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Abstract—Federated learning enables machine learning algo-
rithms to be trained over decentralized edge devices without
requiring the exchange of local datasets. Successfully deploying
federated learning requires ensuring that agents (e.g., mobile
devices) faithfully execute the intended algorithm, which has
been largely overlooked in the literature. In this study, we first
use risk bounds to analyze how the key feature of federated
learning, unbalanced and non-i.i.d. data, affects agents’ incen-
tives to voluntarily participate and obediently follow traditional
federated learning algorithms. To be more specific, our analysis
reveals that agents with less typical data distributions and
relatively more samples are more likely to opt out of or tamper
with federated learning algorithms. To this end, we formulate
the first faithful implementation problem of federated learning
and design two faithful federated learning mechanisms which
satisfy economic properties, scalability, and privacy. First, we
design a Faithful Federated Learning (FFL) mechanism which
approximates the Vickrey—Clarke-Groves (VCG) payments via
an incremental computation. We show that it achieves (probably
approximate) optimality, faithful implementation, voluntary par-
ticipation, and some other economic properties (such as budget
balance). Further, the time complexity in the number of agents
K is O(log(K)). Second, by partitioning agents into several
clusters, we present a scalable VCG mechanism approximation.
We further design a scalable and Differentially Private FFL
(DP-FFL) mechanism, the first differentially private faithful
mechanism, that maintains the economic properties. Our DP-FFL
mechanism enables one to make three-way performance tradeoffs
among privacy, the iterations needed, and payment accuracy loss.

Index Terms—Federated learning, mechanism design, game
theory, differential privacy, faithful implementation.

I. INTRODUCTION
A. Motivation

Machine learning applications often rely on cloud-based
datacenters to collect and process the vast amount of needed
training data. Due to the proliferation of Internet-of-Things
(IoT) applications, much of this data is generated by devices
in wireless edge networks. In addition, relatively slow growth
in network bandwidth, high latency, and data privacy concerns
may make it infeasible or undesirable to upload all the data
to a remote cloud, leading some to project that 90% of the
global data will be stored and processed locally [2]. Federated
learning is a nascent solution to retain data in wireless edge
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networks and perform machine learning training distributively
across end-user devices and edge servers (also called edge
clouds) (e.g., [3]-[25]).

Federated learning algorithms aim to fit models to data gen-
erated by multiple distributed devices. The large-scale deploy-
ment of federated learning relies on overcoming the following
two main technical challenges: the statistical challenge and the
communication challenge [3]-[5]. Specifically, each agent (the
owner of each device) generates data in a non-independently
and identically distributed (non-i.i.d.) manner, with the dataset
on each device being generated by a distinct distribution and
the local dataset size varying greatly. Second, communica-
tion is often a significant bottleneck in a federated learning
framework, motivating the design of communication-efficient
federated learning algorithms. These have been motivating
extensive studies on improving efficiency by designing new
training models, fast algorithms and quantization techniques
(e.g., [12], [13]). Other studies have been designing algorithms
for resource allocation, mobile user selection, energy efficient,
scheduling, and new communication techniques in wireless
edge networks (e.g., [17]-[25]).

Nevertheless, whereas many existing federated learning
algorithms assume that agents are obedient, i.e., they are
willing to follow the algorithms (e.g., [3]-[9], [12]-[25]),
edge devices in practice may be strategic and may tamper
with or opt out of federated learning algorithms to their own
advantages. Such strategic edge devices would be more likely
to arise in a wireless setting, where different devices may
connect and participate in federated learning at different times.
Therefore, the success of deploying federated learning relies
on strategic agents’ voluntary participation (into the federa-
tion) and faithful execution of distributed federated learning
algorithms. Generally speaking, there are two key factors that
may incentivize agents to strategically manipulate federated
learning:

o federated learning may incur significant resource con-
sumption (e.g., energy, bandwidth, and time) for mobile
devices;

o agents have different preferences over prediction out-
comes (due to, e.g., non-i.i.d and unbalanced data).

The above issues reflect an agent’s dual role as a contributor
and a client in a federated learning setting, respectively.
That is, agents demand for both rewards for contributing
and preferred prediction outcomes. This work focuses on the
latter issue that has been overlooked in the literature, whereas
existing studies mainly have been attempting to solve the
former one (see the survey in [26] and references [27]-[40])
by designing incentive mechanisms to reward agents according
to agents’ data quality, quantity, and reputation. Specifically,



non-i.i.d. and unbalanced data may render different prediction
objectives for different individual agents and hence may in-
centivize strategic manipulation. In this case, each strategic
agent can choose either to opt out of or to tamper with the
federated learning algorithms to its own advantage. Such a
behavior may result in the failure of large-scale deployments
of edge federated learning. To this end, this paper will first
answer the following question:

Question 1. How do unbalanced data and non-i.i.d. data
distributions disincentivize agents to obediently follow and
voluntarily participate into federated learning algorithms?

To overcome this issue of manipulation, one approach for
the server is to leverage (economic) mechanism design, by
anticipating agents’ strategic behaviors. As a seminal exam-
ple, the Vickrey—Clarke—Groves (VCG) mechanism [41] is a
generic truthful mechanism for achieving a socially-optimal
solution, while ensuring agents’ voluntary participation and
incentive compatibility, i.e., truthful reports of their local
information. However, many such mechanisms use a central
authority that computes the optimal solution, which is not
applicable in the framework of federated learning. To achieve
distributed implementation of mechanisms, existing studies
have developed faithful mechanisms (e.g. [42]-[45]), which
prevent agents from deviating from the intended algorithms
(e.g., by manipulating computation or information reporting).

We note that existing studies on centralized and distributed
mechanisms, however, have not addressed the problem of fed-
erated learning due to the following important considerations:

o Scalability: Mobile devices are expected to be massively
distributed (i.e., the number of agents may be much larger
than the average samples per agent) and have limited com-
munication capability [3]-[5]. However, existing VCG-
based approaches [41] involve solving K +1 optimization
problems (where K is the number of agents), which
makes them impractical for large-scale systems.

o Unknown data distributions: Existing mechanisms as-
sume that agents know their exact objectives, whereas
in federated learning agents’ expected objectives are
unknown to themselves, since their underlying data dis-
tributions are unknown.

o Privacy: Federated learning often involves training pre-
dictive models based on individuals’ private local datasets
that contain highly sensitive information (e.g., medical
records and web browsing history). For instance, multiple
hospitals forecast cancer risks by performing federated
learning over the whole patient population, while privacy
laws prohibit sharing private patient data [9]. However,
existing economic mechanisms require strategic agents
to reveal their objective values, which may violate such
privacy requirements.'

These motivate the following key question:

Question 2. How should one design a faithful federated
learning mechanism that also achieves voluntary participation,

ISpecifically, Roberts’ theorem states that, under mild conditions, the
only incentive compatible mechanisms are VCG variants, which requires the
revelation of agents’ private information of their loss functions [41].

scalability, and privacy preservation?

B. Our Work

In light of the challenges above, this paper studies mech-
anism design for two representative edge federated learning
scenarios aiming at achieving scalable, privacy-preserving, and
faithful edge federated learning. Similar ideas could be applied
to other federated learning algorithms.> We summarize our key
contributions in the following:

e Analysis of risk bounds. We analyze how the key
feature in federated learning, non-i.i.d. and unbalanced
data, affects agents’ incentives to voluntarily participate
and obediently follow the algorithms. Specifically, our
analysis reveals that an agent with a less typical data
distribution and relatively more data samples tends to
have a greater incentive to opt out of or tamper with
federated learning algorithms.

o Faithful federated learning. We design the first faithful
mechanism for federated learning. It approximates the
VCG mechanism and achieves (probably approximate)
optimality, faithful implementation, voluntary participa-
tion, and some other economic properties (such as budget
balance). Further, the time complexity in the number of
agents K is O(log(K)).

