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Abstract. An augmented metric space is a metric space (X, dx) equipped with a function fx : X — R. This
type of data arises commonly in practice, e.g., a point cloud X in RP where each point z € X has
a density function value fx(z) associated to it. An augmented metric space (X, dx, fx) naturally
gives rise to a 2-parameter filtration . However, the resulting 2-parameter persistent homology
He (K) could still be of wild representation type and may not have simple indecomposables. In this
paper, motivated by the elder-rule for the zeroth homology of 1-parameter filtration, we propose
a barcode-like summary, called the elder-rule-staircode, as a way to encode Ho(K). Specifically, if
n = | X|, the elder-rule-staircode consists of n number of staircase-like blocks in the plane. We show
that if Ho () is interval decomposable, then the barcode of Ho(K) is equal to the elder-rule-staircode.
Furthermore, regardless of the interval decomposability, the fibered barcode, the dimension function
(a.k.a. the Hilbert function), and the graded Betti numbers of Ho(K) can all be efficiently computed
once the elder-rule-staircode is given. Finally, we develop and implement an efficient algorithm to
compute the elder-rule-staircode in O(n?logn) time, which can be improved to O(n’a(n)) if X is
from a fixed dimensional Euclidean space R”, where a(n) is the inverse Ackermann function.
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1. Introduction. Several ideas connected to the notion of what is nowadays known as
persistent homology arose in the work by Frosini and collaborators [29, 30, 37], in Robins’s
Ph.D. thesis [47], in the work of Barannikov about smooth functions on manifolds [4], in
Edelsbrunner and collaborators [23, 27], and in Zomorodian and Carlsson [53]. In many
practical applications, persistence is applied to simplicial filtrations constructed over finite
metric spaces (see, e.g., [17, 49]). In this paper, we work in the more general setting of
augmented metric spaces.

An augmented metric space is a metric space (X, dx) equipped with a function fx : X - R
[5, 11, 18]. This type of data arises commonly in practice, e.g., a point cloud X in R” where
each point has a density function value fx associated to it. Studying hierarchical clustering
methods induced in this setting has attracted much attention starting with [11] and more
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recently with [5, 9, 16, 41]. Another example is where X = V equals the vertex set of a graph
G = (V,E), dx represents a certain graph-induced metric on X (e.g., the diffusion distance
induced by G), and fx is some descriptor function (e.g., discrete Ricci curvature) at graph
nodes. This graph setting occurs often in practice for graph analysis applications, where G
can be viewed as a skeleton of a hidden domain. When summarizing or characterizing G,
one wishes to take into consideration both the metric structure of this domain and the node
attributes. Given that persistence-based summaries from only the edge weights or from only
node attributes have already shown promise in graph classification (see, e.g., [8, 13, 32, 52]), it
would be highly desirable to incorporate (potentially more informative) summaries encoding
both types of information to tackle such tasks. In brief, we wish to develop topological
invariants induced from such augmented metric spaces.

On the other hand, an augmented metric space naturally gives rise to a 2-parameter fil-
tration (by filtering both via fx and via distance dx; see Definition 3.2). However, while a
standard (1-parameter) filtration and its induced persistence module have a persistence dia-
gram as a complete discrete invariant, multiparameter persistence modules do not have such
a complete discrete invariant [12, 21]. The 2-parameter persistence module induced from an
augmented metric space may still be of wild representation type and may not have simple
indecomposables [5]. Instead, several recent works consider informative (but not necessar-
ily complete) invariants for multiparameter persistence modules [25, 31, 33, 39, 42, 43, 51].
In particular, RIVET [39] provides an interactive visualization of barcodes associated to 1-
dimensional slices of an input 2-parameter persistence module M, which are called the fibered
barcodes. For implementing the interactive aspect, RIVET makes efficient use of graded Betti
numbers of M, another invariant of the 2-parameter persistence module M.

Our contributions. We propose a barcode-like summary, called the elder-rule-staircode, as a
way to encode the zeroth homology of the 2-parameter filtration induced by a finite augmented
metric space. Specifically, given a finite X = (X, dx, fx), its elder-rule-staircode consists of
n = |X| number of staircase-like blocks of O(n) descriptive complexity in the plane. The
development of the elder-rule-staircode is motivated by the elder-rule behind the construction
of persistence pairing for a 1-parameter filtration [26]. For the 1-parameter case, barcodes [53]
can be obtained by the decomposition of persistence modules in the realm of commutative
algebra or, equivalently, by applying the elder-rule which is flavored with combinatorics or
order theory. As we describe in section 4, our elder-rule-staircodes are obtained by adapting
the elder-rule for treegrams arisen from 1-parameter filtration.

Interestingly, we show that our elder-rule-staircode encodes much of the topological infor-
mation of the 2-parameter filtration K induced by X'. In particular, the fibered barcodes, the
fibered treegrams, and the graded Betti numbers associated to Ho(K) can all be efficiently
computed from the elder-rule-staircodes (see Theorems 3.7, 4.13, and 5.4). Furthermore, if
H(K) is interval decomposable, then the interval indecomposables appearing in its decompo-
sition correspond exactly to its staircode (see Theorem 4.16). This implies that testing the
interval decomposability of Ho(K) is reduced to testing isomorphism of two given persistence
modules [7] (see Remark 4.17). We also provide sufficient conditions on X" which ensure the
interval decomposability of Ho(K) (see Theorem 4.10 and Corollary 4.11). Therefore, to ex-
plore exotic isomorphism types of indecomposable summands of Hy(K) (a question of interest
considered in [5]), it suffices to restrict our attention to augmented metric spaces which do
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not satisfy these conditions.

Finally, in section 6, we show that the elder-rule-staircode can be computed in O(n?logn)
time for a finite augmented metric space (X, dy, fx) where n = | X|, and in O(n?a(n)) time if
X is from a fixed dimensional Euclidean space and dx is Euclidean distance. We have software
to compute elder-rule-staircodes and to explore/retrieve information such as fibered barcodes
interactively, which is available online from https://github.com/Chen-Cai-OSU /ER-staircode.
See Figure 1 for an example of pairs of inputs and outputs of the software.

More on related work. The elder-rule is an underlying principle for extracting the persis-
tence diagram from a persistence module induced by a nested family of simplicial complexes
[26, Chapter 7]. Recently, this principle has come into the spotlight again for generalizing per-
sistence diagrams [33, 42, 45] and for addressing inverse problems in TDA [22]. An algorithm
for testing interval decomposability of multiparameter persistence modules has been studied
[1]. A method to approximate 2-parameter persistence modules by interval-decomposable per-
sistence modules has been proposed in [2]. A multiparameter hierarchical clustering method
has been utilized for identifying dominant metastable states of molecular dynamics [16]. A
consistent approach to density-based clustering has been proposed in [48].

The software RIVET and work of [40] can also be used to recover fibered barcodes and
graded Betti numbers. However, for the special case of zeroth 2-parameter persistence modules
induced from augmented metric spaces, our elder-rule-staircodes are simpler and more efficient
to achieve these goals: In particular, given an augmented metric space containing n points, the
algorithm of [40] computes the graded Betti numbers in (n?) time, while it takes O(n?logn)
time using the elder-rule-staircode via Theorem 6.1. For zeroth fibered barcodes, RIVET takes
O(n®) time to compute a data structure of size O(n%) so as to support the efficient query time
of O(logn + |B%|), where |B"| is the size of the fibered barcode B for a particular line L
of positive slope. Our algorithm computes an elder-rule-staircode of size O(n?) in O(n?logn)
time, after which B” can be computed in O(|B”|logn) time for any query line L. See section
6.2 for a more detailed comparison. However, it is important to note that RIVET allows much
broader inputs and can work beyond zeroth homology.

Outline. In section 2, we review the definitions of persistence modules, barcodes, and
graded Betti numbers. In section 3, we introduce a 2-parameter filtration X induced by
an augmented metric space X and define the elder-rule-staircode of X. In section 4, we
show that the elder-rule-staircode recovers the fibered barcode of Hy(K). We also prove that
if Hp(K) is interval decomposable, then the set of indecomposables corresponds exactly to
the staircode. In section 5, we show that the elder-rule-staircode recovers the graded Betti
numbers of Hy(K). In section 6, we develop and implement an efficient algorithm to compute
the elder-rule-staircode. In section 7, we discuss open problems. For readability, we have
relegated some proofs to some appendices.

2. Preliminaries. In section 2.1, we review the definitions of persistence modules and their
barcodes. In section 2.2, we review the notion of graded Betti number of a persistence module.

2.1. Persistence modules and their decompositions. First, we briefly review the defini-
tion of persistence modules. Let P be a poset. We regard P as the category that has elements
of P as objects. Also, for any a,b € P, there exists a unique morphism a — b if and only if
a < b. For d € N, let Z% be the set of d-tuples of integers equipped with the partial order
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Figure 1. Left: A finite set X € R? equipped with the Euclidean metric dx and a codensity function
fx : X — R; ie., the denser the neighborhood of x € X, the smaller the fx(x). More precisely, given
N points x1,22,...,xn € R? and a bandwidth h > 0, the (unnormalized) density estimate for any y € R?
is prc(z) = S0 Ki(||z — x4]|2), where Kp(z) = exp(—%). We define fx as the negative of the density
estimate px. In all experiments, we used the bandwidth h = 0.2. Right: The elder-rule staircode of the
augmented metric space (X,dx, fx). The largest block, depicted in a light color, is the quadrant with the left-
bottom point (min fx,0). The existence of three notably tall blocks suggests the existence of three clusters in
(X,dx, fx). See Figure 19 for an exzpanded exzample.

defined as (a1, aq,...,aq) < (b1,be,...,bq) if and only if a; < b; for each i = 1,2,...,d. The
poset structure on R? is defined in the same way.
We fix a certain field F, and every vector space in this paper is over F. Let Vec denote
the category of finite dimensional vector spaces over F.
A (P-indexed) persistence module is a functor M : P — Vec. In other words, to each
a € IP a vector space M (a) is associated and to each pair a < b in [P a linear map ¢ps(a,b) :
M(a) — M(b) is associated. When P = R? or Z¢, M is said to be a d-parameter persistence
module. A morphism between M, N : P — Vec is a natural transformation f : M — N
between M and N. That is, f is a collection { fa}acp of linear maps such that for every pair
a < b in P, the following diagram commutes:
b
M{(a) 2128 pr(b)
lfa lfb
b
N(a) X ().

Two persistence modules M and N are isomorphic, denoted by M = N, if there exists a
natural transformation {fa}acp from M to N where each f, is an isomorphism.
We now review the standard definition of barcodes, following notation from [6].

Definition 2.1 (intervals). Let P be a poset. An interval J of P is a subset J C P such
that the following hold: (1) J is nonempty. (2) Ifa,b € J anda<c <b, thenc e J. (3)
For any a,b € J, there is a sequence a = ag,ay,...,a; = b of elements of J with a; and
a;+1 comparable for 0 <¢ <[ —1.
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For J an interval of P, the interval module IV : P — Vec is defined as

{F ifaecJ, idp ifa,beJ, a<b,

1Y(a) = .
0 otherwise.

0 otherwise,

SDIJ(a’ b) = {

Recall that a multiset is a collection of objects (called elements) in which elements may
occur more than once, and the number of instances of an element is its multiplicity.

Definition 2.2 (interval decomposability and barcodes). A functor M : P — Vec is interval
decomposable if there exists a multiset barc(M) of intervals (Definition 2.1) of P such that
M = D sevarc(m) I7. We call barc(M) the barcode of M.

By the theorem of Azumaya—Krull-Remak—Schmidt [3], such a decomposition is unique up
to a permutation of the terms in the direct sum. Therefore, the multiset barc(M) is unique if
M is interval decomposable. For d = 1, any M : R? (or Z?) — Vec is interval decomposable,
and thus barc(M) exists. However, for d > 2, M may not be interval decomposable.

