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Abstract. An augmented metric space is a metric space (X, dX) equipped with a function fX : X \rightarrow R. This
type of data arises commonly in practice, e.g., a point cloud X in RD where each point x \in X has
a density function value fX(x) associated to it. An augmented metric space (X, dX , fX) naturally
gives rise to a 2-parameter filtration \scrK . However, the resulting 2-parameter persistent homology
H\bullet (\scrK ) could still be of wild representation type and may not have simple indecomposables. In this
paper, motivated by the elder-rule for the zeroth homology of 1-parameter filtration, we propose
a barcode-like summary, called the elder-rule-staircode, as a way to encode H0(\scrK ). Specifically, if
n = | X| , the elder-rule-staircode consists of n number of staircase-like blocks in the plane. We show
that if H0(\scrK ) is interval decomposable, then the barcode of H0(\scrK ) is equal to the elder-rule-staircode.
Furthermore, regardless of the interval decomposability, the fibered barcode, the dimension function
(a.k.a. the Hilbert function), and the graded Betti numbers of H0(\scrK ) can all be efficiently computed
once the elder-rule-staircode is given. Finally, we develop and implement an efficient algorithm to
compute the elder-rule-staircode in O(n2 log n) time, which can be improved to O(n2\alpha (n)) if X is
from a fixed dimensional Euclidean space RD, where \alpha (n) is the inverse Ackermann function.

Key words. multiparameter persistent homology, hierarchical clustering, persistence diagram, elder-rule

AMS subject classifications. 55N31, 16W50, 55-04

DOI. 10.1137/20M1353605

1. Introduction. Several ideas connected to the notion of what is nowadays known as
persistent homology arose in the work by Frosini and collaborators [29, 30, 37], in Robins's
Ph.D. thesis [47], in the work of Barannikov about smooth functions on manifolds [4], in
Edelsbrunner and collaborators [23, 27], and in Zomorodian and Carlsson [53]. In many
practical applications, persistence is applied to simplicial filtrations constructed over finite
metric spaces (see, e.g., [17, 49]). In this paper, we work in the more general setting of
augmented metric spaces.

An augmented metric space is a metric space (X, dX) equipped with a function fX : X \rightarrow R
[5, 11, 18]. This type of data arises commonly in practice, e.g., a point cloud X in RD where
each point has a density function value fX associated to it. Studying hierarchical clustering
methods induced in this setting has attracted much attention starting with [11] and more
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recently with [5, 9, 16, 41]. Another example is where X = V equals the vertex set of a graph
G = (V,E), dX represents a certain graph-induced metric on X (e.g., the diffusion distance
induced by G), and fX is some descriptor function (e.g., discrete Ricci curvature) at graph
nodes. This graph setting occurs often in practice for graph analysis applications, where G
can be viewed as a skeleton of a hidden domain. When summarizing or characterizing G,
one wishes to take into consideration both the metric structure of this domain and the node
attributes. Given that persistence-based summaries from only the edge weights or from only
node attributes have already shown promise in graph classification (see, e.g., [8, 13, 32, 52]), it
would be highly desirable to incorporate (potentially more informative) summaries encoding
both types of information to tackle such tasks. In brief, we wish to develop topological
invariants induced from such augmented metric spaces.

On the other hand, an augmented metric space naturally gives rise to a 2-parameter fil-
tration (by filtering both via fX and via distance dX ; see Definition 3.2). However, while a
standard (1-parameter) filtration and its induced persistence module have a persistence dia-
gram as a complete discrete invariant, multiparameter persistence modules do not have such
a complete discrete invariant [12, 21]. The 2-parameter persistence module induced from an
augmented metric space may still be of wild representation type and may not have simple
indecomposables [5]. Instead, several recent works consider informative (but not necessar-
ily complete) invariants for multiparameter persistence modules [25, 31, 33, 39, 42, 43, 51].
In particular, RIVET [39] provides an interactive visualization of barcodes associated to 1-
dimensional slices of an input 2-parameter persistence module M , which are called the fibered
barcodes. For implementing the interactive aspect, RIVET makes efficient use of graded Betti
numbers of M , another invariant of the 2-parameter persistence module M .

Our contributions. We propose a barcode-like summary, called the elder-rule-staircode, as a
way to encode the zeroth homology of the 2-parameter filtration induced by a finite augmented
metric space. Specifically, given a finite \scrX = (X, dX , fX), its elder-rule-staircode consists of
n = | X| number of staircase-like blocks of O(n) descriptive complexity in the plane. The
development of the elder-rule-staircode is motivated by the elder-rule behind the construction
of persistence pairing for a 1-parameter filtration [26]. For the 1-parameter case, barcodes [53]
can be obtained by the decomposition of persistence modules in the realm of commutative
algebra or, equivalently, by applying the elder-rule which is flavored with combinatorics or
order theory. As we describe in section 4, our elder-rule-staircodes are obtained by adapting
the elder-rule for treegrams arisen from 1-parameter filtration.

Interestingly, we show that our elder-rule-staircode encodes much of the topological infor-
mation of the 2-parameter filtration \scrK induced by \scrX . In particular, the fibered barcodes, the
fibered treegrams, and the graded Betti numbers associated to H0(\scrK ) can all be efficiently
computed from the elder-rule-staircodes (see Theorems 3.7, 4.13, and 5.4). Furthermore, if
H0(\scrK ) is interval decomposable, then the interval indecomposables appearing in its decompo-
sition correspond exactly to its staircode (see Theorem 4.16). This implies that testing the
interval decomposability of H0(\scrK ) is reduced to testing isomorphism of two given persistence
modules [7] (see Remark 4.17). We also provide sufficient conditions on \scrX which ensure the
interval decomposability of H0(\scrK ) (see Theorem 4.10 and Corollary 4.11). Therefore, to ex-
plore exotic isomorphism types of indecomposable summands of H0(\scrK ) (a question of interest
considered in [5]), it suffices to restrict our attention to augmented metric spaces which doD
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not satisfy these conditions.
Finally, in section 6, we show that the elder-rule-staircode can be computed in O(n2 log n)

time for a finite augmented metric space (X, dX , fX) where n = | X| , and in O(n2\alpha (n)) time if
X is from a fixed dimensional Euclidean space and dX is Euclidean distance. We have software
to compute elder-rule-staircodes and to explore/retrieve information such as fibered barcodes
interactively, which is available online from https://github.com/Chen-Cai-OSU/ER-staircode.
See Figure 1 for an example of pairs of inputs and outputs of the software.

More on related work. The elder-rule is an underlying principle for extracting the persis-
tence diagram from a persistence module induced by a nested family of simplicial complexes
[26, Chapter 7]. Recently, this principle has come into the spotlight again for generalizing per-
sistence diagrams [33, 42, 45] and for addressing inverse problems in TDA [22]. An algorithm
for testing interval decomposability of multiparameter persistence modules has been studied
[1]. A method to approximate 2-parameter persistence modules by interval-decomposable per-
sistence modules has been proposed in [2]. A multiparameter hierarchical clustering method
has been utilized for identifying dominant metastable states of molecular dynamics [16]. A
consistent approach to density-based clustering has been proposed in [48].

The software RIVET and work of [40] can also be used to recover fibered barcodes and
graded Betti numbers. However, for the special case of zeroth 2-parameter persistence modules
induced from augmented metric spaces, our elder-rule-staircodes are simpler and more efficient
to achieve these goals: In particular, given an augmented metric space containing n points, the
algorithm of [40] computes the graded Betti numbers in \Omega (n3) time, while it takes O(n2 log n)
time using the elder-rule-staircode via Theorem 6.1. For zeroth fibered barcodes, RIVET takes
O(n8) time to compute a data structure of size O(n6) so as to support the efficient query time
of O(log n + | BL| ), where | BL| is the size of the fibered barcode BL for a particular line L
of positive slope. Our algorithm computes an elder-rule-staircode of size O(n2) in O(n2 log n)
time, after which BL can be computed in O(| BL| log n) time for any query line L. See section
6.2 for a more detailed comparison. However, it is important to note that RIVET allows much
broader inputs and can work beyond zeroth homology.

Outline. In section 2, we review the definitions of persistence modules, barcodes, and
graded Betti numbers. In section 3, we introduce a 2-parameter filtration \scrK induced by
an augmented metric space \scrX and define the elder-rule-staircode of \scrX . In section 4, we
show that the elder-rule-staircode recovers the fibered barcode of H0(\scrK ). We also prove that
if H0(\scrK ) is interval decomposable, then the set of indecomposables corresponds exactly to
the staircode. In section 5, we show that the elder-rule-staircode recovers the graded Betti
numbers of H0(\scrK ). In section 6, we develop and implement an efficient algorithm to compute
the elder-rule-staircode. In section 7, we discuss open problems. For readability, we have
relegated some proofs to some appendices.

2. Preliminaries. In section 2.1, we review the definitions of persistence modules and their
barcodes. In section 2.2, we review the notion of graded Betti number of a persistence module.

2.1. Persistence modules and their decompositions. First, we briefly review the defini-
tion of persistence modules. Let P be a poset. We regard P as the category that has elements
of P as objects. Also, for any a,b \in P, there exists a unique morphism a \rightarrow b if and only if
a \leq b. For d \in N, let Zd be the set of d-tuples of integers equipped with the partial orderD
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Figure 1. Left: A finite set X \in R2 equipped with the Euclidean metric dX and a codensity function
fX : X \rightarrow R; i.e., the denser the neighborhood of x \in X, the smaller the fX(x). More precisely, given
N points x1, x2, . . . , xN \in R2 and a bandwidth h > 0, the (unnormalized) density estimate for any y \in R2

is \rho K(x) :=
\sum N

i=1 Kh(| | x  - xi| | 2), where Kh(x) := exp( - x2

2h
). We define fX as the negative of the density

estimate \rho X . In all experiments, we used the bandwidth h = 0.2. Right: The elder-rule staircode of the
augmented metric space (X, dX , fX). The largest block, depicted in a light color, is the quadrant with the left-
bottom point (min fX , 0). The existence of three notably tall blocks suggests the existence of three clusters in
(X, dX , fX). See Figure 19 for an expanded example.

defined as (a1, a2, . . . , ad) \leq (b1, b2, . . . , bd) if and only if ai \leq bi for each i = 1, 2, . . . , d. The
poset structure on Rd is defined in the same way.

We fix a certain field F, and every vector space in this paper is over F. Let Vec denote
the category of finite dimensional vector spaces over F.

A (P-indexed) persistence module is a functor M : P \rightarrow Vec. In other words, to each
a \in P a vector space M(a) is associated and to each pair a \leq b in P a linear map \varphi M (a,b) :
M(a) \rightarrow M(b) is associated. When P = Rd or Zd, M is said to be a d-parameter persistence
module. A morphism between M,N : P \rightarrow Vec is a natural transformation f : M \rightarrow N
between M and N . That is, f is a collection \{ f\bfa \} \bfa \in P of linear maps such that for every pair
a \leq b in P, the following diagram commutes:

M(a) M(b)

N(a) N(b).

\varphi M (\bfa ,\bfb )

f\bfa f\bfb 

\varphi N (\bfa ,\bfb )

Two persistence modules M and N are isomorphic, denoted by M \sim = N , if there exists a
natural transformation \{ f\bfa \} \bfa \in P from M to N where each f\bfa is an isomorphism.

We now review the standard definition of barcodes, following notation from [6].

Definition 2.1 (intervals). Let P be a poset. An interval \scrJ of P is a subset \scrJ \subset P such
that the following hold: (1) \scrJ is nonempty. (2) If a,b \in \scrJ and a \leq c \leq b, then c \in \scrJ . (3)
For any a,b \in \scrJ , there is a sequence a = a0,a1, . . . , al = b of elements of \scrJ with ai and
ai+1 comparable for 0 \leq i \leq l  - 1.D
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For \scrJ an interval of P, the interval module I\scrJ : P \rightarrow Vec is defined as

I\scrJ (a) =

\Biggl\{ 
F if a \in \scrJ ,

0 otherwise,
\varphi I\scrJ (a,b) =

\Biggl\{ 
idF if a,b \in \scrJ , a \leq b,

0 otherwise.

Recall that a multiset is a collection of objects (called elements) in which elements may
occur more than once, and the number of instances of an element is its multiplicity.

Definition 2.2 (interval decomposability and barcodes). A functor M : P \rightarrow Vec is interval
decomposable if there exists a multiset barc(M) of intervals (Definition 2.1) of P such that
M \sim =

\bigoplus 
\scrJ \in \bfb \bfa \bfr \bfc (M) I

\scrJ . We call barc(M) the barcode of M.

By the theorem of Azumaya--Krull--Remak--Schmidt [3], such a decomposition is unique up
to a permutation of the terms in the direct sum. Therefore, the multiset barc(M) is unique if
M is interval decomposable. For d = 1, any M : Rd (or Zd) \rightarrow Vec is interval decomposable,
and thus barc(M) exists. However, for d \geq 2, M may not be interval decomposable.

2.2. Graded Betti numbers.
Persistence module as a module over a polynomial ring. In section 2.1, we defined d-

parameter persistence modules asVec-valued functors over the posets Zd or Rd and morphisms
between them as natural transformations. The definitions below are equivalent to those defini-
tions [12, Theorem 1] and allow us to define the graded Betti numbers of persistence modules.
We mostly adopt notation in [25, 40].

Let F[t1, t2, . . . , td] be the polynomial ring in the d-variables t1, t2, . . . , td. To ease notation,
for n := (n1, n2, . . . , nd) \in Zd

\geq 0, the monomial tn1
1 tn2

2 . . . tnd
d \in F[t1, t2, . . . , td] will be written

as x\bfn . A d-parameter persistence module M : Zd \rightarrow Vec is an F[t1, t2, . . . , td]-module M
with a direct sum decomposition as an F-vector space M \sim =

\bigoplus 
\bfa \in Zd M\bfa such that the action

of F[t1, t2, . . . , td] on M is uniquely specified as follows: for all a = (a1, a2, . . . , ad) \in Zd and
v \in M\bfa , and for all n = (n1, n2, . . . , nd) \in Zd

\geq 0, and for all c \in F,

(c \cdot x\bfn ) \cdot v := c \cdot \varphi M (a, a+ n)(v).

Let M and N be any two persistence modules. A morphism f : M \rightarrow N is a module
homomorphism such that f(M\bfa ) \subseteq N\bfa for all a \in Zd. The kernel, image, and cokernel of f are
analogously defined to those of a linear map between vector spaces. The kernel of f is defined
as the submodule ker(f ) :=

\bigoplus 
\bfa \in Zd ker(f\bfa ) of M . The image of f is defined as the submodule

im(f) :=
\bigoplus 

\bfa \in Zd im(f\bfa ) of N . The cokernel of f is defined as coker(f) :=
\bigoplus 

\bfa \in Zd (N\bfa /im(f\bfa )).
Graded Betti numbers. We briefly review the concept of graded Betti numbers [12, 35, 39,

40, 46, 53]. Since our interests are in studying finite augmented metric spaces, we restrict
ourselves to finite persistence modules---the kth homology of a filtration of a finite simplicial
complex for some k \in Z\geq 0 [12].