« Differentially private faithful federated learning. By
partitioning agents into several clusters, we present a
scalable VCG mechanism approximation with square
root iteration complexity. Based on it, we further de-
sign a Differentially-Private Faithful Federated Learning
(DP-FFL) mechanism that is scalable while maintaining
VCG’s economic properties. In addition, our DP-FFL
mechanism enables one to make three-way performance
tradeoffs among privacy, convergence, and payment ac-
curacy loss. To the best of our knowledge, this is the first
differentially private and faithful mechanism.

II. LITERATURE REVIEW

Federated Learning. The existing literature has stud-
ied how to make the model sharing process more privacy-
preserving (e.g., [6]-[9]), more secure (e.g., [10], [11]), more
efficient (e.g., [12], [13]), and more robust (e.g., [14], [15])
against heterogeneity in the distributed data sources among
many other works. For a more detailed survey, please refer
to [16]. On the other hand, extensive studies attempting to
improve the efficiency can be categorized into two directions:
algorithmic and communication design. First, by designing
new techniques including quantization (e.g., [12]) and new
novel learning models (e.g., multi-task federated learning
[13]). Second, in wireless edge networks, efforts have studied
resource allocation algorithms for edge nodes (e.g., [18]),
scheduling policies against interference (e.g., [19], [25]), mo-
bile user selection and resource allocation algorithms (e.g.,
[21], [22]) and new communication techniques (e.g., over-the-
air computation [23]). However; this line of work assumes that

2We note that designing federated learning algorithms with state-of-the-
art performances (e.g., convergence speed, cost-effectiveness, privacy, and
robustness) is beyond the scope of this work.



agents (in addition to malicious attackers as in [10], [11])
are willing to participate into federated learning and obey
the algorithms, whereas agents in practice are strategic and
require proper incentives to do so.

In terms of incentive design for federated learning, which
has been listed as an outstanding problem in [31], only a
few recent studies attempted to address this issue [27]-[40].
Reference [37] describes a payoff sharing algorithm that maxi-
mizes the system designer’s utility without considering agents’
strategic behaviors. Yu et al. in [38] introduced fairness guar-
antees to the previous reward system. Other studies have been
considering economic approaches to compensating agents’
communication and computation costs based on economic
approaches such as contract theory (e.g., [28], [32], [39]),
Stackelberg game [33], [36], auction theory (e.g., [29], [34]),
and reputation [32]. However, this line of work focused on
incentivizing agent participation by compensating them for
their costs and eliciting their truthful cost information, but
assumed that agents are obedient to follow federated learning
algorithms without strategic manipulation.

Faithful Mechanisms. Only a few studies in the litera-
ture considered faithful mechanism design (e.g., [42]-[45]).
Faithful implementation was first introduced by Parkes et al.
in [42]: a mechanism is faithful if no one can benefit from
deviating, including information revelation, computation, and
message passing. Feigenbaum et al. proposed a faithful policy-
based inter-domain routing in [43]. Petcu et al. in [44] gen-
eralized the above results and achieve faithfulness for general
distributed constrained optimization problems. However, none
of the existing studies on faithful implementation guaranteed
differential privacy or scalability, or performed risk bound
analysis in a (statistical) learning framework.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

In this section, we introduce our federated learning model
which aims to fit a global model over data that resides on,
and has been generated by, a set K £ {k:1 < k < K} of
agents (with distributed edge devices). The model also consists
of a trusted (parameter) server. Each agent (e.g., a mobile
device) has access to a local dataset Dy = {(x;,v:)}iy,
where x; € X C R%, y; € ¥ C R, ng, = |Dy| is the number
of agent k’s data samples, and | - | denotes the cardinality of
a set. Sets X' and ) are compact. We use n £ 3, ;- ny, to
denote the total number of data samples and D £ | J wex Dk to
denote the global dataset. The training data across the agents
are often non-i.i.d., since the data of a given client is typically
based on the usage of the particular edge device and may not
be representative of the population distribution (e.g., [3]). To
model the non-i.i.d. nature of the data, we assume that, every
agent k € K generates data via a distinct distribution Py, (x, y).

B. Federated Learning Setup

1) Expected risk: ldeally, a federated learning problem fits
a global model w € R? via expected risk minimization, i.e., by

minimizing the following (weighted average) expected risk:

E(w) = ppBx(w), ()
ke
where p; > 0 represents the weight for each agent k, satisfying
>pex Pk =1, and Ej(w) is agent k’s local expected risk:

Fu(w) 2 / tw, @, y)dPi(z.y), k€K, ()

where £(-,-,-) is a per-sample loss function dependent on the
model w applied to the input x; and the label y;.

2) Agent Modeling: The non-i.i.d. nature of data implies
that agents have different Py(-) and hence may have heteroge-
neous prediction objectives Fy(w) and different preferences
over the prediction outcome w. Note that as the first work
considering agent strategic manipulation in federated learning
due to heterogeneous prediction objectives, we disregard the
impact of resource consumption incurred in federated learning,
which was considered in [32]-[36], [38]-[40].

Note that, under traditional mechanisms that do not account
for federated learning (e.g., [41]-[45]), agents were assumed to
know their exact objectives before participating. However, this
is not the case here since their data distributions are unknown
to themselves. Therefore, we assume that agents make their
decisions based on probably approximate properties (instead
of the deterministic ones in [41]-[45]) of the mechanisms to
be formally introduced later.

3) Empirical risk: Each agent’s local expected risk Ej is,
however, not directly accessible since Pj(-,-) is unknown. To
solve (1) approximately, the induction principle of empirical
risk minimization suggests to optimize an objective that aver-
ages the loss function on the training sets {Dy }rex instead
[46]. Mathematically, federated learning algorithms aim to
solve the following (Empirical Risk Minimization (ERM))
problem [3]:

FL: mui,n F(w) 2 Zkak(w), 3)

kek
where Fj(w) is the agent k’s local empirical risk (loss), given
by

1 &
Fe(w) = = lw.zi,y), k€ K. (4)
=1

Let w® denote the optimal solution to (3). One can anticipate
that the optimal solution w? to (3) approximates the solution
to (1).* To quantify such a risk bound, we first adopt the fol-
lowing standard assumptions on the per-sample loss function
(-, -, ) throughout this paper (as in, e.g., [8], [9], [47]):

Assumption 1 (Lg-Smoothness). The gradients of the per-
sample loss function V ,0(w,x,y) are well-defined and con-
tinuous such that there exists a constant L satisfying

||vm€(w17$ay) - ng(w%xvy)HQ < Lg le - w2H27
%)

3 As an example, FedAvg in [3] selects pj, = ny/n for all k € K.

4Throughout this work, we use empirical risk functions (e.g., { Fj }) in the
objectives of federated learning problems and agents’ payments, while we use
expected risk functions (e.g., { E} }) for risk bound analysis.



for any w1, wy € R? and (z,y) € (X,)).

