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The Impact of Device Uniformity on Functionality
of Analog Passively-Integrated Memristive Circuits

Z. Fahimi, M. R. Mahmoodi*~, M. Klachko

Abstract—Passively-integrated memristors are the most
prospective candidates for designing high-speed, energy-efficient,
and compact neuromorphic circuits. Despite all the promising
properties, experimental demonstrations of passive memristive
crossbars have been limited to circuits with few thousands
of devices until now, which stems from the strict uniformity
requirements on the /V characteristics of memristors. This
paper expands upon this vital challenge and investigates how
uniformity impacts the computing accuracy of analog memristive
circuits, focusing on neuromorphic applications. Specifically,
the paper explores the tradeoffs between computing accuracy,
crossbar size, switching threshold variations, and target precision.
All-embracing simulations of matrix multipliers and deep neural
networks on CIFAR-10 and ImageNet datasets have been carried
out to evaluate the role of uniformity on the accuracy of
computing systems. Further, we study three post-fabrication
methods that increase the accuracy of nonuniform 0T1R neu-
romorphic circuits: hardware-aware training, improved tuning
algorithm, and switching threshold modification. The application
of these techniques allows us to implement advanced deep neural
networks with almost no accuracy drop, using current state-of-
the-art analog 0T1R technology.

Index Terms— Memristor, neuromorphic computing, VMM,
memristive circuits, ReRAM.

I. INTRODUCTION

HE cognitive capabilities of the human brain have served

as an inspiration for the development of artificial ncural
networks (ANNs). Despite the fact that ANNs have surpassed
humans in terms of prediction accuracy in few applications,
e.g., image classification, they are still far inferior in terms of
energy efficiency. While offering far more cognition capabil-
ities, the visual cortex consumes several orders of magnitude
less energy than state-of-the-art ANN systems. Hence, further
progress in the field of neural computation hinges on the
use of more efficient hardware as the need for energy and
area-efficient neural networks is as great as ever [1]-[3].
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A key challenge towards the development of efficient
large-scale neuromorphic hardware is the lack of a suitable
electronic device mimicking synapse functionality. Such func-
tionality is essential to compute a dot-product, the most
common operation in inference or training of ANNSs. In this
context, a very promising approach for neuromorphic infer-
ence applications is to employ circuits with memristors.
A memristor is a nanodevice with adjustable conductance
G - essentially an analog nonvolatile memory cell - that
enables efficient implementation of the dot-product operation
in the analog domain. Indeed, the most appealing aspect of
memristor technology is its scalability prospects. The con-
ductance modulation in filamentary metal-oxide memristors is
attributed to the reversible modulation of the concentration of
oxygen vacancies. The atomic scale of the vacancy position
modulation implies the feasibility of downscaling memristors
to sub-deca nanometers [4], [5]. The density of a device
could be as small as 4F2, limited by the half-pitch metal
size F. Emulating these adjustable devices with purely CMOS
circuits requires orders of magnitude larger footprint (e.g.,
the next compact option, redesigned analog-grade floating-gate
memories [6], consume ~100 F 2/cell). However, the progress
for implementing larger-scale memristive circuits, especially
their most dense passively-integrated (OT1R) variety, that are
required for practically useful neuromorphic hardware, faces
several challenges.

One critical challenge is the presence of large device-to-
device variations [7]. The stochastic nature of oxide rupture
in such small scales complicates the reproducibility of device
parameters, e.g., the voltage required for electroforming and
switching. Such variabilities are the very reason for the
limited demonstrations of memristive neuromorphic networks
so far. One solution to alleviate this issue is the usage
of selector transistors (1T1R memories); however, such an
approach is in conflict with the main driving force of this
technology (i.e., scalability and three-dimensional integration
compatibility [5], [8]).

The recent work [9] showed progress in addressing this
challenge and demonstrated the successful integration of a
64 x 64 passive metal-oxide memristor crossbar circuit. This
technology features analog-grade memories with ~99% device
yield based on a foundry-compatible fabrication process with
etch-down patterning and a low-temperature budget, conducive
to vertical integration. The crossbar also features excellent
analog properties such as long retention and high endurance
characteristics. The cell size is 10*x denser at a similar yield,
and the average conductance is 10x less than state-of-the-art
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ITIR technology [3], [10]. Besides, the reported uniformity
is sufficient for <5% average tuning precision that is slightly
worse than ~3% reported in analog 1T1R memories [10].
Despite the vital importance of uniformity in OT1R mem-
ristor crossbars, it has not been thoroughly investigated in
the context of neuromorphic computing to the best of our
knowledge. The key open questions include: How does the
crossbar uniformity impact the computing accuracy of mem-
ristive crossbars? From this perspective, what are the critical
factors that affect computing accuracy? How can we improve
the performance? How much crossbar uniformity is needed to
achieve software-equivalent accuracy and build a large-scale
deep neural network? This paper aims to expand upon these
important questions and the critical role of switching thresh-
old variations in the computing precision of neuromorphic
networks. First, we discuss the preliminaries, motivation, and
previously fabricated analog-grade memristor crossbars. Then,
a dynamic model and a simulation framework are developed
based on experimental data from the fabricated crossbar.
Further, extensive simulations of vector-by-matrix multipli-
ers (VMMs) and representative neuromorphic networks are
performed to assess the tradeoffs and trends. Finally, three
post-fabrication solutions are explored for improving the per-
formance of neuromorphic circuits. The paper is concluded
with a thorough discussion of the results and prospects of
harnessing OT1R and ITIR circuits in neuromorphic circuits.

