VMM’s maximal output range is
YP� YP�−1. . . Y0 with P� � P, the output in FP scenario are YP� to YP�−P bits. In the other two studied scenarios,
more relevant for state-of-the-art deep-learning classifiers, sub-maximal output range are considered in which
the P output bits are extracted from lower half bits (YP�/2 to YP�/2−P) and lower third bits (YP�/3 to YP�/3−P) of the
virtual high-precision full range. For a K-input single-quadrant VMM operation with weights/inputs scaled
to [0, 1], the sub-maximal scenarios are roughly equivalent to the analog ranges of 2

√
K and 3

√
K , which are

called ‘sq2’ and ‘sq3’ scenarios, respectively, in the rest of the manuscript.
We performed a detailed VMM-level analysis considering the behavioral compact model for 3D-NAND

memory based on polysilicon gate-all-around macaroni-body charge-trap cells [38]—see supplementary
section II for more details on the cell modeling and parameter tuning. Moreover, the line resistance and para-
sitic capacitances of the WL metal plates and BL/BSL lines were also considered in this work. (Level shifters are
resized to keep this TWL in the range of [20 ns, 30 ns].) The end-to-end VMM-level circuit simulations are per-
formed using 55 nm GlobalFoundries PDK considering device/line parasitics, variations, and non-idealities.
Figure 2 shows the computational error, calculated as the maximum difference between the theoretically com-
puted output times utilizing ideal current sinks and the simulated output times, as a function of the linear
size of square-shaped K × K VMM. The results were obtained from the VMM-level simulations over multiple
VMM-level runs, performed for different inputs and weights in each run to span the entire set of weights and
inputs, for sq2 and sq3 submaximal output ranges. To achieve a semi-optimal design point targeting a partic-
ular VMM precision, each scenario is explored for two different output voltage swings of ΔVD = 0.2 V, and
0.3 V and four different durations of the time-step for phase I of the RSIR VMM operation: Tstep = 10 ns, 20 ns,
40 ns, and 80 ns. Shrinking VMM output range from sq2 to sq3, RI has to be increased to capture the output
current range. This results in a larger RC-transient, and consequently, leads to a reduction in the computational
precision, which can be compensated by increasing Tstep. However, the reduction in VMM throughput due to
an increase in the Tstep for sub-maximal VMM output ranges is significantly smaller for RSIR-3D-VMM com-
pared to its charge-based counterpart. For instance, assuming fixed load capacitor and voltage swing, an input
time window of 16 × 100 ns = 1.6 μs is required for 1000 × 1000 VMM with an output range of 3

√
1000 = 10

(sq3 scenario) to maintain 4-bit computing precision [43], while the RSIR-3D-VMM can achieve such pre-
cision with the input time window of 4 × 80 ns = 320 ns (figure 1(b)). Furthermore, 4-bit computational
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Figure 2. RSIR-3D-VMM computing error as a function of VMM size (K) for (a) sq2, and (b) sq3 sub-maximal output range
scenarios targeting 55 nm technology node (CI = CR = 20 fF). Each graph shows the error for two different drain voltage swings
of ΔV D = 0.2 V, and 0.3 V (solid and dotted lines, respectively), and also four different step duration of Tstep = 10 ns, 20 ns,
40 ns, and 80 ns (blue, green, yellow, and brown, respectively). Each data point represents 3σ distribution of VMM error, defined
as 100 × |TVMM ideal − TVMM|/(Tout)max, where (Tout)max = 2P × Tstep, considering device/interconnect variations and randomized
inputs/weights.

precision can be achieved in the RSIR VMM for ΔVD = 0.2 V and Tstep = 40 and 80 ns for sq2 to sq3 cases,
respectively.