Assumption 2 (p-Strong Convexity). The per-sample loss
Sunction {(w, x,y) is p-strongly convex in w for all (x,y) €

(Xay)’ ie., fOV any wi,wsz € Rd? ((B,y) € (Xuy)’
Uwy,,y) > l(wy,z,y) + Vi wy,z,y)" (wy — w)
+gHw2—w1H§~ (6)

Typical examples that satisfy these assumptions include
ridge regression, [2-norm regularized logistic regression, and
softmax classifiers. We further use L, denote the maximal
norm of the gradient of the per-sample loss at w?:

Vuwl(w’, z,y). %)

L2 max
(z,y)€(X,D)
We can now characterize the risk bound in the following:

Proposition 1. The following inequality is true with a proba-
bility of 1 — 0:

L2dlog(2
E(w°) — mlnE Z pk d og d/é), (8)
N
ke
where w° is the optimal solution to the federated learning

problem in (3), d is the dimension of w.

Due to the space limit, we present the proofs of all
propositions, lemmas, theorems, and corollaries in [56]. The
proof of Proposition 1 involves bounding V., E(w®°) by the
Hoeffding’s inequality and leveraging the strong convexity
of E(-). In the case of the FedAvg algorithm in [3], which
selects p, = nk/n for all k € K, the right hand side of
(8) becomes %ﬁd/é), which implies that the bound in
this case converges to 0 as n — oo. The rate O(1/n) and
is comparable to the result in [47], while we do not assume
boundedness on w as [47] did.

C. Goals

The federated learning problem in (3) can be solved effi-
ciently in a centralized manner if the server has the access
to the global dataset D, which is, however, impractical in the
federated learning setting. Hence, as we mentioned in Section
I, the focus of federated learning algorithms is on distributed
learning that achieves privacy preservation and scalability.
Moreover, here we also seek to ensure that agents will not opt
out or tamper with the system. This requires a joint design
of a federated learning algorithm and a proper (economic)
mechanism. Specifically, a mechanism aims to achieve the
following economic properties:

o (El) Efficiency: The optimal solution (or its approxima-

tion, e.g., in Proposition 1) to (1) is achieved.

o (E2) Faithful Implementation’: Every agent does not have
the incentive to deviate from the suggested federated
learning algorithm.

o (E3) Voluntary Participation: Every agent should not be
worse off by participating into the mechanism.

SFaithful implementation is also known as incentive compatibility or
strategyproofness.

e (E4) (Weak) Budget Balance (BB): The total payment
from agents to the server is non-negative, i.e., the server
is not required to inject money into the system.

As we have mentioned, we aim to achieve properties (E1)-(E4)
in a probably approximate (but not deterministic) manner, due
to the unavailability of data distributions { Py }rex.

D. Mechanism Design

In order to achieve the above properties (E1)-(E4), the server
designs an (economic) mechanism M = (A, 8™, w*,P),
described in the following:

o Strategy space A = ], Ax: each agent can select a
strategy Ay, € Apg, representing the messages (potential
misreports) to be submitted to the server in each itera-
tion of a federated learning algorithm (such as gradient
reporting in FedAvg [3]);

o (Suggested) protocol/algorithm S™ = {s@'}rex: the
server would like every agent to follow S™ by playing
Ay = si* (e.g., agents’ true gradients in each iteration in
FedAvg [3]);

o Learning updates w* : A — R? describes how the
algorithm updates the model w in each iteration, which
depends on agents’ strategies A;

o Payment rule P = {Pi}rex : A — RE describes the
payment each agent & € K needs to pay to the server,
depending on agents’ strategies A.

For a given mechanism M, each agent k£ aims at minimizing

its empirical cost, defined next.

Definition 1 (Overall loss). Each agent k has a (quasi-linear)
overall loss, defined as

Ji(Ar, A_i) = Pi(A) + Fp(w*(A)), VE€ K. (9)

In (9), we assume that each agent’s objective is quasi-
linear in its monetary loss, which is a standard assumption
in economics [41].

There are two classical choices of the payment rules in the
literature:

o The (weighted) VCG payment for each agent k € K [41]:

Zp] —quli’anij(w

J#k j#£k

P;/CG

(10)

The VCG mechanism is known as a generic truthful
mechanism for achieving a socially-optimal solution (E1)
and satisfies incentive compatibility and (E3) and (E4).
Intuitively, the first term in (10) serves to align each
agent’s objective to the server’s so that each agent also
aims to minimize the global loss; the second term ensures
that each agent does not overpay so as to ensure voluntary
participation (E3). Detailed analysis of the VCG mech-
anism can be found in [41]. Nevertheless, as we have
mentioned, the VCG payment cannot be directly applied
here due to the communication/computation overhead.
(3). Moreover, it assumes that agents know their exact
objectives, which is not true here due to the unavailability



of Py (-). Hence, in this paper, we will design distributed
algorithms and corresponding mechanisms that lead to an
approximate VCG payment in (10), to address the above
issues and attain (E2) and (E3).

o Another possible payment rule is the Shapley value,
which achieves other important properties in cooperative
game theory [30], [48], but will not be addressed in this

paper.

IV. FEDERATED LEARNING FAILURE DUE TO STRATEGIC
MANIPULATION

In this section, to illustrate the fact that agents to have
incentives to opt out of the federated learning framework and
manipulate the algorithms, we will demonstrate how non-i.i.d.
and unbalanced data incentivizes strategic agents’ misbehav-
iors. Specifically, we will analyze the conditions under which
a pure federated learning algorithm (i.e. the one that does not
leverage any economic mechanism) for optimizing (3) does
not satisfy (E2) and (E3).

A. Why May Agents Prefer Local Learning?

In this subsection, we first understand why agents may
rather not to participate into federated learning. In particular,
for each agent k € K, we compare the achievable perfor-
mances of federated learning (when all agents participate into
and obey the algorithm, i.e., to solve (3))) and a local learning
algorithm to independently solve the following local learning
problem based on its local dataset Dy:

(1)

In contrast, we use w® to denote the optimal solution to the
federated learning problem in (3):

o A .
w? = arg min Z prFr(w).
kek

wk £ arg min Fj,(w), Vk € K.

(12)

We start with the following corollary to understand the per-
formance of local learning:

Corollary 1. The following inequality is true with a proba-
bility of 1 — 9:

< L2dlog(2d/5)

Ej(wf) — min Ey(w) < NVkeKk. (13)

4umng

The result in Corollary 1 is interpreted as a special case of
Proposition 1.

We next introduce the following result that compares local
learning and federated learning:

Proposition 2. With a probability of 1 — 6, federated learning
in (3) leads to a risk bound of: for every agent k € IC,

272
- Lsdlog(2d/d
Ex(w®) — min By (w) < E ’ pj Lidlog(2d/d)
h jex MY 4

+2|Pe() = > piP0)|, (14

JjEK

where ||f ()| = [, |f(t)]dt.

The proof of Proposition 2 uses the envelope theorem [49].

The first term in the right-hand side of (14) characterizes
the estimation error. The second term stands for the distance
between its data distribution and the weighted average data
distribution .« p; P;(+), which characterizes how “typical”
agent k is; a larger value of the second term implies that
agent k is less typical. Intuitively, agent k& being more typical
implies that training samples of other agents are more useful in
solving the agent k’s prediction problem and hence resulting
in a smaller bound in (14).

We note that the bounds in (13) and (14) are upper bounds
that do not show which of the actual (expected) risks is
worse. However, since agents do not know their exact data
distributions but may estimate how typical they are based on
some type of side information, they may rely on comparing
these upper bounds in (13) and (14) to decide whether to
participate into federated learning. Specifically, suppose that
pr = ng/n for all k € K so that 1/n = 37, p3/n;. For an
agent with many samples so that ny /n is close to one, then the
first term in (14) will be close to the term in (13). Moreover,
in such a case if the second term is large enough (i.e. the data
is less typical), then this risk bound will be larger than that in
(13). On the other hand, if an agent k has only a few samples
so that ny/n is small and the second term in (14) is small
enough (i.e., its data is typical), then this risk bound in (14)
will be smaller than that in (13). Collectively, we make an
important observation from Corollary 1 and Proposition 2:

Remark 1. The classical federated learning framework in
(3) disincentivizes non-typical agents with sufficiently large
datasets (such that 1/ny is close to ),k p3/n;j).