2.2. Graded Betti numbers.

Persistence module as a module over a polynomial ring. In section 2.1, we defined d-
parameter persistence modules as Vec-valued functors over the posets Z¢ or R? and morphisms
between them as natural transformations. The definitions below are equivalent to those defini-
tions [12, Theorem 1] and allow us to define the graded Betti numbers of persistence modules.
We mostly adopt notation in [25, 40].

Let F[t1,ta, ..., tq] be the polynomial ring in the d-variables t1, ta, ..., t4. To ease notation,
for n := (ny1,ng,...,ng) € Z‘éo, the monomial t7't52...¢}* € F[ty,ta,...,tq] will be written
as x®. A d-parameter persistence module M : Z¢ — Vec is an F[ty,ts,. .., t4-module M
with a direct sum decomposition as an F-vector space M = @, ;4 Ma such that the action
of Flty,ta,...,tg] on M is uniquely specified as follows: for all a = (aq,as,...,aq) € Z% and
v € My, and for all n = (ny,n2,...,nqg) € Z%,, and for all ¢ € F,

(c-x")-v:=c-pp(a,a+mn)(v).

Let M and N be any two persistence modules. A morphism f : M — N is a module
homomorphism such that f(M,) C N, for all a € Z?. The kernel, image, and cokernel of f are
analogously defined to those of a linear map between vector spaces. The kernel of f is defined
as the submodule ker(f) := @,z ker(fa) of M. The image of f is defined as the submodule
im(f) := @Pacgaim(fa) of N. The cokernel of f is defined as coker(f) := @,cza (Na/im(fa)).

Graded Betti numbers. We briefly review the concept of graded Betti numbers [12, 35, 39,
40, 46, 53]. Since our interests are in studying finite augmented metric spaces, we restrict
ourselves to finite persistence modules—the kth homology of a filtration of a finite simplicial
complex for some k € Z>q [12].

Fix a € Z%. By Q2 : Z¢ — Vec, we denote the persistence module defined as

{F ifa <x, idp if a < x,

0 otherwise.

Qx =

0 otherwise,

(an(X,y) = {

Any F : Z% — Vec is said to be free if there exists a multiset A of elements of Z? such that
F =@, ,Q* For simplicity, we will refer to free persistence modules as free modules. Let
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M be a persistence module. An element m € M, for some a € Z% is called a homogeneous
element of M. In this case, we write gr(m) = a. Let F' be a free module. A basis B of F is
defined as a minimal homogeneous set of generators of F. There can exist two bases B and
B’ of F (analogous to the fact that a vector space can have multiple bases). However, the
number of elements at each grade a € Z¢ in a basis of F is an isomorphism invariant.

For a finite M, let IM denote the submodule of M generated by the images of all linear
maps o/ (a,b), with a < b in Z2. Assume that there is a chain of modules
03

o)) 01

F? y F1 FY

(2.1) F*.

such that (1) each F" is a free module, and (2) im(9") = ker(9"~1), i = 0,1,2,.... Then we
call F'* a resolution of M. The condition (2) is referred to as ezactness of F'*. We call the
resolution F'* minimal if im(0°) C IF*~! fori =1,2,.... It is a standard fact that a minimal
resolution of M always exists and is unique up to isomorphism [46, Chapter I].

Definition 2.3 (graded Betti numbers). Let M : Z% — Vec be finite. Assume that a
minimal free resolution of M is F*® in (2.1). For i € Z>o, the ith graded Betti number
BM .79 — T~ is defined as M (a) = (number of elements at grade a in any basis of F*).

Remark 2.4.

(i) Note that if M = N; @ Na, then M = Ble + BZ-NQ. This is a key fact to define the
persistent graded Betti numbers introduced in [25].
(ii) BM :Z% — Zs is the zero function for every integer i > d [28, Theorem 1.13].
(iii) Definition 2.3 is not in the exact same form as those in the literature, such as [12, 35, 39].
However, by Nakayama’s lemma [46, Lemma 2.11] all those are equivalent, as already
noted in [40, section 2.3].

For any M : Z¢ — Vec, the dimension function dim(M) : Z¢ — Z>q of M is defined as
a — dim M,. The graded Betti numbers of M recover dim(M ).

Theorem 2.5 (see [40, Proposition 2.3]). Let M : Z% — Vec be a finite persistence module.
For all a € 79,

d
dim(M)(a) = Y > (-1)'8M (x).

x<a 1=0
3. Elder-rule-staircodes for augmented metric spaces.
Rips bifiltration for an aug-MS. Let (X, dx) be a metric space. For € € R, the Rips complex
Re(X,dx) is the abstract simplicial complex defined as
R(X,dx)={AC X :for all x,2' € A, dx(z,2") < ¢e}.

Let Simp be the category of abstract simplicial complexes and simplicial maps. The Rips
filtration is the functor Re(X,dx) : R — Simp defined as

g ’R,E(X, dX) and ¢ < 6/ — RE(X, dx) — REI(X, dx).
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Definition 3.1 (augmented metric spaces). Let (X,dx) be a metric space and fx : X — R
a function. We call the triple X = (X,dx, fx) an augmented metric space (abbreviated
aug-MS ).

We say that X is injective if fx : X — R is an injective function.

Throughout this paper, every (augmented) metric space will be assumed to be finite. Let
X = (X,dx, fx) be an aug-MS. For o € R, let X, denote the sublevel set f;(l(—oo,o'] Cc X.
Let (X,,dx) denote the restriction of the metric space (X,dx) to the subset X, C X.
Similarly, (X,,dx, fx) is the aug-MS obtained by restricting dx to X, x X, and fx to X,.
The following 2-parameter filtration is considered in [5, 11, 12] in the context of filtered single
linkage hierarchical clustering or filtered persistent homology.

Definition 3.2 (Rips bifiltration of an aug-MS). Let X = (X,dx, fx) be an aug-MS. We
define the Rips bifiltration REI(X) : R? — Simp of X as (g,0) — Re(X,, dx).

By applying the kth simplicial homology functor to the Rips bifiltration R (X), we ob-
tain the persistence module M := Hp(RY(X)) : R? — Vec. Let £ denote the set of all
lines of (strictly) positive slopes in R?. Given L € L, the restriction M|y : L — Vec can be
decomposed into the unique direct sum of interval modules over L, and thus we have the bar-
code barc(M|p) of M|r. The kth fibered barcode of X refers to the L-parametrized collection
{barc(M|r)}rec [14, 36, 39].

Elder-rule-staircode for an aug-MS. Let (X, dx) be a finite metric space. For € € [0,00), an
e-chain between z,2’ € X stands for a sequence x = x1,z2,...,2, = 2’ of points in X such
that dx(zj,xi41) <efori=1,..., —1. Now given X = (X, dx, fx) and o € R>¢, consider
a point x € X,. Then for any € > 0, set [x](ms) as the collection of all points 2’ € X, that
can be connected to x through an e-chain in X,.

The function fx : X — R induces an order on X: consider any two z,2’ € X. If
fx(z) < fx(2'), then we say that z is older than z'.

Definition 3.3 (elder-rule-staircode for an aug-MS). Let X = (X,dx, fx) be an injective
aug-MS. For each x € X, we define its staircode as

(3.1) I, :={(0,e) € R*: x € X, and x is the oldest in [T](0,e) }-

The collection Ty = {I;}zex is called the elder-rule-staircode (ER-staircode for short) of X.

See Figure 2 for an example. The relationship between the ER-staircode and the classic
elder-rule will become clear in section 4.1.

Definition 3.4. An interval I of R? (Definition 2.1) is a staircase interval (or simply a
staircase) if there exists (0o,c0) € I such that (0g,c0) < (0,¢) for all (o,e) € I, and I is not
bounded in the direction of the o-axis (see Figure 5).

It turns out that each I, € Zy is a staircase interval.
Proposition 3.5. Each I in Definition 3.3 is a staircase interval (proof in Appendiz A ).

Staircodes for noninjective case. Even if fx is not injective, we still have the concept of the
ER-staircode. Consider an aug-MS X = (X, dx, fx) such that fx is not injective. To induce
the ER-staircode of X, we pick any order on X which is compatible with fx: An order < on
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Figure 2. (A) Consider the triangle with edge lengths 3, 4, and 5. Consider the aug-MS X = (X, dx, fx),
where X = {x1,x2,x3,24}, dx s the Euclidean metric on the plane, and fx is given as fx(x:) = i for
1 =1,2,3,4. (B) The ER-staircode of X.

X is compatible with fx if fx(z) < fx(2') implies z < 2’ for all 2,2’ € X. Now we define
I3 = {Iy : x € X}, where

(3.2) I5:={(o,e) eR?:z € X, and z = min([z](4.), <)}

(we use double curly braces {—} to denote multisets). Regardless of the choice of <, the
collection T3 = {15 : = € X }} satisfies all properties and theorems we prove later. Hence, for
any possible compatible order < we will refer to I; as an ER-staircode of X.

Example 3.6 (constant function case). Let (X,dx) be a metric space of n points. Then
the barcode of Hy(Re(X,dx)) : R — Vec consists of n intervals J;, i = 1,...,n. Let X =
(X,dx, fx) be the aug-MS where fx is constant at ¢ € R. Then all possible total orders on X
are compatible with fx and all induce the same ER-staircode Ty = {[c,00) x J; :i=1,...,n}.

In contrast to Example 3.6, different orders on X in general induce different ER-staircodes
of X = (X,dx, fx) ; see Example 3.8. Therefore, a single ER-staircode of X is not necessarily
an invariant of X', whereas the collection of all possible ER-staircodes of X can be seen so
(see item 4 in section 7). This collection, however, is not a complete invariant of X for the
following reasoning: It is not difficult to find two nonisometric metric spaces (X,dx) and
(Y, dy) such that Hyo(Re(X,dx)) and Ho(Re(Y,dy)) have the same barcode. Let fx : X - R
and fy : Y — R be constant at ¢ € R. Then, by Example 3.6, all the ER-staircodes of
(X,dx, fx) and (Y,dy, fy) (induced by all possible total orders on X and Y’) are the same
(see item 5 in section 7).

We can recover the zeroth fibered barcode of an aug-MS X from its ER-staircode: Com-
putation of an ER-staircode and query time for a fibered barcode are given in Theorem 6.1.

Theorem 3.7. Let X be an aug-MS, and let M := Ho(RE(X)). Let Ty = {I,: 2 € X} be
an ER-staircode of X. For each L € L, the barcode barc(M|r) coincides with the multiset
{LNI,:xe X} (up to removal of empty sets; see Figure 3). The proof is after Theorem
4.4.

Example 3.8. If an aug-MS is not injective, then there can be different ER-staircodes with
respect to different compatible orders. However, each of them will still be valid to produce
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Figure 3. Left: The stack of I.,, i = 1,2,3,4, from Figure 2 and a line L € L. Right: The barcode of
M]|y. Since L does not intersect I, , only three intervals of L C R? appear in the barcode.

(2,4) (2.4)
o o
(263) (2, g) 0(4, 3)
(4,2.5) (4,2.5)
fo) o
) ° L] [}
(2,0) (2,0) (2,0) ’ (2,0) ’
Iy, Iy, Iy, Iy,
(A) (B) (C)

Figure 4. Illustration for Example 3.8: (A) I, and I,. (B) Ix<2, and Im<3,. (C) Stack of I, and I5,. Stack
of If,; and Iz<3/ look the same. Observe that for any L € L, {LNI;,, LNI5}} = {{L N II<2/, LN Iz<3/ }}

the fibered barcodes. For example, let (X,dx) be the metric space in Figure 2(A). Define
gx : X — R by sending x1,x2,x3,24 to 1,2,2,4, respectively. Two orders (x1 < xo < x3 <
x4) and (v1 <" x3 <' x9 <’ m4) are compatible with gx. Consider the two ER-staircodes
T = {I5:i=1,2,3,4)} and T5 = {{I; = 1,2,3,4}}. While IS = I fori = 1,4,

the equality does not hold for i = 2,3. However, both I3 and I;l satisfy the statement in
Theorem 3.7. See Figure 4.