The energy, area, and throughput of the RSIR-3D-VMM for sq2 and sq3 ranges are compared against the
charge-based 3D-VMM with FR output [43] in figures 3(a)–(c), respectively. A computational precision of
4-bits is assumed for these estimates, which is sufficient for most of the tasks involving neuromorphic com-
putations [15–17]. As can be observed from figure 3, the RSIR-3D-VMM achieves a 30% improvement in
energy efficiency (∼6 fJ/Op) as compared to the charge-based time-domain 3D-VMM [43]. This gain in
energy efficiency is attributed to the elimination of the energy consumed while using level-shifters to select
the top layer for sweeping currents during phase-II of the VMM operation. More importantly, the RSIR-
3D-VMM achieves a record-breaking area efficiency of ∼0.02 μm2/Byte, which is 5× improvement over the
charge-based 3D-VMM, since the size of the integrate capacitor can be minimized without increasing the
disturbance charge error, i.e. degrading the computational precision, in the RSIR-3D-VMM, unlike the charge-
based VMM. Such high area efficiency of the RSIR-3D-VMM enables efficient system-level deployment due
to a significant reduction in the data transfer delay/energy overhead—see the next section.

3. 3D-aCortex

3.1. Top-level architecture
The architecture of the proposed 3D-aCortex is derived from that of the 2D-aCortex [18] (supplementary
section III), using the general transformation scheme shown in figure 4(a). As shown in figure S2, the 2D-
aCortex is equivalent to a very large VMM operator in which the digital inputs are read into the buffer blocks
(shown black), which can be configured as shift registers to minimize the need in the main memory (MM)
access at convolution tasks. The inputs are converted into analog/time-domain signals and propagated to ver-
tical input lines of the 2D NVM array, while analog output signals, aggregated on the shared output lines of
the array, are converted back to digital values and stored in local buffers (shown green), waiting to be written
into the MM.

The 3D equivalent of such a 2D-VMM operator is shown on the right panel of figure 4(a), which assumes
a multi-step (here 4-step) VMM operation, at which each weight sub-matrix is selected in one step. To avoid
an increase in the number of MM accesses per VMM operation during the 2D-to-3D transformation, the
input/output blocks are redesigned. At the input, the shift registers are folded, and an extra selector is added
to discriminate between vertically aligned buffer blocks at various VMM steps. Moreover, at the output, a
digital accumulator with extra precision is added to temporally aggregate the partial results. Finally, the most
significant part of the result is selected for the final output, using a barrel shifter to match the target precision.

Following such a transformation scheme, we have proposed the 3D-NAND-based DNN/RNN processor
architecture shown in figure 4(b). Its main components are:

PE: in this architecture, PEs are placed as an M × 2N 2D structure where they share time-domain inputs
in the vertical direction (I-bus), and analog BL output in the horizontal direction (O-bus). Each PE includes
a 64-layer K × 2K matrix of 3D-NAND memory cells and peripheral circuits, which is required to implement
a differential-weight 64 × K × K 3D-NAND VMM circuit (figure 5(a)). The peripheral circuitry for each
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Figure 3. Performance metrics and breakdown of 3D-NAND based RSIR VMM approach as a function of VMM size (K) and
their comparison to charge-based VMM approach in terms of (a) energy efficiency, (b) area efficiency and (c) throughput. FR
indicates full output range for which the charge-based VMM approach is used while RSIR approach is used for sq2/sq3 output
range scenarios. I/O includes both digital-to-time and time-to-digital converters. Neuron includes the threshold circuitry and the
output switch-cap circuitry for RSIR scheme. CAP/RES component indicates either the load capacitors in the charge-based
scheme or the load resistor in RSIR.

PE includes: (1) 64 word level level-shifters (WL) and drivers for selecting the target layer; (2) K bit select
line level-shifters (BSL) and drivers for changing the voltage level of the shared time-domain input, and also
activating the inputs during phase II of computation; (3) control logic gates for enabling/disabling the unit
components. In the case of the charge-based approach, each PE also includes K local load capacitors (CAP)
connected to the shared BLs and also V reset through pass gates. Since the VMM area is largely dominated by
load capacitors in the charge-based approach (figure 3(b)), we have also investigated a variation of the baseline
charge-based 3D-aCortex architecture in which a CAP unit is shared among 16 3D-NAND blocks, each with
its own BSL and WL level-shifter logic circuits (figure 5(b)). The column select (CS) and row select (RS) lines
are propagated respectively in vertical and horizontal directions to select and enable the target PEs. Moreover,
the CAP pass-gates in the enabled PEs are set to VMM operation mode at the appropriate time through a
control signal called VMM_OP.
Integrate-digitalize unit (IDU): each IDU block includes three subblocks: (1) neuron latches receiving
input from O-bus; (2) time-to-digital converters (TDCs) which are digital accumulators with higher preci-
sion (here 6-bit where two extra bits enables accumulating results for VMM operation on four-layers, i.e.,
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Figure 4. (a) 2D to 3D architecture transformation. (b) 3D-aCortex architecture layout with its main parameters and blocks.