B. Why May Agents Be Untruthful?

We next understand the incentive for agents to not follow a
suggested federated learning algorithm even if they choose to
participate.

Consider a heuristic (manipulation) strategy for agent k to
amplify its reports (e.g., its gradients in FedAvg [3]) by a
constant v > 1, in each iteration of a federated learning
algorithm. When agents other than k are obedient, the resultant
manipulated federated learning algorithm is equivalent to
solving the following problem:

Wy, = argmin ijFj(w) +prFr(w) 15)

J#k

We can derive a risk bound for such a manipulation:

Proposition 3. Suppose that agent k amplifies its report of its
gradient by a constant coefficient vy and agents other than k
report their truthful gradients for FedAvg. With a probability
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Fig. 1: An illustrative example of Proposition 3. In (a) and (b), we set mean = 0.1 and 2, respectively, fix § = 0.01, and compare the incurred local loss at
different +; in (c), we fix v = 3 and mean = 0.1 and compare the incurred local loss at different J.

of 1 — 6, the following inequality holds:

Ex(wy ) — min By (w) (16)
- 1 > i 7%k | Lidlog(2d/s)
TA+ O =Dee)? \ s 4p

+ 2| Pe() - T (v =Dor ij )+ pr P ()

J#k

Proposition 3 is a direct application of Proposition 2. Note
that, (16) becomes exactly the same as in (13) as by letting ~y
approach oo, whereas (16) becomes exactly the same as in (14)
when « = 1. This indicates that, as stated in Remark 1, non-
typical agents with sufficiently large datasets can benefit from
choosing a relatively large 7.5 Further, since local learning and
federated learning without manipulation can be regarded as
the special cases of the manipulated federated learning in (15),
tampering with federated learning renders more capability and
incentives to manipulate the system outcomes, compared to
opting out of federated learning.

We consider an illustrative example of Proposition 3 (and
Remark 1), as descried in the following. We consider a federate
learning framework for two agents with n; = 50 and ng = 400
data samples, respectively. For each data sample (z;,y;) in
either dataset Dy and D,, z; € R is randomly generated
from a uniform distribution over [0,1]. Labels y; satisfy
y; = —2x; + 1 + k;, where k; follows normal distributions
N (mean, 2) and N (0, 2), truncated over [—3, 3], for each data
sample (z;,y;) generated in datasets Dy and Ds, respectively.
Therefore, a mean closer to 0 implies that both agents’ data
distributions are closer. In Fig. 1, we study the impacts of
the amplifying coefficient v and § on agent 1’s empirical
loss and its analytical (probably approximate) upper bound
derived according to Proposition 3. We consider a scenario
where two data distributions are close (as mean = 0.1) in Fig.
1(a). First, we observe that the agent 1’s optimal coefficients
~ to minimize its analytical and empirical local risks are both

61t also implies that a strategic non-typical agent with a sufficiently large
dataset may manipulate federated learning and lead to a system performance
as worse as that of local learning.

slightly larger than 1. On the other hand, when two data
distributions are very distant (as mean = 2) as shown in
Fig. 1(b), agent 1 prefers an infinitely large . Note that each
agent’s local loss as v — oo corresponds to its local loss
under local learning. By comparing the values of local losses
aty = 1 and v = oo, Fig. 1 also validates our result in Remark
1: A non-typical agent prefers not to participate. Fig. 1(a)-(b)
shows that analytical and empirical loss functions tend to have
close minimizers. Finally, Fig. 1(c) demonstrates that § only
has a small impact on the tightness of the analytical bound
since § appears in a logarithmic function; § = 0.01 is already
enough to ensure a reasonably tight analytical upper bound.

C. When is Federated Learning Socially Efficient?

Even from the system-level perspective, with respect to
minimizing the global expected risk in (1), federated learning
may not be always more beneficial than local learning in (11),
as we will analyze next.

With a probability of at least 1 — J, agents performing their
respective local learning algorithms leads to an expected risk
bound of

ZpkEk wr) Zpk (mmE;C ))

keKx ke

2
<ZpkL dlog 2Kd/(5) a7

ke

Similarly, with a probability of at least 1—4, federated learning
in (3) leads to an expected risk bound of

Z Pk (mln Ei(w

< Z pk delog 2Kd/6)
Nk

keK keK
D2 ||Pe = D_pib
ke JEK

(18)

Consider a system with n; = n; and p, = p; for all k and
7. Subtracting the risk bound of local learning from that of



federated learning yields

K —1)L2dlog(2Kd/§ 2 P;
(K = Idlog2KA/5) 2 |y 1y

kex JjES

o (19)

We observe that the first term in (19) always increases in K
while the second term needs not to do so, which implies that
the federated learning is more likely to have a smaller risk
bound when there are many agents in the system.

To generalize the above results, we can further cluster agents
into several disjoint clusters Cy,Cs,...,Cr, and let agents in
each cluster perform intra-cluster learning, i.e., they solve

G & :
w™! = argmin Z preFr(w).
keC;

(20)

Let C(k) denote the cluster that agent k belongs to, i.e., if
k € C;, then C(k) = C;. The risk bound of such clustering and
intra-cluster learning is given by

S pe (@)~ 3 g (ngn Ek(w))

kek kek
2
P 6y L2dlog(2Kd/6) _
4,C(k) Lypalog )
<> - m +ZQPkHPk_PC<k>H
kek kek
= RBe, 21
where C denotes the set of all clusters, ie., C =

{C17C2,...,CL}, Pk.A = pk/zje.Apj’ and PA(~,~) =
> jeaPjaPj(-,-), for all clusters A in C.

It is possible to design a clustering algorithm, based on
agents’ non-i.i.d. data distributions, to minimize the risk
bound, which is beyond the scope of this work. Instead, we
focus on the scenario in which federated learning is more
beneficial than any clustering C for the system, by adopting
the following assumption:

Assumption 3. The federated learning leads to a tighter risk
bound than any possible intra-cluster federated learning, i.e.,
RB{K} < RBg, VC. 22)
Assumption 3 can be true in a massively distributed fed-
erated learning framework [3], in which the average number
of samples per agents n/K is much smaller than K. Even
under Assumption 3, agents may still benefit from opting out
of and tampering with a federated learning algorithm, which
motivates the faithful federated learning mechanisms to be
discussed in the following sections.

V. FAITHFUL FEDERATED LEARNING

In this section, we apply mechanism design for FedAvg in
[4] to achieve a scalable federated learning algorithm (with the
associated mechanism) that satisfies (E1)-(E3) approximately
and (E4) exactly. Similar techniques could also be applied to
other federated learning algorithms.