We will close this section with some definitions which will be helpful later. It will be useful
to consider three different types of corner points of staircase intervals of R2. See Figure 5 for
an illustration. In that figure, roughly speaking, for each staircase interval, the type-0 corner
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* =
! * = * . * m
* * * * =
— _ . _R 7 *
° ° ° ° T e *
* u
*
o
0-th type 1-st type 2-nd type

Figure 5. Fvery corner point of a staircase interval falls into three different types depending on its neigh-
borhood information, as the pictures above illustrate. Staircase intervals in the first row are decorated by their
corner points (a precise description is in Definition A.1 of Appendiz A).

point corresponds to the left-bottom point; type-1 corner points are those where the boundary
transitions from a vertical segment to a horizontal one, while type-2 corner points are those
where the boundary transitions from a horizontal one to vertical one (precise descriptions are
given in Definition A.1 of Appendix A).

Given a staircase interval I, for each j = 0,1,2 we define the function ~;(I) : R? — Z>
as

(3-3) v ()(a) =

1, ais a jth-type corner point of I,
0 otherwise.

Elder-rule feature functions defined below will be useful in later sections.

Definition 3.9 (elder-rule feature functions). Let X be an aug-MS and Ix = {1, : xz € X}
be an ER-staircode of X. For j = 0,1,2, we define the jth elder-rule feature function as the

sum ’YJX =2 aex Vill)-
Remark 3.10. It is not hard to check that ~;(I) in (3.3) is equal to the jth graded Betti
number of the interval module R? — Vec supported by I (Definition 2.3). Thus, 'yf =

II
ZrEX Bj "

4. Decorated elder-rule-staircodes and treegrams. In section 4.1, we prove Theorem 3.7
and introduce bipersistence treegrams to encode multiscale clustering information of aug-MSs.
In section 4.2, we show that an “enriched” ER-staircode of an aug-MS X can recover the
so-called fibered treegram of X, i.e., 1-dimensional slices of the aforementioned bipersistence
treegram. Also, we identify a sufficient condition on X for its ER-staircode to be the barcode
of the 2-parameter persistence module Hq(RE (X)). In section 4.3, we show that if Ho(RE (X))
is interval decomposable, then its barcode is equal to the ER-staircode of X. Also, we stratify
the collection of aug-MSs X according to the complexity of the indecomposable summands of

Ho(RJ(X)).
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T
€T —
Ty
> R
Sl Sz Sﬁ{

Figure 6. A (1-dimensional) treegram 0x over the set X := {x1,z2,73,x4}. Notice that Ox(t) = 0 for
t € (—o0,51). Also, 0x(S1) = {{z1}}, 0x(S2) = {{z1}, {z2,23}}, and Ox(t) = {X} for all t € [S3,00).

4.1. Bipersistence treegrams.

Partitions and subpartitions. Let X be a nonempty finite set. We will call any partition P
of a subset X’ of X a subpartition of X. In this case, we call X’ the underlying set of P. A
partition of the empty set is defined as the empty set. By Subpart(X), we denote the set of
all subpartitions of X, i.e., Subpart(X) := {P : 3X’' C X, P is a partition of X'}. We refer
to elements of a subpartition of X as blocks.

Let P,@Q € Subpart(X). By P < @, we mean P refines Q; i.e., for all B € P, there exists
C € @ such that B C C. For example, let X = {x1, 22,23} and consider the subpartitions
P :={{x1},{z2}} and Q := {{z1, 22}, {z3}} of X. Then it is easy to see that P < Q.

Treegrams are a generalized notion of dendrograms [50], which are useful for visualizing
the evolution of clustering information of 1-parameter simplicial filtrations.

Definition 4.1 (treegrams [50]). A treegram owver a finite set X is any order-preserving
map Ox : R — Subpart(X); i.e., if t1 < to, then Ox(t1) < Ox(t2), satisfying the following:
(1) There exists T > 0 such that Ox(t) = {X} for t > T and 0x(t) is empty for t < =T, and
(2) for all t there exists € > 0 such that Ox(s) = 0x(t) for s € [t,t + €]. See Figure 6 for an
example. Also, even when the domain R is replaced by any totally ordered set L isomorphic
to R, Ox is said to be a (1-parameter) treegram.

Given a simplicial complex K, let KO be the vertex set of K. Let m (K) be the partition
of the vertex set K9 according to the connected components of K. A functor K : P — Simp
is said to be a filtration of K if K(a) C K for all a € P, every internal map is an inclusion,
and there exists ag € P such that for all a € P with ag < a, K(a) = K.

Example 4.2 (treegrams induced by simplicial filtrations). Let K be a simplicial complex
on the vertex set X = {x1,22,...,2,}, and let K : R — Simp be a filtration of K. Assume
that K consists solely of one connected component, i.e., mo(K) = {X}. Then the function
mo(K) : R — Subpart(X) defined as e — my(K(g)) is a treegram over X.

The zeroth elder rule for a 1-parameter filtration. Let 0x be a treegram over X. We define
the birth time of x as b(z) := min{e € R : z is in the underlying set of Ox(¢)} (by (1) and
(2) of Definition 4.1, every # € X has the birth time b(x)). Pick any order < on X such
that b(x) < b(z') implies z < 2’ for all z,2’ € X.! For ¢ € [b(z),00), we denote the
block to which = belong in the subpartition 0x(g) by [z].. We define the death time of x
as d<(z) = sup{e € [b(z), 0] : z = min([z].,<)}. As long as < is compatible with the birth

!This order < is uniquely specified if all z € X have different birth times.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/28/21 to 140.254.87.149 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

428 C. CAl, W. KIM, F. MEMOLI, AND Y. WANG

I — ¢ |= ° <—>/ —
¢7T0 *
Ho o (KC) . |
o—1
FF
Hy (K)

Figure 7. The first row represents a simplicial filtration IC. The second row stands for the treegram mo(K)
which encodes the evolution of clusters in K (Example 4.2). The third row is the barcode of Ho(K). The
persistence module Ho(KC) can be obtained by applying the linearization functor (Definition 4.14) to mo(K).
Alternatively, the barcode of Ho(K) can also be obtained by applying the elder rule to mo(K) (Definition 4.3).

times, the elder-rule-barcode is uniquely defined (which will be proved in Appendix B).

Definition 4.3 (elder-rule-barcode of a treegram). Let fx : R — Subpart(X) be a treegram
over X. For any order < on X compatible with the birth times, let J, := [b(x),d<(z)). The
elder-rule-barcode of Ox is defined as the multiset barc(f0x) := {J, : x € X }.

For the 1-parameter case, the elder-rule-barcode of a treegram can be obtained by dis-
mantling the treegram into linear pieces with respect to the elder rule; see the theorem below.
Even though this result is well known (see, e.g., [22]), we include a proof at the end of this
section.

Theorem 4.4 (compatibility between the elder-rule and algebraic decomposition).  Let K
and Ox be the filtration and the treegram in Example 4.2, respectively. Let barc(fx) =
{Js: @ € X} be the elder-rule-barcode of Ox. Then Ho(K) = @,cx I7* (see Figure 7).

We are now ready to prove Theorem 3.7.

Proof of Theorem 3.7. Fix L € L. Since L is isomorphic to R as a totally ordered set,
K =RYM(X)|L : L — Simp can be viewed as a 1-parameter filtration. Consider the treegram
Ox := mo(K) : L — Subpart(X). By the definition of I,s, it is clear that {L NI, :z € X}
is the elder-rule-barcode of the treegram 6x (Definition 4.3). Hence, by Theorem 4.4, the
multiset {L NI, :x € X} is equal to the barcode of Hy (). Since Hy (K) = M|z, we have
{LNI;:x € X} =barc(M]|L). [ ]

Bipersistence treegrams. We now extend the notion of treegrams to encode the evolution
of clusters of a 2-parameter filtration (similar ideas appear in [34]). A bipersistence treegram
over a finite set X is any order-preserving map 913(1 : R? — Subpart(X); i.e., if a < b in R?,
then 65 (a) < 68 (b).

We induce a bipersistence treegram over X from an aug-MS X.

Definition 4.5 (Rips bipersistence treegrams). Let X = (X,dx, fx) be an aug-MS. We
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L2 2.5 L4 1.5 L3 ®
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Figure 8. Consider the aug-MS X defined in Figure 2. Figures (A) and (C) above are identical to Figures
2(A) and (B), respectively. (B) The Rips bipersistence treegram of X (Definition 4.5). The summarization
processes (A)—(B)—(C) are analogous to the processes depicted in Figure 7. Figures are best viewed in color.

define 0% : R? — Subpart(X) as (0,€) — 7o (Re(X,,dx)). This 05 is said to be the Rips
bipersistence treegram of X.

Observe that z € X belongs to the underlying set of #%(a) if and only if (fx(z),0) < a,
i.e., (fx(z),0) is the birth grade of x in 05, Assume that fy is injective. Then the set of birth
grades of elements in X is totally ordered. Note that the ER-staircode of X' can be extracted
from @%: Indeed, I, in (3.1) can be rephrased as I, = {(c,¢) € R? : x is in the underlying set
of 65(0,¢) and = has the smallest birth grade in its block of 65i(c,¢)}. See Figure 8.

Definition 4.6 (fibered treegrams). Let 013(1 be a Rips bipersistence treegram of an aug-MS
X. The fibered treegram of HB(‘ refers to the collection {HE\HL}LEE of treegrams obtained by
restricting 02{1 to positive-slope lines (see Figure 9 for an example).

A combinatorial analogue of Theorem 2.5. Recall the elder-rule feature functions of an aug-
MS X (Definition 3.9). We will show that they can be used to retrieve the cardinality function
of 9]/?\}.

Definition 4.7 (cardinality function). Let 9}’(1 be a bipersistence treegram over a set X. We
call the function !95}1‘ :R? — Z>q defined as a — ‘9])35(a)‘ the cardinality function of 9])”(1.
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Figure 9. Consider the bipersistence treegram in Figure 8(B), and pick a line L of positive slope. Then we
obtain a treegram over L.

For A C R?, we define the indicator function 1,4 : R? — Z>o of A as

1, a€ A,
T4(a):= {

0 otherwise.

The following proposition directly follows [24, Proposition 32].
Proposition 4.8. Let I be a staircase interval. Then 1r(a) =}, Z?zo(—l)j’yj(f)(x).

The ER-staircode and elder-rule feature functions of an aug-MS X recover the cardinality
function of A%, which is analogous to Theorem 2.5.

Theorem 4.9. Let X be an aug-MS, and let Iy = {1, : © € X} be an ER-staircode of X.
For each a € R?,

(4.1) ‘HE(a)‘ = Z 17, (a) (i.e., the number of intervals I, € Ly containing a)
rzeX
2 .
(4.2) => > (V) (x).
x<a j=0

Proof. For simplicity, we assume the injectivity of X'. We prove the equality in (4.1). Let
(0,€) € R% Since each block in 65}(c, ) contains its unique oldest element, |65i(c,¢)| is equal
to the cardinality of the set

A(o,e) == {z € X, : x is the oldest in the block containing z in 0x(o,¢)}.
By (3.1), a belongs to I, if and only if 2 € A(0,¢), implying the equality
|A(0,€)| = (the number of intervals I, € Zy containing (o, ¢)),

as desired. The equality in (4.2) directly follows from Proposition 4.8 and Definition 3.9. W
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4.2. Elder-rule-staircodes and fibered treegrams. In this section, we identify a sufficient
condition on an aug-MS X for its ER-staircode to coincide with the barcode of the 2-parameter
persistence module Ho(RY (X)) (Theorem 4.10). Also, in general, all fibered treegrams can
be recovered from ER-staircodes (Theorem 4.13).

Let (X,dx) be a metric space, and fix z,2’ € X. Recall that an e-chain between x and '
is a finite sequence ¥ = x1,x9,...,7y = 2’ in X where each consecutive pair x;, z;11 is within
distance . Define (in fact an ultrametric) ux : X x X — R as

(4.3)  ux(z,2') := min{e € [0,00) : there exists an e-chain between x and 2’} (see [10]).

For a metric space (X,dx), pick any total order < on X. Let z € X be a nonminimal
element of (X, <). A <-conqueror of x is an element ' € X such that (1) 2’ < z, and (2) for
any 2/ € X with 2 < z, it holds that ux (z,2') < ux(z,z2").