II. ANALOG PASSIVE MEMRISTIVE CROSSBAR CIRCUITS
A. Basic Structure and Operation

Fig. la shows the scanning electron microscope image
of our latest fabricated 64 x 64 memristive crossbar [9].
The inset shows the zoomed-in view to a portion of the
crossbar, showing top electrodes passing on top of the bottom
electrodes. A memristive device is formed at the intersec-
tion of each top and bottom electrodes. Such an array of
conductance-adjustable devices could be used to implement
vector-by-matrix operation in the analog domain by utilizing
Ohm and Kirchhoff laws [11].

The devices are typically operated in three phases: forming,
programming, and read. Upon fabrication, devices are initially
in the pristine state and require a one-time forming process
before becoming adjustable memristors. The electroforming
process includes applying a current-limited ramp voltage to a
device and continuously monitoring its low-voltage conduc-
tance. When the device reaches a certain threshold, a con-
ductive filament forms inside it [12], and its low-voltage
conductance jumps significantly, enabling subsequent analog-
state tuning and storage.

In the second phase, the tuning or programming stage, the
conductance of the device is adjusted to a desirable value
(G) through the modulation of the impurity profile. We may
increase (set) or decrease (reset) the conductivity of the device
by applying a moderately large voltage to the device that
is about (or slightly larger than) its switching threshold—
a device-unique voltage that alters its conductance by, e.g.,
20%. Harnessing the write-verify algorithm [7], we keep
programming and monitoring the state of the device (G)
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until reaching a certain relative tuning error |G — G| /G < €.
(Note that a relative tuning accuracy is defined as 1 - €.)
Ultimately, to implement multiplication, summation, or useful
computational tasks, devices are operated in the non-disturbing
read (i.e., inference) phase: A relatively low voltage (V) is
applied to the device, and the generated current, / = G-Vis
sensed in a CMOS circuity.

When a high-precision readout circuit is available and
memristive devices have excellent retention characteristics, €
is almost entirely bounded by the devices’ dynamic switching
characteristics and their variations. To clarify this, consider the
practical V/2 approach [7], [9] of tuning memristive crossbars
(Fig. 1b). The voltage applied on the selected device (by
peripheral decoders and switch matrix) is V. Unselected
electrodes are pinned to Ve /2 to minimize the disturbance on
other devices. The applied voltage on the unselected devices is
zero; however, Vit /2 is dropped on the devices which share an
electrode with the selected device (i.e., half selected devices).
If the switching threshold of these devices is ~ Vge/2 or
less, their state shifts undesirably, resulting in an imprecise
tuning. A similar idea also holds for the reset operation.
Fig. 1c shows the measured I-V characteristics of a device
(Rp) in the 64 x 64 crossbar. Two hypothetical switching
threshold distributions and I-V characteristics corresponding
to half-selected devices Ry and R; are also shown to clarify
our point. When we set Rg, Vier,r0/2 drops on both Ry and
R,. The state of R; is expected to alter negligibly since the
set threshold of R; is much larger than Ve ro/2, unlike Ro
that switches considerably. Hence, when tuning the entire
crossbar, the total disturbance is correlated to the variations
in the distribution of switching thresholds, and the smaller
variations (or higher uniformity) result in a higher tuning
precision.

B. Experimental Demonstrations and Their Challenges

Retention, yield, and I-V variations and on-off conductance
dynamic range are critical factors for analog-grade passive
crossbar circuits that are used in neuromorphic inference
computing. A 32 x 32 WOy memristor crossbar is reported
in [13] with Gon/Gogt = 3 #S /1 uS and >35% tuning
error, though it is not clear if this reported precision is
obtained after programming the entire crossbar or otherwise.
A 108 x 54 crossbar made of 126 6 x 8 subarrays with
~600 um>WOy devices are integrated on CMOS in [14] with
dot-product operation experimentally demonstrated despite
minutes-to-hours-scale room-temperature retention. Ref. [15]
demonstrates low normalized variations (~3.75%), excellent
retention, and high switching endurance on a 16 x 1 crossbar
of 100 um? SiGe devices. Ref. [16] also demonstrates passive
crossbars using two-dimensional materials with 98% yield and
12.3% (5.7%) normalized variations in the set (reset) switching
distributions.

TiO, memristors have been used in designing 10 x 2 [1],
12 x 12 [4], and 20 x 20 [2], and 64 x 64 [9] crossbar cir-
cuits, with excellent retention (>20 hrs in 100°C), endurance
(> 10° analog switching cycles), and close to 100% yield.
The normalized variations in these works are 10%, 11%, 18%,
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(a) The SEM image of the fabricated 64 x 64 crossbar [9]. All experiments in this paper are performed with this chip. The inset shows the zoom-in

view of the portion of the crossbar. (b) The schematic of the 3 x 3 portion of the crossbar and the V/2 tuning scheme with highlighted selected, unselected,
and half-selected devices. Panel (c) shows a typical I-V characteristic of a device and reveals why the tight distribution of switching voltage is critical.

and 26%, respectively. The same stack is also used in the only
analog-grade 3D integrated demonstration [5] using two layers
of 10 x 10 memristor array and reporting ~13.6% normalized
variations.