Algorithm 1: Faithful Federated Learning

1 The server initializes a model w[0] and step sizes 1y
and 72 for Phase I and Phase II;

// Phase I: Federated learning phase
2 for iterations t € {0,1,...,T1} do
3 | The server broadcasts the current model w(t] to all
agents;
4 Each agent k computes and reports its gradient to
the server VFi(wlt]).;
5 The server updates the model

w(t+1] = wlt] —m > peVFi(w[t]). (23)
ke

6 end

Return the approximately optimal model: w* = w[T}];

// Phase II: Payment computation
phase

for agents k € K do

9 | The server initializes the model w_;[0] = w*;

10 while iterations t € {0, 1, ..., Tx} or

2
|| VEs o) > pre do

;N

=)

11 Sett —>t+1;
12 The server broadcasts the current model
w_g[t] to all agents excluding k;
13 Agents j # k compute and report their
gradients to the server VF}(w_[t]);
14 The server updates the model and agent k’s
payment:
w_g[t+1] = w gt] =02 > p; VFj(w_i[t]),

j#k
(24a)
Prlt + 1] = Prlt] + (w_g[t + 1] — w_,[t])T-

S BVE (w_ilt). (24b)
15 ik Pk

16 end
17 Return the payment for agent k: P; £ Py[T3];
18 end

A. Algorithm and Mechanism Description

We present the Faithful Federated Learning (FFL) al-
gorithm in Algorithm 1, consisting of two phases: a fed-
erated learning phase (lines 1-7) and a payment compu-
tation phase (lines 8-18). In the first phase (consisting of
T, iterations), we present a gradient-based federated learn-
ing algorithm to (approximately) attain the globally optimal
solution w* to (3), similar to FedAvg in [3].” The second
phase consists of K outer iterations, with each computing
each agent’s payment without the need of directly revealing
agents’ private local empirical risk functions. We note that

2
2% Zj;&kijFj('w_k[t])H2 > pie in line 10 is to ensure

"Throughout this paper, we use superscript o to denote the exact optimal
solution, and * to denote the solution output by algorithms.



the accurate computation of each agents payment. As we will
show later, accurately computed payments incentivize strategic
agents to faithfully follow the intended federated learning
algorithm in the first phase.

Based on Algorithm 1, we introduce the FFL mechanism.
The reporting of each agent’s true gradient (lines 4 and 12)
in each iteration corresponds to the intended algorithm (that
the server would like agents to follow), whereas each agent k
report V F, (w]t]) € R? is a potential misreport of its gradient.
Formally, we have:

Definition 2 (The FFL Mechanism). The FFL mechanism
= (A, 8™, w*, P) is described as: for every agent k € K,

st = {VE(wlDher, and A, = {VE(wlt])}

teET & ’
(25)

where T_j, = Uje{O}ulC\{k}{l <t < Ty}. The output global
model w* and each agent k’s payment Py, are determined in
(23) and (24), respectively.

In the following, we explain the intuition behind Algorithm
1 and the FFL mechanism. We first define
o A : .
w? —argn}})anjFJ(w). (26)
J#k
Following Algorithm 1, the final payment for each agent k
can be approximately expressed by

Pr _Zzpﬂ VE; (wlt) T (wlt + 1] — wlt])
t= 1]75]6
’w,k[TQ] pg
~ / VFj(w)"dw
2k w-rl0] Dk
~ ij S(w?) — Fy(w®,)], Vke K. (27)
J#k

Therefore, the payment rule defined in Algorithm 1 is a VCG-
like payment rule (i.e., it approximates (10)). As we have
discussed, it can align each agent’s objective to the server’s
objective, and hence potentially satisfies properties (E1)-(E4).

B. Federated Learning Phase

With Assumptions 1-3, the gradient-based learning algo-
rithm in the federated learning phase of Algorithm 1 leads to
the following standard linear convergence result [50]:

Lemma 1. In the federated learning phase of Algorithm 1,
if we choose a constant step size such that m1 = 1/Lg, the
gradient descent has a linear convergence rate of

T:
Flw) - Flw?) < (1= £ (Flwl]) - Fw?)
g
(28)
Lemma 1 along with Proposition 1 implies that we can

achieve (E1) in a probably approximate manner, as shown in
the following:

Proposition 4. In the federated learning phase of Algorithm
1, if we choose a constant step size such that 1 < 1/L,, the
Sfollowing risk bound is true with a probability of 1 — §:

B(w*) - min B(w) < 9(5). (29)
for any § € (0,1), where
Z Pi L2dlog Ljdlog(2d/d)
kex
QLQ H . o
2 (1 L) (F(wlo]) - Flw),  GO)

C. Payment Computation Phase

In this subsection, we analyze the payment computation
phase. We start with defining an optimal solution set W* for
all possible {pg}:

* A :
w* = {argrrganka

ke

(w) : Vpr > 0 and E:pk;:l}7
ke
(€29)

and introduce the following gradient bound:

Definition 3 (Gradient Bound). The gradient bound Ly is
defined as, for each agent k € IC,

[V Fi(w)|ly < Ly, (32)

for all w € {w[t]}ieqo,.. .1y U{w [t rex teqo,1,... 73 U
W*, where {w(t]}ieqo1,... vy and {w_y[t]}rex tefo,1,... 12}
are described in Algorithm 1.

Note that such a gradient bound always exists as the
set {w(t]}ieqo.1,... 7y U Aw _i[t]}rex.teto,r,... iy U W™ is
compact® so that there always exists a large enough upper
bound for all values of ||V, Fi,(w)||, taken over the set.

We now present a formal bound of the absolute difference of
the payment P; and the exact VCG payment in the following:

Proposition 5. The payment accuracy loss (the absolute
difference between Py, and the VCG payment PVCG in (10))
is bounded by:

1-p

X E
[Pp — PYOS| < R L LTy + 1), VR €KL (33)
Intuitively, as Proposition 5 indicates, P}, converges to the
VCG payment in (10) as the step sizes converge to zeros, i.e.,
ny — 0.
In the following, we study the iteration complexity of the

FFL mechanism, starting with the following lemma:

Lemma 2. With equal weights (pr, = 1/K for all k € K), the
(Euclidean) distance between w? ,, and w° satisfies

[w? —we|, < Tf{ vk € K. (34)

8By the maximum theorem and the strong convexity of Fj(w),
arg miny »_pcx Pk Fr(w) is continuous in {py }ex. Therefore, the com-
pactness of the set of all {py}cx satisfying pr, > 0 and >, - pr = 1
indicates the compactness of WW*.



Lemma 2 implies that the distance of w? ; to w* is inversely
proportional to the total number of agents K. In the following
throughout this paper, we choose equal weights pp = 1/K for
all k € K. Let [-] be the ceiling operator such that [z] is the
smallest non-negative integer that is no less than x. Based on
Lemma 2, we now have one of the main results of this work:

Theorem 1. Set 1 = 1/Lg, no = 1/(KL,), and Ty >

%, for any 0 > 0. Set the number of iterations
T = [ln (%) /In )—‘, for any K > 0 and

€ > 0 such that [ln ((Lf:f}?e L ) /In (L_qu#> , ng]fgf} is not

empty, we have a bounded payment accuracy loss, satisfying

Pe[T2] — (35)

PYCC <€ VEeK.

and a constant time complexity of

WW) /In (Lquu) = O(1).

KT, < |1
2= ( + 2u%ee
(36)

Note that, for every ¢, there always exists a large enough

K such that the interval
L L,eK
) e (525) 5
Ly—p 2Lf
is not empty.

[111 ((Lf +0)*Lg
w2Ke

Theorem 1 implies that, by ensuring the number of iterations
in Phase I to satisfy 77 = O(log(K)), the time complexity
of the payment computation phase in Algorithm 1 is in fact
KT, = O(1) with respect to K. In particular, a sufficiently
large K such that K > (L; + 0u)?L,/(2u€) ensures that
[P [0] = PYCE| < € for all k € K. In other words, when K is
sufficiently large, we can set 75 = 0, in which case Phase II
of Algorithm 1 will end without any iterations. Intuitively, the
gradient-based nature benefits significantly from the Euclidean
distance (between the w? ; and w°) inversely proportional to
K. On the other hand, since the per-iteration communication

complexity is O(K), the overall communication complexity
is also O(K).