Fix a \in Zd. By Q\bfa : Zd \rightarrow Vec, we denote the persistence module defined as

Q\bfa 
\bfx =

\Biggl\{ 
F if a \leq x,

0 otherwise,
\varphi Q\bfa (x,y) =

\Biggl\{ 
idF if a \leq x,

0 otherwise.

Any F : Zd \rightarrow Vec is said to be free if there exists a multiset \scrA of elements of Z2 such that
F \sim =

\bigoplus 
\bfa \in \scrA Q\bfa . For simplicity, we will refer to free persistence modules as free modules. LetD
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M be a persistence module. An element m \in M\bfa for some a \in Zd is called a homogeneous
element of M . In this case, we write gr(m) = a. Let F be a free module. A basis B of F is
defined as a minimal homogeneous set of generators of F . There can exist two bases B and
B\prime of F (analogous to the fact that a vector space can have multiple bases). However, the
number of elements at each grade a \in Zd in a basis of F is an isomorphism invariant.

For a finite M , let IM denote the submodule of M generated by the images of all linear
maps \varphi M (a,b), with a < b in Z2. Assume that there is a chain of modules

(2.1) F \bullet : \cdot \cdot \cdot F 2 F 1 F 0 M 0
\partial 3 \partial 2 \partial 1 \partial 0 0(=:\partial  - 1)

such that (1) each F i is a free module, and (2) im(\partial i) = ker(\partial i - 1), i = 0, 1, 2, . . . . Then we
call F \bullet a resolution of M . The condition (2) is referred to as exactness of F \bullet . We call the
resolution F \bullet minimal if im(\partial i) \subseteq IF i - 1 for i = 1, 2, . . . . It is a standard fact that a minimal
resolution of M always exists and is unique up to isomorphism [46, Chapter I].

Definition 2.3 (graded Betti numbers). Let M : Zd \rightarrow Vec be finite. Assume that a
minimal free resolution of M is F \bullet in (2.1). For i \in Z\geq 0, the ith graded Betti number
\beta M
i : Zd \rightarrow Z\geq 0 is defined as \beta M

i (a) = (number of elements at grade a in any basis of F i).

Remark 2.4.
(i) Note that if M \sim = N1

\bigoplus 
N2, then \beta M

i = \beta N1
i + \beta N2

i . This is a key fact to define the
persistent graded Betti numbers introduced in [25].

(ii) \beta M
i : Zd \rightarrow Z\geq 0 is the zero function for every integer i > d [28, Theorem 1.13].

(iii) Definition 2.3 is not in the exact same form as those in the literature, such as [12, 35, 39].
However, by Nakayama's lemma [46, Lemma 2.11] all those are equivalent, as already
noted in [40, section 2.3].

For any M : Zd \rightarrow Vec, the dimension function dim(M) : Zd \rightarrow Z\geq 0 of M is defined as
a \mapsto \rightarrow dimM\bfa . The graded Betti numbers of M recover dim(M).

Theorem 2.5 (see [40, Proposition 2.3]). Let M : Zd \rightarrow Vec be a finite persistence module.
For all a \in Zd,

dim(M)(a) =
\sum 
\bfx \leq \bfa 

d\sum 
i=0

( - 1)i\beta M
i (x).

3. Elder-rule-staircodes for augmented metric spaces.
Rips bifiltration for an aug-MS. Let (X, dX) be a metric space. For \varepsilon \in R, the Rips complex

\scrR \varepsilon (X, dX) is the abstract simplicial complex defined as

\scrR \varepsilon (X, dX) = \{ A \subseteq X : for all x, x\prime \in A, dX(x, x\prime ) \leq \varepsilon \} .

Let Simp be the category of abstract simplicial complexes and simplicial maps. The Rips
filtration is the functor \scrR \bullet (X, dX) : R \rightarrow Simp defined as

\varepsilon \mapsto \rightarrow \scrR \varepsilon (X, dX) and \varepsilon \leq \varepsilon \prime \mapsto \rightarrow \scrR \varepsilon (X, dX) \lhook \rightarrow \scrR \varepsilon \prime (X, dX).
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Definition 3.1 (augmented metric spaces). Let (X, dX) be a metric space and fX : X \rightarrow R
a function. We call the triple \scrX = (X, dX , fX) an augmented metric space (abbreviated
aug-MS).

We say that \scrX is injective if fX : X \rightarrow R is an injective function.

Throughout this paper, every (augmented) metric space will be assumed to be finite. Let
\scrX = (X, dX , fX) be an aug-MS. For \sigma \in R, let X\sigma denote the sublevel set f - 1

X ( - \infty , \sigma ] \subseteq X.
Let (X\sigma , dX) denote the restriction of the metric space (X, dX) to the subset X\sigma \subseteq X.
Similarly, (X\sigma , dX , fX) is the aug-MS obtained by restricting dX to X\sigma \times X\sigma and fX to X\sigma .
The following 2-parameter filtration is considered in [5, 11, 12] in the context of filtered single
linkage hierarchical clustering or filtered persistent homology.

Definition 3.2 (Rips bifiltration of an aug-MS). Let \scrX = (X, dX , fX) be an aug-MS. We
define the Rips bifiltration \scrR \mathrm{b}\mathrm{i}

\bullet (\scrX ) : R2 \rightarrow Simp of \scrX as (\varepsilon , \sigma ) \mapsto \rightarrow \scrR \varepsilon (X\sigma , dX).

By applying the kth simplicial homology functor to the Rips bifiltration \scrR \mathrm{b}\mathrm{i}
\bullet (\scrX ), we ob-

tain the persistence module M := Hk(\scrR \mathrm{b}\mathrm{i}
\bullet (\scrX )) : R2 \rightarrow Vec. Let \scrL denote the set of all

lines of (strictly) positive slopes in R2. Given L \in \scrL , the restriction M | L : L \rightarrow Vec can be
decomposed into the unique direct sum of interval modules over L, and thus we have the bar-
code barc(M | L) of M | L. The kth fibered barcode of \scrX refers to the \scrL -parametrized collection
\{ barc(M | L)\} L\in \scrL [14, 36, 39].

Elder-rule-staircode for an aug-MS. Let (X, dX) be a finite metric space. For \varepsilon \in [0,\infty ), an
\varepsilon -chain between x, x\prime \in X stands for a sequence x = x1, x2, . . . , x\ell = x\prime of points in X such
that dX(xi, xi+1) \leq \varepsilon for i = 1, . . . , \ell  - 1. Now given \scrX = (X, dX , fX) and \sigma \in R\geq 0, consider
a point x \in X\sigma . Then for any \varepsilon \geq 0, set [x](\sigma ,\varepsilon ) as the collection of all points x\prime \in X\sigma that
can be connected to x through an \varepsilon -chain in X\sigma .

The function fX : X \rightarrow R induces an order on X: consider any two x, x\prime \in X. If
fX(x) < fX(x\prime ), then we say that x is older than x\prime .

Definition 3.3 (elder-rule-staircode for an aug-MS). Let \scrX = (X, dX , fX) be an injective
aug-MS. For each x \in X, we define its staircode as

Ix : = \{ (\sigma , \varepsilon ) \in R2 : x \in X\sigma and x is the oldest in [x](\sigma ,\varepsilon )\} .(3.1)

The collection \scrI \scrX := \{ Ix\} x\in X is called the elder-rule-staircode (ER-staircode for short) of \scrX .

See Figure 2 for an example. The relationship between the ER-staircode and the classic
elder-rule will become clear in section 4.1.

Definition 3.4. An interval I of R2 (Definition 2.1) is a staircase interval (or simply a
staircase) if there exists (\sigma 0, \varepsilon 0) \in I such that (\sigma 0, \varepsilon 0) \leq (\sigma , \varepsilon ) for all (\sigma , \varepsilon ) \in I, and I is not
bounded in the direction of the \sigma -axis (see Figure 5).

It turns out that each Ix \in \scrI \scrX is a staircase interval.

Proposition 3.5. Each Ix in Definition 3.3 is a staircase interval (proof in Appendix A).

Staircodes for noninjective case. Even if fX is not injective, we still have the concept of the
ER-staircode. Consider an aug-MS \scrX = (X, dX , fX) such that fX is not injective. To induce
the ER-staircode of \scrX , we pick any order on X which is compatible with fX : An order < onD
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424 C. CAI, W. KIM, F. M\'EMOLI, AND Y. WANG

Figure 2. (A) Consider the triangle with edge lengths 3, 4, and 5. Consider the aug-MS \scrX = (X, dX , fX),
where X := \{ x1, x2, x3, x4\} , dX is the Euclidean metric on the plane, and fX is given as fX(xi) = i for
i = 1, 2, 3, 4. (B) The ER-staircode of \scrX .

X is compatible with fX if fX(x) < fX(x\prime ) implies x < x\prime for all x, x\prime \in X. Now we define
\scrI <
\scrX = \{ \{ I<x : x \in X\} \} , where

(3.2) I<x := \{ (\sigma , \varepsilon ) \in R2 : x \in X\sigma and x = min([x](\sigma ,\varepsilon ), <)\} 

(we use double curly braces \{ \{  - \} \} to denote multisets). Regardless of the choice of <, the
collection \scrI <

\scrX = \{ \{ I<x : x \in X\} \} satisfies all properties and theorems we prove later. Hence, for
any possible compatible order < we will refer to \scrI <

\scrX as an ER-staircode of \scrX .

Example 3.6 (constant function case). Let (X, dX) be a metric space of n points. Then
the barcode of H0(\scrR \bullet (X, dX)) : R \rightarrow Vec consists of n intervals Ji, i = 1, . . . , n. Let \scrX =
(X, dX , fX) be the aug-MS where fX is constant at c \in R. Then all possible total orders on X
are compatible with fX and all induce the same ER-staircode \scrI \scrX = \{ \{ [c,\infty )\times Ji : i = 1, . . . , n\} \} .

In contrast to Example 3.6, different orders on X in general induce different ER-staircodes
of \scrX = (X, dX , fX) ; see Example 3.8. Therefore, a single ER-staircode of \scrX is not necessarily
an invariant of \scrX , whereas the collection of all possible ER-staircodes of \scrX can be seen so
(see item 4 in section 7). This collection, however, is not a complete invariant of \scrX for the
following reasoning: It is not difficult to find two nonisometric metric spaces (X, dX) and
(Y, dY ) such that H0(\scrR \bullet (X, dX)) and H0(\scrR \bullet (Y, dY )) have the same barcode. Let fX : X \rightarrow R
and fY : Y \rightarrow R be constant at c \in R. Then, by Example 3.6, all the ER-staircodes of
(X, dX , fX) and (Y, dY , fY ) (induced by all possible total orders on X and Y ) are the same
(see item 5 in section 7).

We can recover the zeroth fibered barcode of an aug-MS \scrX from its ER-staircode: Com-
putation of an ER-staircode and query time for a fibered barcode are given in Theorem 6.1.

Theorem 3.7. Let \scrX be an aug-MS, and let M := H0(\scrR \mathrm{b}\mathrm{i}
\bullet (\scrX )). Let \scrI \scrX = \{ \{ Ix : x \in X\} \} be

an ER-staircode of \scrX . For each L \in \scrL , the barcode barc(M | L) coincides with the multiset
\{ \{ L \cap Ix : x \in X\} \} (up to removal of empty sets; see Figure 3). The proof is after Theorem
4.4.

Example 3.8. If an aug-MS is not injective, then there can be different ER-staircodes with
respect to different compatible orders. However, each of them will still be valid to produceD
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ELDER-RULE-STAIRCODES FOR AUGMENTED METRIC SPACES 425

Figure 3. Left: The stack of Ixi , i = 1, 2, 3, 4, from Figure 2 and a line L \in \scrL . Right: The barcode of
M | L. Since L does not intersect Ix4 , only three intervals of L \subset R2 appear in the barcode.

Figure 4. Illustration for Example 3.8: (A) I<x2
and I<x3

. (B) I<
\prime 

x2
and I<

\prime 
x3

. (C) Stack of I<x2
and I<x3

. Stack

of I<
\prime 

x2
and I<

\prime 
x3

look the same. Observe that for any L \in \scrL ,
\bigl\{ \bigl\{ 
L \cap I<x2

, L \cap I<x3

\bigr\} \bigr\} 
=

\Bigl\{ \Bigl\{ 
L \cap I<

\prime 
x2

, L \cap I<
\prime 

x3

\Bigr\} \Bigr\} 
.

the fibered barcodes. For example, let (X, dX) be the metric space in Figure 2(A). Define
gX : X \rightarrow R by sending x1, x2, x3, x4 to 1, 2, 2, 4, respectively. Two orders (x1 < x2 < x3 <
x4) and (x1 <\prime x3 <\prime x2 <\prime x4) are compatible with gX . Consider the two ER-staircodes

\scrI <
\scrX =

\bigl\{ \bigl\{ 
I<xi

: i = 1, 2, 3, 4
\bigr\} \bigr\} 

and \scrI <\prime 

\scrX =
\Bigl\{ \Bigl\{ 
I<

\prime 
xi

: i = 1, 2, 3, 4
\Bigr\} \Bigr\} 
. While I<xi

= I<
\prime 

xi
for i = 1, 4,

the equality does not hold for i = 2, 3. However, both \scrI <
\scrX and \scrI <\prime 

\scrX satisfy the statement in
Theorem 3.7. See Figure 4.

We will close this section with some definitions which will be helpful later. It will be useful
to consider three different types of corner points of staircase intervals of R2. See Figure 5 for
an illustration. In that figure, roughly speaking, for each staircase interval, the type-0 cornerD
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426 C. CAI, W. KIM, F. M\'EMOLI, AND Y. WANG

Figure 5. Every corner point of a staircase interval falls into three different types depending on its neigh-
borhood information, as the pictures above illustrate. Staircase intervals in the first row are decorated by their
corner points (a precise description is in Definition A.1 of Appendix A).

point corresponds to the left-bottom point; type-1 corner points are those where the boundary
transitions from a vertical segment to a horizontal one, while type-2 corner points are those
where the boundary transitions from a horizontal one to vertical one (precise descriptions are
given in Definition A.1 of Appendix A).

Given a staircase interval I, for each j = 0, 1, 2 we define the function \gamma j(I) : R2 \rightarrow Z\geq 0

as

(3.3) \gamma j(I)(a) =

\Biggl\{ 
1, a is a jth-type corner point of I,

0 otherwise.

Elder-rule feature functions defined below will be useful in later sections.

Definition 3.9 (elder-rule feature functions). Let \scrX be an aug-MS and I\scrX = \{ \{ Ix : x \in X\} \} 
be an ER-staircode of \scrX . For j = 0, 1, 2, we define the jth elder-rule feature function as the
sum \gamma \scrX j =

\sum 
x\in X \gamma j(Ix).

