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Abstract—In this paper, we study a fresh data acquisition
problem to acquire fresh data and optimize the age-related
performance when strategic data sources have private market
information. We consider an information update system in which
a destination acquires, and pays for, fresh data updates from
a source. The destination incurs an age-related cost, modeled
as a general increasing function of the age-of-information (AoI).
The source is strategic and incurs a sampling cost, which is
its private information and may not be truthfully reported to
the destination. To this end, we design an optimal (economic)
mechanism for timely information acquisition by generalizing
Myerson’s seminal work. The goal is to minimize the sum of the
destination’s age-related cost and its payment to the source, while
ensuring that the source truthfully reports its private information
and will voluntarily participate in the mechanism. Our results
show that, under some distributions of the source’s cost, our
proposed optimal mechanism can lead to an unbounded benefit,
compared against a benchmark that naively trusts the source’s
report and thus incentivizes its maximal over-reporting.

I. INTRODUCTION

The rapidly growing number of mobile devices and the
dramatic increase in real-time applications have driven interest
in fresh data as measured by the age-of-information (AoI)
[1], [2]. Real-time applications in which fresh data is critical
include real-time monitoring, data analytics, and vehicular net-
works. For example, real-time traffic information and the speed
of vehicles is crucial in autonomous driving and unmanned
aerial vehicles. Another example is real-time mobile crowd-
sensing (or mobile crowd-learning [3]) applications, in which a
platform is fueled by mobile users’ participatory contribution
of real-time data. This class of examples includes real-time
traffic congestion and accident information on (e.g., Google
Waze [4]) and real-time location information for scattered
commodities and resources (e.g., GasBuddy [5]).

Keeping data fresh relies on frequent data generation, pro-
cessing, and sampling, which can lead to significant (sampling)
costs for the data source. In practice, data sources (i.e.,
fresh data contributors) are self-interested in the sense that
they may have their own interests different from those of
data destinations (i.e., fresh data requestors). Consequently,
the participation of sources relies on proper incentives from
the destination. The resulting economic interactions between
sources and destinations constitute fresh data markets, which
have been studied in [3], [6]–[8].

The existing studies on fresh data markets [3], [6]–[8]
designed incentives assuming complete information. A crucial
economic challenge not addressed in these works is dealing
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with market information asymmetry. Specifically, sources in
practice may have private (market) information (e.g., sampling
cost and data freshness) that is unknown by others. Therefore,
they may manipulate the outcome of the system (e.g., their
subsidies and the scheduling policies) by misreporting such
private information to their own advantages. To the best of our
knowledge, no existing work has addressed fresh data markets
with such asymmetric information. Motivated by the above
issue, this work aims to solve the following key questions:

Question 1. How bad can self-interested reports (of sources’
cost) be in a fresh data acquisition system?

Question 2. How should a destination acquire fresh data from
self-interested sources with market information asymmetry?

A. Challenges and Solution Approach

Existing related studies on information asymmetry in data
markets (without considering data freshness) have identified
two different levels of possible manipulation [9]–[14], depend-
ing on whether data is verifiable, i.e., whether the destination
can verify the authenticity (or freshness) of data. These two
levels of manipulation are:

1) Market information misreporting. For verifiable data, a
source may benefit from misreporting its cost and quality
information (as in, e.g., [9]–[13]).

2) Data fraud. For unverifiable data, a source may even
fake the data itself, e.g., by sending dummy data to avoid
incurring corresponding costs (as in, e.g., [14]).

As a first step towards tackling a fresh data market with
asymmetric information, this work focuses on the first type of
manipulation due to misreporting private cost information and
assumes verifiable fresh data. Even this level of misreporting
is challenging and may lead to an arbitrarily bad loss, as we
will analytically show in Section III-C.

In the economics literature, a standard approach for design-
ing markets with asymmetric information is via the optimal
mechanism design approach of Myerson [32]. Many standard
optimal mechanism design problems are linear and can be
reduced to computing a “posted price” (e.g., [32]). Different
from the standard setting, our fresh data market framework
features a non-linear age-related cost. This nature of AoI
requires a new design of optimal mechanisms and problem
formulations.

We summarize our contributions as follows:
• Fresh Data Market Modeling with Private Cost Informa-

tion. We develop a new analytical model for a fresh data



market with private cost information and allow a source
to strategically misreport this information. To the best of
our knowledge, this is the first work in the AoI literature
to address market information asymmetry.

• Mechanism Design. We first show that the existence of
an optimal mechanism with special structures and then
reformulate the mechanism design problem to find such
an optimal solution. The infinite-dimensional nonlinear
nature of the problem makes it different from the standard
setting. We then solve the problem using tools from in-
finite dimension functional optimization and analytically
derive the optimal solution.

• Performance Comparison. Our analytical and numerical
results show that, when the sampling cost is exponentially
distributed, the performance gains of our optimal mech-
anism can be unbounded compared against a benchmark
that naively trusts whatever the source reports.