Figure 5. (a) PE’s main circuit components and control circuitry, and (b) main changes in PE design with respect to the baseline
architecture in order to share the area-hungry capacitors in charge-based approach among multiple 3D-NAND memory blocks.
(c) Controller sub-blocks and signaling between them.

4 × 2N × K inputs without overflow); (3) barrel shifters to select the target output bit locations; and (4)
activation function circuitry which applies a target nonlinear function (here linear, ReLU, tanh, or sigmoid)
to the TDC’s output. In the RSIR approach, this unit also includes the load resistor, integrate and re-scaling
capacitors, and control switches.
Controller: due to the flexibility of 3D-aCortex, any VMM operation up to MK × NK can be performed in
one VMM step. The following actions are performed for VMM computation on one layer of the 3D-NAND
memory: (1) target PEs and their corresponding digital-to-time converter (DTC) and IDU units are enabled;
(2) input data are loaded into the buffers and, simultaneously, target 3D-NAND memory layer is selected; (3)
enabled PEs are set to VMM operation mode and DTCs convert and apply time-domain inputs during phase I
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Figure 6. (a) Memory requirement for various processing steps of a single inference task, and (b) mapping of the network weight
kernels into the 3D-NAND memory block (different colors represent different kernels, and dark blue represents not utilized
locations) for Inception-v1 [4], ResNet-152 [5], and GNMT-1024 [6].

of operation; (4) sweeping (first) layer in 3D-NAND memory is selected, (5) outputs are calculated, converted
back to digital; and finally (6) the results pass through the target activation function and stored in the MM.

To control and synchronize various units while taking advantage of the eligible time-overlap between con-
secutive VMM operations as well as steps of one VMM operation, a multi sub-unit controller is proposed
as shown in figure 5(c). In this controller, various duties are delegated to different sub-units. Router han-
dles the data transfer between MM and collector/loader/processor port. Loader performs single/burst read
from MM into auxiliary block (AUX) or buffers with various buffer/MM address strides. Similarly, collector
performs single/burst write from IDUs/AUX into MM with various buffer/MM address strides. The control sig-
nals for synchronizing various steps of VMM operation such as selecting 3D-NAND memory layers, applying
inputs, performing VMM operation, and calculating outputs are issued by operator. Finally, the main con-
troller configures the rest of the sub-units and synchronize their operations. Such controller design enables
reading the data for the next VMM operation, while writing back the output results from the previous one. It
also eliminates heavily nested loops (e.g. convolution tasks) in the machine code through implementing the
most frequently used loops in hardware.

3.2. Network mapping
The goal of network mapping is to break down inference computation into a sequence of steps (instructions)
and to determine optimal locations for storing kernel weights in VMM arrays and temporary results in the main
memory. (The mapping process was also crucial for fine-tuning architectural parameters, e.g., understanding
minimal requirements for main memory capacity).

The network mapping algorithm is based on the approach proposed in the context of 2D-aCortex archi-
tecture [18]. Specifically, the neural network is first converted into a computational graph in which each node
represents one (convolution, fully-connected, max-pooling, etc) network layer, while each edge represents the
amount of data that has to be transferred from one node (layer) to others. The layers are processed sequentially
as a sequence of ‘processing steps’, and we assume that all input and output data of the currently processed
layer must be stored in memory. With such a scheme, the total amount of main memory that will be occupied
after each processing step can be calculated by counting the edges in the computational graph, which are cut
by a line separating all already processed nodes from yet-to-be processed ones. Figure 6(a) shows the memory
requirement graph extracted from such assessment performed for the studied networks.

The weight matrices are mapped into the 3D structure of memory blocks using a weight placement scheme,
including three steps—namely quantization, reshaping, and 3D packing. According to this scheme, first, the
weight kernel dimensions, i.e., number of inputs and outputs, are quantized by K . In convolution operation,
the quantization, reshaping, and packing are performed in such a way that the shift operation in hardware is
equivalent to the shift in convolution.