The natural trend that is observed in the TiO, cross-
bar circuits is that normalized device variations grow with
increasing the crossbar size. This is in part due to the larger
forming current required for electroforming increases because
of the increase in leakage currents. A larger compliance
voltage/current is required as more and more devices are
electroformed, which increases electrical stress and ultimately
leads to a higher device variability. When forming our 64 x 64
crossbars, the maximum electroforming current is set to ~50
1A at the beginning, but it is raised to ~ 1 - 5 mA at the end.
Additionally, the more devices are in the crossbar; the more
disturbance is created during tuning. These two factors make
high precision tuning in larger crossbars significantly more
challenging. The good news is that the crossbar circuits do
have to be too large. For example, our preliminary architectural
studies show that for many computing applications, e.g., deep
learning accelerators, the optimum crossbar dimension is in
the range of 64 x 64 as choosing enormous crossbar modules
underutilizes the hardware resources and reduces the overall
performance [17].

In this paper, we are interested in investigating how the
parameters of a 0T 1R memristor technology, i.e., the variations
in the switching thresholds, impact the tuning error (€) and,
in turn, the computational accuracy of memristive neuro-
morphic networks. The relationship between the variations
in the switching threshold voltages and the crossbar size
with circuit fidelity was not studied ecarlier. To clarify it,
we first use plentiful experimental data to develop a reliable
dynamic model for the memristor that relates the conduc-
tance change to the switching thresholds and the applied
voltage. Then, we use this model to emulate the tuning
process of ex-situ weight transfer and find the relationship
between the accuracy, block size, and normalized variations
in general VMM blocks and representative neuromorphic
circuits.

III. MODEL DEVELOPMENT AND
SIMULATION FRAMEWORK

In order to study the role of uniformity in memristive
crossbar circuits, we have developed a dynamic model that
describes the changes of the conductance (memory state) as a
function of its initial state after the application of a pulse with
an amplitude V}, and a fixed duration 7.

Note that we could not use previous models (including
our recent work [18]) because they do not accurately pre-
dict the half-select drift. Though we could consider a very
general model, we prefer to use a model that is more rep-
resentative of our fabricated stack that meets the essential
requirements for analog computing (analog tunability, high
retention, endurance, etc.). Furthermore, since our candidate
device and other metal-oxide memristors share some similar
switching characteristics, we expect to see resembling trends
of the results for other devices as well. For simplicity of the
model development, we consider square-shaped write pulses
(which also helped with reducing cycle-to-cycle variations as
was shown in Ref. [19]).

First, we measure a massive number of experimental data
points (~35 x 10%) from our 64 x 64 crossbar and develop
a model that describes an average behavior of relative change
in the conductance among all devices. Then, we use a device-
unique multiplicative factor a that models the variations in
the switching thresholds by effectively scaling the applied
voltage. Instead of relying on physics-based models, we use an
empirical fitting function for modeling purposes. The relative
change in the conductance of a device with conductance G,
subjected to a set/reset square-wave pulse stimulation with the
amplitude of V, is modeled with [16]

AG b1 . aV
— Xexp| ————— |sinh | 3i————
G 1+ p2(aV) L+ p2(aV)
x (11 +72YG+1G), (M)
where f1, B2, 3, 71, y2, and y3 are fitting parameters. The

form of the function includes exp and sinh functions, which
were used in previous works [4], [16], [34], [35] to describe
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Fig. 2. The modeling results for the average set (a) and reset (b) operations. Panels show the relative change in the conductance for different initial conductances
when subjected to square write pulse with a specified amplitude and constant, 2-ms duration. The inset tables show the corresponding goodness of the fit
and model parameters. Panels (c-d) show the set/reset characteristics for 100 devices with 10% normalized variations. The inset shows the corresponding

distribution of «.

the nonlinear switching dynamics of memristive devices.
This model captures the exponential switching kinetics with
applied voltage in nonvolatile ionic memories [20], [21]. Also,
we include an extra term (y; + )’2\/6 + y3G), which models
the nonlinearity with respect to an initial conductance G. This
update function is multiplied by a simple exponential window
function to avoid out-of-range updates.

Specifically, the average switching characteristics of 500
devices are measured in the crossbar using 2 ms pulse width
and several initial conductance points. The trust-region algo-
rithm [33] is used for nonlinear least-squares to optimize the
model parameters. Fig. 2 shows the experimental data and
modeling results for set and reset operations within the useful
range of device conductance (~5 us to ~75 us). The model
parameters closely reproduce the measurement results. The
fitting parameters and goodness of fit for both set and reset
operations are also shown in Fig. 2. Note that, by definition,
o =1 is used in the average model. Given a certain switching
threshold (Vget), a is obtained using a = m/Vset, where

Vser is the average set threshold. A similar definition is also
used for the reset operation. When studying the normalized
variations, we use fixed average thresholds (m =1V and
Vyeset = —1.2 'V, obtained from the measurements under the
condition AG/G = 0.2), employ log-normal distributions
with lower bound clipped to 0.5 V, and change their standard
deviation parameter. Fig. 2c-d shows the simulated set/reset
characteristics for 100 devices with 10% normalized varia-
tions. In the following, we discuss how we emulate the tuning
and perform the ex-situ training using this dynamic model.
In ex-situ training of a neuromorphic network, synaptic
weights are calculated on a precursor software-based network
and then imported sequentially into the crossbar circuits.
Networks are typically composed of many crossbar blocks
which are programmed in parallel or sequentially. However,
within a crossbar, the devices are tuned into their correspond-
ing predetermined desired states individually (one-by-one).
Due to the stochastic nature of the switching mechanism in
memristors, particularly analog-grade devices often require
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multiple pulses to reach the desired accuracy. This is executed
using the well-known write-verify algorithm [7].