Remark 3.10. It is not hard to check that \gamma j(I) in (3.3) is equal to the jth graded Betti
number of the interval module R2 \rightarrow Vec supported by I (Definition 2.3). Thus, \gamma \scrX j =\sum 

x\in X \beta IIx
j .

4. Decorated elder-rule-staircodes and treegrams. In section 4.1, we prove Theorem 3.7
and introduce bipersistence treegrams to encode multiscale clustering information of aug-MSs.
In section 4.2, we show that an ``enriched"" ER-staircode of an aug-MS \scrX can recover the
so-called fibered treegram of \scrX , i.e., 1-dimensional slices of the aforementioned bipersistence
treegram. Also, we identify a sufficient condition on \scrX for its ER-staircode to be the barcode
of the 2-parameter persistence module H0(\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )). In section 4.3, we show that if H0(\scrR \mathrm{b}\mathrm{i}
\bullet (\scrX ))

is interval decomposable, then its barcode is equal to the ER-staircode of \scrX . Also, we stratify
the collection of aug-MSs \scrX according to the complexity of the indecomposable summands of
H0(\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )).D
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Figure 6. A ( 1-dimensional) treegram \theta X over the set X := \{ x1, x2, x3, x4\} . Notice that \theta X(t) = \emptyset for
t \in ( - \infty , S1). Also, \theta X(S1) = \{ \{ x1\} \} , \theta X(S2) = \{ \{ x1\} , \{ x2, x3\} \} , and \theta X(t) = \{ X\} for all t \in [S3,\infty ).

4.1. Bipersistence treegrams.
Partitions and subpartitions. Let X be a nonempty finite set. We will call any partition P

of a subset X \prime of X a subpartition of X. In this case, we call X \prime the underlying set of P . A
partition of the empty set is defined as the empty set. By Subpart(X), we denote the set of
all subpartitions of X, i.e., Subpart(X) := \{ P : \exists X \prime \subseteq X, P is a partition of X \prime \} . We refer
to elements of a subpartition of X as blocks.

Let P,Q \in Subpart(X). By P \leq Q, we mean P refines Q; i.e., for all B \in P , there exists
C \in Q such that B \subseteq C. For example, let X = \{ x1, x2, x3\} and consider the subpartitions
P := \{ \{ x1\} , \{ x2\} \} and Q := \{ \{ x1, x2\} , \{ x3\} \} of X. Then it is easy to see that P \leq Q.

Treegrams are a generalized notion of dendrograms [50], which are useful for visualizing
the evolution of clustering information of 1-parameter simplicial filtrations.

Definition 4.1 (treegrams [50]). A treegram over a finite set X is any order-preserving
map \theta X : R \rightarrow Subpart(X); i.e., if t1 \leq t2, then \theta X(t1) \leq \theta X(t2), satisfying the following:
(1) There exists T > 0 such that \theta X(t) = \{ X\} for t \geq T and \theta X(t) is empty for t \leq  - T , and
(2) for all t there exists \epsilon > 0 such that \theta X(s) = \theta X(t) for s \in [t, t + \epsilon ]. See Figure 6 for an
example. Also, even when the domain R is replaced by any totally ordered set L isomorphic
to R, \theta X is said to be a ( 1-parameter) treegram.

Given a simplicial complex K, let K(0) be the vertex set of K. Let \pi 0(K) be the partition
of the vertex set K(0) according to the connected components of K. A functor \scrK : P \rightarrow Simp
is said to be a filtration of K if \scrK (a) \subseteq K for all a \in P, every internal map is an inclusion,
and there exists a0 \in P such that for all a \in P with a0 \leq a, \scrK (a) = K.

Example 4.2 (treegrams induced by simplicial filtrations). Let K be a simplicial complex
on the vertex set X = \{ x1, x2, . . . , xn\} , and let \scrK : R \rightarrow Simp be a filtration of K. Assume
that K consists solely of one connected component, i.e., \pi 0(K) = \{ X\} . Then the function
\pi 0(\scrK ) : R \rightarrow Subpart(X) defined as \varepsilon \mapsto \rightarrow \pi 0(\scrK (\varepsilon )) is a treegram over X.

The zeroth elder rule for a 1-parameter filtration. Let \theta X be a treegram over X. We define
the birth time of x as b(x) := min\{ \varepsilon \in R : x is in the underlying set of \theta X(\varepsilon )\} (by (1) and
(2) of Definition 4.1, every x \in X has the birth time b(x)). Pick any order < on X such
that b(x) < b(x\prime ) implies x < x\prime for all x, x\prime \in X.1 For \varepsilon \in [b(x),\infty ), we denote the
block to which x belong in the subpartition \theta X(\varepsilon ) by [x]\varepsilon . We define the death time of x
as d<(x) = sup\{ \varepsilon \in [b(x),\infty ] : x = min([x]\varepsilon , <)\} . As long as < is compatible with the birth

1This order < is uniquely specified if all x \in X have different birth times.D
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428 C. CAI, W. KIM, F. M\'EMOLI, AND Y. WANG

Figure 7. The first row represents a simplicial filtration \scrK . The second row stands for the treegram \pi 0(\scrK )
which encodes the evolution of clusters in \scrK (Example 4.2). The third row is the barcode of H0(\scrK ). The
persistence module H0(\scrK ) can be obtained by applying the linearization functor (Definition 4.14) to \pi 0(\scrK ).
Alternatively, the barcode of H0(\scrK ) can also be obtained by applying the elder rule to \pi 0(\scrK ) (Definition 4.3).

times, the elder-rule-barcode is uniquely defined (which will be proved in Appendix B).

Definition 4.3 (elder-rule-barcode of a treegram). Let \theta X : R \rightarrow Subpart(X) be a treegram
over X. For any order < on X compatible with the birth times, let Jx := [b(x), d<(x)). The
elder-rule-barcode of \theta X is defined as the multiset barc(\theta X) := \{ \{ Jx : x \in X\} \} .

For the 1-parameter case, the elder-rule-barcode of a treegram can be obtained by dis-
mantling the treegram into linear pieces with respect to the elder rule; see the theorem below.
Even though this result is well known (see, e.g., [22]), we include a proof at the end of this
section.

Theorem 4.4 (compatibility between the elder-rule and algebraic decomposition). Let \scrK 
and \theta X be the filtration and the treegram in Example 4.2, respectively. Let barc(\theta X) =
\{ \{ Jx : x \in X\} \} be the elder-rule-barcode of \theta X . Then H0(\scrK ) \sim =

\bigoplus 
x\in X \scrI Jx (see Figure 7).

We are now ready to prove Theorem 3.7.

Proof of Theorem 3.7. Fix L \in \scrL . Since L is isomorphic to R as a totally ordered set,
\scrK = \scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )| L : L \rightarrow Simp can be viewed as a 1-parameter filtration. Consider the treegram
\theta X := \pi 0(\scrK ) : L \rightarrow Subpart(X). By the definition of Ixs, it is clear that \{ \{ L \cap Ix : x \in X\} \} 
is the elder-rule-barcode of the treegram \theta X (Definition 4.3). Hence, by Theorem 4.4, the
multiset \{ \{ L \cap Ix : x \in X\} \} is equal to the barcode of H0 (\scrK ). Since H0 (\scrK ) = M | L, we have
\{ \{ L \cap Ix : x \in X\} \} = barc(M | L).

Bipersistence treegrams. We now extend the notion of treegrams to encode the evolution
of clusters of a 2-parameter filtration (similar ideas appear in [34]). A bipersistence treegram
over a finite set X is any order-preserving map \theta \mathrm{b}\mathrm{i}X : R2 \rightarrow Subpart(X); i.e., if a \leq b in R2,
then \theta \mathrm{b}\mathrm{i}X(a) \leq \theta \mathrm{b}\mathrm{i}X(b).

We induce a bipersistence treegram over X from an aug-MS \scrX .

Definition 4.5 (Rips bipersistence treegrams). Let \scrX = (X, dX , fX) be an aug-MS. WeD
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Figure 8. Consider the aug-MS \scrX defined in Figure 2. Figures (A) and (C) above are identical to Figures
2(A) and (B), respectively. (B) The Rips bipersistence treegram of \scrX (Definition 4.5). The summarization
processes (A)\rightarrow (B)\rightarrow (C) are analogous to the processes depicted in Figure 7. Figures are best viewed in color.

define \theta \mathrm{b}\mathrm{i}\scrX : R2 \rightarrow Subpart(X) as (\sigma , \varepsilon ) \mapsto \rightarrow \pi 0 (\scrR \varepsilon (X\sigma , dX)). This \theta \mathrm{b}\mathrm{i}\scrX is said to be the Rips
bipersistence treegram of \scrX .

Observe that x \in X belongs to the underlying set of \theta \mathrm{b}\mathrm{i}\scrX (a) if and only if (fX(x), 0) \leq a,
i.e., (fX(x), 0) is the birth grade of x in \theta \mathrm{b}\mathrm{i}\scrX . Assume that fX is injective. Then the set of birth
grades of elements in X is totally ordered. Note that the ER-staircode of \scrX can be extracted
from \theta \mathrm{b}\mathrm{i}\scrX : Indeed, Ix in (3.1) can be rephrased as Ix = \{ (\sigma , \varepsilon ) \in R2 : x is in the underlying set
of \theta \mathrm{b}\mathrm{i}\scrX (\sigma , \varepsilon ) and x has the smallest birth grade in its block of \theta \mathrm{b}\mathrm{i}\scrX (\sigma , \varepsilon )\} . See Figure 8.

Definition 4.6 (fibered treegrams). Let \theta \mathrm{b}\mathrm{i}\scrX be a Rips bipersistence treegram of an aug-MS
\scrX . The fibered treegram of \theta \mathrm{b}\mathrm{i}\scrX refers to the collection \{ \theta \mathrm{b}\mathrm{i}\scrX | L\} L\in \scrL of treegrams obtained by
restricting \theta \mathrm{b}\mathrm{i}\scrX to positive-slope lines (see Figure 9 for an example).

A combinatorial analogue of Theorem 2.5. Recall the elder-rule feature functions of an aug-
MS \scrX (Definition 3.9). We will show that they can be used to retrieve the cardinality function
of \theta \mathrm{b}\mathrm{i}\scrX .

Definition 4.7 (cardinality function). Let \theta \mathrm{b}\mathrm{i}X be a bipersistence treegram over a set X. We
call the function

\bigm| \bigm| \theta \mathrm{b}\mathrm{i}X \bigm| \bigm| : R2 \rightarrow Z\geq 0 defined as a \mapsto \rightarrow 
\bigm| \bigm| \theta \mathrm{b}\mathrm{i}X(a)

\bigm| \bigm| the cardinality function of \theta \mathrm{b}\mathrm{i}X .D
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Figure 9. Consider the bipersistence treegram in Figure 8(B), and pick a line L of positive slope. Then we
obtain a treegram over L.

For A \subseteq R2, we define the indicator function 1A : R2 \rightarrow Z\geq 0 of A as

1A(a) :=

\Biggl\{ 
1, a \in A,

0 otherwise.

The following proposition directly follows [24, Proposition 32].

Proposition 4.8. Let I be a staircase interval. Then 1I(a) =
\sum 

\bfx \leq \bfa 

\sum 2
j=0( - 1)j\gamma j(I)(x).

The ER-staircode and elder-rule feature functions of an aug-MS \scrX recover the cardinality
function of \theta \mathrm{b}\mathrm{i}\scrX , which is analogous to Theorem 2.5.

Theorem 4.9. Let \scrX be an aug-MS, and let I\scrX = \{ \{ Ix : x \in X\} \} be an ER-staircode of \scrX .
For each a \in R2,\bigm| \bigm| \bigm| \theta \mathrm{b}\mathrm{i}\scrX (a)

\bigm| \bigm| \bigm| = n\sum 
x\in X

1Ix(a) (i.e., the number of intervals Ix \in \scrI \scrX containing a)(4.1)

=
\sum 
\bfx \leq \bfa 

2\sum 
j=0

( - 1)j\gamma \scrX j (x).(4.2)

Proof. For simplicity, we assume the injectivity of \scrX . We prove the equality in (4.1). Let
(\sigma , \varepsilon ) \in R2. Since each block in \theta \mathrm{b}\mathrm{i}\scrX (\sigma , \varepsilon ) contains its unique oldest element,

\bigm| \bigm| \theta \mathrm{b}\mathrm{i}\scrX (\sigma , \varepsilon )
\bigm| \bigm| is equal

to the cardinality of the set

A(\sigma , \varepsilon ) := \{ x \in X\sigma : x is the oldest in the block containing x in \theta X(\sigma , \varepsilon )\} .

By (3.1), a belongs to Ix if and only if x \in A(\sigma , \varepsilon ), implying the equality

| A(\sigma , \varepsilon )| = (the number of intervals Ix \in \scrI \scrX containing (\sigma , \varepsilon )),

as desired. The equality in (4.2) directly follows from Proposition 4.8 and Definition 3.9.D
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4.2. Elder-rule-staircodes and fibered treegrams. In this section, we identify a sufficient
condition on an aug-MS \scrX for its ER-staircode to coincide with the barcode of the 2-parameter
persistence module H0(\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )) (Theorem 4.10). Also, in general, all fibered treegrams can
be recovered from ER-staircodes (Theorem 4.13).

Let (X, dX) be a metric space, and fix x, x\prime \in X. Recall that an \varepsilon -chain between x and x\prime 

is a finite sequence x = x1, x2, . . . , x\ell = x\prime in X where each consecutive pair xi, xi+1 is within
distance \varepsilon . Define (in fact an ultrametric) uX : X \times X \rightarrow R\geq 0 as

(4.3) uX(x, x\prime ) := min\{ \varepsilon \in [0,\infty ) : there exists an \varepsilon -chain between x and x\prime \} (see [10]).

For a metric space (X, dX), pick any total order < on X. Let x \in X be a nonminimal
element of (X,<). A <-conqueror of x is an element x\prime \in X such that (1) x\prime < x, and (2) for
any x\prime \prime \in X with x\prime \prime < x, it holds that uX(x, x\prime ) \leq uX(x, x\prime \prime ).

Now consider an aug-MS \scrX = (X, dX , fX). A <-conqueror function cx : [fX(x),\infty ) \rightarrow X
of a nonminimal x \in X sends \sigma \in [fX(x),\infty ) to a conqueror of x in (X\sigma , dX). For the
minimum x\prime \in (X,<), define cx\prime : [fX(x\prime ),\infty ) \rightarrow X to be the constant function at x\prime .

We generalize Theorem 4.4 and at the same time strengthen Theorem 3.7 for 2-parameter
persistence modules induced by a special type of aug-MSs.

Theorem 4.10 (compatibility between the ER-staircodes and algebraic decomposition). Let
\scrX = (X, dX , fX) be an aug-MS, and fix any order < on X compatible with fX . Assume that
there exists a constant <-conqueror function for each x \in X.2 Then H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 
is interval

decomposable and its barcode coincides with the ER-staircode \scrI <
\scrX .