In the second step, the quantized weight matrix dimensions are compared to the maximum dimensions
of one-step VMM in the hardware, i.e., 2N × M. If the kernel dimensions exceed the maximum allowable
2D-VMM in hardware in any dimension, the weight matrix is broken in that dimension and reshaped to a 3D
matrix in such a way that the third dimension, which is equivalent to the memory layer in hardware, indicates
different weight sub-matrices (either in a row-first or column-first manner).

In a third step, weight kernels are mapped into specific locations in a 3D memory array using a heuristic
algorithm whose goal is to minimize the number of utilized memory cell layers. Specifically, one iteration of
the algorithm involves the generation of a randomly ordered list of kernels and then the sequential mapping
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Table 1. Performance comparison of the various versions of 3D-aCortex to the state-of-the-art digital and mixed-signal neuromorphic
processor architectures. Except for TPU and UNPU, all performance results are based on simulations. ∗Estimated, highly optimistic
performance for 4-bit computing precision and 55-nm technology node implementation. Note that 4-bit weight/activation quantization
results in negligible decrease in functional performance (and actually better performance for ResNet) [51,52]. # The performance
numbers do not include overhead of external memory access (weights/intermediate data). & Baseline charge-based / 16x cap sharing
charge-based / RSIR-sq2 / RSIR-sq3 architectures.

Platform DaDianNao [8] TPU [7]# [14]# ISAAC [44] PUMA [45] 2D-aCortex [18] 3D-aCortex &

Technology node 28 nm 28 nm 65 nm 32nm 32 nm 55 nm 55 nm
Approach digital digital digital ReRAM ReRAM 2D-NOR 3D-NAND
Clock (MHz) 606 700 200 1200 1000 700 1000
Precision (bits) 16 fixed 8 fixed 1–16 16 fixed 16 fixed 4 fixed 4 fixed

point point (4 here) point point point point
Area (mm2) 88 330 16 85.4 90.6 292.9 18.43/41.7/0.079/0.056
Power (W) 20.1 40 297 65.8 62.5 0.039 0.151/0.126/0.079/0.056
Throughput (TOp/s) 5.54 92 1.38 39.9 52.31 14.97 10.66/8.2/8.63/6.34
CE (TOp/s-mm2) 0.063 0.28 0.086 0.46 (0.62∗) 0.58 (0.78∗) 0.051 0.58/0.2/0.96/0.7
SE (MB/mm2) 0.2 off-chip off-ship 0.74 (0.25∗) 0.76 (0.257∗) 0.273 4.34/30.7/8.92/8.9
EE (TOp/J) 0.286 0.43 11.6 0.35 (5.14∗) 0.84 (12.09∗) 380.25 70.43/65/108.7/113.3

of kernels from the list by greedily searching for the locations within already occupied memory layers and only
allocating new layers if no such location is found. The best solution is then chosen among several iterations of
the algorithm. The output results of such an algorithm are shown in figure 6(b) for the three studied networks.

4. System-level performance

To evaluate the system-level performance for target DNN/RNN networks running on the 3D-aCortex, we have
developed a software framework that utilizes the post-layout energy/speed/area metrics of all its blocks (buffers,
buses, DTCs, TDCs, neurons, and digital circuits) in the 55 nm technology node. (The energy/throughput/area
numbers for the SRAM-based instruction memory and the eDRAM-based main memory are obtained using
the CACTI memory estimator [49]). This framework extracts the list of processing tasks for a given network,
maps the VMM kernels on the 3D array of memory devices, and provides estimates for the energy/throughput
of the inference operation along with the area of the processor for the given set of architecture specifications.

Two DNN networks, Inception-v1 [4] and ResNet [5], with different computational graphs and network
sizes, and also Google’s natural machine translation (GNMT), a very common RNN network [6], have been
selected as the benchmarks for the evaluation of the proposed general-purpose architecture. The evaluation
was performed for 3D-aCortex with 4-bit computing (activation) precision, which has been shown to be ade-
quate for the studied networks. For example, [15–17] reported a negligible drop in functional performance
compared to the full precision one for precisely the same version of ResNet, which was studied in our work, a
larger version of Inception, and, similar to GNMT, LSTM-based recurrent networks.