In every simulation case, the devices’ conductances are
initially randomized using a Gaussian distribution with an
average of 36.25 xS (midrange conductance) and a standard
deviation of 9 xS. Then, conductances are adjusted one by
one using the write-verify algorithm and the dynamic model.
We reconstruct the exact procedure that we employ in the
experiments when tuning the devices [7], [9]. The devices
within any crossbar block are tuned in raster order. More
importantly, to increase the tuning speed, we progressively
increase the pulse amplitude (set/reset) starting from 0.5 V
with 10 mV steps to the switching voltage of the device. The
tuning direction (setting or resetting) is alternated whenever
we pass the target conductance. To avoid overstressing the
memristors, creating too much disturbance, and reducing the
tuning time, we limit the tuning process for every device to
5 rounds. The algorithm is aborted (and restarted with the next
device) whenever it reaches the desired tuning accuracy or the
maximum permitted pulse per device. The half-select distur-
bance is simulated for every applied pulse and every device
by updating the state of devices sharing either top/bottom
electrode with the V/2 rule.

The procedure of tuning all crossbar devices is repeated
10 times (rounds) to improve the results by re-tuning the
devices disturbed by half-select effect.

IV. COMPUTING PRECISION IN NONUNIFORM CROSSBAR

VMM is the most critical operation in inference accelerators
and most neuromorphic tasks. The fidelity of most ncural
network models closely follows the computing precision in
their VMMs. Here, we consider N x N two-quadrant VMM
circuits, which are implemented in the analog domain by two
separate N x N memristive crossbars. VMM size, variations
in switching thresholds, and target precision are variables
of this research. For every case study, 20 crossbars with
random log-normally distributed switching thresholds and
20 different normally distributed weight matrices with zero
mean are generated. The mapping function Gl.i. = Gumin +
(1 £ W;;)(Gmax — Gmin)/2 in which W;; = [—1, +1] is the
normalized weight and Gyax and Gpip are upper and lower
conductance bounds are used to convert dimensionless weights
into device conductances [22]. For each VMM, we randomly
generate 1k input voltage vectors, with elements uniformly
distributed in the range 0 to 0.1 V. VMM computing errors
are then calculated over the output current (/) and defined
by |lactual — lideal| /Imax. Ideal currents ([igea1) are obtained
directly from the mathematical vector-by-matrix multiplication
of the input voltage vector and conductance matrix, actual
currents (/actual) are obtained from the circuit simulation after
all devices are tuned, and Inhax 1S the maximum absolute
pre-activation current over all input combinations.

First, the half-disturbance issue is investigated for 64 x 64
VMMs and 5% and 25% variations in switching threshold
voltages. Fig. 3a shows the tuning error for 50 devices (in
the crossbar that implements G*) during 10 rounds of the
programming phase in the case with 5% variations. Specifi-
cally, each curve shows how the tuning error for each device
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evolves, starting from the first tuning round to the last one.
One curve is highlighted for better clarity. The steep drops
in each curve denote the moments the device is tuned. For
the highlighted curve, the device is initially tuned with <1%
error, but the disturbance moves its state leading to ~5% error
by the end of the 1% round. The device is retuned in the 2"
round, and the disturbance alters it to ~3% of the target. Less
disturbance generated in the 2" round stems from the fact that
some devices are within the target accuracy by the end of the
1% round. So, the total number of pulses (and hence overall
disturbance) decreases in each round. The state of most devices
stabilizes by the end of the 4™ round. The conductance error
distributions and related statistics, shown in Fig. 3b, confirm
these findings as well.

The assumption of 5% variations in a 64 x 64 crossbar
is too optimistic with the current technology. Figs. 3b and
3c show the result from the simulations of crossbars with
25% variations in the switching thresholds. Though the results
slightly improve in the first 4 rounds, many devices remain in
imprecisely tuned states after that. The periodic state evolution
of many devices (e.g., the highlighted curve) in Fig. 3c is
because of the large disturbance and strong dependencies,
making the tuning effectively unstable for many devices.
Fig. 3e compares the ultimate distribution of conductance error
for both cases. The 99 percentiles of the tuning error are
~14.4 % and ~1.0 % for 25% and 5% variations, respectively.
The huge gap between the realistic and ideal case signifies
the importance of variations in passive crossbars. Imprecise
tuning results in a large error in the output signal, as expected.
Fig. 3f shows the VMM error distribution for both cases. The
99 percentiles of the distributions are ~7.0 % and ~3.7 % for
on = 25% and o, = 5% variations, respectively.