(37

D. Properties

In this subsection, we will show that the FFL mechanism
satisfies (E2) and (E3) approximately and (E4) exactly. We first
introduce the following definition of (probably approximate)
faithfulness as to achieve (E2) approximately:

Definition 4 (Faithfulness). A mechanism M is (€, 5)—faithful
if the following bound holds for all agents k € K,

Z 1- 67
(38)

Pr {E[Jk(skm,sTk)} — min E[Ji(Ag,s™)] < €

AreAg

where Jy(-) is the overall loss introduced in Definition 1.

That is, the (€, 5)—faithfu1ness suggests that, when all other
agents are following the suggested protocol, the incentive
for agent k to deviate from doing so is small with a high
probability of 1 — 4. The bound & may depend on 6 and the

number of agents’ data samples {nj}rex and is anticipated
to vanish as n — oo. It follows that:

Proposition 6 (Faithful Implementation). If we choose n1 =
2In(KG/0)

Vly 2 = %, N2 sk, e =
{ln(%)/l >—‘forany9>0ande>0
such that [ln ((Lfte;é)e L ) /In (ngu) , L;Lezf} is not empty,

then the FFL mechanism is (E, 5) -faithful, where € satisfies
€ =2+ K®(0), Ve (0,1),

where ®(0) is defined in (30).

(39)

The proof of Proposition 6 is an application of Theorem 1
and Proposition 1. An interesting observation is that, different
from (16), data distributions {Py(-)} do not appear in (39).
Thus, we remark that:

Remark 2. The faithful implementation property achieved
by the FFL mechanism is robust against non-i.i.d. data.
This differs substantially from the classical federated learning
settings, in which non-typical agents may have incentives
to manipulate federated learning algorithms, as shown in
Propositions 2 and 3.

To show the voluntary participation property, we consider
the following probabilistic inequalities. From (17), the follow-
ing inequality holds with a probability of 1 —4, for all k£ € K,

Ep(wf) — min By, (w)

S
27

delog 2Kd/§

Z bj min F;

i ni(1—px) Sk ow
—mlnz ]E )+22pj HPJ'_p’C\{k}H :RBﬁé.
2k P jek

(40)

Following (21), the following inequality holds with a prob-
ability of 1 — §, we have that the difference between each
agent k’s expected overall loss from participation into the FFL
mechanism and min,, Ey(w) satisfies

E[Jk (s, s™:)] — min Ei(w)
L2 log(2K
<Z p7 dlog( d/(S) Pj min B ( )
Sk Pk dp ]#kpk w
_mlnz B w) +2 Y pi||P — Pc| £ RB S
ik P keK

(41)
Based on the above probabilistic bounds and Assumption

3, we can derive the following result:

Proposition 7 (Risk-Bound-Based Voluntary Participation). If

we choose i = 1/Lg, = 1/(KLy), Ty > p20CI0)

and Ty = [ln %)/1 —‘forany9>0
€ > 0 such that ln((Lf:f;;e )/l ( _H),L2L62K} is not

empty, then the following inequality holds forall k € K,

RB; 5" <RBj;+ e+ K(5). (42)



Intuitively, although agents do not know their exact data
distributions, Proposition 7 suggests that the risk bound of the
FFL mechanism is smaller than that of local learning plus e.
This incentivizes agents to voluntarily participate into the FFL
mechanism, achieving (E3).

Finally, we show that the FFL mechanism satisfies (E4) in
the following:

Proposition 8 (Budget Balance). The FFL mechanism M
achieves budget balance (E4):

> Pr=o.

ke

(43)

To summarize, our FFL algorithm and the FFL mechanism
achieve all the desired economic properties of (E1)-(E4). In
addition, our FFL mechanism is also scalable as it only incurs
an iteration complexity of O(log(K)) preserves agent privacy
as it does not directly require agents to reveal their empirical
risks or training data.

VI. DIFFERENTIALLY PRIVATE FAITHFUL FEDERATED
LEARNING

In this section, we aim to design a faithful federated learning
mechanism achieving a more rigorous guarantee of privacy.
We design a scalable VCG payment, and leverage differential
privacy and secure multi-party computation to design a differ-
entially private faithful federated learning algorithm and the
corresponding mechanism.

A. Scalable VCG Payment

The VCG payment in (10) for a system with K agents
requires one to solve K 4 1 optimization problems, which in-
curs considerable communications and computation overheads
for a large-scale system. We showed in Section V that the
time complexity of solving these problems using a gradient-
based algorithm is O(log(K)) with respect to . However, to
achieve differential privacy, as we will show next, one relies
on gradient perturbation under which the number of iterations
for each problem no longer decreases in K. To this end, we
introduce a scalable approximation of the VCG payment in
(10) by reducing the number of problems to be solved.

We formally introduce the Scalable VCG payment in the
following:

Definition 5 (Scalable VCG Payment). We randomly divide
the set of agents K into L = {1,2,..., L} disjoint clusters.
Each cluster is indexed by | and denoted by C;. We properly
divide K in such a way that each cluster C; has either [%£]
or [ %] agents.®

The scalable VCG payment for each agent k is

1
S
Po=— p; (Fj(w’) — Fj(wy)), Vk€C, L€ L, (44)
Pk ©
J#k
9 As an example, a set of K = 18 agents can be divided into the following 4

clusters: C1 = {1,4,5,14},Cy = {2,3,7,10,15},Cs = {11,13,16,17},
and C4 = {6,8,9,12, 18}.

where

w] = argmin Z prFr(w), VI e L. (45)
w

keKk/C;

Hence, we approximate w?, for all £ € C; by wyf. In
this case, instead of solving K optimization problems, we
only need to solve L optimization problems. In the following
theorem, we introduce a proper way to select L:

Theorem 2. If we select

LZmin{K, W”}o(ﬁ) (46)
2e n €

then the Scalable VCG Payment in Definition 5 leads to an
approximation error of

[Py —PYCC| <€ VkEK, (47)

where P,YCG is the VCG payment for agent k in (10).

The proof of Theorem 2 uses a similar technique to that of
Lemma 2, as Hw‘i E wf” , is inversely proportional to the
number of agents within each cluster C;.

Theorem 2 indicates that, to maintain a bounded approx-
imation error, the number of optimization problems to be
solved grows at a square root rate, compared to the classical
VCG mechanism with a linear rate. Therefore, the Scalable
VCG payment in Definition 5 allows us to design a more
scalable mechanism when we cannot rely on a gradient-based
algorithm.

B. Differentially Private FFL Algorithm and Mechanism

Motivated by a recent differentially private federated learn-
ing algorithm in [8], we next introduce the techniques to
ensure differential privacy by combining secure multi-party
computation (to aggregate agents’ local gradients) and gradient
perturbation. Jayaraman et al. in [8] showed that this allows
the server to add only a single noise copy, and can outperform
the algorithms requiring local gradient perturbation before
aggregation.

Before we describe and analyze the algorithm, we first
formally introduce the following concepts:

1) Differential Privacy: We aim to guarantee differential
privacy, which is a crypographically-motivated notion of pri-
vacy [51]. We define @ > 0 as privacy risk. Formally, we
have:!?