Furthermore, we have performed a preliminary exploration of architectural parameters to optimize the
processor’s performance. As a result, the value K = 64 was chosen, which is an optimal point balancing the
trade-off between the computational block utilization and the data transfer parallelism. Moreover, partitioning
the memory blocks into such a small array size as compared to the large block size of the commercial 3D-
NAND flash results in a significantly low layer selection (access) time owing to the considerable reduction
in the parasitic capacitance of the WL/BSL plates/wires and dedicated level-shifter driving each individual
partition which further reduces the time for charging/discharging these plates/wires. However, the significant
improvement in the computation throughput and energy (due to higher utilization) is achieved at the cost of
an increased area overhead of the peripheral circuitry. Note that in the commercial 3D-NAND flash blocks,
memory density is the primary focus of the design, so a single peripheral circuitry drives a vast, ∼1000× larger
3D-NAND block resulting in a considerable access time of ∼7 μs [56, 57].

Moreover, the parameters M and N were selected to balance the read and write time/energy. Note that the
parasitic of the shared bit lines (O-BUS) bounds the horizontal dimension of the processor and consequently
affects the PE’s aspect ratio as well as the number (2N) of these elements sharing one bit line. A detailed study
of the benchmark networks has shown that a 1 MB MM is sufficient to store all intermediate data, while the
flow control program requires at most 4 KB IM. Finally, our detailed analysis indicates that M = 32 and N = 8
satisfy the aforementioned conditions while being sufficient to perform even the largest, 128M-weight GNMT
benchmark.

The architecture specifications, performance measures, and their breakdown are summarized in table 2
for the baseline charge-based 3D-aCortex, area-optimized charge-based approach with 16× CAP sharing, and
RSIR-based 3D-aCortex with sq2 and sq3 output range scenarios. As shown, RSIR approaches achieve a peak
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Table 2. System-level performance results for four different versions of 3D-aCortex designed in 55 nm process: (1) baseline charge-based 3D-aCortex, (2) area-optimized charge-based approach with 16× CAP sharing, and
(3) and (4) RSIR-based 3D-aCortex with sq2 and sq3 output range scenarios, respectively. The benchmarks include inception-v1 [4], ResNet-152 [5], as well as Google’s neural machine translation recurrent network, GNMT-
1024 [6] with the number of parameters/operations equal to 7.2 M/5.2 B, 55 M/20 B, and 0.13 B/2.6 B, respectively. The semi-optimal architectural parameters for the reported results are K = 64, M = 32 and N = 8.

Approach Baseline charge-based 16× CS charge-based RSIR—sq2 RSIR—sq3

Benchmark GNMT INC-V1 ResNet GNMT INC-V1 ResNet GNMT INC-V1 ResNet GNMT INC-V1 ResNet

Area breakdown (%)
3D-NAND 2.95 20.86 6.06 6.04
MM 34.83 15.39 71.59 71.32
CAP/RES 52.70 23.29 0.49 0.87
DTC/TDC/N 1.72 0.76 3.48 3.47
Level shifters 4.71 33.3 9.88 9.65
Others 3.09 6.4 8.5 8.65

Energy breakdown (%)
WL 58.6 38.6 41.7 54.1 27.8 31.8 45.2 27.2 28.2 47.1 27 28.1
MM 2.3 10.3 9.7 2.1 7.4 7.4 3.5 14.5 13.2 3.7 14.4 13.1
CAP/RES 10.6 7 7.5 9.8 5 5.7 10.1 7.8 10.9 5.9 4.8 7.6
DTC/TDC/N 1.6 3 4.5 1.4 2.3 3.5 1.6 2.1 3.6 1.5 2 3.5
BSL 22.4 14.7 16 20.67 10.6 12.2 35 20.8 21.6 36 20.6 21.5
Buses 3.9 22.2 17 8.7 37 28.5 3.7 18.8 15.2 3.9 18.7 15.1
Leakage 0.6 2.6 2.5 3.13 8.7 10 1.1 6.3 5.9 1.5 10.1 9.4
Others 1< 1.6 1.1 1< 1.2 1< 1< 2.5 1.4 1< 2.4 1.7