Now consider an aug-MS X = (X, dx, fx). A <-conqueror function ¢; : [fx(x),00) = X
of a nonminimal z € X sends o € [fx(x),00) to a conqueror of = in (X,,dx). For the
minimum 2’ € (X, <), define ¢, : [fx(2'),00) — X to be the constant function at ’.

We generalize Theorem 4.4 and at the same time strengthen Theorem 3.7 for 2-parameter
persistence modules induced by a special type of aug-MSs.

Theorem 4.10 (compatibility between the ER-staircodes and algebraic decomposition).  Let
X = (X,dx, fx) be an aug-MS, and fiz any order < on X compatible with fx. Assume that
there exists a constant <-conqueror function for each x € X.? Then Hy (RE’I(X)) is interval
decomposable and its barcode coincides with the ER-staircode T .

The proof of Theorem 4.10 is similar to that of Theorem 4.4. Both proofs are given at
the end of this section. Consider the aug-MS X in Figure 2. Observe that X satisfies the
assumption in Theorem 4.10. Therefore, Hy (le‘i(é’( )) is interval decomposable. There exists
a class of aug-MSs to which Theorem 4.10 applies, as shown by the following corollary.

Corollary 4.11. Let X = (X,dx, fx) be any aug-MS where dx is an ultrametric, i.e.,
dx(z,2") < max (dx(z,2'),dx(2/,2")) for all z,2’,2" € X. Then Hy (RE(X)) is interval
decomposable (in fact, its barcode consists solely of infinite rectangular intervals).

Proof. Let < be an order on X which is compatible with fx. For each nonminimal
x € (X, <), pick an 2/ € X such that (1) 2’ < z, and (2) for any z” € X with 2" < z, it
holds that dx (z,2’) < dx(z,z"”). Now observe that 2’ is a <-conqueror in (X,,dx) for every
o € [fx(z),00), completing the proof. [ |

The converse of Theorem 4.10 is false by virtue of the following example.
Example 4.12. Let X = {z;}%_;. Consider X = (X,dx, fx), where (X,dx) is depicted in
Figure 10 and fx(x;) = i for each i = 1,...,8. Then Ho(R(X)) is interval decomposable

even though x¢ € X does not have a constant conqueror. See below for the proofs of these
claims.

Details from Example 4.12. The fact that xg does not have a constant conqueror can be
ascertained from the following observation: For o € [6,7), x1,x2, and z3 are the conquerors

20bserve that if this property holds for the order <, then the same property holds for any other order <’
that is compatible with fx, and Z3 =I5 .
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Ty

(A)

Figure 10. (A) A metric graph G. The distance between any two points on G is the length of a shortest
path connecting them. (B) The embedding of (X,dx) in G.

of z¢ in X,. For o € [7,8), x3,x4, and x5 are the conquerors of zg in X,. For o € [8,00), x5
is the unique conqueror of zg in X, .

Let Zy = {I,}5_, be the ER-staircode of X. To prove that M := Ho(RP (X)) is interval
decomposable, it suffices to construct an isomorphism f from N := @;3:1 I'=i to M. For
i=1,...,8and for (0,¢) € [i,00) X Ry, let [;](,.) be the zeroth homology class of ;. When
confusion is unlikely, we will suppress the subscript (o,¢) in [2i](g,)-

For each i, consider 1; :=1 € (II%')(Z-’O)(: F). We declare that

1, f('1—>0) [21], 1o ]'6(2—09 [22] — [21],
15 129 (2] = [24], 14 199 (] — (),
15 Ty [5] — [x4], 1g fiog [w2] = [z1] + [24] — [w3] + [we] — [w5],
17 fay [27] — [23], 1g Tey [2s] — [z6].
Since {1; : i =1,...,8} is a set of all generators of N, the above specification gives rise to a

unique morphism f: N — M. It is not hard to check that f is actually an isomorphism. W

We enrich the ER-staircode in order to query the fibered treegram: Let X = (X, dx, fx)
be an aug-MS. Let < be any order on X which is compatible with fx. For each x, we
define I’ as the pair (I, c;) of the set I, and the <-conqueror function ¢,. The collection

v = {I}}zcx is said to be the decorated ER-staircode of X. See Figure 11. The following
result is easy to obtain with the help of decorations.

Theorem 4.13. Given any L € L, the fibered treegram Glj{i],; can be recovered from the
decorated ER-staircode T3 of the aug-MS X = (X, dx, fx).

Proofs of Theorems 4.4 and 4.10. We first define the linearization functor.

Definition 4.14 (linearization functor). Let X be a nonempty finite set. We define the
linearization functor Fy : Subpart(X) — Vec as follows:
(i) Each P € Subpart(X) is sent to the vector space Fr(P) which consists of formal
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Figure 11. Decorated intervals corresponding to the four intervals in Figure 2(B). For each i = 2,3,4, the
upper boundary of I, is decorated by the conqueror of x;.

linear combinations of elements of P over the field F. In other words,

fF(P)—{ZCBB: CBGF}.

BeP

By identifying each B € P with 1 - B € Fy(P), the subpartition P can be viewed as a
basis of Fp(P).

(ii) Each pair P < Q in Subpart(X) is sent to the linear map Fp(P) — Fp(Q) which
sends each 1- B € Fp(P) to 1- B' € Fp(Q) such that B C B’.

The following proposition is straightforward by [44, Theorem 7.1].

Proposition 4.15.

(i) Let 0x : R — Subpart(X) be the treegram obtained by applying m to a filtration
K : R — Simp (Ezample 4.2). The two 1-parameter persistence modules Fr o 0x and
Ho(K) are isomorphic.

(i) Let X be an aug-MS. The two 2-parameter persistence modules Fro05 and Hy (RY (X))
(Definitions 3.2 and 4.5) are isomorphic.

Now we are ready to prove Theorems 4.4 and 4.10.

Proof of Theorem 4.4. Without loss of generality, let X = {z1,...,2,}. By Propo-
sition 4.15(i), Ho(K) is isomorphic to M := Fg o fx, and thus it suffices to show that
M = @} 1b@)d@)) = N. We may assume that b(z1) < b(z2) < --- < b(z,). For each
i€{2,3,...,n}, we pick a certain T4(;) which merges with z; earliest in the treegram 6 x among
all the points in {x1,x2,...,2;-1}. This defines a function ¢ : {2,3,...,n} — {1,2,...,n}
such that ¢(i) < i for i € {2,3,...,n} (such function ¢ is not necessarily unique, since some
two points z;,, xj, might merge with another point z;, at the same time).

For x; € X and ¢ € [b(x;),0), let [x;]c be the block containing z; in the subpartition
Ox(e) of X.

On the interval (—oo,b(x1)), both M and N are trivial and thus let f. be the zero map
for € € (—o0,b(x1)).

Fix € € [b(z1),00). Note that the vector space M(e) is spanned by A = {[z;]- € Ox(e) :
b(w;) < e}. Therefore, M(e) is also spanned by B = {[z;]c — [z4(;)]e : b(z;) < e}, which is
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obtained by applying elementary linear operations on A. Furthermore, observe that

B = {[z1]-} U ({lile — [z40))e  b(zs) < e}\{0})

is a linearly independent set and in turn a basis of M (e). Define the linear map f. : M(g) —
N(e) by defining it on the basis B’ as follows:

(i) Send [z1]c to 1 in the Ist summand of N(¢) = @, IP@)-d@))(¢).

(ii) Send each basis element [7;]e — [z4(;)]e(# 0) to 1 in the ith summand of

@) 1tz die)
i=1

Then one can check that the collection f = {f.}.cr is an isomorphism between M and N, as
desired. m

We make use of the same strategy as Theorem 4.4 for proving Theorem 4.10.

Proof of Theorem 4.10. Without loss of generality, we may assume that X = {z1,...,2,},
fx(z1) < fx(xz2) <--- < fx(zy), and let the order < on X be defined as (z; < x2 < -+ < ).
Also, assume that each <-conqueror function ¢, : R — X is constant at ¢(i) € X (then by
definition, ¢(1) = z;). By Proposition 4.15(ii), it suffices to show that M := Fp o 64 is
isomorphic to N = @, I 15

For z; € X, and (0,¢) € R? with (0,) > (f(x;),0), let [2i](,) be the block containing ;
in the subpartition 0%i(o,€) of X.

For any (o,¢) € R? such that (0,¢) 2 (fx(z
and thus let f(,.) be the zero map for (o,¢) 2 (fx(21),0).

Fix (0,e) € R? such that (o,¢) > (fx(z1),0). The vector space M(o,¢) is spanned
by = {[z(o,) € O3 (0.€) : (fx(x:),0) < (0,)}. Therefore, M(o,e) is also spanned by

= {[z1](o0)} Uil (o) — [Tg(i)] (o) : (fX(:c,),O) < (o,¢)}, which is obtained by applying
elementary linear operations on A. Furthermore, note that

B = {[r1)00)} U ({[Bil0.e) = g ooy * (Fx(2:),0) < (0,€)}\ {0})

is a linearly independent set and in turn a basis of M(o,e). Let us define a linear map
f(o,e) : M(0,€) = N(o,¢) by defining it on the basis B’ as follows:

(i) Send [#1](y¢) to 1 in the 1st summand of N(o,e) = @, I'*i(0,¢).

(ii) Send each basis element [;](4,c) = [T4(i)l(0.c) (7 0) to 1 in the ith summand of N(o,¢) =

@?:1 I]xi (U’ 5)'

By invoking the construction of the <-conqueror functions ¢;, and the ER-staircode 75 =
{{I; i=1,... ,n}}, one can check that the collection f = {f(5.)}(0,c)cr2 18 an isomorphism
between M and N, as desired. |

1),0), both M(o,e) and N(o,¢e) are trivial

4.3. Elder-rule-staircodes and barcodes. The compatibility between the elder-rule and
the algebraic decomposition theory (Theorem 4.10) will be enhanced to Theorem 4.16 below.
For any (0¢,&0) € R?, let U(oq,e0) := {(0,¢) € R?: (0¢,&0) < (0,¢)}, i.e., the closed quadrant
whose lower-left corner point is (o, €¢).
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Theorem 4.16. Let X be an injective aug-MS such that M := Hy (R?i(/l’)) 1s interval
decomposable. Then the barcode of M coincides with the ER-staircode Iy of X.

The proof utilizes results in section 5 and thus is deferred to that section.

Remark 4.17. By Theorem 4.16, testing the interval decomposability of Ho(R"(X)) is
equivalent to testing whether Ho(RPH(X)) 2 N := @I, [=:. In [7], there exists a determin-
istic algorithm for testing such an isomorphism.

Classification of the collection of augmented metric spaces. Let us consider the following
collections of aug-MSs:
(i) Aug is defined as the collection of all finite aug-MSs.
The following are subcollections of Aug:
(ii) Ult consists of all finite aug-MSs (X, dx, fx) where dx is an ultrametric.
(iii) Rep(e,m) consists of all finite aug-MSs X such that the horizontal internal maps of
Hy (RY(X)) are injective.
(iv) Rec consists of all finite aug-MSs X’ such that Hy (R (X)) is rectangle decomposable,
i.e., each indecomposable summand is I[*®*[%9) for some intervals [a,b), [c, d) of R.
(v) ER consists of all finite aug-MSs X such that the assumption of Theorem 4.10 holds
(and thus is interval decomposable).
(vi) Dec consists of all finite aug-MSs X' such that Ho (RY(X)) is interval decomposable.
In order to clarify the relationship among these collections, we begin by recalling the following.

Theorem 4.18 (see [5, Corollary 3.17]). Rep(e,m) = Rec.
We enrich Theorem 4.18 as follows.
Theorem 4.19. Ult C Rep(e,m) = Rec C ER C Dec C Aug.

We in particular remark that Example 5.5 provides an aug-MS which does not belong to
Dec. Such examples provide clues for constructing aug-MSs X which yield Ho(R (X)) whose
isomorphism type is exotic, thus complementing the results of [5].

Proof.