Fig. 4 summarizes our VMM-level simulation results in
which the role of VMM size, switching threshold variations,
and target tuning error are studied. Every data point is
obtained by considering 400 VMM instances (20 different sets
of weights and 20 crossbars) to characterize the worst-case
error statistics (99 percentiles of the output error among 103
patterns), a useful parameter to evaluate the computational
accuracy. Note that the VMM size and normalized variations
are increased exponentially and linearly, respectively. As a
convenient baseline, the dashed red line shows the expected
intrinsic error resulting from the imprecise tuning of individual
devices, i.e., without the half-select problem that would be
representative of 1TIR circuits. Such intrinsic error is roughly
linearly proportional to the target tuning error.

The common observation from Fig. 4 data is that the median
worst-case error increases exponentially with variations, more
evidently for N > 30 (here, the median refers to the sta-
tistics over 400 VMM instances). It also increases roughly
exponentially with respect to VMM size for low variations
and super-exponentially in large variations. This is due to
the unstable tuning process in larger circuits, in which the
disturbance of half-select devices overwhelms the tuning of
individual devices (Fig. 3c). The spread of the worst-case
VMM error distribution among different instances also extends
with increasing crossbar size and/or device variations for high
precision tuning cases since the chances of hitting worse
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during 10 rounds of tuning the crossbar. Each line corresponds to the tuning error for each device. Panels (b and d) denote the error distribution for all devices
at the end of each round. Panels (e) and (f) show the distribution of weight and VMM errors (at the end of the 10th round) for the two cases, respectively.

corner cases increase. This issue becomes particularly impor-
tant in high-precision computing tasks with tight error margins.

For small VMMs (e.g., N < 16), the error follows the
intrinsic trend even in the presence of large variations because
the total disturbance is low enough to be fully recovered
after running several tuning rounds. In moderate VMM sizes
(e.g., N = 32), the error tends to increase for high precision
tuning cases (e.g., < 4%), particularly when the variations
are high. This error escalation originates from an increase in
the number of applied pulses for achieving a better tuning
precision, which in turn leads to a larger disturbance. For
large VMMs, variations become more prominent such that
the computational accuracy is adversely impacted. For N =
64, the drastic change for 0 > 0.25 also stems from the
exponential growth of the severe half-select disturbance cases.

To clarify this, let us look at a fraction of the devices in
the crossbar circuit that is disturbed during write operation
with half write voltages exceeding their switching threshold
(Fig. 4). When the standard deviation of the set threshold
distribution increases from 0.25 to 0.3, this number soars by
a factor of ~10, indicating a surge in the cases of severe
disturbances.

Another subtle point is related to the reduced computational
accuracy in cases with even no variations. For instance,
comparing the case of no half-select (no HS) with ¢, = 0,
we observe a ~4.3% increase of the average error in the case
of N = 64 and 1% target. Even with no variations, the voltage
drop on other devices could have a slightly disturbing effect
(non-zero changes in the conductive state at half of the write
voltages), which could become potentially noticeable when the
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Fig. 4. The distribution of the worst-case VMM error (99 percentile of

the absolute error distribution for 103 patterns) among 400 instances of
a) 4 x 4,b) 8 x 8,¢) 16 x 16, d) 32 x 32, e) 64 x 64 and f) 128 x
128 VMMs. No HS: no half-select. #HS devices: the average number of
devices affected with V/2 disturbance normalized by N2, which is a metric
that shows the overall disturbance level in a certain crossbar. The median for
the ‘no half-select’ case is the intrinsic bound that shows how accurately we
can compute given a semi-exponential tuning error distribution (Fig. 3e) in
the crossbar. Note the log-scale of the y-axis in all panels.

total number of pulses grows very large. This issue would get
worse for device technologies with inferior memory retention.
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On the other hand, the slight improvements beyond the intrin-
sic error (e.g., see the case of N = 4 and target error =
5%) originate from the regularization impact of half-select
disturbance, which slightly improves the accuracy.

The computational accuracy of state-of-the-art 1TIR and
OT1R crossbars can be compared in Fig.4. For practical VMM
sizes (e.g., N = 64) and considering state-of-the-art reported
ITIR (i.e., with no half-select) tuning error of ~3% in [10]
using highly conductive devices, the computational accuracy
of OTIR VMMs (¢ < 30) is the same as 1TIR when tuned
with 1% target error. The computational accuracy is worse
by ~1% when OTIR circuits are tuned with a similar 3%
error. We believe that such results are very encouraging and
give hope for using OT1R design in large-scale neuromorphic
computing networks.

The final takeaway is that the computational accuracy
in passive crossbars is a function of the total number of
applied pulses or, equivalently, the total disturbance imposed
by the tuning algorithm. The general trends are that the
larger the VMM is, the higher the number of tuning pulses
is required. The larger the variations are, the more pulses
are needed to tune the devices in multiple rounds. And the
smaller the tuning target error is, the higher the number
of pulses is required. Consequently, assuming system-level
and architecture considerations determine an optimum kernel
size (N) to optimize the functional performance, there are
two natural options for mitigating the half-select disturbance
and improving the computational accuracy in neuromorphic
systems based on passively-integrated memristors, namely fab-
ricating more uniform crossbars that lead to tighter variations
and developing more optimum tuning algorithms that directly
reduce the total disturbance and the number of applied pulses.
Furthermore, the most efficient and accurate circuit is not
necessarily obtained when the device is pushed to its high
precision limit. Hence, extensive simulations are required to
find the optimum tuning margin for a given technology, kernel
size, and the computing model.