Performance summary
Area (mm2) 18.43 41.7 8.96 9
# Occupied layers 64 6 33 64 6 33 64 6 33 64 6 33
SE (MB mm−2) 4.34 30.7 8.92 8.9
Power (mW) 151.35 33.27 33.64 126.1 45.64 39.46 79.34 13.22 14.32 55.9 8.34 8.97
Latency (ms) 0.23 5.211 12.61 0.29 5.27 14.1 0.28 9.28 21.9 0.38 14.84 35.05
EE (TOp/J) 70.43 27.42 44.52 65 19.76 33.94 108.72 38.7 60.19 113.33 38.38 60.02
Throughput (TOp/s) 10.66 0.91 1.49 8.2 0.9 1.34 8.63 0.51 0.86 6.34 0.32 0.54
Energy/frame (J) — 1.7 × 10−4 4.2 × 10−4 — 2.4 × 10−4 5.6 × 10−4 — 1.2 × 10−4 3.1 × 10−4 — 1.2 × 10−4 3.1 × 10−4
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area and energy efficiency of 8.88 MB mm−2 and ∼110 TOp/J, which is 2× and 1.57× higher than their baseline
charge-based counterpart. Moreover, the natural drop in throughput with respect to the output range has been
effectively compensated at the system level with the throughput only dropping from 10.6 TOp/s to 6.3 TOp/s
despite the drastic reduction in the output range in sq3 scenarios, e.g., a factor of 0.01× for a 1000-input neural
layer.

5. Comparison with prior work

On the circuit level, to the best of our knowledge, 3D-NAND/AND-based VMMs have been studied in only
three works [39, 43, 58]. In [39], inputs are applied to WL terminals which require partitioning them to several
independent WLs per layer along x-direction, or using cells which do not share the same WL by applying input
to WLs in different blocks and then performing a sparse current-mode VMM operation and also adding extra
switching circuitry to enable individual access to multiple WLs in one layer. This approach also suffers from
the challenging problem of managing a large number of word lines, which would likely result in a very large
peripheral circuitry overhead. Moreover, such a sparse VMM operation would be highly inefficient as it does
not exploit the inherent ultrahigh-density feature of the 3D NAND flash memory. In addition, in this scheme
based on the current-mode VMM, analog input signals are applied to highly resistive and capacitive word lines,
leading to higher energy consumption and larger delays.

In contrast, our approach is fully compatible with the commercial 3D-NAND flash memory. Encoding
inputs via application of digital pulses on the bit-select lines results in better energy-efficiency and speed.
Moreover, our RSIR 3D-VMM eliminates the stringent requirement for large area hungry integrate capacitors
used in the time-domain 3D-VMM [43] which results in a record-breaking area efficiency of ∼0.02 μm2/Byte,
which is 5× better compared to the design based on the original approach. A smaller integrate capacitor also
reduces the sweeping current requirement and alleviates the need for using level-shifters and switching the
WL layer for sweeping currents. This results in a high energy efficiency of ∼6 fJ/Op, which is 1.3× improve-
ment over its charge-based counterpart. Our results also show that the proposed RSIR 3D-VMM achieves a
∼500× improvement in the area efficiency compared to the 2D-NOR flash-based time domain VMM [27]
while maintaining a comparable energy efficiency and throughput. Moreover, the digital nature of the circuit
peripheries (level-shifters, neuron, DTC, and TDC) in our proposed time-domain VMM significantly relaxes
the limitation for technology-node scaling as opposed to the analog nature of the peripheral circuits in the
amplifier/current-mirror (voltage/current-mode) based approaches. Also, in the proposed design, the preci-
sion is mainly constrained by the inherent 3D-NAND flash cell characteristics such as DIBL and capacitive
coupling, and not by the peripheral circuitry characteristics such as gain, noise, and their sensitivity to pro-
cess variation. Considering the extremely high density of 3D-NAND cells due to 3D integration, the proposed
approach can significantly benefit from technology-node scaling even when the size of the individual flash cells
does not scale proportionately.

On the system level, quite a few efforts were recently made to exploit the efficiency of mixed-signal (MS)
operators to develop better DNN/RNN processor architectures [44, 45, 50–54]. For example, the ISAAC [44]
and PUMA [45] architectures are 2D mesh structures of tiles where each tile contains several small (typically
128×128) ReRAM-based VMM units with their I/O peripheries. In these architectures, one shared memory is
implemented in each tile for storing intermediate data and communication between the VMMs, while commu-
nications between the tiles are performed through a shared 2D bus structure. Such a heavily-granular, multi-
core design approach aims at increasing the VMM unit utilization, minimizing the data transfer overhead,
and maximizing the system throughput via pipelining and parallel processing. However, the data conversion /
communication overhead due to the partial VMM operation, static power consumption and large area over-
head of the neurons / DACs / ADCs, and a large control and communication overhead between tiles /VMMs
likely limits the performance of such architectures, especially when running relatively complex computational
graphs such as those of the Inception [4] and ResNet [5] tasks.