(i) Ult C Rep(e,m): Consider an aug-MS X = (X,dx, fx) where dx is an ultrametric.
By Proposition 4.15(ii), it suffices to show that every horizontal internal map of 6% :
R? — Subpart(X) is injective. Pick (o1,¢),(02,6) € R? with o1 < o9, and pick
T,y € X with fx(z), fx(y) < 01. Assume that [z](s,c) = [Y](gs,c), and let us show
that [2](5, ) = [Ul(o1,)- The assumption implies that there exists a sequence z =
xoy ..., Ty =y in Xy, such that dx(z;,z;+1) < € for each i. Since dx is an ultrametric,
we have that dx (z,y) < max~; dx (z;, 7;+1) < e. Invoking fx(z), fx(y) < o1, we have
[Z](01,6) = [Y](01,¢)> @8 desired.

(ii) Ult # Rep(e,m): Let us equip the set X := {1, 2,3} with the standard metric d(i, j) :=
li — jl, 4,7 € {1,2,3}, and the map f: X — R defined as i — ¢ for i = 1,2,3. Observe
that dx is not an ultrametric, but every horizontal internal map of Ho(RP (X)) is
injective.

(iii) Rep(e,m) C ER: Consider an aug-MS X = (X, dx, fx) in Rep(e,m). Pick an order
< on X which is compatible with fx. Let x € (X, <) be a nonminimal element, and
let 0g := fx(x). Let 2’ be a conqueror of z in the metric space (X, dx). It suffices to
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show that for each o € [0g, 00), 2’ is a conqueror of z in (X,,dy). Fix o € [0g,0). Let
z” € X, be a conqueror of z in (X,,dx). Let u% : X x X — R be the (ultra)metric
induced by (X,,dx) as in (4.3). Let ¢ := u% (2", z). By definition of z”, we have

(4.4) e <u% (', 7).

Also, by definition of €, we have [z],c) = [2”](5). Since A belongs to Rep(e,m), it
also holds that [] () = [#"](5y,c), implying

(4.5) u (z,2") <e.

Since z’ is a conqueror of z in (X,,,dx), we have

(4.6) uR (z,2") <uQ(z,2").

Also, since u% < u%, we have

(4.7) u§ (@, 2') < uQ(x,2).

By concatenating inequalities (4.4), (4.5), (4.6), and (4.7), we obtain
uk(z,2") <uP(z,2') <uP(z,2") <e <uf (2, z).

The leftmost and rightmost terms are the same, implying that ¢ = u% (z,2’). Since
e = u%(2”,x) and 2" is a conqueror of z in (X,,dx), we conclude that 2’ is another
conqueror of z in (X,,dx), as desired.

(iv) Rep(e,m) # ER: It is not hard to check that the aug-MS depicted in Figure 2(A)
belongs to ER but not Rep(e, m).

(v) ER C Dec: This follows from Theorem 4.10 and Example 5.5.

(vi) Dec C Aug: This directly follows from Example 5.5. [ ]

5. Elder-rule-staircodes and graded Betti numbers. In this section, we show that given
an aug-MS X the graded Betti numbers of Ho(Rb! (X)) can be easily extracted from the ER-
staircode of X (Theorem 5.4). Along the way, we obtain a characterization result for the
graded Betti numbers of Ho(RP (X)) (Theorem 5.2), which is of independent interest.

Computing the graded Betti numbers of Ho(RE(X)) for an aug-MS X. Given a simplicial
complex K and k € Z>q, let C(K) be the kth chain group of K, i.e., the F-vector space freely
generated by k-simplices in K. For k € Z>o, let 0 : Cix(K) — Ci—1(K) be the boundary
map and Zi(K) := ker(0j) the kth cycle group of K.

Henceforth, for simplicity, every aug-MS X = (X, dx, fx) will be assumed to be generic:
fx is injective and [{dx(z,2') e R:z,2’ € X, z # 2} = ('g'); i.e., all nontrivial pairwise
distances are distinct. The case of nongeneric aug-MS can be easily handled; see Remark 5.6.
Since X is finite, we consider Z?-indexed filtration described subsequently as a substitute of
RE(X).

Definition 5.1. Consider an aug-MS X = (X, dx, fx) with X := {x1,...,x,}, and assume
that fx(z1) < --- < fx(zn). Define f%2 : X — N as x; — i. Define d% : X x X — N by
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sending each nontrivial pair (x;,x;) (i # j) to £ € {1, el (g)}, where dx (s, 2;) is the (th
smallest distance (among nonzero distance values). The restriction of RY(X,d%, f%) : R? —
Simp to Z? is the Z*-indexed Rips filtration® of X. Also, let *yj( denote the jth elder-rule

feature function of (X,d%, f%) for j =0,1,2 in this section.

For Theorem 5.2, we introduce relevant terminology and notation. Let S be the Z?-indexed
Rips filtration of an aug-MS X, and let K be the 1-skeleton of S i.e., K is another Z?-indexed
filtration where KC(a) is the 1-skeleton of S(a) for every a € Z?:

e Note that IC is 1-critical: every simplex that appears in I has a unique birth index.
Let e be an edge that appears in K whose birth index is b(e) = (by,b2) € Z2. We
say that the edge e is negative if the number of connected components in IC(by, by) is
strictly less than that of K (b1,be — 1). Otherwise, the edge e is positive.

e For k =0,1, let C(K) : Z*> — Vec be the module defined as Cj(K)(a) := Cx(K(a)),
where the internal maps @i (a,b) are the canonical inclusion maps Ci(K(a)) —
Cr(K(b)). In particular, since K is 1-critical, Cy(K) is the free module whose ba-
sis elements one-to-one correspond to all the kth simplices in S := K(n, (})). More
specifically, the birth of a simplex o € S in KC at a € Z¢ corresponds to a generator of
Cr(K) at a.

Theorem 5.2. Let K be the 1-skeleton of the Z?-indexed Rips filtration of an aug-MS. Let
K~ be the filtration of IC that is obtained by removing all positive edges in K. Then the
following hold:

(i) The following sequence of persistence modules is exact:

(5.1) 0— Z1(K™) 5 (k™) 25 Cp(K™) & Ho(K) — 0,
where i is the canonical inclusion, 01 is the boundary map, and p is the canonical
projection.

(ii) The sequence in (5.1) is a minimal free resolution of Ho(K).*

We prove Theorem 5.2 at the end of this section. For example, consider the aug-MS X
in Figure 2(A). We can read off the graded Betti number of Ho(R5 (X)) : R? — Vec from
RP(X). See Figure 12.

The ER-staircode and the graded Betti numbers. Next, we will see that for any aug-MS
X, the graded Betti numbers of the zeroth homology of RE(X) can be extracted from the
ER-staircode of X.

Given finite M : Z? — Vec, the support of the ith graded Betti number ﬁiM of M is
defined as supp(8M) := {a € Z? : BM(a) # 0}. Theorem 5.2 directly implies the following.

Lemma 5.3. Let K be the Z?-indexed Rips filtration of an aug-MS, and let M = Ho(K).
For each i = 0,1,2, pM(a) < 1, a € Z% and for every pair i # j in {0,1,2}, it holds that
supp(B) Nsupp(B}) = 0.

3d% does not mnecessarily satisfy the triangle inequality, but it does not prevent us from defining
R&(X, d%, %)

“This means that the chain obtained by setting F* = Co(K™), F* = C1(K7), F? = Z1(K™), and F* =0
for 4 > 2 in (2.1) satisfies the minimality condition that is described in the paragraph after (2.1).
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Figure 12. (A) The ER-staircode Zx of X in Figure 2(A). The types of corner points are indicated by
circles (Oth), stars (1st), and squares (2nd). (B) The 1-skeleton of K := RE(X). Red edges and black edges are
negative and positive, respectively. The four generators of Co(K) are located at grades (1,0),(2,0), (3,0), (4,0),
forming the support of the zeroth graded Betti number of Ho(KC) (marked by circles). The birth grades of four
negative edges are (2,3), (3,4), (4,1.5), and (4,2.5), forming the support of the first graded Betti number
(marked by stars). The unique cycle consisting solely of negative edges is x2x3 + T3x4a + Tax2, which is born at
(4,4), the unique support point of the second graded Betti number. Observe that the locations of corner points
in Zx one-to-one correspond to the support of graded Betti numbers of Ho(K), which illustrates that Theorem
5.4 holds.

We remind the reader that all the aug-MSs in this section are generic. In particular, when
this is not the case, the lemma above will not hold in general.

Proof. Since we concern the zeroth homology of IC, let us assume that K itself consists
solely of vertices and edges. By Theorem 5.2, it suffices to show that every generator of
Z1(K7), C1(K7), and Cp(K™) is born at a different grade. In Co(K ™), every vertex z; is born

t (i,0) for i = 1,...,n. Therefore, B}!(a) < 1 for every a € Z? and supp(B}) C Z x {0}.
Also, by Definition 5.1, every generator of C1(KX~) and Z;(K ™) is born at a different grade in
7Z x N, completing the proof. |

Given any two functions a, o/ : Z? — Z>¢, we define a — o : Z? — Z>g as
(a — ) (x) = max(a(x) — o/ (x),0) for x € Z2.

Theorem 5.4. Let K be the Z?-indexed Rips filtration of an aug-MS X, and let M := Hy(K).
Let ,BZM be the ith graded Betti number of M. Then

(5.2) Bl =, BM=qf -5, B =15 -t

In particular, we note that the elder-rule feature functions VJX are easy to compute, as
one only needs to compute and aggregate the type of each corner in staircase intervals in the
ER-staircode of X. Once 'y;( s are known, one can easily compute the graded Betti number

of Ho(RE(X)) by Theorem 5.4. See Example 5.5 below. We also remark that Koszul homol-
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c T e
(3,5) . (:75)
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*(4, 2.5) *(4, 2.5)
*(415 #(4,1.5)
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®:supp(3)) e supp(8Y) I:supp(B2) ® :supp(3;7)  e:supp(5)  M:supp(BL)

Figure 13. The respective supports of the graded Betti numbers of N (left) and M (right) from Example 5.5.
All the graded Betti numbers attain the value 1 on their supports. The graded Betti numbers of N are directly
obtained by stacking the staircase intervals in the ER-staircode of X (Remarks 2.4(i) and 3.10). The graded
Betti numbers of M are obtained by applying Theorem 5.4 to the graded Betti numbers of N; in particular, the
support points of B and BY at (4,3) are canceled out.

ogy formulae [40, Proposition 5.1] are in a form similar to those in (5.2). However, Koszul
homology formulae do not directly imply those in (5.2) nor vice versa.

Example 5.5 (noninterval-decomposable case). Consider the metric space ({z;}}_,,dx) in
Figure 2(A). Define hx : {x;}}_; = R as hx(z1) =1, hx(z2) =3, hx(x3) =2, hx(z4) = 4.
For X = (X,dx,gx), let Ty = {I,, : i = 1,2,3,4} be the ER-staircode and let M :=
Ho(RY (X)) and N := @;_, I'*i. Utilizing Theorem 5.4, it it not hard to check that fM # BN
and BM # BN (see Figure 13). Therefore, M % N, and thus, by Theorem 4.16, M is not
interval decomposable.

Proof of Theorem 5.4. Let X := (X,dx, fx) with X = {x1,...,2,}, and assume that
fx(x1) < -+ < fx(z,). By the construction of K and ~¥, it suffices to show the equalities
n (5.2) hold on A := {1,2,...,n} x {0,1,...,(5)} € Z* (B and ~;* vanish outside A
for i = 0,1,2). By Theorem 5.2 and the construction of g, both of 8}/ and 73 have
values 1 on Al,—o = {(1,0),(2,0),(3,0)...,(n,0)} and zero outside Al,—g, implying that
ﬁé\/l = *y(f. Note that when 7 = 1,2, the supports of @M and ’in are contained in Alyso =
{1,2,...,n} x {1,..., (Z)} Using induction on the z-coordinate of Z?, we will prove that
BM = ¥ — 45t and B = 45 — ;¥ on the horizontal line Aly,—1 = {1,2,...,n} x {1}. Note
that KC(1,b) = {{z1}} for all 1 <b < (), and thus again by Theorem 5.2 and the construction
of v, i=1,2,

(5.3) for 1<b<(3), AY(1,0)=~%(1,b) =0, and 837(1,b) =5 (1,b) = 0.