The proof of Theorem 4.10 is similar to that of Theorem 4.4. Both proofs are given at
the end of this section. Consider the aug-MS \scrX in Figure 2. Observe that \scrX satisfies the
assumption in Theorem 4.10. Therefore, H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 
is interval decomposable. There exists

a class of aug-MSs to which Theorem 4.10 applies, as shown by the following corollary.

Corollary 4.11. Let \scrX = (X, dX , fX) be any aug-MS where dX is an ultrametric, i.e.,
dX(x, x\prime \prime ) \leq max (dX(x, x\prime ), dX(x\prime , x\prime \prime )) for all x, x\prime , x\prime \prime \in X. Then H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 
is interval

decomposable (in fact, its barcode consists solely of infinite rectangular intervals).

Proof. Let < be an order on X which is compatible with fX . For each nonminimal
x \in (X,<), pick an x\prime \in X such that (1) x\prime < x, and (2) for any x\prime \prime \in X with x\prime \prime < x, it
holds that dX(x, x\prime ) \leq dX(x, x\prime \prime ). Now observe that x\prime is a <-conqueror in (X\sigma , dX) for every
\sigma \in [fX(x),\infty ), completing the proof.

The converse of Theorem 4.10 is false by virtue of the following example.

Example 4.12. Let X := \{ xi\} 8i=1. Consider \scrX = (X, dX , fX), where (X, dX) is depicted in
Figure 10 and fX(xi) = i for each i = 1, . . . , 8. Then H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) is interval decomposable
even though x6 \in X does not have a constant conqueror. See below for the proofs of these
claims.

Details from Example 4.12. The fact that x6 does not have a constant conqueror can be
ascertained from the following observation: For \sigma \in [6, 7), x1, x2, and x3 are the conquerors

2Observe that if this property holds for the order <, then the same property holds for any other order <\prime 

that is compatible with fX , and \scrI <
\scrX = \scrI <\prime 

\scrX .D
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Figure 10. (A) A metric graph G. The distance between any two points on G is the length of a shortest
path connecting them. (B) The embedding of (X, dX) in G.

of x6 in X\sigma . For \sigma \in [7, 8), x3, x4, and x5 are the conquerors of x6 in X\sigma . For \sigma \in [8,\infty ), x5
is the unique conqueror of x6 in X\sigma .

Let \scrI \scrX = \{ Ixi\} 8i=1 be the ER-staircode of \scrX . To prove that M := H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) is interval
decomposable, it suffices to construct an isomorphism f from N :=

\bigoplus 8
i=1 I

Ixi to M . For
i = 1, . . . , 8 and for (\sigma , \varepsilon ) \in [i,\infty )\times R+, let [xi](\sigma ,\varepsilon ) be the zeroth homology class of xi. When
confusion is unlikely, we will suppress the subscript (\sigma , \varepsilon ) in [xi](\sigma ,\varepsilon ).

For each i, consider 1i := 1 \in (IIxi )(i,0)(= F). We declare that

11
f(1,0)\mapsto  - \rightarrow [x1], 12

f(2,0)\mapsto  - \rightarrow [x2] - [x1],

13
f(3,0)\mapsto  - \rightarrow [x3] - [x1], 14

f(4,0)\mapsto  - \rightarrow [x4] - [x3],

15
f(5,0)\mapsto  - \rightarrow [x5] - [x4], 16

f(6,0)\mapsto  - \rightarrow [x2] - [x1] + [x4] - [x3] + [x6] - [x5],

17
f(7,0)\mapsto  - \rightarrow [x7] - [x3], 18

f(8,0)\mapsto  - \rightarrow [x8] - [x6].

Since \{ 1i : i = 1, . . . , 8\} is a set of all generators of N , the above specification gives rise to a
unique morphism f : N \rightarrow M . It is not hard to check that f is actually an isomorphism.

We enrich the ER-staircode in order to query the fibered treegram: Let \scrX = (X, dX , fX)
be an aug-MS. Let < be any order on X which is compatible with fX . For each x, we
define I\ast x as the pair (Ix, cx) of the set Ix and the <-conqueror function cx. The collection
\scrI \ast 
\scrX := \{ I\ast x\} x\in X is said to be the decorated ER-staircode of \scrX . See Figure 11. The following

result is easy to obtain with the help of decorations.

Theorem 4.13. Given any L \in \scrL , the fibered treegram \theta \mathrm{b}\mathrm{i}\scrX | L can be recovered from the
decorated ER-staircode \scrI \ast 

\scrX of the aug-MS \scrX = (X, dX , fX).

Proofs of Theorems 4.4 and 4.10. We first define the linearization functor.

Definition 4.14 (linearization functor). Let X be a nonempty finite set. We define the
linearization functor \scrF F : Subpart(X) \rightarrow Vec as follows:

(i) Each P \in Subpart(X) is sent to the vector space \scrF F(P ) which consists of formalD
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Figure 11. Decorated intervals corresponding to the four intervals in Figure 2(B). For each i = 2, 3, 4, the
upper boundary of Ixi is decorated by the conqueror of xi.

linear combinations of elements of P over the field F. In other words,

\scrF F(P ) =

\Biggl\{ \sum 
B\in P

cBB : cB \in F

\Biggr\} 
.

By identifying each B \in P with 1 \cdot B \in \scrF F(P ), the subpartition P can be viewed as a
basis of \scrF F(P ).

(ii) Each pair P \leq Q in Subpart(X) is sent to the linear map \scrF F(P ) \rightarrow \scrF F(Q) which
sends each 1 \cdot B \in \scrF F(P ) to 1 \cdot B\prime \in \scrF F(Q) such that B \subseteq B\prime .

The following proposition is straightforward by [44, Theorem 7.1].

Proposition 4.15.
(i) Let \theta X : R \rightarrow Subpart(X) be the treegram obtained by applying \pi 0 to a filtration

\scrK : R \rightarrow Simp (Example 4.2). The two 1-parameter persistence modules \scrF F \circ \theta X and
H0(\scrK ) are isomorphic.

(ii) Let \scrX be an aug-MS. The two 2-parameter persistence modules \scrF F\circ \theta \mathrm{b}\mathrm{i}\scrX and H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 

(Definitions 3.2 and 4.5) are isomorphic.

Now we are ready to prove Theorems 4.4 and 4.10.

Proof of Theorem 4.4. Without loss of generality, let X = \{ x1, . . . , xn\} . By Propo-
sition 4.15(i), H0(\scrK ) is isomorphic to M := \scrF F \circ \theta X , and thus it suffices to show that
M \sim =

\bigoplus n
i=1 I

[b(xi),d(xi)) =: N . We may assume that b(x1) \leq b(x2) \leq \cdot \cdot \cdot \leq b(xn). For each
i \in \{ 2, 3, . . . , n\} , we pick a certain xq(i) which merges with xi earliest in the treegram \theta X among
all the points in \{ x1, x2, . . . , xi - 1\} . This defines a function q : \{ 2, 3, . . . , n\} \rightarrow \{ 1, 2, . . . , n\} 
such that q(i) < i for i \in \{ 2, 3, . . . , n\} (such function q is not necessarily unique, since some
two points xj1 , xj2 might merge with another point xj3 at the same time).

For xi \in X and \varepsilon \in [b(xi),\infty ), let [xi]\varepsilon be the block containing xi in the subpartition
\theta X(\varepsilon ) of X.

On the interval ( - \infty , b(x1)), both M and N are trivial and thus let f\varepsilon be the zero map
for \varepsilon \in ( - \infty , b(x1)).

Fix \varepsilon \in [b(x1),\infty ). Note that the vector space M(\varepsilon ) is spanned by \scrA = \{ [xi]\varepsilon \in \theta X(\varepsilon ) :
b(xi) \leq \varepsilon \} . Therefore, M(\varepsilon ) is also spanned by \scrB = \{ [xi]\varepsilon  - [xq(i)]\varepsilon : b(xi) \leq \varepsilon \} , which isD
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obtained by applying elementary linear operations on \scrA . Furthermore, observe that

\scrB \prime = \{ [x1]\varepsilon \} \cup 
\bigl( 
\{ [xi]\varepsilon  - [xq(i)]\varepsilon : b(xi) \leq \varepsilon \} \setminus \{ 0\} 

\bigr) 
is a linearly independent set and in turn a basis of M(\varepsilon ). Define the linear map f\varepsilon : M(\varepsilon ) \rightarrow 
N(\varepsilon ) by defining it on the basis \scrB \prime as follows:

(i) Send [x1]\varepsilon to 1 in the 1st summand of N(\varepsilon ) =
\bigoplus n

i=1 I
[b(xi),d(xi))(\varepsilon ).

(ii) Send each basis element [xi]\varepsilon  - [xq(i)]\varepsilon (\not = 0) to 1 in the ith summand of

n\bigoplus 
i=1

I [b(xi),d(xi))(\varepsilon ).

Then one can check that the collection f = \{ f\varepsilon \} \varepsilon \in R is an isomorphism between M and N , as
desired.

We make use of the same strategy as Theorem 4.4 for proving Theorem 4.10.

Proof of Theorem 4.10. Without loss of generality, we may assume that X = \{ x1, . . . , xn\} ,
fX(x1) \leq fX(x2) \leq \cdot \cdot \cdot \leq fX(xn), and let the order < onX be defined as (x1 < x2 < \cdot \cdot \cdot < xn).
Also, assume that each <-conqueror function cxi : R \rightarrow X is constant at q(i) \in X (then by
definition, q(1) = x1). By Proposition 4.15(ii), it suffices to show that M := \scrF F \circ \theta \mathrm{b}\mathrm{i}\scrX is

isomorphic to N =
\bigoplus n

i=1 I
I<xi .

For xi \in X, and (\sigma , \varepsilon ) \in R2 with (\sigma , \varepsilon ) \geq (f(xi), 0), let [xi](\sigma ,\varepsilon ) be the block containing xi
in the subpartition \theta \mathrm{b}\mathrm{i}\scrX (\sigma , \varepsilon ) of X.

For any (\sigma , \varepsilon ) \in R2 such that (\sigma , \varepsilon ) \not \geq (fX(x1), 0), both M(\sigma , \varepsilon ) and N(\sigma , \varepsilon ) are trivial
and thus let f(\sigma ,\varepsilon ) be the zero map for (\sigma , \varepsilon ) \not \geq (fX(x1), 0).

Fix (\sigma , \varepsilon ) \in R2 such that (\sigma , \varepsilon ) \geq (fX(x1), 0). The vector space M(\sigma , \varepsilon ) is spanned
by \scrA = \{ [xi](\sigma ,\varepsilon ) \in \theta \mathrm{b}\mathrm{i}\scrX (\sigma , \varepsilon ) : (fX(xi), 0) \leq (\sigma , \varepsilon )\} . Therefore, M(\sigma , \varepsilon ) is also spanned by
\scrB = \{ [x1](\sigma ,\varepsilon )\} \cup \{ [xi](\sigma ,\varepsilon )  - [xq(i)](\sigma ,\varepsilon ) : (fX(xi), 0) \leq (\sigma , \varepsilon )\} , which is obtained by applying
elementary linear operations on \scrA . Furthermore, note that

\scrB \prime := \{ [x1](\sigma ,\varepsilon )\} \cup 
\bigl( 
\{ [xi](\sigma ,\varepsilon )  - [xq(i)](\sigma ,\varepsilon ) : (fX(xi), 0) \leq (\sigma , \varepsilon )\} \setminus \{ 0\} 

\bigr) 
is a linearly independent set and in turn a basis of M(\sigma , \varepsilon ). Let us define a linear map
f(\sigma ,\varepsilon ) : M(\sigma , \varepsilon ) \rightarrow N(\sigma , \varepsilon ) by defining it on the basis \scrB \prime as follows:

(i) Send [x1](\sigma ,\varepsilon ) to 1 in the 1st summand of N(\sigma , \varepsilon ) =
\bigoplus n

i=1 I
Ixi (\sigma , \varepsilon ).

(ii) Send each basis element [xi](\sigma ,\varepsilon ) - [xq(i)](\sigma ,\varepsilon )(\not = 0) to 1 in the ith summand of N(\sigma , \varepsilon ) =\bigoplus n
i=1 I

Ixi (\sigma , \varepsilon ).
By invoking the construction of the <-conqueror functions cxi and the ER-staircode \scrI <

\scrX =\bigl\{ \bigl\{ 
I<xi

: i = 1, . . . , n
\bigr\} \bigr\} 
, one can check that the collection f = \{ f(\sigma ,\varepsilon )\} (\sigma ,\varepsilon )\in R2 is an isomorphism

between M and N , as desired.

4.3. Elder-rule-staircodes and barcodes. The compatibility between the elder-rule and
the algebraic decomposition theory (Theorem 4.10) will be enhanced to Theorem 4.16 below.
For any (\sigma 0, \varepsilon 0) \in R2, let U(\sigma 0, \varepsilon 0) := \{ (\sigma , \varepsilon ) \in R2 : (\sigma 0, \varepsilon 0) \leq (\sigma , \varepsilon )\} , i.e., the closed quadrant
whose lower-left corner point is (\sigma 0, \varepsilon 0).D
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Theorem 4.16. Let \scrX be an injective aug-MS such that M := H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 
is interval

decomposable. Then the barcode of M coincides with the ER-staircode \scrI <
\scrX of \scrX .

The proof utilizes results in section 5 and thus is deferred to that section.

Remark 4.17. By Theorem 4.16, testing the interval decomposability of H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) is
equivalent to testing whether H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) \sim = N :=

\bigoplus n
i=1 I

Ixi . In [7], there exists a determin-
istic algorithm for testing such an isomorphism.

Classification of the collection of augmented metric spaces. Let us consider the following
collections of aug-MSs:

(i) Aug is defined as the collection of all finite aug-MSs.
The following are subcollections of Aug:
(ii) Ult consists of all finite aug-MSs (X, dX , fX) where dX is an ultrametric.
(iii) Rep(e,m) consists of all finite aug-MSs \scrX such that the horizontal internal maps of

H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 
are injective.

(iv) Rec consists of all finite aug-MSs \scrX such that H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 
is rectangle decomposable,

i.e., each indecomposable summand is I [a,b)\times [c,d) for some intervals [a, b), [c, d) of R.
(v) ER consists of all finite aug-MSs \scrX such that the assumption of Theorem 4.10 holds

(and thus is interval decomposable).
(vi) Dec consists of all finite aug-MSs \scrX such that H0

\bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\bigr) 
is interval decomposable.

In order to clarify the relationship among these collections, we begin by recalling the following.

Theorem 4.18 (see [5, Corollary 3.17]). Rep(e,m) = Rec.

We enrich Theorem 4.18 as follows.

Theorem 4.19. Ult ( Rep(e,m) = Rec ( ER ( Dec ( Aug.

We in particular remark that Example 5.5 provides an aug-MS which does not belong to
Dec. Such examples provide clues for constructing aug-MSs \scrX which yield H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) whose
isomorphism type is exotic, thus complementing the results of [5].

Proof.
(i) Ult \subseteq Rep(e,m): Consider an aug-MS \scrX = (X, dX , fX) where dX is an ultrametric.