Definition 6 ((«, )-differential privacy (DP)). Let « be a
positive real number and Z be a randomized algorithm. The
algorithm Z is said to provide (a,)-DP if, for any two
datasets Dy and D that differ on a single element, Z satisfies

Pr{Z(D1) = y] < exp(a) - PrlZ(Da) =y + B, Vy. (51)

The above definition is reduced to the a-DP when 3 = 0,
as in [52]. As we will show, one can achieve («a, 5)-DP by
adding noise sampled from Gaussian distributions to gradients.

0Note that (c, B)-differential privacy is also known as (e, §)-differential
privacy, as in [8].



Algorithm 2: Differentially Private Faithful Federated
Learning (DP-FFL)

1 The server initializes w[0] and step sizes 71, 72;

// Phase I: Federated learning phase
2 for iterations t € {0,1,...,T1} do
3 | The server broadcasts wlt] to all agents;
4 Each agent k computes and reports its gradient to
the server VFy(wlt]));
5 The server securely aggregates agents’ gradients,
adds noise, and updates the model according to:

wlt +1] = wlt] —m (Z prVFi(w(t]) + n) ;
ke (48)

where m is a random vector sampled from
N(0,0%1,) and o2 is given in (53);

¢ end
Return w* = w[T];

=

8 for clusters | € L do
// Phase II: Payment computation
phase

9 | The server initializes the model w;[0] = w*;

10 for iterations t € {0,1,...,T>} do

1 The server broadcasts w;[t] to all agents not in
C;

12 Each agent k ¢ C; computes and reports its
gradient to the server V E(w;[t]);

13 The server securely aggregates agents’
gradients and adds noise to update the model:
wilt+1] = wilt] — e | 32 pVE(wilt]) +n ) |

JEC
14 (49)
where m is a random vector sampled from
N(0,0%1,) and o2 is given in (53);
15 end
16 Each agent k € K reports the value
F(w*) — Fi(w;[T>]) and the server computes
Pi= 3 P (Fy(w") — Fy(wi[T3])) + np,
ik Pr
(50)

for all k£ € C;, where npj, is sampled from
N(0,0%) and o is given in (53);

17 Return the payment P; for agent k € Cy;

18 end

2) Secure Multi-Party Computation: For preserving the
privacy of agents’ inputs without revealing them to others, the
server aims to securely aggregate their gradients in each itera-

tion.!! To this end, we consider secure multi-party computation
(MPC) protocols that enable one to jointly aggregate their
private inputs. Examples of these are protocols that employ
cryptographic techniques (e.g., homomorphic encryption and
secret sharing). In this work, we do not focus on improving or
evaluating the MPC protocols, since the methods we propose
can be implemented using standard MPC techniques.'?

3) Algorithm and Mechanism Description: We are ready
to introduce the Differentially Private Faithful Federated
Learning (DP-FFL) algorithm in Algorithm 2, which also
consists of two phases. Compared to the FFL algorithm in
Algorithm 1, we add noise in lines 5, 14, and 16 based on

16L%(Ty + KTy)log(1/5)

o? = (52)
K2n%1)oz2
16 K log(1
n(l)O{

where n(y) is the size of smallest local dataset among all agents
K. We also adopt the Scalable VCG payment from Definition
5 in the payment computation phase of Algorithm 2.

In the following, we introduce the DP-FFL mechanism
associated to Algorithm 2:

Definition 7 (The DP-FFL Mechanism). The DP-FFL mech-
anism MY = (A, 8™, w*,P) satisfies, for all agents k € K,

spt = {VF(w[t) her, and Ax = {VFu(w[t])}ier,
(54)

where T_; = UjE{O}Uﬁ\{l}{l <t < Ty}. The output global
model w* and each agent k’s payment Py, are determined in
(48) and (50), respectively.

We re-define the gradient bound specific for Algorithm 2 in
the following:

Definition 8 (Gradient Bound). The gradient bound Ly is
defined as for each agent k € K13

[VwFr(w)ll, < Ly, (55)
for all w € {w[tl}bicqon,.. 1y YU {wlthecefon, ..y Y
W*, where {wlt]}icqo1,....7) U{wiltlhieciefo,... 1) are
described in Algorithm 2 and W* is defined in (31).

We now show that DF-FFL achieves the following privacy
property:
Proposition 9. Algorithm 2 is («, 8)-differentially private.

Proof of Proposition 9 is based on [8] and [54]. Similar
to Proposition 4, we can also prove (El1) for the DF-FFL
mechanism. We present the detailed analysis in [56].

""Note that MPC protocols are only able to protect the training data during
the learning process, whereas the resulting model of a federated learning
algorithm still relies on the differential privacy techniques (by adding noise
in our proposed DP-FFL algorithm) against inferring private data of each
agent.

12A concrete example of the standard MPC technique in federated learning
frameworks can be found in [8], [9].

3For readability, we are overloading the notation L f to avoid introducing
additional parameter names.



Fig. 2: Impacts of 12 and « on the iterations needed 77,7> and payment
accuracy loss bounds |E[P;] - P,YCG |

C. Three-Way Tradeoffs between Privacy, Accuracy, and the
Iterations Needed

We will discuss three-way performance tradeoffs in the
following:

Proposition 10. If we choose constant step sizes m1 < 1/L,,

772§(K_11)L,L2min{K, L(Kl)Lf}

o for any € > 0,

and the iterations as

lo g(Blog(C 1))
log(C—1) ’

then Algorithm 2 leads to a bounded expected payment accu-

racy loss:
Blog(C™1)
08”74 )>—|—e, 57)

=T = (56)

) 141
[E[P] - P < A ( log(C—1)

for all agents k € IC, where
8n2d L3 (K +1)log(1/8)

A= , (58a)
pK?(K — 1)nf))a?
K —1)L2
B= (2ﬂ)f (58b)

C=1—(K-1)uns. (58¢)

Proposition 10 suggests a three-way tradeoff among pri-
vacy (a, 3), the iterations needed (7} and 7T%), and accuracy
|E[P}] — PYCC|. That is, by fixing 3 and properly selecting
and 72, one can improve two performance metrics by trading
off the third. To see this, we consider the following three
scenarios as guidelines to make such a three-way tradeoft:

1) To improve both privacy and iteration complexity by
sacrificing accuracy, one can set &« — (0 to ensures
privacy and set 7, as a positive constant. In this case, we
have that A — oo, and hence T7; = T5 — 0. However,
the payment accuracy loss in (57) diverges to infinity,
ie., |E[P;] — PYCC| — oo.

2) To improve both accuracy and iteration complexity by
sacrificing privacy, one can set o and 72 in such
a way that 79/a? is constant (and hence A is also
constant). Further, by increasing 72 (and hence in-
creasing o as well) we have that C decreases, and
hence log(log(C~1))/log(C~!) decreases. Therefore,
such a strategy decreases 17, 15, and |E[Pk

at the same time. However, 79 is upper-bounded by the
maximal step size ﬁ
3) To achieve perfect accuracy ’E P,XCG’ — 0, one
needs to sacrifice both iteration complexity, privacy, and
scalability. Specifically, by setting @ — oo, it follows
that A — 0 and hence T} = T, — oo. Letting L = K
as well, we have |E[P;] — PY/¢| — 0.

We present a numerical example of Proposition 10 in Fig. 2,
which compares the iterations needed and payment accuracy
loss bounds at different o and 72. An interesting observation
is that the payment accuracy loss bound hardly changes when
72 decreases. This results from the fact that log((1 — (K —
)un2)~ 1Y) ~ (K — 1)uno, which makes A/log(C~1) almost
constant if we only tune 75. On the other hand, fixing the step
size 19, 11 and T, decrease in o and the payment accuracy
loss bound increases in ov.