Specifically, we have 8(1,1) = 4¥(1,1) = 4¥(1,1) — 4(1,1) and B/(1,1) = A (1,1) =
A5t (1,1) — ~¢¥(1,1). Fix a natural number m > 2, and assume that 517 (a,1) = 77 (a,1) —
v5¢(a,1) and BM(a,1) = v¢ (a,1) — 4t (a,1) for 1 < a < m — 1. By Theorems 4.9 and 2.5,
we have ., 1) Z?ZO(—l) BM(x) = 2 ox<(m,1) Z?ZO(—l) 7% (x). Since (1) B} = ~g* on the

entire Z2, and (2) ZM fin vanish outside A for ¢ = 1,2, the induction hypothesis reduces
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equality (%) to
_ﬂ{w(m7 1) + Béw(mv 1) = —’yf(m, 1) + ’7;(777/, 1)'

By Lemma 5.3, we cannot have 84 (m,1) = B} (m,1) = 1. Therefore, we have (Case 1)
BM(m,1) = 1 and B} (m,1) = 0, (Case 2) BM(m,1) = 0 and B (m,1) = 1, or (Case 3)
BM(m,1) = 0 and B} (m,1) = 0. Invoking that v{*(m, 1) and v (m, 1) are nonnegative, in
all cases, we have

,3{\/[(711, 1) - ’Yf(mv 1) - 7§(m7 1)7 /Bé\/[(m? 1) - ’YQX(m7 1) - Vl)f(ma 1)7

completing the proof of M = ¥ — v and B} = v — 4{* on A|,—1. We next apply the

same strategy to the horizontal lines y =2,..., y = (’2‘) in order, completing the proof. N

Remark 5.6 (Theorem 5.4 for nongeneric cases). Let X = (X,dx, fx) be an aug-MS
where every pair of elements in X has a different distance. Then, even if fx is not injective,
with any choice of an order on X that is compatible with fx, all equalities in (5.2) hold.
In order to prove this, note that negative edges of the 1-skeleton K : R? — Simp of the
filtration RP(X) : R? — Simp are well-defined and that M := Hy(K) has the minimal free
resolution described in (5.1). Furthermore, based on an argument similar to the one in the
proof of Lemma 5.3, the Oth, 1st, and 2nd graded Betti numbers of M have mutually disjoint
supports. Then an argument similar to that in the proof of Theorem 5.4 applies.

On the other hand, if dx is not injective, the equalities S = ~;¥ — 45 and B =
75t — ¥ in (5.2) do not always hold, whereas )7 = &' still holds without restriction: It
is not difficult to construct an aug-MS X = (X,dx, fx) such that dx is noninjective, and
supp(BM) N supp(B) # 0. In this case, note that, regardless of the choice of order on the
edges of IC, the equalities /B{V[ = ’le — 5 and 6%” = 722( — 'yf( are not compatible.

Below, we will make use of Theorem 5.4 in proving Theorem 4.16.

Proof of Theorem 4.16. Without loss of generality, let us assume that X = {z1,z9,...,z,}
with fx(z;) =dfori=1,2,...,n. Also,let M = @, I’% for some indexing set K. Observe
that M is upper-right continuous, i.e., for each (0g,&9) € R?, there exist e, ea > 0 such that
if og <o <og+e and gg < € < g9 + e9, then M(UO,EO) = M(U,E). Hence, the lower-left
boundary® of each Jj, belongs to J;. Also, note that M,y # 0 if and only if (0,¢) € U(1,0).

Claim 1. [barc(M) consists of n staircase intervals (Definition 3.4), and their minimal
elements are (1,0),(2,0),...,(n,0).] First, let us show that each interval in barc(M) is a
staircase whose minimal element lies on the o-axis. Suppose not; i.e., there exists kg € K
such that Jy, is either (not a staircase) or (a staircase whose minimum is not in the o-axis).
Either implies that Jj, contains a minimal element a in the interior of U(0,0) (see Figure 14).
Then, since M = @, I’*, by Remark 2.4(i), we have

1= @) < 3 A" (a) = BY ().

keK

%(0,¢) € R? is a lower-left boundary point of Jj, if (o,¢) belongs to the boundary of Ji, and for any r > 0,
(o0 —r,e —r) & Ji. The set of lower-left boundary points of Ji is called the lower-left boundary of Ji.
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3 €

o o

Figure 14. If an interval J that is contained in the quadrant U(1,0) is either (not a staircase) or (a

staircase whose minimum is not in the o-azxis), then there exists a point a in the interior of U(0,0) such that

éJ (a) =1 (red points in the figure above).

However, by Theorem 5.4, we have

Supp(ﬂéw):{(ia(n:Z.:L"wn}%a:

a contradiction. Therefore, (1) each Ji has its minimum element in the o-axis, and (2) since
B = Y okeK ﬁéJk, by invoking Remark 3.10, the minimums of Jis form the set {(7,0) : 4
1,...,n}. This implies that the indexing set K contains n elements, as desired.

From now on, we denote barc(M) by {J}}_;, where the minimum of Jj, is (k, 0) for each
k. Also, let

Ol

5.4 = d L)
(5.4) e = mmax, x (i, ;)

Claim 2. [J1 =U(1,0).] Observe that if o € [n,00) and € € [e1,00), then
dim M5,y =1 and rank ¢p((1,0),(0,¢)) = 1.

Since rank ¢ps((1,0), (0, ¢)) is equal to the total multiplicity of elements of barc(M) which
contain both (1,0) and (o,¢), J; must be U(1,0). O

Now let f : @)_; I’ — M be any isomorphism. For each k, let 1, := 1 € (I7%) o) (= F),
and let f(z0)(1x) = vi € M ). For 7, € X and (0,¢) € [k,00) x Ry, let [z}](s) be the
zeroth homology class of zx. When confusion is unlikely, we will suppress the subscript (o, ¢)
in [xk](a,s)-

Note that, by the definition of My o) for each k = 1,...,n, there exist cxy € F for
£=1,...,k such that

v1 = cr1fz],

vg = ca1(z1] + c22[wa),
(5.5)

Un = Cnl[txl] +-+ Cnn[xn]-

An x4 € X will be called a summand of vy if cg; # 0. Also, for each k, we define the function
vi : Uk, 0) = [ epevmo0) Mo as (0,€) = ou((k,0), (0,€))(vk). Let supp(vy) be the set
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of (0,¢) € U(k,0) such that vi(o,¢) is nonzero in M, ). Since f is an isomorphism, we have
the following:

(i) {supp(vi)}izy = {Jtizs

(ii) For each (o,¢) € U(1,0), {vi(o,¢) : 0 € [k,00)} is a basis of M)
Now we investigate constraints on the coefficients cgy.

Claim 3. [For each k, zj, is a summand of vi.] By item (ii) above, the set

Bk = {Vl(k, 0),V2(/€, 0), ‘e ,Vk(k, 0)}

is linearly independent in M, o). Invoking equations in (5.5) and the definition of vy, observe
that if cpr = 0, then By is linearly dependent, a contradiction. O
Claim 4. [For k € {2,...,n}, Zéf:l cke = 0 and vy has at least two summands.] Fix
k €{2,...,n}, and pick any (0,¢) € U(n,e1) (see (5.4)). Then we have [7¢,](5,c) = [4,](0,¢) for
all 01,02 € {1,...,n}, and thus v(o,¢) = (Zif:l k) [Tk](,e)- Note that 1 = dim M, ., which
is equal to the number of intervals in barc(M) that includes (o,¢). Since U(1,0) € barc(M)
includes (o,¢) (Claim 2), supp(vy) must not include (o, ), which implies 25:1 cke to be 0.
This also forces v to admit at least two different summands, including zj (Claim 3). (]
Recall that, for each k, I, denotes the elder-rule interval associated to xj (see (3.1)).
Claim 5. [For each k, I, C supp(vy).] By Claim 2, item (i) above, and Definition 3.3, we
readily know I, = supp(vi) = U(1,0). Let us fix any k € {2,...,n} and any (o,¢) € I,.
By definition of I, [7t](.) is the singleton {z}}. Therefore, in vi(o,¢) = Zlgzl Cre[e) (o)
the nontrivial term cg[74](4,c) cannot be combined with any other term (by Claim 3, ¢, # 0,
and by Claim 4, there is another nonzero cgy). This implies that vi(o,e) # 0 and in turn
(0,€) € supp(vg). O
By Claim 5, we have

n n

dim(M) => 17, < Lgppv,) = dim(M).
k=1 k=1

This implies that for each k, 17, = Lgpp(v,) and in turn I, = supp(vy) = Ji by item (i)
above. |
Proof of Theorem 5.2. In order to prove Theorem 5.2, we need the two lemmas below.

Lemma 5.7. Let K : Z? — Simp be the 1-skeleton of the Z?-indexed Rips filtration of an
aug-MS. Let K~ be the filtration of IC that is obtained by removing all positive edges in K.
Then Ho(IC) = H()(]C_).

Proof. Observe that, for each a € Z2, it holds that my(K(a)) = (K~ (a)) € Subpart(X).
Therefore, the two bipersistence treegrams my(K), mo(K~) : Z2 — Subpart(X) are the same.
By Proposition 4.15, we have Ho(K) = Fr o mp(K) = Fr o mp(K~) = Ho(K 7). [ |

Lemma 5.8. For any simplicial 1-complex, the following sequence is exact:
0= Z1(K) 5 Oy (K) L Co(K) B Hy(K) — 0,

where i is the canonical inclusion, 01 is the boundary map, and p is the canonical quotient.
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The proof is straightforward, and thus we omit it.

For a persistence module M, let IM denote the submodule of M that is generated by the
images of all linear maps ¢y (a,b), with a < b in Z2. We are now ready to prove Theorem
5.2.

Proof of Theorem 5.2. Let us prove (i). By Lemma 5.7, Ho(K ™) is isomorphic to Ho(K),
and thus it suffices to show the exactness of

0= Z1(K™) 5 1K) L Co(k™) L Ho(K™) — 0.
At each grade a € Z?, we have the sequence of vector spaces and linear maps

O cy(ics) 22 Ho(K) — 0,

0— Z1(Ky) Lo, Cl(IC;)
which is exact by Lemma 5.8.

Next, we prove (ii). In the following proof, we assume the ground field F is Zy for the
sake of simplicity. We need to show that (a) Co(K7), C1(K7), and Z;(K™) are free modules
and that (b) the sequence in (5.1) satisfies the minimality condition. Let us prove (a). By
definition, it is clear that Co(K ™) and C1(K ™) are free . Also, Z;(K ™), the kernel of 0y, is free
by [15, section 6].° Let us check (b). We show that the image of C7(K™) via ; is contained
in ICy(K™). It suffices to show that every generator of C1(K™) is mapped into ICy(K™).
Pick any edge z;z; (i < j) that appears in . Then, in the filtration £~, x;z; is born at
(j, d%(xi,x;)) =: a, whereas the vertices z; and z; are born at (i,0) and (j,0), respectively.
Note that (i,0) < (4,0) < a in Z2. Therefore, 01|a(ziz;) = z; + x; € ICH(K™)a.

Since Z;(K7) is free, the sequence (5.1) is a minimal free resolution of Ho(K™); this fact
directly follows from a standard construction of a minimal free resolution of a finitely generated
module over a graded ring [46, Theorem 7.3| (the polynomial ring F[t;, to] is a graded ring by
degree). [ ]

6. Computation and algorithms.
6.1. Algorithm.

Theorem 6.1. Let (X,dx, fx) be a finite aug-MS with n = | X|:

(a) We can compute the ER-staircode Iy = {I,: x € X} in O(n?logn) time. If X C R?
for a fired d and dx the Euclidean distance, the time can be improved to O(n?a(n)), where
a(n) is the inverse Ackermann function.