By Proposition 4.15(ii), it suffices to show that every horizontal internal map of \theta \mathrm{b}\mathrm{i}X :
R2 \rightarrow Subpart(X) is injective. Pick (\sigma 1, \varepsilon ), (\sigma 2, \varepsilon ) \in R2 with \sigma 1 \leq \sigma 2, and pick
x, y \in X with fX(x), fX(y) \leq \sigma 1. Assume that [x](\sigma 2,\varepsilon ) = [y](\sigma 2,\varepsilon ), and let us show
that [x](\sigma 1,\varepsilon ) = [y](\sigma 1,\varepsilon ). The assumption implies that there exists a sequence x =
x0, . . . , xn = y in X\sigma 2 such that dX(xi, xi+1) \leq \varepsilon for each i. Since dX is an ultrametric,
we have that dX(x, y) \leq maxn - 1

i=0 dX(xi, xi+1) \leq \varepsilon . Invoking fX(x), fX(y) \leq \sigma 1, we have
[x](\sigma 1,\varepsilon ) = [y](\sigma 1,\varepsilon ), as desired.

(ii) Ult \not = Rep(e,m): Let us equip the set X := \{ 1, 2, 3\} with the standard metric d(i, j) :=
| i - j| , i, j \in \{ 1, 2, 3\} , and the map f : X \rightarrow R defined as i \mapsto \rightarrow i for i = 1, 2, 3. Observe
that dX is not an ultrametric, but every horizontal internal map of H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) is
injective.

(iii) Rep(e,m) \subseteq ER: Consider an aug-MS \scrX = (X, dX , fX) in Rep(e,m). Pick an order
< on X which is compatible with fX . Let x \in (X,<) be a nonminimal element, and
let \sigma 0 := fX(x). Let x\prime be a conqueror of x in the metric space (X\sigma 0 , dX). It suffices toD
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show that for each \sigma \in [\sigma 0,\infty ), x\prime is a conqueror of x in (X\sigma , dX). Fix \sigma \in [\sigma 0,\infty ). Let
x\prime \prime \in X\sigma be a conqueror of x in (X\sigma , dX). Let u\sigma X : X \times X \rightarrow R be the (ultra)metric
induced by (X\sigma , dX) as in (4.3). Let \varepsilon := u\sigma X(x\prime \prime , x). By definition of x\prime \prime , we have

(4.4) \varepsilon \leq u\sigma X(x\prime , x).

Also, by definition of \varepsilon , we have [x](\sigma ,\varepsilon ) = [x\prime \prime ](\sigma ,\varepsilon ). Since \scrX belongs to Rep(e,m), it
also holds that [x](\sigma 0,\varepsilon ) = [x\prime \prime ](\sigma 0,\varepsilon ), implying

(4.5) u\sigma 0
X (x, x\prime \prime ) \leq \varepsilon .

Since x\prime is a conqueror of x in (X\sigma 0 , dX), we have

(4.6) u\sigma 0
X (x, x\prime ) \leq u\sigma 0

X (x, x\prime \prime ).

Also, since u\sigma X \leq u\sigma 0
X , we have

(4.7) u\sigma X(x, x\prime ) \leq u\sigma 0
X (x, x\prime ).

By concatenating inequalities (4.4), (4.5), (4.6), and (4.7), we obtain

u\sigma X(x, x\prime ) \leq u\sigma 0
X (x, x\prime ) \leq u\sigma 0

X (x, x\prime \prime ) \leq \varepsilon \leq u\sigma X(x\prime , x).

The leftmost and rightmost terms are the same, implying that \varepsilon = u\sigma X(x, x\prime ). Since
\varepsilon = u\sigma X(x\prime \prime , x) and x\prime \prime is a conqueror of x in (X\sigma , dX), we conclude that x\prime is another
conqueror of x in (X\sigma , dX), as desired.

(iv) Rep(e,m) \not = ER: It is not hard to check that the aug-MS depicted in Figure 2(A)
belongs to ER but not Rep(e,m).

(v) ER ( Dec: This follows from Theorem 4.10 and Example 5.5.
(vi) Dec ( Aug: This directly follows from Example 5.5.

5. Elder-rule-staircodes and graded Betti numbers. In this section, we show that given
an aug-MS \scrX the graded Betti numbers of H0(\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )) can be easily extracted from the ER-
staircode of \scrX (Theorem 5.4). Along the way, we obtain a characterization result for the
graded Betti numbers of H0(\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )) (Theorem 5.2), which is of independent interest.
Computing the graded Betti numbers of H0(\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )) for an aug-MS \scrX . Given a simplicial
complex K and k \in Z\geq 0, let Ck(K) be the kth chain group of K, i.e., the F-vector space freely
generated by k-simplices in K. For k \in Z\geq 0, let \partial k : Ck(K) \rightarrow Ck - 1(K) be the boundary
map and Zk(K) := ker(\partial k) the kth cycle group of K.

Henceforth, for simplicity, every aug-MS \scrX = (X, dX , fX) will be assumed to be generic:
fX is injective and | \{ dX(x, x\prime ) \in R : x, x\prime \in X, x \not = x\prime \} | =

\bigl( | X| 
2

\bigr) 
; i.e., all nontrivial pairwise

distances are distinct. The case of nongeneric aug-MS can be easily handled; see Remark 5.6.
Since \scrX is finite, we consider Z2-indexed filtration described subsequently as a substitute of
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX ).

Definition 5.1. Consider an aug-MS \scrX = (X, dX , fX) with X := \{ x1, . . . , xn\} , and assume
that fX(x1) < \cdot \cdot \cdot < fX(xn). Define fZ

X : X \rightarrow N as xi \mapsto \rightarrow i. Define dZX : X \times X \rightarrow N byD
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sending each nontrivial pair (xi, xj) (i \not = j) to \ell \in 
\bigl\{ 
1, . . . ,

\bigl( 
n
2

\bigr) \bigr\} 
, where dX(xi, xj) is the \ell th

smallest distance (among nonzero distance values). The restriction of \scrR \mathrm{b}\mathrm{i}
\bullet (X, dZX , fZ

X) : R2 \rightarrow 
Simp to Z2 is the Z2-indexed Rips filtration3 of \scrX . Also, let \gamma \scrX j denote the jth elder-rule

feature function of (X, dZX , fZ
X) for j = 0, 1, 2 in this section.

For Theorem 5.2, we introduce relevant terminology and notation. Let \scrS be the Z2-indexed
Rips filtration of an aug-MS \scrX , and let \scrK be the 1-skeleton of \scrS ; i.e., \scrK is another Z2-indexed
filtration where \scrK (a) is the 1-skeleton of \scrS (a) for every a \in Z2:

\bullet Note that \scrK is 1-critical : every simplex that appears in \scrK has a unique birth index.
Let e be an edge that appears in \scrK whose birth index is b(e) = (b1, b2) \in Z2. We
say that the edge e is negative if the number of connected components in \scrK (b1, b2) is
strictly less than that of K(b1, b2  - 1). Otherwise, the edge e is positive.

\bullet For k = 0, 1, let Ck(\scrK ) : Z2 \rightarrow Vec be the module defined as Ck(\scrK )(a) := Ck(\scrK (a)),
where the internal maps \varphi \scrK (a,b) are the canonical inclusion maps Ck(\scrK (a)) \lhook \rightarrow 
Ck(\scrK (b)). In particular, since \scrK is 1-critical, Ck(\scrK ) is the free module whose ba-
sis elements one-to-one correspond to all the kth simplices in S := \scrK (n,

\bigl( 
n
2

\bigr) 
). More

specifically, the birth of a simplex \sigma \in S in \scrK at a \in Zd corresponds to a generator of
Ck(\scrK ) at a.

Theorem 5.2. Let \scrK be the 1-skeleton of the Z2-indexed Rips filtration of an aug-MS. Let
\scrK  - be the filtration of \scrK that is obtained by removing all positive edges in \scrK . Then the
following hold:

(i) The following sequence of persistence modules is exact:

(5.1) 0  - \rightarrow Z1(\scrK  - )
i - \rightarrow C1(\scrK  - )

\partial 1 - \rightarrow C0(\scrK  - )
p - \rightarrow H0(\scrK )  - \rightarrow 0,

where i is the canonical inclusion, \partial 1 is the boundary map, and p is the canonical
projection.

(ii) The sequence in (5.1) is a minimal free resolution of H0(\scrK ).4

We prove Theorem 5.2 at the end of this section. For example, consider the aug-MS \scrX 
in Figure 2(A). We can read off the graded Betti number of H0(\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )) : R2 \rightarrow Vec from
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX ). See Figure 12.
The ER-staircode and the graded Betti numbers. Next, we will see that for any aug-MS

\scrX , the graded Betti numbers of the zeroth homology of \scrR \mathrm{b}\mathrm{i}
\bullet (\scrX ) can be extracted from the

ER-staircode of \scrX .
Given finite M : Z2 \rightarrow Vec, the support of the ith graded Betti number \beta M

i of M is
defined as supp(\beta M

i ) := \{ a \in Z2 : \beta M
i (a) \not = 0\} . Theorem 5.2 directly implies the following.

Lemma 5.3. Let \scrK be the Z2-indexed Rips filtration of an aug-MS, and let M := H0(\scrK ).
For each i = 0, 1, 2, \beta M

i (a) \leq 1, a \in Z2 and for every pair i \not = j in \{ 0, 1, 2\} , it holds that
supp(\beta M

i ) \cap supp(\beta M
j ) = \emptyset .

3dZX does not necessarily satisfy the triangle inequality, but it does not prevent us from defining
\scrR \mathrm{b}\mathrm{i}

\bullet (X, dZX , fZ
X).

4This means that the chain obtained by setting F 0 = C0(\scrK  - ), F 1 = C1(\scrK  - ), F 2 = Z1(\scrK  - ), and F i = 0
for i > 2 in (2.1) satisfies the minimality condition that is described in the paragraph after (2.1).D
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Figure 12. (A) The ER-staircode \scrI \scrX of \scrX in Figure 2(A). The types of corner points are indicated by
circles ( 0th), stars ( 1st), and squares ( 2nd). (B) The 1-skeleton of \scrK := \scrR \mathrm{b}\mathrm{i}

\bullet (\scrX ). Red edges and black edges are
negative and positive, respectively. The four generators of C0(\scrK ) are located at grades (1, 0), (2, 0), (3, 0), (4, 0),
forming the support of the zeroth graded Betti number of H0(\scrK ) (marked by circles). The birth grades of four
negative edges are (2, 3), (3, 4), (4, 1.5), and (4, 2.5), forming the support of the first graded Betti number
(marked by stars). The unique cycle consisting solely of negative edges is x2x3 + x3x4 + x4x2, which is born at
(4, 4), the unique support point of the second graded Betti number. Observe that the locations of corner points
in \scrI \scrX one-to-one correspond to the support of graded Betti numbers of H0(\scrK ), which illustrates that Theorem
5.4 holds.

We remind the reader that all the aug-MSs in this section are generic. In particular, when
this is not the case, the lemma above will not hold in general.

Proof. Since we concern the zeroth homology of \scrK , let us assume that \scrK itself consists
solely of vertices and edges. By Theorem 5.2, it suffices to show that every generator of
Z1(\scrK  - ), C1(\scrK  - ), and C0(\scrK  - ) is born at a different grade. In C0(\scrK  - ), every vertex xi is born
at (i, 0) for i = 1, . . . , n. Therefore, \beta M

0 (a) \leq 1 for every a \in Z2 and supp(\beta M
0 ) \subset Z \times \{ 0\} .

Also, by Definition 5.1, every generator of C1(\scrK  - ) and Z1(\scrK  - ) is born at a different grade in
Z\times N, completing the proof.

Given any two functions \alpha , \alpha \prime : Z2 \rightarrow Z\geq 0, we define \alpha  - \alpha \prime : Z2 \rightarrow Z\geq 0 as

(\alpha  - \alpha \prime )(x) = max(\alpha (x) - \alpha \prime (x), 0) for x \in Z2.

Theorem 5.4. Let \scrK be the Z2-indexed Rips filtration of an aug-MS \scrX , and let M := H0(\scrK ).
Let \beta M

i be the ith graded Betti number of M . Then

(5.2) \beta M
0 = \gamma \scrX 0 , \beta M

1 = \gamma \scrX 1  - \gamma \scrX 2 , \beta M
2 = \gamma \scrX 2  - \gamma \scrX 1 .

In particular, we note that the elder-rule feature functions \gamma \scrX j are easy to compute, as
one only needs to compute and aggregate the type of each corner in staircase intervals in the
ER-staircode of \scrX . Once \gamma \scrX j s are known, one can easily compute the graded Betti number

of H0(\scrR \mathrm{b}\mathrm{i}
\bullet (\scrX )) by Theorem 5.4. See Example 5.5 below. We also remark that Koszul homol-D
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Figure 13. The respective supports of the graded Betti numbers of N (left) and M (right) from Example 5.5.
All the graded Betti numbers attain the value 1 on their supports. The graded Betti numbers of N are directly
obtained by stacking the staircase intervals in the ER-staircode of \scrX (Remarks 2.4(i) and 3.10). The graded
Betti numbers of M are obtained by applying Theorem 5.4 to the graded Betti numbers of N ; in particular, the
support points of \beta N

1 and \beta N
2 at (4, 3) are canceled out.

ogy formulae [40, Proposition 5.1] are in a form similar to those in (5.2). However, Koszul
homology formulae do not directly imply those in (5.2) nor vice versa.

Example 5.5 (noninterval-decomposable case). Consider the metric space (\{ xi\} 4i=1, dX) in
Figure 2(A). Define hX : \{ xi\} 4i=1 \rightarrow R as hX(x1) = 1, hX(x2) = 3, hX(x3) = 2, hX(x4) = 4.
For \scrX := (X, dX , gX), let \scrI \scrX := \{ Ixi : i = 1, 2, 3, 4\} be the ER-staircode and let M :=
H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) and N :=

\bigoplus 4
i=1 I

Ixi . Utilizing Theorem 5.4, it it not hard to check that \beta M
1 \not = \beta N

1

and \beta M
2 \not = \beta N

2 (see Figure 13). Therefore, M \not \sim = N , and thus, by Theorem 4.16, M is not
interval decomposable.