In contrast to this prior system-level work, our 3D-aCortex processor architecture is harmonically matched
with the proposed 3D-NAND VMM as the core processing unit. It includes a flexible/programmable granu-
lar single-bank 3D analog operator and a reconfigurable folded chain of buffers, which allows the contingent
implementation of various size VMMs and convolution kernels fully in the time/analog domain. Such design
results in maximizing the data reuse while minimizing the area overhead of peripheral and control circuitry,
as well as the energy overhead of the VMM operation (integration and I/O conversion) and control/data
movement associated with heavily multi-core designs performing partial VMM operations [44, 45]. The main
advantages of the proposed architecture are:

• A flexible single-bank design, which results in a very large sharing factor of costly peripheral circuitry
such as buffers, DTCs, neurons, TDCs, and programming circuitry, while maintaining the capability of
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performing various size VMM operations. The large sharing factor of the peripheral circuitry and a high
density of 3D-NAND memory result in remarkable storage efficiency.

• Such a design provides a flexible large VMM operator fully in the time/analog domain, and consequently
allows the contingent implementation of VMMs of various sizes, fully exploiting the energy efficiency and
speed of computation in the time/analog domain, i.e., avoiding overheads of partial VMM operations.

• The layer-by-layer processing scheme, combined with the single-bank deployment of analog operators,
results in relatively simple control circuitry, with low energy/area overhead while still supporting even
complex computational graphs.

• The data reuse in convolution layers is fully preserved via a configurable folded buffer chain design.

• Due to the time-domain approach, zero static power of the computational blocks improves energy
efficiency.

The detailed simulation results for 3D-aCortex, benchmarked on representative RNN/DNN models, have
shown a performance significantly higher than all published prior results, including the fully digital [7, 8, 14]
and MS [18, 44, 45] systems - especially for mobile/IoT applications, for which the storage and energy effi-
ciencies are the most important metrics (table 1). To make a fair comparison between 3D-aCortex and
other MS approaches, we have performed a highly optimistic rescaling of the published performance met-
rics to the 55-nm, 4-bit design point. Even with this highly optimistic projection, different versions of
3D-aCortex (i.e., baseline charge-based, charge-based with 16× CAP-sharing, RSIR-sq2, and RSIR-sq3) pro-
vide a ∼(17, 119, 34, 34)× improvement of the storage efficiency, and a ∼(14, 13, 22, 23)× improvement
of the energy efficiency overthe ISAAC [44], while maintaining a comparable computational efficiency of
(0.58, 0.2, 0.96, 0.7) TOp/(s-mm2). In comparison with PUMA [45], these numbers are, respectively
∼(17, 119, 34, 34)× and ∼(6, 5.5, 9.5, 10)×. These results also show that in comparison with the 2D-aCortex
based on 55-nm NOR flash memory [18], the chip footprint of the 3D-aCortex is ∼(16, 7, 32, 32) times smaller,
while its energy efficiency is lower only by a factor of ∼(5.4, 5, 3. 2.85)×.

Moreover, the proposed 3D-aCortex architecture is based on the 3D-NAND flash technology and digital
time-domain peripheral circuitry, allowing for its further scaling beyond 20-nm technology node without per-
formance/precision degradation. This fact promises even more compact and energy-efficient neuromorphic
processors based on future, more advanced technology nodes.

6. Discussion and summary

It is worth stressing that the focus of this work is on neuromorphic inference, which typically does not require
frequent weight updates, and hence a more advanced, longer write-verify schemes could be utilized for writing
memory cells. The use of such write schemes would be essential for high precision tuning of the memory cell
currents to the desired values in the presence of significant variations in memory cell characteristics—see an
example of such tuning for NOR flash circuits in reference [59]. Moreover, advanced write-verify algorithms
would be naturally required for dealing with the NAND array back pattern effect [60], i.e., the dependence of
the programmed currents of some specific cell on the programmed states of other memory cells in the string.
For example, back pattern effect can be significantly reduced by exploiting the programming sequence starting
from the drain side, by increasing the VWL for the pass mode, or even strategically choosing VWL based on the
information about all the weights in the memory string, and/or by performing fine tuning of the memory cells
in several passes. (Note, however, that the utilized behavioral compact model developed for 3D-NAND flash
memory in [38] effectively captures the impact of the DIBL and series resistance of the unselected cells on the
string current characteristics and the shift in the threshold voltage in the read mode).