(b) Each I, € Iy has complexity O(n). Given Ix, we can compute zeroth fibered barcode
BL for any line L with positive slope in O(|BY|logn) time where |BE| is the size of BL.

(c) Given Iy, we can compute the zeroth graded Betti numbers in O(n?) time.

We sketch the proof of the above theorem in the remainder of this section, with missing
details in Appendix C.

Consider a function value o € R, and recall that X, consists of all points in X with fx
value at most 0. Let Ky = Re(Xy, dx) denote the Rips filtration of (X,,dx) (recall Example

5The authors of [15] observe that for any two free modules M, N : Z? — Vec, the kernel of any natural
transformation f: M — N is a free module.
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Table 1
Complezity comparison with [39, 40] for computing the fibered barcode and graded Betti number of Ho(K),
where K is the 1-skeleton Z*-indexed Rips bifiltration of an aug-MS of n points. |B| is the cardinality of the
fibered barcode for query line L of positive slope.

Our algorithm RIVET [39] Graded Betti number [40]

Size of descriptor O(n?) O(n%) ~ O(n®) Qn?)
Fibered barcodes query time — O(|B%|logn)  O(logn + |B%|) -
Computation time O(n?logn) O(n®) ~ O(n?) Q(n®)

4.2). The corresponding 1-parameter treegram (dendrogram) is 6, := mp(Ky). On the other
hand, for any o, we can consider the complete weighted graph G, = (Vy, = X,, E,) with edge
weight w(z,2’) = dx(x,2’) for any x,2’ € X,. It is well known that the treegram 6, can be
computed from the minimum spanning tree (MST) T, of G,.

Assume all points in X are ordered z1,x2,...,x, such that fx(z;) < fx(z;) whenever
i < j, and set o; = f(x;) for i € [1,n]. Note that as o varies, X, only changes at o;. For
simplicity, we set 6; := 0,, = m(Ks,), Gi := G4, and T; := MST(G;) as the MST for the
weighted graph G;. Our algorithm depends on the following lemma, the proof of which is in
Appendix C.2.

Lemma 6.2. A decorated ER-staircode for the finite aug-MS (X, dx, fx) can be computed
from the collection of treegrams {0;,i € [1,n]} in O(n?) time.

In light of the above result, the algorithm to compute ER-staircode is rather simple:

(Step 1): We start with Ty = empty tree. At the ith iteration,
(Step 1-a) we update T;_; (already computed) to obtain T;, and
(Step 1-b) we compute 6; from T; and 6;_;.

(Step 2): We use the approach described in the proof of Lemma 6.2 to compute the ER~
staircode in O(n?) time.

For (Step 1-a), note that G; is obtained by inserting vertex x;, as well as all 7 — 1 edges
between (z;,x;), j € [1,7 — 1], into graph G;_;. By [20], one can update the MST T;_; of
G;_1 to obtain the MST T; of G; in O(n) time.

For (Step 1-b), once all i — 1 edges spanning i vertices in T; are sorted, then we can easily
build the treegram 6; in O(ia(i)) = O(na(n)) time, by using union-find data structure (see
Figure 17 above Appendix C.2). Sorting edges in T; takes O(ilogi) = O(nlogn) time. Hence,
the total time spent on (Step 1-b) for all i € [1,n] is O(n?logn).

We remark that knowing the order of all edges in T;—; may not help, as compared to
T;—1, T; may have (i) different edges newly introduced, and these new edges still need to be
sorted. Nevertheless, we show in Appendix C.1 that if X C R? for a fixed dimension d, then
each T; will only have a constant number of different edges compared to T;_1, and we can
sort all edges in T; in O(n) time by inserting the new edges to the sorted list of edges in T;_;.
Hence, 6; can be computed in O(na(n)) + O(n) = O(na(n)) time for this case.

Putting everything together, Theorem 6.1(a) follows. See Appendix C.1 for the proofs of
(b) and (c).
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6.2. Comparison with other algorithms. Let IC be the 1-skeleton of the Z2-indexed Rips
filtration of an aug-MS X = (X, dx, fx), where |X| = n. Let M := Hy(K).

Comparison with [39]. Let k := kzky, where k; and k, are the number of different values
of x and y coordinates in supp(ﬁé” ) U supp(ﬁ{\/[ ), respectively. In our case, K, = n and k, =
(the number of negative edges in K), which is between O(n) and O(n?). Let m be the number
of simplices in K, which is O(n?).

From the filtration K, RIVET computes a certain data structure A®(M) of size O (mx?) in
O (m?k + (m + log k)x?) time and O (m? + mx?) memory. This A®*(M) allows efficient query
about the fibered barcode of M in O(log x+|B*|), where | B”| is the size of the fibered barcode
barc(M|z) for a positive slope line L € £. See Table 1 for the comparison of computational
complexity between RIVET and our method.

Comparison with [40]. The algorithm in [40] takes as input a short chain complex of free

modules F? a—2> F1 a—1> FY such that M = ker 9! /im 2 and outputs a minimal presentation
of a 2-parameter persistence module M, from which the graded Betti numbers of M are
readily computed. It runs in time O(ZZ ‘F "3) and requires O(ZZ ‘F "2) memory, where
|F?| denotes the size of a basis of F*. In our setting, we readily have |F°| = 0, |F'}| = n, and
|F2|= (the number of negative edges in K), which is between O(n) and O(n?). Therefore, in
order to obtain the graded Betti numbers via the method in [40], it takes at least Q(n?) time
and Q(n?) memory.

7. Discussion. Some open questions and conjectures follow:

1. Barcodes and elder-rule-staircodes. (1) Let X = (X,dx, fx) be an aug-MS. If x € X
has a constant conqueror, is the interval module supported by I, in (3.1) a summand of
Ho(RP(X))? (2) By virtue of Theorem 4.16, if Ho(RP (X)) is interval decomposable,
then the ER-staircode is identical to the generalized persistence diagram of Ho(RP/(X))
[33]. In general, what is the relation between the ER-staircode and the generalized
persistence diagram?

2. Ezxtension to d-aug-MSs. Can we generalize our results to the setting of more than
two parameters? Namely, for d-aug-MSs X9 := (X, dx, f1, fo,--., fa), fi : X — R,
i=1,...,d, can we recover the zeroth homological information of the (d+1)-parameter
filtration induced by X% by devising “an elder-rule-staircode” of X¢? Note that, under
the assumption that the set {( fi(a:))?zl € R?: x € X} is totally ordered in the poset
R?, a straightforward generalization of the elder-rule staircode is conceivable. However,
without this strict assumption, it is not very clear how elder-rule-staircodes should be
defined.

3. Ezxtension to higher-order homology. The ambiguity mentioned in the previous para-
graph also arises when trying to devise an “elder-rule-staircode” for higher-order ho-
mology of a multiparameter filtration; namely, when k& > 1, the birth indices of k-cycles
are not necessarily totally ordered in the multiparameter setting, and thus determining
which cycle is older than another is not clear in general.

4. Metrics and stability. Recall that the collection E(X) of all possible ER-staircodes of
an aug-MS X is an invariant of X (the paragraph after Example 3.6). One possible
metric between two collections of ER-staircodes is the Hausdorff distance d% in the
metric space of barcodes over R? with the generalized bottleneck distance dj, [6]. On
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the other hand, there exists a metric déH which measures the difference between aug-
MSs [11] (see also [17]). Let di be the interleaving distance between 2-parameter
persistence modules [38]. Are there constants «, 8 > 0 such that for all aug-MSs X
and ), the inequalities below hold?

a-di (Ho (REi(X)) Hy (REi(y))) < d&(B(X), EQY)) < 8- diy(X, ).

5. Completeness. Recall that the collection E(X) of all the elder-rule-staircodes of an
aug-MS X is not a complete invariant (the paragraph after Example 3.6). How faithful
is this collection in general? Is there any class of aug-MSs X such that E(X) completely
characterizes X7

Appendix A. Missing details from section 3.

Proof of Proposition 3.5. Let x € X be the point which achieves the minimum of fx.
Then I, = {(0,¢) € R? : (fx(x),0) < (0,¢)}, the closed quadrant whose lower-left corner
is (fx(z),0). Let y € X be a point which does not achieve the minimum of fyx. Define
uy : R — R>q by sending o € R to the minimum e € R>¢ for which there exists z € X with
fx(z) < fx(y) such that y belongs to the same block with z in the partition mo(R:(Xs,dx))
(see the paragraph after Definition 4.1). It is clear that u, is nonincreasing. Also, since X
is finite, u, is piecewise constant. By observing I, = {(0,¢) € R? : 0 € [fx(y),0) and ¢ €
[0,uy(0))}, we complete the proof. [ ]

We precisely define the jth-type corner points of staircase intervals depicted in Figure 5.

Definition A.1 (types of corner points). Let I be a staircase interval of R%. Fiz a € R2.
This a is a Oth type corner point of I if

]ll(a) = 17 81_1>%1+ ]ll(a - (67 0)) - 61_1}51_’_ ]ll(a - (078)) - El_l>%l+ ]lf(a - (57€>) = 0.

The point a is a 1st-type corner point of I if

1;(a) — lim 1;(a— (¢,0)) — lim 1;(a— (0,¢)) + lim 1;(a— (e,&)) = —1.

e—0+ e—0+ e—0+

The point a is a 2nd-type corner point of I if

1 = lim 1;(a— = lim 1;(a— = lim 1;(a— =1.
1(a)=0, lim I;(a—(e,0)) = lim 1;(a—(0,¢)) = lim 1;(a—(e,¢))

We remark that Definition A.1 is closely related to the differential of an interval introduced
in [25].

Appendix B. Missing details from section 4. In order to show that Definition 4.3 is

well-defined, it suffices to show the following.

Proposition B.1 (elder-rule-barcode is well-defined). Let 6x : R — Subpart(X) be a tree-
gram over X, and suppose that there exist different y,z € X with b(y) = b(z). Consider two

orders <i1,<o which are the same except for the pair y,z, i.e., y <1 z and z <9 y. Then
{lb(z),d~!(z)) : v € X} = {{[b(x),d=*(2)) : v € X}
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Proof. For x € X different from y and z, it is clear that [b(x),d<'(z)) = [b(x),d<2(z)).
Hence, letting b := b(y) = b(z), it suffices to show that

[0,d% ) [0,d% (=) 3} = { [0, 4% (), [:d™(2))

or equivalently {d<*(y),d<'(2)} = {d~2(y),d<2(z)}. Assume that y and z merge at ¢ = ry
in fx. Since <; and <5 are the same except for the pair y, z, we use < to denote both <;
and <y when we compare y,z with the other elements in X. In the treegram Ox, there are
only two possible cases: (Case 1) An element w € X with w < y, 2z merges with the block
containing both y, z at € = r1 > ro. Then d<'(y) = r; and d<!(z) = ro, whereas d<2(y) =9
and d<2(z) = r;. (Case 2) Assume that there are w; < y and wy < z such that w; and y
merge at ¢ = 19 < 79 and wy and z merge at € = r3 < rg (it is possible that w; = wy). Then
d<(y) = d<2(y) = ro and d<'(z) = d<2(z) = r3, completing the proof. [ ]

Appendix C. Missing details from section 6.

C.1. Proofs of Theorem 6.1. We first present a lemma needed for the proof of Theorem
6.1(a). For simplicity, we assume that all distances between points in X (and thus edge weights
in G;s) are distinct. If this is not the case, we only need to fix a total order compatible with
all distances for the algorithm to work in the same way.

Lemma C.1. Given a graph G = (V, E) with distinct edge weights, if e € E is the largest
edge of a cycle C in G, then e will not appear in the MST of G.

Proof. Let us denote e as the largest edge in the cycle C of size k + 1 where C' consists of
edges e, eq,e9,...,er. Also denote the MST of G as T. From C and T, we will give a way to
construct new cycle C’ where all edges except e belong to T

Since T is an MST, for any i € {1,2,...,k}, if ¢; does not belong to T', adding e; will form
a cycle C; where e; is the largest edge and the only non-MST edge in C;.