V. MODELING NEUROMORPHIC
INFERENCE APPLICATIONS

We consider two representative neural network models: a
moderate-size convolutional neural network (ConvNet) and
ResNet-18. The former is a modified Lenet-5 architecture that
includes 2 convolutional, 2 pooling, and 2 fully-connected
layers (see [23] for more details on the structure). The model
is trained with 50k images and tested on the remaining 10k
images of the CIFAR-10 dataset. Standard data augmentation
techniques are employed to improve the accuracy. Each image
is zero-padded with two pixels before we crop a random 32 x
32 region and perform random horizontal flipping of images.
We use ADAM optimizer, cross-entropy cost function, a batch
size of 64, a learning rate of 0.001, and 220 epochs to achieve
87.25% inference accuracy.

The ResNet-18 implementation is based on the
pre-trained model available at the official model zoo of
PyTorch. It includes 21 + 2 layers: a convolutional layer
with 7 x 7 kernels and stride of 2, a max-pooling layer with
3 x 3 kernels and stride of 2, 4 convolutional blocks with
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residual connections, each including 4 convolutional layers
based on 3 x 3 kernels and strides of 2 and 1, a 7 x 7
average-pooling layer with the stride of 7, and finally a 512 x
1000 fully-connected layer that provides the output prediction
corresponding to 1000 classes. The network is trained on
~1.3M images of the ImageNet dataset for 150 epochs with
a batch size of 256, the learning rate of 0.1 that is divided
by 0.1 every 30 epochs (step scheduling), cross-entropy cost
function, weight decay of 0.0001, and stochastic gradient
descent optimization with a momentum of 0.9. The model
achieves an average classification accuracy of ~70.2% tested
on 50k images of the dataset. The networks are trained with
32-bit floating-point precision on Nvidia Titan X GPUs, and
the learned parameters achieving the highest test accuracy are
used as the baseline model.

Note that the baseline classification accuracy is some-
what worse compared to the state-of-the-art numbers that are
achieved with more complex neural network models. However,
the chosen models in this paper allow performing simulations
reasonably, focusing on the impact of the uniformity.

In every model, the VMM operations are partitioned to
nonoverlapping N x N kernels - see the example of such
partitioning in general-purpose mixed-signal deep neural net-
works [17]. In other words, in order to conduct this study using
GPUs, we trustfully modeled the entire circuit, e.g., mapping
each weight to a unique pair of two adjustable devices. On the
other hand, since this paper focuses on device uniformity
rather than any other nonideality, we assumed ideal peripheral
transfer functions and pooling layers.

Similar to the VMM study, the obtained weights are mapped
into target device conductances. The conductance tuning
process for the constructed VMM kernels is then emulated
using the device model and previously discussed tuning algo-
rithm. The imprecise tuned weights are then imported backed
to the simulation setup. Subsequently, the inference tasks are
performed on the generated models, and the classification drop
is recorded for each data point. For every case study, 12 model
instances are generated by using 12 sets of randomly generated
switching threshold distributions.

Fig. 5 shows the accuracy drop of running the inference
test on both benchmarks versus the crossbar uniformity for
various VMM sizes. The box plot is obtained by simulating
12 random hardware instances - note that tuning simulations
are extremely slow even when performed on a powerful
server. The destructive impact of crossbar half-select distur-
bance is evident in both benchmarks, especially in ResNet-
18 that performs the more complex ImageNet classification.
The trends are consistent with VMM simulations in that the
accuracy drops roughly exponentially when the VMM size
or normalized variations are increased. Notably, with 25%
normalized variations and 64 x 64 crossbars, we achieve ~9%
accuracy drop in the ConvNet and 18.5% on ResNet-18. In the
next section, we introduce several methods, which restore this
accuracy drop.

VI. IMPROVING THE ACCURACY

The most straightforward solution to cope with the destruc-
tive impact of variations in the switching thresholds is
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Fig. 5. The accuracy drop in deep neuromorphic networks versus crossbar

uniformity: (a) ConvNet, (b) ResNet-18. Each box plot is obtained from the
simulation of 12 different switching threshold distributions (e.g., correspond-
ing to 12 emulated chips). The dashed lines connect the median of the boxes.

to improve the fabrication process and device properties.
The switching threshold variations in metal-oxide memristors
depend on multiple factors. Forming voltage and current
overshoot during the forming significantly contribute to device
variability and can be tuned by a combination of oxide
layer thickness and stoichiometry adjustment and optimized
annealing conditions [4], [25]. Here, we focus on some post-
fabrication techniques for mitigating the disturbance.

A. Hardware-Aware Training

In our recent works [23], [26], imperfections of synaptic
devices such as noise, temperature dependency, stuck-at fault,
retention, and tuning error are compensated by the method
of hardware-aware training: The training is performed fully
ex-situ (no extra hardware cost), with the only subtle difference
of including the device models and imperfections in the
training phase for the purpose of generating more robust
models.