Proof of Theorem 5.4. Let \scrX := (X, dX , fX) with X = \{ x1, . . . , xn\} , and assume that
fX(x1) < \cdot \cdot \cdot < fX(xn). By the construction of \scrK and \gamma \scrX i , it suffices to show the equalities
in (5.2) hold on \scrA := \{ 1, 2, . . . , n\} \times \{ 0, 1, . . . ,

\bigl( 
n
2

\bigr) 
\} \subset Z2 (\beta M

i and \gamma \scrX i vanish outside \scrA 
for i = 0, 1, 2). By Theorem 5.2 and the construction of \gamma \scrX 0 , both of \beta M

0 and \gamma \scrX 0 have
values 1 on \scrA | y=0 = \{ (1, 0), (2, 0), (3, 0) . . . , (n, 0)\} and zero outside \scrA | y=0, implying that
\beta M
0 = \gamma \scrX 0 . Note that when i = 1, 2, the supports of \beta M

i and \gamma \scrX i are contained in \scrA | y>0 =
\{ 1, 2, . . . , n\} \times \{ 1, . . . ,

\bigl( 
n
2

\bigr) 
\} . Using induction on the x-coordinate of Z2, we will prove that

\beta M
1 = \gamma \scrX 1  - \gamma \scrX 2 and \beta M

2 = \gamma \scrX 2  - \gamma \scrX 1 on the horizontal line \scrA | y=1 = \{ 1, 2, . . . , n\} \times \{ 1\} . Note
that \scrK (1, b) = \{ \{ x1\} \} for all 1 \leq b \leq 

\bigl( 
n
2

\bigr) 
, and thus again by Theorem 5.2 and the construction

of \gamma \scrX i , i = 1, 2,

(5.3) for 1 \leq b \leq 
\bigl( 
n
2

\bigr) 
, \beta M

1 (1, b) = \gamma \scrX 1 (1, b) = 0, and \beta M
2 (1, b) = \gamma \scrX 2 (1, b) = 0.

Specifically, we have \beta M
1 (1, 1) = \gamma \scrX 1 (1, 1) = \gamma \scrX 1 (1, 1)  - \gamma \scrX 2 (1, 1) and \beta M

2 (1, 1) = \gamma \scrX 2 (1, 1) =
\gamma \scrX 2 (1, 1)  - \gamma \scrX 1 (1, 1). Fix a natural number m > 2, and assume that \beta M

1 (a, 1) = \gamma \scrX 1 (a, 1)  - 
\gamma \scrX 2 (a, 1) and \beta M

2 (a, 1) = \gamma \scrX 2 (a, 1)  - \gamma \scrX 1 (a, 1) for 1 \leq a \leq m  - 1. By Theorems 4.9 and 2.5,

we have
\sum 

\bfx \leq (m,1)

\sum 2
i=0( - 1)i\beta M

i (x)
(\ast )
=

\sum 
\bfx \leq (m,1)

\sum 2
i=0( - 1)i\gamma \scrX i (x). Since (1) \beta M

0 = \gamma \scrX 0 on the

entire Z2, and (2) \beta M
i , \gamma \scrX i vanish outside \scrA for i = 1, 2, the induction hypothesis reducesD
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equality (\ast ) to
 - \beta M

1 (m, 1) + \beta M
2 (m, 1) =  - \gamma \scrX 1 (m, 1) + \gamma \scrX 2 (m, 1).

By Lemma 5.3, we cannot have \beta M
1 (m, 1) = \beta M

2 (m, 1) = 1. Therefore, we have (Case 1)
\beta M
1 (m, 1) = 1 and \beta M

2 (m, 1) = 0, (Case 2) \beta M
1 (m, 1) = 0 and \beta M

2 (m, 1) = 1, or (Case 3)
\beta M
1 (m, 1) = 0 and \beta M

2 (m, 1) = 0. Invoking that \gamma \scrX 1 (m, 1) and \gamma \scrX 2 (m, 1) are nonnegative, in
all cases, we have

\beta M
1 (m, 1) = \gamma \scrX 1 (m, 1) - \gamma \scrX 2 (m, 1), \beta M

2 (m, 1) = \gamma \scrX 2 (m, 1) - \gamma \scrX 1 (m, 1),

completing the proof of \beta M
1 = \gamma \scrX 1  - \gamma \scrX 2 and \beta M

2 = \gamma \scrX 2  - \gamma \scrX 1 on \scrA | y=1. We next apply the
same strategy to the horizontal lines y = 2, . . . , y =

\bigl( 
n
2

\bigr) 
in order, completing the proof.

Remark 5.6 (Theorem 5.4 for nongeneric cases). Let \scrX = (X, dX , fX) be an aug-MS
where every pair of elements in X has a different distance. Then, even if fX is not injective,
with any choice of an order on X that is compatible with fX , all equalities in (5.2) hold.
In order to prove this, note that negative edges of the 1-skeleton \scrK : R2 \rightarrow Simp of the
filtration \scrR \mathrm{b}\mathrm{i}(\scrX ) : R2 \rightarrow Simp are well-defined and that M := H0(\scrK ) has the minimal free
resolution described in (5.1). Furthermore, based on an argument similar to the one in the
proof of Lemma 5.3, the 0th, 1st, and 2nd graded Betti numbers of M have mutually disjoint
supports. Then an argument similar to that in the proof of Theorem 5.4 applies.

On the other hand, if dX is not injective, the equalities \beta M
1 = \gamma \scrX 1  - \gamma \scrX 2 and \beta M

2 =
\gamma \scrX 2  - \gamma \scrX 1 in (5.2) do not always hold, whereas \beta M

0 = \gamma \scrX 0 still holds without restriction: It
is not difficult to construct an aug-MS \scrX = (X, dX , fX) such that dX is noninjective, and
supp(\beta M

1 ) \cap supp(\beta M
2 ) \not = \emptyset . In this case, note that, regardless of the choice of order on the

edges of \scrK , the equalities \beta M
1 = \gamma \scrX 1  - \gamma \scrX 2 and \beta M

2 = \gamma \scrX 2  - \gamma \scrX 1 are not compatible.

Below, we will make use of Theorem 5.4 in proving Theorem 4.16.

Proof of Theorem 4.16. Without loss of generality, let us assume thatX = \{ x1, x2, . . . , xn\} 
with fX(xi) = i for i = 1, 2, . . . , n. Also, let M \sim =

\bigoplus 
k\in K IJk for some indexing set K. Observe

that M is upper-right continuous, i.e., for each (\sigma 0, \varepsilon 0) \in R2, there exist e1, e2 > 0 such that
if \sigma 0 \leq \sigma \leq \sigma 0 + e1 and \varepsilon 0 \leq \varepsilon \leq \varepsilon 0 + e2, then M(\sigma 0,\varepsilon 0) = M(\sigma ,\varepsilon ). Hence, the lower-left
boundary5 of each Jk belongs to Jk. Also, note that M(\sigma ,\varepsilon ) \not = 0 if and only if (\sigma , \varepsilon ) \in U(1, 0).

Claim 1. [barc(M) consists of n staircase intervals (Definition 3.4), and their minimal
elements are (1, 0),(2, 0),. . . ,(n, 0).] First, let us show that each interval in barc(M) is a
staircase whose minimal element lies on the \sigma -axis. Suppose not; i.e., there exists k0 \in K
such that Jk0 is either (not a staircase) or (a staircase whose minimum is not in the \sigma -axis).
Either implies that Jk0 contains a minimal element a in the interior of U(0, 0) (see Figure 14).
Then, since M \sim =

\bigoplus 
k\in K IJk , by Remark 2.4(i), we have

1 = \beta I
Jk0

0 (a) \leq 
\sum 
k\in K

\beta IJk
0 (a) = \beta M

0 (a).

5(\sigma , \varepsilon ) \in R2 is a lower-left boundary point of Jk if (\sigma , \varepsilon ) belongs to the boundary of Jk and for any r > 0,
(\sigma  - r, \varepsilon  - r) \not \in Jk. The set of lower-left boundary points of Jk is called the lower-left boundary of Jk.D
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Figure 14. If an interval J that is contained in the quadrant U(1, 0) is either (not a staircase) or (a
staircase whose minimum is not in the \sigma -axis), then there exists a point \bfa in the interior of U(0, 0) such that

\beta IJ

0 (\bfa ) = 1 (red points in the figure above).

However, by Theorem 5.4, we have

supp(\beta M
0 ) = \{ (i, 0) : i = 1, . . . , n\} \not \ni a,

a contradiction. Therefore, (1) each Jk has its minimum element in the \sigma -axis, and (2) since

\beta M
0 =

\sum 
k\in K \beta IJk

0 , by invoking Remark 3.10, the minimums of Jks form the set \{ (i, 0) : i =
1, . . . , n\} . This implies that the indexing set K contains n elements, as desired. \square 

From now on, we denote barc(M) by \{ Jk\} nk=1, where the minimum of Jk is (k, 0) for each
k. Also, let

(5.4) \varepsilon 1 := max
xi,xj\in X

dX(xi, xj).

Claim 2. [J1 = U(1, 0).] Observe that if \sigma \in [n,\infty ) and \varepsilon \in [\varepsilon 1,\infty ), then

dimM(\sigma ,\varepsilon ) = 1 and rank \varphi M ((1, 0), (\sigma , \varepsilon )) = 1.

Since rank \varphi M ((1, 0), (\sigma , \varepsilon )) is equal to the total multiplicity of elements of barc(M) which
contain both (1, 0) and (\sigma , \varepsilon ), J1 must be U(1, 0). \square 

Now let f :
\bigoplus n

k=1 I
Jk \rightarrow M be any isomorphism. For each k, let 1k := 1 \in (IJk)(k,0)(= F),

and let f(k,0)(1k) := vk \in M(k,0). For xk \in X and (\sigma , \varepsilon ) \in [k,\infty ) \times R+, let [xk](\sigma ,\varepsilon ) be the
zeroth homology class of xk. When confusion is unlikely, we will suppress the subscript (\sigma , \varepsilon )
in [xk](\sigma ,\varepsilon ).

Note that, by the definition of M(k,0) for each k = 1, . . . , n, there exist ck\ell \in F for
\ell = 1, . . . , k such that

(5.5)

v1 = c11[x1],

v2 = c21[x1] + c22[x2],

...

vn = cn1[x1] + \cdot \cdot \cdot + cnn[xn].

An x\ell \in X will be called a summand of vk if ckl \not = 0. Also, for each k, we define the function
vk : U(k, 0) \rightarrow 

\coprod 
(\sigma ,\varepsilon )\in U(k,0)M(\sigma ,\varepsilon ) as (\sigma , \varepsilon ) \mapsto \rightarrow \varphi M ((k, 0), (\sigma , \varepsilon ))(vk). Let supp(vk) be the setD
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of (\sigma , \varepsilon ) \in U(k, 0) such that vk(\sigma , \varepsilon ) is nonzero in M(\sigma ,\varepsilon ). Since f is an isomorphism, we have
the following:

(i) \{ supp(vk)\} nk=1 = \{ Jk\} nk=1.
(ii) For each (\sigma , \varepsilon ) \in U(1, 0), \{ vk(\sigma , \varepsilon ) : \sigma \in [k,\infty )\} is a basis of M(\sigma ,\varepsilon ).

Now we investigate constraints on the coefficients ck\ell .
Claim 3. [For each k, xk is a summand of vk.] By item (ii) above, the set

Bk := \{ v1(k, 0),v2(k, 0), . . . ,vk(k, 0)\} 

is linearly independent in M(k,0). Invoking equations in (5.5) and the definition of vk, observe
that if ckk = 0, then Bk is linearly dependent, a contradiction. \square 

Claim 4. [For k \in \{ 2, . . . , n\} ,
\sum k

\ell =1 ck\ell = 0 and vk has at least two summands.] Fix
k \in \{ 2, . . . , n\} , and pick any (\sigma , \varepsilon ) \in U(n, \varepsilon 1) (see (5.4)). Then we have [x\ell 1 ](\sigma ,\varepsilon ) = [x\ell 2 ](\sigma ,\varepsilon ) for

all \ell 1, \ell 2 \in \{ 1, . . . , n\} , and thus vk(\sigma , \varepsilon ) = (
\sum k

\ell =1 ck\ell )\cdot [xk](\sigma ,\varepsilon ). Note that 1 = dimM(\sigma ,\varepsilon ), which
is equal to the number of intervals in barc(M) that includes (\sigma , \varepsilon ). Since U(1, 0) \in barc(M)
includes (\sigma , \varepsilon ) (Claim 2), supp(vk) must not include (\sigma , \varepsilon ), which implies

\sum k
\ell =1 ck\ell to be 0.

This also forces vk to admit at least two different summands, including xk (Claim 3). \square 
Recall that, for each k, Ixk

denotes the elder-rule interval associated to xk (see (3.1)).
Claim 5. [For each k, Ixk

\subseteq supp(vk).] By Claim 2, item (i) above, and Definition 3.3, we
readily know Ix1 = supp(v1) = U(1, 0). Let us fix any k \in \{ 2, . . . , n\} and any (\sigma , \varepsilon ) \in Ixk

.

By definition of Ixk
, [xk](\sigma ,\varepsilon ) is the singleton \{ xk\} . Therefore, in vk(\sigma , \varepsilon ) =

\sum k
\ell =1 ck\ell [x\ell ](\sigma ,\varepsilon ),

the nontrivial term ckk[xk](\sigma ,\varepsilon ) cannot be combined with any other term (by Claim 3, ckk \not = 0,
and by Claim 4, there is another nonzero ck\ell ). This implies that vk(\sigma , \varepsilon ) \not = 0 and in turn
(\sigma , \varepsilon ) \in supp(vk). \square 

By Claim 5, we have

dim(M) =
n\sum 

k=1

1Ixk
\leq 

n\sum 
k=1

1\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\bfv k) = dim(M).

This implies that for each k, 1Ixk
= 1\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\bfv k) and in turn Ixk

= supp(vk) = Jk by item (i)
above.

Proof of Theorem 5.2. In order to prove Theorem 5.2, we need the two lemmas below.

Lemma 5.7. Let \scrK : Z2 \rightarrow Simp be the 1-skeleton of the Z2-indexed Rips filtration of an
aug-MS. Let K - be the filtration of \scrK that is obtained by removing all positive edges in \scrK .
Then H0(\scrK ) \sim = H0(\scrK  - ).

Proof. Observe that, for each a \in Z2, it holds that \pi 0(\scrK (a)) = \pi 0(\scrK  - (a)) \in Subpart(X).
Therefore, the two bipersistence treegrams \pi 0(\scrK ), \pi 0(\scrK  - ) : Z2 \rightarrow Subpart(X) are the same.
By Proposition 4.15, we have H0(\scrK ) \sim = \scrF F \circ \pi 0(\scrK ) \sim = \scrF F \circ \pi 0(\scrK  - ) \sim = H0(\scrK  - ).

Lemma 5.8. For any simplicial 1-complex, the following sequence is exact:

0  - \rightarrow Z1(K)
i - \rightarrow C1(K)

\partial 1 - \rightarrow C0(K)
p - \rightarrow H0(K)  - \rightarrow 0,

where i is the canonical inclusion, \partial 1 is the boundary map, and p is the canonical quotient.D
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The proof is straightforward, and thus we omit it.
For a persistence module M , let IM denote the submodule of M that is generated by the

images of all linear maps \varphi N (a,b), with a < b in Z2. We are now ready to prove Theorem
5.2.

Proof of Theorem 5.2. Let us prove (i). By Lemma 5.7, H0(\scrK  - ) is isomorphic to H0(\scrK ),
and thus it suffices to show the exactness of

0  - \rightarrow Z1(\scrK  - )
i - \rightarrow C1(\scrK  - )

\partial 1 - \rightarrow C0(\scrK  - )
p - \rightarrow H0(\scrK  - )  - \rightarrow 0.