Construct new cycle C' = C' + Yie(jle;¢T)Ci where the addition is performed on Fy. Every
time we add Cj, it will cancel out e;. Since we did so for all non-MST edges, the resulting
cycle C" will consist of all MST edges plus e.

We argue that e is also the largest edge in C’. This holds because every time we added C;,
we knew e; is the largest edge in Cj, and because |w(e)| > |w(e;)|, where w is weight function
on edges, we knew e is also the largest edge in C’. By the property of MST (any non-MST
edge is the largest edge in the cycle created by adding itself to MST'), we conclude that e is a
non-MST edge. |

The following lemma, combined with the argument in the main text, will establish the
time complexity of the algorithm to compute an ER-staircode for the case when X is from a
fixed dimensional Euclidean space R<.

Lemma C.2. Let T;—1 and T; be the MST of G;_1 and G; as defined in the algorithm. For
fized dimensional R and dx to be Buclidean distance, the number of edges in T;\ T;—1 is O(1)
(depending on d).

Proof. Recall that G; is obtained by adding a new vertex x; and edges incident to x;.
First, note that by Lemma C.1, edges in T; = M ST(G;) are either from T;_1 = MST(G;-1)
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N4

Figure 15. Illustration of packing argument in the proof of Lemma C.2. x; is the new vertex. Dashed edges
are new edges entering T;. Red edges are non-MST edges, and therefore by the property of non-MST edges, the
angle corresponding to red edges must be at least 7.

or new edges just inserted. That is, no edge in G;_1 \ T;—1 will contribute to T;: Such an edge
will be the largest-weight edge of some cycle in Gj;.

We now prove that for the case where X C R? only O(1) (where the big-O hides terms
depending on d), new edges (incident to z;) can be in Tj.

In particular, comparing 7T;_1 and T;, there are only two types of edges that are subject
to change: (1) edges that are in T;_1 but will leave T;_1 and (2) edges incident to z; and will
enter the new 7T;.

Assume there are k edges that will leave T;_1. By deleting them, the original T;_; is
decomposed into k + 1 small trees. There must be k + 1 edges incident to x; entering 7;. We
denote those k + 1 edges as Epew,i = {TiTi,, TiTig, - - - , :L‘ia:ikﬂ}.

Pick any two nodes a,b from Enewi = {Ziy, Tig, - - -, iy, }; they will form a triangle with
x;. By the property of MST, edge ab in triangle Ay, is the longest edge, as ab ¢ T; while
z;a,x;b € T;. By elementary Euclidean geometry, it can be shown that angle <tax;b must
be no less than %, and this holds for every pair of nodes from Epewi = {Ziy, Tiy, - -, Tiy, }-
Now by a packing argument, we can show that there can be O(C?) such well-separated points
around z; in R? for some constant C; see Figure 15 for an illustration.

Indeed, consider the unit sphere S around z; in R%, and let y; be the intersection of the
ray starting at x; and passing through z;; with S. The previous paragraph establishes that
the angle <ty;jx;y;; > 7/3 for any j # j' € [1,k+ 1]. It then follows that the geodesic distance
between y; and y; on S is at least 7/3. In other words, geodesic balls of radius /6 centered
at y;’s for j € [1,k + 1] have to be all disjoint. The number of such balls (and thus & + 1)
is at most Area(S)/B, where Area(S) stands for the surface volume of unit d-sphere in R%,
while B is the volume of a (d — 1)-ball of radius sin% = % Hence, there exists some constant

6
C > 1 such that k = O(C?). This proves the lemma. [ ]

We now present proofs for parts (b) and (c¢) of Theorem 6.1.
Lemma C.3. The size of the ER-staircode is O(n?).
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9 €

(4)

Figure 16. (A) An illustration of I, where its lower envelope l; (vertical line segment) and h; (horizontal
ray) are colored red and blue. (B) An illustration of Case 2 in the proof of Lemma C.4.

Proof. We claim that for every z € X, the size of I, is O(n) and the lemma will then
follow. This holds because every I, has a staircase shape, and the z-coordinates of corner
points can only be one of the values fx(x;) for some z; € X. [ |

Lemma C.4. Given Ix, after O(n®logn) time preprocessing, we can build a data structure
of size O(n?) so that, given any line L with positive slope, the zeroth fibered barcode B with
respect to L can be computed in O(|BY|logn) time, where |B| is the size of the fibered barcode.

Proof. First, given an I, recall that it has a staircase shape; see Figure 16. In particular,
its lower envelope consists of one vertical and one horizontal segment. Its upper envelope U
is the graph of a piecewise constant nondecreasing function in the plane consisting of O(n)
horizontal and vertical line segments. Given a line L with positive slope, its intersection with
the lower envelope of I, thus takes only O(1) time. The upper envelope can only intersect
with L at most one point, either within some horizontal segment of U or within a vertical
segment of U. To identify this intersection point, we simply binary search twice, once among
all horizontal segments and once among all vertical segments in O(logn) time.

Next, we show that we can avoid checking all n number of I,s. Instead, we will compute
only the set Zp, of Is that will intersect L: Note that there are k = |BY| number of such
staircodes. In what follows, we describe how to preprocess all staircodes so that this set Zj,
can be reported in O(logn + k) time.

Specifically, for any x; € X, let ¢; and h; be the vertical and horizontal segments of the
lower envelope of I,,; see Figure 16 for an illustration. Note that each h; is in fact a half line
in the z-axis. It is easy to see that the line L intersects I, if and only if L intersects either
4; or h;.

Case 1: Reporting intersection with h;s. Given the collection of all h;s, i € [1,n], in
O(nlogn) time, we can build a standard 1D range reporting data structure of size O(n),
over the collection of left endpoints a;’s of h;s , i € [1,n]}, so that given a query point b, we
can report all points in {a;} to the left of b in O(logn + s) time, where s is the number of
such points.

Now given a query line L, let by, be the intersection between L and the x-axis. We use the
data structure to compute, say, k1 number of points from {a;} to the left of by, in O(log n+ k1)
time. Each such point corresponds to a ray h; that will intersect L.
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x3 (z2,21)

(5, 22)

(24, x2)|

A []

xT1 X3 T2 T4 ITs

Figure 17. The left figure shows an MST of five points where nodes with low (high) index appear early
(later). The weight of each edge is the length of the edge (e.g., w(z1,x3) > w(x2,x4)). The right figure shows
the corresponding decorated treegram. At each nonleaf node, we only need to store a tuple where the first number
stands for the index of the node that is conquered while the second number stands for the index of the node that
has not been conquered (eldest) in the subtree.

Case 2: Reporting intersection with £;s. What remains is to build a data structure to report
the set of ¢;s intersecting L. To this end, note that for each i € [1,n], the point a; introduced
above is also the bottom endpoint of the vertical segment ¢;; let ¢; denote the top endpoint
for ¢;. Given a query line L, we wish to report all ¢’s such that ¢; is above L while a; is below
L. Again, let by, denote the intersection of L with the x-axis: As the slope of L is positive, if
a vertical segment ¢; intersects L, then a; must lie to the right of by.

Now for each j € [1,n], set

Aj = {ti | a; Z CL]‘}.

Given L, let a, be the closest point to by, with a, > by. Obviously, the line L intersects ¢; if
and only if t; € A, and t; is above L. Hence, we want to perform a half-plane range reporting
query among the points in A,. To this end, for each i € [1,n], we use the classic approach of
[19] to build a data structure of size O(|4;|) = O(n) in time O(|A;|log|A4;]) = O(nlogn), so
that given a line L, the set of points from A; above L can be reported in O(logn + s) time
where s is the number of such points. Overall, the total size of all such data structures for all
i € [1,n] is O(n?) and can be constructed in O(n?logn) time. Given L, we first identify a,
as described above, and then query for the set of ¢;s from A, lying above L in O(logn + k2)
time, where ko is the number of such ¢;s.

Putting Cases 1 and 2 together, we can report all k = k; + ko staircodes fL intersecting
a query line L of positive slope in O(logn + k) time.

Once we have Iy, for each I, € Z1,, we use the procedure described at the beginning of this
proof to compute the intersection between L and I, in O(logn) time for each I,. In total, it
takes O(klogn) to compute all intersections. The total query time is O(logn + k + klogn) =
O(klogn) = O(|B*|logn), as claimed. [ ]

Lemma C.5. Given Iy, we can compute the zeroth graded Betti numbers in O(n?) time.

Proof. Since the total number of segments of the ER-staircode is O(n?), so is the number
of corner points. In other words, only O(n?) grades could potentially have a nonzero %-X or
ﬁiM value for i = 0,1, or 2. We can therefore compute graded Betti numbers according to the
formula in Theorem 5.4, by evaluating v;* and 8 at each of the O(n?) possible grades. M
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Figure 18. Illustration of the assembling process to recover I.,. Note that we do not plot the whole
treegram at each function value for simplicity. x; here is a leaf in the right subtree of every treegram. We will
first compute the decorated treegrams, illustrated in Figure 17. From these decorated treegrams, we are able to
retrieve € values of I for each of the n function values o1,...,0, with o; = f(x;) and thus assemble Iz, .

C.2. Proof of Lemma 6.2. We now give a detailed description of the process to recover
the ER-staircode from the collection of treegrams in O(n?) time. Recall that conqueror is
defined in section 4.2. When 2’ is a conqueror of z in G; = G,,, we also say x is conquered
by =’ at height Xo, (x,2'). To convert treegrams at different function values to staircode, we
will decorate the treegrams with some extra information. On the high level, we need to keep
the information about the node index conquered at different heights in the treegram, which
can be done in linear time by traversing the treegram from bottom to top.

Specifically, denote the sorted height values of treegram 6; at function value o; as & =
{e1 < ea <--- < €1} At each nonleaf node of height €; € & in the treegram 6;, we record
(a) the index of the node that is conquered at height €; and (b) the index of the single node
in subtrees (rooted at height €;) who has not been conquered yet. (b) is needed to update (a)
of the node at height €;11 in constant time. Traversing treegrams bottom-up and computing
(a) and (b) for every nonrooted node takes O(i) = O(n) time. An illustration of the idea of
decorated treegrams is shown in Figure 17.

After computing n decorated treegrams at m function values, we can recover the ER-
staircode by assembling decorated treegrams in the following way. Without loss of generality,
we state the process to recover single I, in the ER-staircode. For every function value ¢;, find
corresponding o (i.e., ux,. (z, z')) in &; at which z is conquered. Repeating this process for
all function values will recover I,. Figure 18 illustrates the idea.

We restate Lemma 6.2 with a proof.

Lemma C.6. A decorated ER-staircode for the finite aug-MS (X,dx, fx) can be computed
from the collection of dendrograms {0;,i € [1,n]} in O(n?) time.

Proof. The decoration of every treegram takes O(n) time and in total O(n?) for n tree-
grams. Assembling I, for each z € X takes O(n) time since the complexity of every I, is
O(n), and so totally recovering the ER-staircode takes O(n?) time. For correctness, we prove
that our process can recover I, for every x € &X. This holds because for any x € A and
0; € fx we can recover ux,. (x,2"), where 2’ is the conqueror of x. [ |
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Figure 19. A complement to Figure 1. First row: Three point clouds sampled from R? at increasing
noise levels: the leftmost point cloud consists of three different clusters (cluster labels are denoted by three
different colors: red, blue, and green), the middle and rightmost point clouds contain increasingly more outlier
points, i.e., “noise”; these points are colored in gray. By equipping these three point clouds with codensity
functions (as described in Figure 1) and Euclidean distance, we obtain three aug-MSs. Second row: The ER-
staircodes corresponding to these three aug-MSs. Observe that (1) the blocks corresponding to the outlier points
(in gray) have lower density and therefore appear later (i.e., large x-coordinates of the left-bottom corners)
in their corresponding ER staircodes; (2) for different noise levels, there are three large blocks, reflecting the
presence of three well-defined clusters. Third row: The same ER staircodes without their respective largest
blocks for visual clarity. Blocks are colored according to their cluster membership. See the GitHub repository
https: // github.com/ Chen- Cai- OSU/ ER-staircode for the code used for producing this example.
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