The simulation results of the previous section indicate
that variations in switching thresholds lead to random tuning
errors in the devices. Note that the tuning errors remain
fixed during the inference, assuming devices have adequate
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retention. Nevertheless, tuning errors are chip-dependent,
model-dependent, and unpredictable because of the intrin-
sic chip-specific distribution of switching thresholds. Though
accounting for individual device tuning errors in the training
phase is not feasible, the error distribution is predictable due
to the uniform shape of weight distribution in a neural network
model, especially when using the same crossbar sizes and
tuning algorithm (see modular accelerator architectures, e.g.,
aCortex [17]).

We model the tuning error during the training to increase the
robustness of the trained model against half-select disturbance
during the inference of the neural hardware. Specifically, prior
to computing the activation values in each update, the weights
are converted to memristor conductances. Built-in uniform
random number generator with the parameter ¢ is then used
to perturb conductances (both G and G~ in the differential
implementation). After computing imprecise preactivations,
the ideal weights are then restored before proceeding with
the rest of the training operations. Note that ¢ is optimized
for a given network model and overall disturbance, which is
a function of VMM size, switching threshold variations, and
target accuracy.

Fig. 6a shows the performance improvement achieved by
this technique on the ConvNet benchmark implemented with
64 x 64 VMM blocks. The figure shows the accuracy drop
versus the normalized variations for various values of (. The
robustness of the deployed model is obviously increased with
this method. For 15%, 25%, and 30% normalized variations,
the optimum performance is achieved when ( is set to 5%,
20%, and 30%, respectively. Notably, in the case of 25%
normalized variations and 64 x 64 crossbars, the ~9% average
accuracy drop is now reduced to ~1.87% using ¢ = 20%. The
same trends of improvements are also observed in the case
of ResNet-18 implemented with 64 x 64 crossbars (Fig.7b).
For example, using ¢ = 3% (20%) diminishes the average
accuracy drop from 18.5% to 3.5% (6.1%) for 0 = 25%.

B. Improved Tuning Algorithm

In Ref. [9], we propose a novel crossbar tuning procedure
consisting of two methodologies for reducing the tail of
tuning error distribution. First, the write voltage amplitudes
are limited to a specific voltage, which is decreased gradually
within each tuning round. The consequences of restricting the
maximum applied write voltage within each round are gradual
reduction of net disturbance in each round and large (final)
tuning error in high threshold devices. The former stems
from the fact that low-to-moderate threshold devices become
disturbed less and less as the tuning algorithm advances. The
latter is due to not sufficient write voltages to switch the high
threshold devices.

In the second method, we initially identify devices with
large set (reset) switching thresholds and switch them to the
highest (lowest) conductive state prior to executing the first
tuning round. Then, we take advantage of the possibility to
encode the same weight with different target conductances
in the differential pair implementation. In every round, when
tuning a disturbed device with a threshold higher than the
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Fig. 6. Reducing the accuracy drop in (a) ConvNet and (b) ResNet-18 (both
with 64 x 64 VMMs) using the hardware-aware training technique. By emu-
lating the distribution of the tuning error during the training, the network
becomes more resilient toward the half-select disturbance. The inset shows
the zoomed-in to the lower portion of the figure.

maximum voltage limit imposed by the first methodology,
the state of the paired device is adjusted rather than the high
voltage device. The application of these two novel techniques
significantly reduces the tail of disturbed devices.

Fig. 7a demonstrates the effectiveness of using these
novel tuning algorithms with and without applying the
hardware-aware training technique. When no hardware-aware
training is applied, the novel tuning algorithm reduces the
accuracy drop, especially when variations are higher than 20%.
When the two techniques are both applied, the results are
even better. A sub-percent accuracy drop is now feasible even
with 30% normalized variations. For the notable case of 25%,
the average drop now becomes insignificant when ¢ = 2% is
used in the hardware-aware training.

The simulation results of the ResNet-18 benchmark are also
promising (Fig.7b). For example, in the case of N = 64 and
o = 25%, the improved tuning algorithm solely reduces the
accuracy drop to 1.88%. Combined with the hardware-aware
training (¢ = 3%), we can decrease the average accuracy
drop to just ~0.4%. In the initial simulation, we observe that
the model generates almost random outputs (~70% accuracy
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Fig. 7. Reducing the accuracy drop in (a) ConvNet and (b) ResNet-18
(64 x 64 VMMs) using the novel tuning algorithm with and without the
hardware-aware training. The inset shows the zoomed-in to the lower portion
of the figure.

drop) when the variations are ¢ = 35% and larger. While
the two proposed techniques enable 6.9% and 17.2% average
accuracy drops, utilizing ¢ = 20% and ¢ = 3%, respectively.

C. Modifying Switching Thresholds

Modifying the switching thresholds of outlier devices is
another method for reducing the impact of variations in
the switching thresholds. This correction process includes
an unconventional continuous hard reset operation, which
pushes the outlier device close to its virgin state, followed
by a voltage-controlled reforming procedure, which revives
the device with slightly shifted switching characteristics. Our
experiments show that the correction process results in a
stochastic shift in the switching threshold of devices, which
means the refreshed device could have improved switching
properties. Applying this technique to outlier devices (that
feature low voltage thresholds) reduces the spread of varia-
tions, which in turn improves the accuracy of the implemented
model.