At each grade a \in Z2, we have the sequence of vector spaces and linear maps

0  - \rightarrow Z1(\scrK  - 
\bfa )

i\bfa  - \rightarrow C1(\scrK  - 
\bfa )

(\partial 1)\bfa  -  -  - \rightarrow C0(\scrK  - 
\bfa )

p\bfa  - \rightarrow H0(\scrK  - 
\bfa )  - \rightarrow 0,

which is exact by Lemma 5.8.
Next, we prove (ii). In the following proof, we assume the ground field F is Z2 for the

sake of simplicity. We need to show that (a) C0(\scrK  - ), C1(\scrK  - ), and Z1(\scrK  - ) are free modules
and that (b) the sequence in (5.1) satisfies the minimality condition. Let us prove (a). By
definition, it is clear that C0(\scrK  - ) and C1(\scrK  - ) are free . Also, Z1(\scrK  - ), the kernel of \partial 1, is free
by [15, section 6].6 Let us check (b). We show that the image of C1(\scrK  - ) via \partial 1 is contained
in IC0(\scrK  - ). It suffices to show that every generator of C1(\scrK  - ) is mapped into IC0(\scrK  - ).
Pick any edge xixj (i < j) that appears in \scrK  - . Then, in the filtration \scrK  - , xixj is born at
(j, dZX(xi, xj)) =: a, whereas the vertices xi and xj are born at (i, 0) and (j, 0), respectively.
Note that (i, 0) < (j, 0) < a in Z2. Therefore, \partial 1| \bfa (xixj) = xi + xj \in IC0(\scrK  - )\bfa .

Since Z1(\scrK  - ) is free, the sequence (5.1) is a minimal free resolution of H0(\scrK  - ); this fact
directly follows from a standard construction of a minimal free resolution of a finitely generated
module over a graded ring [46, Theorem 7.3] (the polynomial ring F[t1, t2] is a graded ring by
degree).

6. Computation and algorithms.

6.1. Algorithm.

Theorem 6.1. Let (X, dX , fX) be a finite aug-MS with n = | X| :
(a) We can compute the ER-staircode I\scrX = \{ \{ Ix : x \in X\} \} in O(n2 log n) time. If X \subset Rd

for a fixed d and dX the Euclidean distance, the time can be improved to O(n2\alpha (n)), where
\alpha (n) is the inverse Ackermann function.

(b) Each Ix \in I\scrX has complexity O(n). Given I\scrX , we can compute zeroth fibered barcode
BL for any line L with positive slope in O(| BL| log n) time where | BL| is the size of BL.

(c) Given I\scrX , we can compute the zeroth graded Betti numbers in O(n2) time.

We sketch the proof of the above theorem in the remainder of this section, with missing
details in Appendix C.

Consider a function value \sigma \in R, and recall that X\sigma consists of all points in X with fX
value at most \sigma . Let \scrK \sigma = \scrR \bullet (X\sigma , dX) denote the Rips filtration of (X\sigma , dX) (recall Example

6The authors of [15] observe that for any two free modules M,N : Z2 \rightarrow \bfV \bfe \bfc , the kernel of any natural
transformation f : M \rightarrow N is a free module.D
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Table 1
Complexity comparison with [39, 40] for computing the fibered barcode and graded Betti number of H0(\scrK ),

where \scrK is the 1-skeleton Z2-indexed Rips bifiltration of an aug-MS of n points. | BL| is the cardinality of the
fibered barcode for query line L of positive slope.

Our algorithm RIVET [39] Graded Betti number [40]

Size of descriptor O(n2) O(n6) \sim O(n8) \Omega (n2)
Fibered barcodes query time O(| BL| log n) O(log n+ | BL| ) -
Computation time O(n2 log n) O(n8) \sim O(n9) \Omega (n3)

4.2). The corresponding 1-parameter treegram (dendrogram) is \theta \sigma := \pi 0(\scrK \sigma ). On the other
hand, for any \sigma , we can consider the complete weighted graph G\sigma = (V\sigma = X\sigma , E\sigma ) with edge
weight w(x, x\prime ) = dX(x, x\prime ) for any x, x\prime \in X\sigma . It is well known that the treegram \theta \sigma can be
computed from the minimum spanning tree (MST) T\sigma of G\sigma .

Assume all points in X are ordered x1, x2, . . . , xn such that fX(xi) \leq fX(xj) whenever
i < j, and set \sigma i = f(xi) for i \in [1, n]. Note that as \sigma varies, X\sigma only changes at \sigma i. For
simplicity, we set \theta i := \theta \sigma i = \pi 0(\scrK \sigma i), Gi := G\sigma i , and Ti := MST (Gi) as the MST for the
weighted graph Gi. Our algorithm depends on the following lemma, the proof of which is in
Appendix C.2.

Lemma 6.2. A decorated ER-staircode for the finite aug-MS (X, dX , fX) can be computed
from the collection of treegrams \{ \theta i, i \in [1, n]\} in O(n2) time.

In light of the above result, the algorithm to compute ER-staircode is rather simple:
(Step 1): We start with T0 = empty tree. At the ith iteration,

(Step 1-a) we update Ti - 1 (already computed) to obtain Ti, and
(Step 1-b) we compute \theta i from Ti and \theta i - 1.

(Step 2): We use the approach described in the proof of Lemma 6.2 to compute the ER-
staircode in O(n2) time.

For (Step 1-a), note that Gi is obtained by inserting vertex xi, as well as all i  - 1 edges
between (xi, xj), j \in [1, i  - 1], into graph Gi - 1. By [20], one can update the MST Ti - 1 of
Gi - 1 to obtain the MST Ti of Gi in O(n) time.

For (Step 1-b), once all i - 1 edges spanning i vertices in Ti are sorted, then we can easily
build the treegram \theta i in O(i\alpha (i)) = O(n\alpha (n)) time, by using union-find data structure (see
Figure 17 above Appendix C.2). Sorting edges in Ti takes O(i log i) = O(n log n) time. Hence,
the total time spent on (Step 1-b) for all i \in [1, n] is O(n2 log n).

We remark that knowing the order of all edges in Ti - 1 may not help, as compared to
Ti - 1, Ti may have \Omega (i) different edges newly introduced, and these new edges still need to be
sorted. Nevertheless, we show in Appendix C.1 that if X \subset Rd for a fixed dimension d, then
each Ti will only have a constant number of different edges compared to Ti - 1, and we can
sort all edges in Ti in O(n) time by inserting the new edges to the sorted list of edges in Ti - 1.
Hence, \theta i can be computed in O(n\alpha (n)) +O(n) = O(n\alpha (n)) time for this case.

Putting everything together, Theorem 6.1(a) follows. See Appendix C.1 for the proofs of
(b) and (c).
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6.2. Comparison with other algorithms. Let \scrK be the 1-skeleton of the Z2-indexed Rips
filtration of an aug-MS \scrX = (X, dX , fX), where | X| = n. Let M := H0(\scrK ).

Comparison with [39]. Let \kappa := \kappa x\kappa y, where \kappa x and \kappa y are the number of different values
of x and y coordinates in supp(\beta M

0 ) \cup supp(\beta M
1 ), respectively. In our case, \kappa x = n and \kappa y =

(the number of negative edges in \scrK ), which is between O(n) and O(n2). Let m be the number
of simplices in \scrK , which is O(n2).

From the filtration \scrK , RIVET computes a certain data structure \scrA \bullet (M) of size O
\bigl( 
m\kappa 2

\bigr) 
in

O
\bigl( 
m3\kappa + (m+ log \kappa )\kappa 2

\bigr) 
time and O

\bigl( 
m2 +m\kappa 2

\bigr) 
memory. This \scrA \bullet (M) allows efficient query

about the fibered barcode of M in O(log \kappa +| BL| ), where | BL| is the size of the fibered barcode
barc(M | L) for a positive slope line L \in \scrL . See Table 1 for the comparison of computational
complexity between RIVET and our method.

Comparison with [40]. The algorithm in [40] takes as input a short chain complex of free

modules F 2 \partial 2

 - \rightarrow F 1 \partial 1

 - \rightarrow F 0 such that M \sim = ker \partial 1/ im \partial 2 and outputs a minimal presentation
of a 2-parameter persistence module M , from which the graded Betti numbers of M are
readily computed. It runs in time O

\bigl( \sum 
i

\bigm| \bigm| F i
\bigm| \bigm| 3 \bigr) and requires O

\bigl( \sum 
i

\bigm| \bigm| F i
\bigm| \bigm| 2 \bigr) memory, where

| F i| denotes the size of a basis of F i. In our setting, we readily have | F 0| = 0, | F 1| = n, and\bigm| \bigm| F 2
\bigm| \bigm| =(the number of negative edges in \scrK ), which is between O(n) and O(n2). Therefore, in

order to obtain the graded Betti numbers via the method in [40], it takes at least \Omega (n3) time
and \Omega (n2) memory.

7. Discussion. Some open questions and conjectures follow:
1. Barcodes and elder-rule-staircodes. (1) Let \scrX = (X, dX , fX) be an aug-MS. If x \in X

has a constant conqueror, is the interval module supported by Ix in (3.1) a summand of
H0(\scrR \mathrm{b}\mathrm{i}(\scrX ))? (2) By virtue of Theorem 4.16, if H0(\scrR \mathrm{b}\mathrm{i}(\scrX )) is interval decomposable,
then the ER-staircode is identical to the generalized persistence diagram of H0(\scrR \mathrm{b}\mathrm{i}(\scrX ))
[33]. In general, what is the relation between the ER-staircode and the generalized
persistence diagram?

2. Extension to d-aug-MSs. Can we generalize our results to the setting of more than
two parameters? Namely, for d-aug-MSs \scrX d := (X, dX , f1, f2, . . . , fd), fi : X \rightarrow R,
i = 1, . . . , d, can we recover the zeroth homological information of the (d+1)-parameter
filtration induced by \scrX d by devising ``an elder-rule-staircode"" of \scrX d? Note that, under
the assumption that the set \{ (fi(x))di=1 \in Rd : x \in X\} is totally ordered in the poset
Rd, a straightforward generalization of the elder-rule staircode is conceivable. However,
without this strict assumption, it is not very clear how elder-rule-staircodes should be
defined.

3. Extension to higher-order homology. The ambiguity mentioned in the previous para-
graph also arises when trying to devise an ``elder-rule-staircode"" for higher-order ho-
mology of a multiparameter filtration; namely, when k \geq 1, the birth indices of k-cycles
are not necessarily totally ordered in the multiparameter setting, and thus determining
which cycle is older than another is not clear in general.

4. Metrics and stability. Recall that the collection E(\scrX ) of all possible ER-staircodes of
an aug-MS \scrX is an invariant of \scrX (the paragraph after Example 3.6). One possible
metric between two collections of ER-staircodes is the Hausdorff distance db\mathrm{H} in the
metric space of barcodes over R2 with the generalized bottleneck distance db [6]. OnD
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the other hand, there exists a metric d1\mathrm{G}\mathrm{H} which measures the difference between aug-
MSs [11] (see also [17]). Let d\mathrm{I} be the interleaving distance between 2-parameter
persistence modules [38]. Are there constants \alpha , \beta > 0 such that for all aug-MSs \scrX 
and \scrY , the inequalities below hold?

\alpha \cdot d\mathrm{I}
\Bigl( 
H0

\Bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrX )
\Bigr) 
,H0

\Bigl( 
\scrR \mathrm{b}\mathrm{i}

\bullet (\scrY )
\Bigr) \Bigr) 

\leq db\mathrm{H}(E(\scrX ), E(\scrY )) \leq \beta \cdot d1\mathrm{G}\mathrm{H}(\scrX ,\scrY ).

5. Completeness. Recall that the collection E(\scrX ) of all the elder-rule-staircodes of an
aug-MS \scrX is not a complete invariant (the paragraph after Example 3.6). How faithful
is this collection in general? Is there any class of aug-MSs \scrX such that E(\scrX ) completely
characterizes \scrX ?

Appendix A. Missing details from section 3.

Proof of Proposition 3.5. Let x \in X be the point which achieves the minimum of fX .
Then Ix = \{ (\sigma , \varepsilon ) \in R2 : (fX(x), 0) \leq (\sigma , \varepsilon )\} , the closed quadrant whose lower-left corner
is (fX(x), 0). Let y \in X be a point which does not achieve the minimum of fX . Define
uy : R \rightarrow R\geq 0 by sending \sigma \in R to the minimum \varepsilon \in R\geq 0 for which there exists z \in X with
fX(z) < fX(y) such that y belongs to the same block with z in the partition \pi 0(\scrR \varepsilon (X\sigma , dX))
(see the paragraph after Definition 4.1). It is clear that uy is nonincreasing. Also, since X
is finite, uy is piecewise constant. By observing Iy = \{ (\sigma , \varepsilon ) \in R2 : \sigma \in [fX(y), 0) and \varepsilon \in 
[0, uy(\sigma ))\} , we complete the proof.

We precisely define the jth-type corner points of staircase intervals depicted in Figure 5.

Definition A.1 (types of corner points). Let I be a staircase interval of R2. Fix a \in R2.
This a is a 0th type corner point of I if

1I(a) = 1, lim
\varepsilon \rightarrow 0+

1I(a - (\varepsilon , 0)) = lim
\varepsilon \rightarrow 0+

1I(a - (0, \varepsilon )) = lim
\varepsilon \rightarrow 0+

1I(a - (\varepsilon , \varepsilon )) = 0.

The point a is a 1st-type corner point of I if

1I(a) - lim
\varepsilon \rightarrow 0+

1I(a - (\varepsilon , 0)) - lim
\varepsilon \rightarrow 0+

1I(a - (0, \varepsilon )) + lim
\varepsilon \rightarrow 0+

1I(a - (\varepsilon , \varepsilon )) =  - 1.

The point a is a 2nd-type corner point of I if

1I(a) = 0, lim
\varepsilon \rightarrow 0+

1I(a - (\varepsilon , 0)) = lim
\varepsilon \rightarrow 0+

1I(a - (0, \varepsilon )) = lim
\varepsilon \rightarrow 0+

1I(a - (\varepsilon , \varepsilon )) = 1.

We remark that Definition A.1 is closely related to the differential of an interval introduced
in [25].

Appendix B. Missing details from section 4. In order to show that Definition 4.3 is
well-defined, it suffices to show the following.