An essential future work includes quantifying the impact of retention-induced charge losses in 3D-NAND
memory cells and stuck-at-0/1 cell type of defects on the performance and functionality of the proposed
circuits and the development of mitigation schemes against these imperfections. Our results for NOR flash
memory neuromorphic circuits (e.g., measuring drift in cell currents after seven months of shelf time [25])
are very encouraging, indicating that the retention-induced charge losses for most cells could be addressed
by infrequent cell re-tuning. Furthermore, it should be possible to avoid cells with more significant drift and
stuck-at cells by re-mapping the weight kernels or mapping ‘zero’ weight to these cells. It should be noted,
however, that most 3D-NAND flash memories utilize charge trap mechanisms instead of floating gate struc-
tures, and, therefore, the drift issue requires further investigation. Additionally, our modeling study is based
on the technology reported in references [47, 48], while the device parameters might be somewhat different
for more common commercially-used 3D-NAND memories, e.g., in that they utilize denser hexagonally string
packing instead of the cubic one assumed in this paper and larger effective (tunneling and blocking) silicon
oxide thicknesses. Larger effective oxide thicknesses would likely result in worse DIBL and hence somewhat
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worse computing precision, while tighter string spacing would lead to higher parasitic capacitance, i.e., some-
what lower performance and energy efficiency. Unfortunately, more accurate modeling is challenging now
since many details of such advanced 3D-NAND memories are still missing.

To summarize, in this work, we propose an alternative time-domain scheme with a resistive load called
the RSIR approach, which effectively eliminates the requirement of a bulky load capacitor leading to a sig-
nificant improvement in the area-efficiency. Moreover, this scheme facilitates the efficient implementation of
VMMs with sub-maximal output cell current ranges, which is a key feature in the mixed-signal neural pro-
cessors. VMM-level simulations considering various non-idealities including line/device parasitics, variations,
and noise show that the RSIR-VMM targeting sub-maximal output ranges achieves 4 bits of computational
precision while exhibiting an improvement of 5×/1.3× in area/energy-efficiency compared to its charge-based
counterpart with maximal, full output current range.

We also propose a novel neural accelerator architecture called 3D-aCortex embedding time-domain 3D-
VMMs as its core processing element. This architecture aims to minimize the input/output peripheral circuitry
overhead, a major limiting factor for area/energy efficiency in mixed-signal architectures [44, 45], via sharing
these elements among a large 2D array of time-domain VMMs. Flexible activation of processing elements
and multilayer 3D-NAND memory structure allows efficient 3D packing of neural layer weight matrices onto
the array of processing elements. Moreover, the data transfer cost is further minimized using a flexible folded
chain of digital input buffers that are taking advantage of the data reuse for convolution operation and a multi-
agent controller enabling the time overlapping between input and output data transfer for sequential VMM
operations on the same weight kernel.

The system-level results are estimated using an in-house 3D-aCortex estimator, which imports detailed
block-level simulation results and the computational graph for the target neural network and generates a com-
prehensive system-level performance report. Using such tool, we performed rigorous system-level estimations
for charge-based and RSIR approaches designed for full output current range, and multiple sub-maximal
output ranges targeting a neural benchmark set which includes various network types/sizes, consisting of
Inception-v1 [4] and ResNet-152 [5] deep neural networks, and GNMT network [6]. The results indicate
that RSIR-3D-aCortex with sub-maximal output range achieves ∼9 MB/mm2 storage efficiency, 113 ÷ 118
TOp/J peak energy efficiency, and 6.3 ÷ 8.6 TOp/s computational throughput, which is a 2× and 1.5× ÷
1.6× improvements, respectively, in storage and energy efficiency at the cost of 20%–40% degradation in
throughput compared to its full-range charge-based counterpart.
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