Fig. 8 shows the results of the experiments developed to
confirm this idea. First, a virgin device in the crossbar is
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Fig. 8. Modulation of switching thresholds: (a) The experimental results
of the modification process applied on a virgin device in the crossbar. The
process includes initial electroforming, tuning the device to 50 kQ, analog
switching for ten times between 10 kQ and 100 kQ, which are close to
typical the lowest and highest resistance states, and hard reset to a state of
more than 1 MQ. The inset shows the switching thresholds measured in each
round. (b) The histogram of the stochastic relative change (100 x AV /V) in
the average set/reset switching thresholds (V') for 60 devices after performing
the hard reset and revival processes.

formed and tuned to 50 kQ. Then, its switching thresholds are
measured by tuning it repeatedly to 100 kQ and 10 kQ. After
10 rounds, the device is hard reset to > 1MQ and then revived
and tuned to 50 kQ. Switching thresholds are measured again
in a similar fashion. The process is performed one more time
just to make the results more illustrative. In another experi-
ment, a one-time switching threshold modification method is
applied on 60 devices with various initial switching thresholds
(Fig. 8b). The results of Fig. 8b clearly show the average shift
of threshold voltages. For example, one device has an average
(over ten switching events) +0.8 V set and -0.8 reset switching
thresholds. After applying the threshold modification method,
an average set and reset voltages became 0.95 V and -
1.2 V, respectively, for this device, which is significantly better
and closer to the typical average switching thresholds of the
crossbar. (Note that due to the limitations of our experimental
setup, we can not validate the impact of this method with direct
system-level experimental results. The study of the impact of
this technique on large-scale neuromorphic architectures is an
important future work.)
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VII. DISCUSSION

The major focus of this paper is on device uniformity.
We propose several novel methods for coping with large
device variations and investigate the impact of the device
uniformity on the accuracy of neuromorphic inference circuits
implementing representative neural models. The findings in
this paper confirm the encouraging prospects for using 0T1R
crossbars in neuromorphic computing. The results of our paper
are complementary to prior works [27]-[50] that have focused
on other nonidealities, e.g., IR drop, static nonlinearities,
retention loss, with a specific focus on devices with selec-
tors, i.e., ITIR circuits with inferior density with respect to
passively integrated crossbars.

Specifically, in the presented general VMM study (section
IV), the major contributions include:

- The relationship between the computational error and the
crossbar size, uniformity, and target tuning error is thoroughly
investigated.

- We present the periodic and instability of tuning error
(Fig. 3c) in large nonuniform crossbars in addition to the
linear and exponential dependency of computing accuracy to
uniformity at small, moderate, and large VMM sizes.

- It is shown that in large VMMSs, very precise tuning
of devices requires a large number of pulses, which in turn
may lead to more disturbance and reduction of the ultimate
computing accuracy.

- Slight increase in the computational error is inevitable
in very large OT1R crossbars even with zero variations since
even a small half-select voltage drop could become potentially
noticeable when the total number of pulses grows very large.

- We compare the computational accuracy of state-of-the-art
ITIR (~3% target error reported in [10] based on extremely
conductive devices) and OT1R crossbars (1% target tuning
and 0 ~ 25% reported in [9]) and report similar computing
accuracy when the OT1R crossbars are tuned with 1% target
precision or worse by only ~1% when using the same (as
1TIR) tuning precision of 3%.

Furthermore, three techniques are explored for mitigating
the impact of nonuniform /-V characteristics of 0T1R memris-
tors in neuromorphic circuits. The simulation results indicate
that these techniques enable software-equivalent accuracy on
both ResNet-18 and ConvNet benchmarks, in the case of
N = 64 and 25% normalized variations, which corresponds
to the features of our recent fabricated crossbar. In addition,
the presented data in Fig. 7 suggest that a sub-percent accuracy
drop is achievable in advanced neuromorphic circuits with
even ~30% normalized variations using 64 x 64 crossbars,
which leads to a balanced resource utilization at system levels,
as predicted by theoretical architectural studies [17].

Let us also mention several limitations of these miti-
gation techniques. First, hardware-aware training is not a
viable option in some neuromorphic tasks, e.g., neuroopti-
mization [24], in which the weights are fixed and prede-
termined by some constraints of the applications. In such
cases, the practical solutions are improved tuning algorithm,
fabrication process, outlier correction, and, if needed, reducing
the crossbar dimensions. Second, the switching threshold mod-
ification method should only be used for outlier devices once
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or a few times to prevent damaging the devices or reducing
their endurance life.

VIII. CONCLUSION

The excellent scalability prospects of memristors are
promising for designing energy-cfficient and compact neuro-
morphic circuits. However, the strict uniformity requirements
on the I-V characteristics of memristors make the scaling
dimensions of 0T1R memristor crossbars challenging. In this
paper, we have conducted an in-depth analysis of this problem
and studied the tradeoffs between computing accuracy, cross-
bar size, switching threshold variations, and target precision.
The tradeoffs are first studied for vector-matrix multiplication
circuits. The impact of crossbar uniformity is then investigated
for two representative deep neural networks. Most importantly,
we proposed and evaluated three solutions - hardware-aware
training, improved tuning algorithm, and switching threshold
modification - for improving the performance. It is shown that
the current state-of-the-art analog-grade 0T1R technology can
offer software-equivalent accuracy of advanced deep neural
networks. Although the paper has mainly focused on unifor-
mity, the primary challenge of upscaling OT1R crossbars, other
nonidealities, including limited retention time, endurance,
device noise, and temperature dependency, are also important
require in-depth analysis.
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