Proposition B.1 (elder-rule-barcode is well-defined). Let \theta X : R \rightarrow Subpart(X) be a tree-
gram over X, and suppose that there exist different y, z \in X with b(y) = b(z). Consider two
orders <1, <2 which are the same except for the pair y, z, i.e., y <1 z and z <2 y. Then
\{ \{ [b(x), d<1(x)) : x \in X\} \} = \{ \{ [b(x), d<2(x)) : x \in X\} \} .D
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Proof. For x \in X different from y and z, it is clear that [b(x), d<1(x)) = [b(x), d<2(x)).
Hence, letting b := b(y) = b(z), it suffices to show that\bigl\{ \bigl\{ \bigl[ 

b, d<1(y)
\bigr) 
,
\bigl[ 
b, d<1(z)

\bigr) \bigr\} \bigr\} 
=

\bigl\{ \bigl\{ \bigl[ 
b, d<2(y)

\bigr) 
,
\bigl[ 
b, d<2(z)

\bigr) \bigr\} \bigr\} 
,

or equivalently \{ \{ d<1(y), d<1(z)\} \} = \{ \{ d<2(y), d<2(z)\} \} . Assume that y and z merge at \varepsilon = r0
in \theta X . Since <1 and <2 are the same except for the pair y, z, we use < to denote both <1

and <2 when we compare y, z with the other elements in X. In the treegram \theta X , there are
only two possible cases: (Case 1) An element w \in X with w < y, z merges with the block
containing both y, z at \varepsilon = r1 \geq r0. Then d<1(y) = r1 and d<1(z) = r0, whereas d

<2(y) = r0
and d<2(z) = r1. (Case 2) Assume that there are w1 < y and w2 < z such that w1 and y
merge at \varepsilon = r2 \leq r0 and w2 and z merge at \varepsilon = r3 \leq r0 (it is possible that w1 = w2). Then
d<1(y) = d<2(y) = r2 and d<1(z) = d<2(z) = r3, completing the proof.

Appendix C. Missing details from section 6.

C.1. Proofs of Theorem 6.1. We first present a lemma needed for the proof of Theorem
6.1(a). For simplicity, we assume that all distances between points in X (and thus edge weights
in Gis) are distinct. If this is not the case, we only need to fix a total order compatible with
all distances for the algorithm to work in the same way.

Lemma C.1. Given a graph G = (V,E) with distinct edge weights, if e \in E is the largest
edge of a cycle C in G, then e will not appear in the MST of G.

Proof. Let us denote e as the largest edge in the cycle C of size k+1 where C consists of
edges e, e1, e2, . . . , ek. Also denote the MST of G as T . From C and T , we will give a way to
construct new cycle C \prime where all edges except e belong to T .

Since T is an MST, for any i \in \{ 1, 2, . . . , k\} , if ei does not belong to T , adding ei will form
a cycle Ci where ei is the largest edge and the only non-MST edge in Ci.

Construct new cycle C \prime = C+\Sigma i\in \{ j| ej /\in T\} Ci where the addition is performed on F2. Every
time we add Ci, it will cancel out ei. Since we did so for all non-MST edges, the resulting
cycle C \prime will consist of all MST edges plus e.

We argue that e is also the largest edge in C \prime . This holds because every time we added Ci,
we knew ei is the largest edge in Ci, and because | w(e)| \geq | w(ei)| , where w is weight function
on edges, we knew e is also the largest edge in C \prime . By the property of MST (any non-MST
edge is the largest edge in the cycle created by adding itself to MST), we conclude that e is a
non-MST edge.

The following lemma, combined with the argument in the main text, will establish the
time complexity of the algorithm to compute an ER-staircode for the case when X is from a
fixed dimensional Euclidean space Rd.

Lemma C.2. Let Ti - 1 and Ti be the MST of Gi - 1 and Gi as defined in the algorithm. For
fixed dimensional Rd and dX to be Euclidean distance, the number of edges in Ti \setminus Ti - 1 is O(1)
(depending on d).

Proof. Recall that Gi is obtained by adding a new vertex xi and edges incident to xi.
First, note that by Lemma C.1, edges in Ti = MST (Gi) are either from Ti - 1 = MST (Gi - 1)D
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>60

Figure 15. Illustration of packing argument in the proof of Lemma C.2. xi is the new vertex. Dashed edges
are new edges entering Ti. Red edges are non-MST edges, and therefore by the property of non-MST edges, the
angle corresponding to red edges must be at least \pi 

3
.

or new edges just inserted. That is, no edge in Gi - 1 \setminus Ti - 1 will contribute to Ti: Such an edge
will be the largest-weight edge of some cycle in Gi.

We now prove that for the case where X \subset Rd only O(1) (where the big-O hides terms
depending on d), new edges (incident to xi) can be in Ti.

In particular, comparing Ti - 1 and Ti, there are only two types of edges that are subject
to change: (1) edges that are in Ti - 1 but will leave Ti - 1 and (2) edges incident to xi and will
enter the new Ti.

Assume there are k edges that will leave Ti - 1. By deleting them, the original Ti - 1 is
decomposed into k + 1 small trees. There must be k + 1 edges incident to xi entering Ti. We
denote those k + 1 edges as \scrE new,i = \{ xixi1 , xixi2 , . . . , xixik+1

\} .
Pick any two nodes a, b from \scrE new,i = \{ xi1 , xi2 , . . . , xik+1

\} ; they will form a triangle with
xi. By the property of MST, edge ab in triangle \bigtriangleup abxi

is the longest edge, as ab /\in Ti while
xia, xib \in Ti. By elementary Euclidean geometry, it can be shown that angle \sphericalangle axib must
be no less than \pi 

3 , and this holds for every pair of nodes from \scrE new,i = \{ xi1 , xi2 , . . . , xik+1
\} .

Now by a packing argument, we can show that there can be O(Cd) such well-separated points
around xi in Rd for some constant C; see Figure 15 for an illustration.

Indeed, consider the unit sphere S around xi in Rd, and let yj be the intersection of the
ray starting at xi and passing through xij with S. The previous paragraph establishes that
the angle \sphericalangle yjxiyj\prime \geq \pi /3 for any j \not = j\prime \in [1, k+1]. It then follows that the geodesic distance
between yj and yj\prime on S is at least \pi /3. In other words, geodesic balls of radius \pi /6 centered
at yj 's for j \in [1, k + 1] have to be all disjoint. The number of such balls (and thus k + 1)
is at most Area(S)/B, where Area(S) stands for the surface volume of unit d-sphere in Rd,
while B is the volume of a (d - 1)-ball of radius sin\pi 

6 = 1
2 . Hence, there exists some constant

C > 1 such that k = O(Cd). This proves the lemma.

We now present proofs for parts (b) and (c) of Theorem 6.1.

Lemma C.3. The size of the ER-staircode is O(n2).D
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Figure 16. (A) An illustration of Ixi where its lower envelope li (vertical line segment) and hi (horizontal
ray) are colored red and blue. (B) An illustration of Case 2 in the proof of Lemma C.4.

Proof. We claim that for every x \in \scrX , the size of Ix is O(n) and the lemma will then
follow. This holds because every Ix has a staircase shape, and the x-coordinates of corner
points can only be one of the values fX(xi) for some xi \in X.

Lemma C.4. Given I\scrX , after O(n2 log n) time preprocessing, we can build a data structure
of size O(n2) so that, given any line L with positive slope, the zeroth fibered barcode BL with
respect to L can be computed in O(| BL| log n) time, where | BL| is the size of the fibered barcode.

Proof. First, given an Ix, recall that it has a staircase shape; see Figure 16. In particular,
its lower envelope consists of one vertical and one horizontal segment. Its upper envelope U
is the graph of a piecewise constant nondecreasing function in the plane consisting of O(n)
horizontal and vertical line segments. Given a line L with positive slope, its intersection with
the lower envelope of Ix thus takes only O(1) time. The upper envelope can only intersect
with L at most one point, either within some horizontal segment of U or within a vertical
segment of U . To identify this intersection point, we simply binary search twice, once among
all horizontal segments and once among all vertical segments in O(log n) time.

Next, we show that we can avoid checking all n number of Ixs. Instead, we will compute
only the set \widehat \scrI L of Ixs that will intersect L: Note that there are k = | BL| number of such
staircodes. In what follows, we describe how to preprocess all staircodes so that this set \widehat \scrI L
can be reported in O(log n+ k) time.

Specifically, for any xi \in \scrX , let \ell i and hi be the vertical and horizontal segments of the
lower envelope of Ixi ; see Figure 16 for an illustration. Note that each hi is in fact a half line
in the x-axis. It is easy to see that the line L intersects Ixi if and only if L intersects either
\ell i or hi.

Case 1: Reporting intersection with his. Given the collection of all his, i \in [1, n], in
O(n log n) time, we can build a standard 1D range reporting data structure of size O(n),
over the collection of left endpoints ai's of his , i \in [1, n]\} , so that given a query point b, we
can report all points in \{ ai\} to the left of b in O(log n + s) time, where s is the number of
such points.

Now given a query line L, let bL be the intersection between L and the x-axis. We use the
data structure to compute, say, k1 number of points from \{ ai\} to the left of bL in O(log n+k1)
time. Each such point corresponds to a ray hi that will intersect L.D
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Figure 17. The left figure shows an MST of five points where nodes with low (high) index appear early
(later). The weight of each edge is the length of the edge (e.g., w(x1, x3) > w(x2, x4)). The right figure shows
the corresponding decorated treegram. At each nonleaf node, we only need to store a tuple where the first number
stands for the index of the node that is conquered while the second number stands for the index of the node that
has not been conquered (eldest) in the subtree.

Case 2: Reporting intersection with \ell is. What remains is to build a data structure to report
the set of \ell is intersecting L. To this end, note that for each i \in [1, n], the point ai introduced
above is also the bottom endpoint of the vertical segment \ell i; let ti denote the top endpoint
for \ell i. Given a query line L, we wish to report all i's such that ti is above L while ai is below
L. Again, let bL denote the intersection of L with the x-axis: As the slope of L is positive, if
a vertical segment \ell i intersects L, then ai must lie to the right of bL.

Now for each j \in [1, n], set

Aj := \{ ti | ai \geq aj\} .

Given L, let ar be the closest point to bL with ar \geq bL. Obviously, the line L intersects \ell i if
and only if ti \in Ar and ti is above L. Hence, we want to perform a half-plane range reporting
query among the points in Ar. To this end, for each i \in [1, n], we use the classic approach of
[19] to build a data structure of size O(| Ai| ) = O(n) in time O(| Ai| log | Ai| ) = O(n log n), so
that given a line L, the set of points from Ai above L can be reported in O(log n + s) time
where s is the number of such points. Overall, the total size of all such data structures for all
i \in [1, n] is O(n2) and can be constructed in O(n2 log n) time. Given L, we first identify ar
as described above, and then query for the set of tis from Ar lying above L in O(log n + k2)
time, where k2 is the number of such tis.

Putting Cases 1 and 2 together, we can report all k = k1 + k2 staircodes \widehat \scrI L intersecting
a query line L of positive slope in O(log n+ k) time.

Once we have \widehat \scrI L, for each Ix \in \widehat \scrI L, we use the procedure described at the beginning of this
proof to compute the intersection between L and Ix in O(log n) time for each Ix. In total, it
takes O(k log n) to compute all intersections. The total query time is O(log n+ k+ k log n) =
O(k log n) = O(| BL| log n), as claimed.

Lemma C.5. Given I\scrX , we can compute the zeroth graded Betti numbers in O(n2) time.

Proof. Since the total number of segments of the ER-staircode is O(n2), so is the number
of corner points. In other words, only O(n2) grades could potentially have a nonzero \gamma \scrX i or
\beta M
i value for i = 0, 1, or 2. We can therefore compute graded Betti numbers according to the

formula in Theorem 5.4, by evaluating \gamma \scrX i and \beta M
i at each of the O(n2) possible grades.
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Figure 18. Illustration of the assembling process to recover Ixi . Note that we do not plot the whole
treegram at each function value for simplicity. xi here is a leaf in the right subtree of every treegram. We will
first compute the decorated treegrams, illustrated in Figure 17. From these decorated treegrams, we are able to
retrieve \epsilon values of Ix for each of the n function values \sigma 1, . . . , \sigma n with \sigma i = f(xi) and thus assemble Ixi .

C.2. Proof of Lemma 6.2. We now give a detailed description of the process to recover
the ER-staircode from the collection of treegrams in O(n2) time. Recall that conqueror is
defined in section 4.2. When x\prime is a conqueror of x in Gi = G\sigma i , we also say x is conquered
by x\prime at height uX\sigma i

(x, x\prime ). To convert treegrams at different function values to staircode, we
will decorate the treegrams with some extra information. On the high level, we need to keep
the information about the node index conquered at different heights in the treegram, which
can be done in linear time by traversing the treegram from bottom to top.

Specifically, denote the sorted height values of treegram \theta i at function value \sigma i as \scrE i =
\{ \epsilon 1 < \epsilon 2 < \cdot \cdot \cdot < \epsilon i - 1\} . At each nonleaf node of height \epsilon j \in \scrE i in the treegram \theta i, we record
(a) the index of the node that is conquered at height \epsilon j and (b) the index of the single node
in subtrees (rooted at height \epsilon j) who has not been conquered yet. (b) is needed to update (a)
of the node at height \epsilon j+1 in constant time. Traversing treegrams bottom-up and computing
(a) and (b) for every nonrooted node takes O(i) = O(n) time. An illustration of the idea of
decorated treegrams is shown in Figure 17.

After computing n decorated treegrams at n function values, we can recover the ER-
staircode by assembling decorated treegrams in the following way. Without loss of generality,
we state the process to recover single Ix in the ER-staircode. For every function value \epsilon i, find
corresponding \sigma (i.e., uX\sigma i

(x, x\prime )) in \scrE i at which x is conquered. Repeating this process for
all function values will recover Ix. Figure 18 illustrates the idea.

We restate Lemma 6.2 with a proof.

Lemma C.6. A decorated ER-staircode for the finite aug-MS (X, dX , fX) can be computed
from the collection of dendrograms \{ \theta i, i \in [1, n]\} in O(n2) time.

Proof. The decoration of every treegram takes O(n) time and in total O(n2) for n tree-
grams. Assembling Ix for each x \in \scrX takes O(n) time since the complexity of every Ix is
O(n), and so totally recovering the ER-staircode takes O(n2) time. For correctness, we prove
that our process can recover Ix for every x \in \scrX . This holds because for any x \in \scrX and
\sigma i \in fX we can recover uX\sigma i

(x, x\prime ), where x\prime is the conqueror of x.

Acknowledgments. The authors thank the anonymous reviewers who made a number
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Figure 19. A complement to Figure 1. First row: Three point clouds sampled from R2 at increasing
noise levels: the leftmost point cloud consists of three different clusters (cluster labels are denoted by three
different colors: red, blue, and green), the middle and rightmost point clouds contain increasingly more outlier
points, i.e., ``noise""; these points are colored in gray. By equipping these three point clouds with codensity
functions (as described in Figure 1) and Euclidean distance, we obtain three aug-MSs. Second row: The ER-
staircodes corresponding to these three aug-MSs. Observe that (1) the blocks corresponding to the outlier points
(in gray) have lower density and therefore appear later (i.e., large x-coordinates of the left-bottom corners)
in their corresponding ER staircodes; (2) for different noise levels, there are three large blocks, reflecting the
presence of three well-defined clusters. Third row: The same ER staircodes without their respective largest
blocks for visual clarity. Blocks are colored according to their cluster membership. See the GitHub repository
https:// github.com/Chen-Cai-OSU/ER-staircode for the code used for producing this example.
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