D. Properties

Collectively, in this subsection, we will show that the DP-
FFL algorithm (and the DP-FFL mechanism) satisfies (E2) and
(E3) approximately and (E4) exactly.

Corollary 2 (Faithful = Implementation). If  we
choose my < 1/Lg, 2 < —1_ 7 =

Blog(C™! - _ (DL
T, = [bg (%)/log(C 1)-‘ and L >

min {K, A/ %% }, then the DP-FFL mechanism

is (€, 0)-faithful, where

. 1+ log(ZloelC) 1 L2dlog(2d/6)
€ =2¢+2A T
log(C—1) Pl 2K p
L2dlog(Kn(1)) log(1/5)
n%l)ag . (59)

and A, B, and C are defined in (58), and D is some positive
constant.

Corollary 2 is a direct application of Propositions 6 and
10 and Theorem 2; the three terms on the right-hand side of
(59) come from Theorem 2, Proposition 10, and Proposition
6, respectively.

Partici-
1

Corollary 3  (Risk-Bound-Based Voluntary
pation). If we choose 11 < % Ny < ®=DIL,

n = Ty, = {log %C_iq))/log(cfl)w, and

L > min{ K, ,/%;“% , then the DP-FFL algorithm
and the DP-FFL mechanism lead to the following inequality:

L3dlog(Kn log(1
RBFFL< RB£,5+5+D f g( (1)) g(1/8)

n%l)az
1 L2dlog(2d/9) 1+ log(Bloslc))
+g}:€n—k R +A g (C1) (60)

for all agents k € K, where RBk s and RBF EL are defined
in (40) and (41), respectively.
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Fig. 3: Impacts of training data samples n on (a) training loss and overall costs
and (b) test accuracy. We set K = 10, « = 0.1, § = 0.01, A = 0.05,
Ty = 80, and T = 20.

We note that, as implied in Corollary 3, performing local
learning does not incur privacy loss for individual agents.
Therefore, comparing the results in Corollary 3 and Propo-
sition 7, the DP-FFL algorithm leads to a worse risk bound
than the FFL algorithm.

Finally, Proposition 10 also implies that the DP-FFL mecha-
nism achieves budget balance (E4) approximately. We present
the detailed analysis in [56].

VII. EVALUATION

In this section, we evaluate our proposed FFL and DP-FFL
mechanisms with K = 10 agents. We consider regularized
multinomial logistic regression for the MNIST dataset with
60,000 training samples and 10,000 testing samples [55]. We
uniformly randomly allocate samples with label y to all agents
whose last digits of their indices are y. For each sample
allocated to agents, with a probability of 1 — A, we reallo-
cate this sample to a random agent with equal probabilities.
Therefore, the degree of heterogeneity in this non-i.i.d. data
can be characterized by A; a larger A leads to greater data
heterogeneity and A = 0.

For performance comparison, we compare our proposed
FFL and DP-FFL schemes against two benchmarks: i) a
gradient-based local learning benchmark, in which agents
independently solve (11), and ii) a manipulated FedAvg bench-
mark, in which the server intends to execute FedAvg [3], while
one agent manipulates the federated learning algorithm by
multiplying its gradient report by an amplifying coefficient ~y
in each iteration. We compare the global loss, F'(w), and the
weighted average test accuracy achieved by different schemes.

Impact of the total number of training samples: We study
the impact of the number of total training data samples n in
Fig. 3. First, we show that our proposed schemes significantly
outperform the manipulated FedAvg, implying that federated
learning manipulated even only by one agent can lead to
significant performance loss. Therefore, it demonstrates the
importance of faithful implementation of federated learning
algorithms. Second, both proposed schemes outperform local
learning with respect to either global loss and test accuracy.
This also indicates that agents are willing to voluntarily
participate in federated learning, as both proposed schemes
achieve smaller overall losses. We observe that the total
number of training data samples n has a greater impact on
both local learning and the manipulated FedAvg benchmarks

08 92
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Fig. 4: Impacts of non-i.i.d. data, characterized by A, on (a) training loss and
overall costs and (b) test accuracy. We set K = 10, a« = 0.1, 8 = 0.01,

n = 10000, 77 = 80, and T = 20.
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Fig. 5: Impacts of (a) « and (b) L. We set K = 10, n = 10000, 8 = 0.01,
A = 0.05, T1 = &80, and 7o = 20. We further set L = 10 in (a) and
a = 0.1 in (b).

Number of Groups L

than the proposed (FFL and DP-FFL) mechanisms. This is the
performances both benchmarks are more sensitive to the sizes
of local datasets, compared to federated learning.

Impact of non-i.i.d. data: We next study the impact of
varying the heterogeneity in the data given by A in Fig. 4. As
shown in Fig. 4, A only has an impact on local learning but
not on the proposed mechanisms. In Fig. 4(a), we show that,
in terms of each individual agent’s objective (overall loss), the
DP-FFL and the FFL mechanisms outperform local learning,
when A < 0.15. Local learning is more beneficial, compared
to federated learning, when the agents have considerably non-
i.i.d. data distributions (i.e., A > 0.15). In particular, a higher
degree of heterogeneous data implies each agent has a higher
portion of (both training and test) data samples with labels
corresponding to its own index (e.g., agent 3 may have more
(both training and test) data samples with label 3 when A
increases). This means that individual local datasets are more
“useful” when A is large, therefore, incurring a higher test
accuracy for local learning. Finally, Fig. 4 (a) and (b) imply
whenever local learning is less beneficial than the proposed
mechanisms regarding the test accuracy, the FFL and the DP-
FFL schemes are more profitable for individual agents, which
is consistent with our risk-bound-based voluntary participation
results in Proposition 7 and Corollary 3 under Assumption 3.

Impacts of privacy risk « and the number of group L.
We study the impacts of the privacy risk o and the number of
groups L in Fig. 5. Note that the manipulated FedAvg and the
proposed FFL algorithm are not directly comparable here, as
they cannot guarantee differential privacy. We set A = 0.05
and K = 10. Fig. 5 (a) shows that both the mean and the
standard deviation of the payment accuracy loss decrease in
«, as a larger privacy risk « leads to less noise in the DP-



FFL algorithm. An interesting observation is that, to attain a
reasonably small payment accuracy loss, one should choose a
small 75 for a small o, which is consistent with Proposition
10. Fig. 5 (b) shows that increasing the number of groups L
reduces the payment accuracy loss. In addition, a relatively
large enough number of groups (i.e., L > 4) is enough to
maintain a relative small payment accuracy loss.

VIII. CONCLUSIONS

We have studied an economic approach to federated learning
robust against strategic agents’ manipulation. We have ana-
lyzed how the key feature of federated learning, unbalanced
and non-i.i.d. data, affects agents’ incentive to voluntarily par-
ticipate and obediently follow federated learning algorithms.
We have designed the first faithful mechanism for feder-
ated learning, achieving (provably approximately) optimality,
faithful implementation, voluntary participation, with the time
complexity (in terms of the number of agents K) of O(log K).
We have further presented the differentially private faithful
federated learning mechanism, which is the first differentially
private faithful mechanism. It provides scalability, maintains
the economic properties, and enables one to make three-
way performance tradeoffs among privacy, convergence, and
payment accuracy loss.

There are a few future directions. First, we assume that the
(energy) cost of computation and communication is negligible.
It is important to consider and analyze the impacts of such
cost, and design economic mechanisms that is not only faithful
but also elicits the right amount of efforts. Second, it is also
interesting to design faithful algorithms and corresponding
economic mechanisms for other more sophisticated federated
learning architectures (e.g., multi-task federated learning [13]).
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