II. RELATED WORK

Age-of-Information: The AoI metric has been introduced
and analyzed in various contexts in the recent years, see, e.g.,
[1], [2], [21]–[31]. Of particular relevance to this work are
those pertaining to the economics of fresh data and information
[3], [6]–[8]. The most closely-related studies to ours are
in [3], [7], which consider systems with destinations using
dynamic pricing schemes to incentivize sensors to provide
fresh updates. The sources in [3], [7] are myopic instead
of forward-looking, i.e., in our case the source considers its
longer term payoff. None of this prior work has considered
the role of private market information as we do here.

Optimal Mechanism Design: There exists a rich eco-
nomics literature on optimal mechanism design (e.g., [32] and
surveys in [33], [34]). Our approach is based on Myerson’s
characterization of incentive compatibility and optimal mech-
anism [32]. However, existing mechanisms cannot be directly
applied here due to differences in the problem setting, in
particular, the infinite dimension nature in our setting.

Information Acquisition: There has been a recent line of
work on viewing data as an economic good. A growing amount
of attention has been placed on understanding the interactions
between the strategic nature of data holders and the statistical
inference and learning tasks that use data collected from
these holders (e.g., [9]–[14]). In this line of research, a data
collector designs mechanisms with payments to incentivize
data holders to reveal data. Other related studies include
strategic information transmission (e.g., [15]–[20]). However,
none of the studies in this line considered data freshness.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an information update system in which one
data source (such as an Internet-of-Things device) generates
data packets and sends them to one destination.

1) Data Updates and AoI: We consider a generate-at-
will model (as in, e.g., [22], [26]), in which the source is
able to generate and send a new update when requested
by the destination. We assume instant update arrivals at the
destination, with negligible transmission delay (as in, e.g.
[26]). Let X , {xk}k∈N be the update policy requested by
the destination, where every xk ≥ 0 denotes the interarrival
time between the (k − 1)-th and k-th updates.

The AoI at time t is defined as [2]

∆t(X ) = t− Ut, (1)

where Ut is the time stamp of the most recently received
update before time t, i.e., Ut = maxk[

∑k
j=1 xj ≤ t].

2) Destination’s AoI Cost: The destination’s AoI cost is
given by g(∆t(X )), which is a general increasing function of
∆t(X ) and satisfies g(0) = 0.

3) Source’s Sampling Cost and Private Information: We
denote the source’s unit sampling cost by c for each update,
which is the source’s private information. We consider a
Bayesian setting in which the sampling cost is drawn from
C = [c, c̄]. Let Γ(c) be the cumulative distribution function
(CDF) and γ(c) be the probability density function (PDF); we
assume that this prior distribution is known by the destination.

B. Mechanism Design and Problem Formulation

1) Mechanism Overview: The destination designs an (eco-
nomic) mechanism for acquiring the source’s truthful report of
its sampling cost and data updates. The source reports (poten-
tially misreports) its sampling cost just once at the beginning.
A mechanism takes the source’s report of its sampling cost as
the input of the update policy and the monetary reward to the
source. Mathematically, a general mechanism m = (P,X ) is
a tuple of a payment rule P and the update policy X . The
prices (i.e., rewards) can be different across different updates.
That is, P = {pk}k∈N, where pk : C → R+. Functions P and
X are functions of the source’s reported cost c̃.

2) Source’s Payoff: A strategic source aims to maximize
its (long-term time average) payoff, defined as

P (c̃,m) = lim
K→∞

∑K
k=1 pk(c̃)− c ·K∑K

k=1 xk(c̃)
. (2)

Note that, this differs from [3], [7], in which the considered
sources are not strategic. Instead, they are price-taking, i.e.,
not maximizing their respective long-term objectives.

3) Destination’s Overall Cost: Since the destination only
knows the statistical information of c, its objective is its
expected (long-term time average) overall cost:

J(m) = Ec

[
lim
K→∞

∑K
k=1G (xk(c̃∗(m))) + pk (c̃∗(m))∑K

k=1 xk(c̃∗(m))

]
,

(3)

where G(x) is the destination’s cumulative AoI cost for an
interarrival time x, defined as

G(x) ,
∫ x

0

g(∆t)d∆t, (4)



and c̃∗(m) is the source’s optimal reporting strategy in re-
sponse to m, i.e., c̃∗(m) ∈ arg maxc̃∈C P (c̃,m).

The source may have an incentive to misreport its private
information c̃. However, according to the revelation principle
[32], for any mechanism m, there exists an incentive compat-
ible (i.e., truthful) equivalence m̃, such that J(m) = J(m̃).
This allows us to replace all c̃∗(m) in (3) by c, restrict our
attention to incentive compatible (IC) mechanisms, and impose
the following constraint:

IC : c ∈ arg max
c̃∈C

P (c̃,m), ∀c ∈ C. (5)

Further, a mechanism should satisfy an (interim) individual
rationality (IR) constraint. An IC mechanism satisfies IR if:

IR : P (c,m) ≥ 0, ∀c ∈ C. (6)

4) Problem Formulation: The destination seeks to find a
mechanism m to minimize its overall cost:

min
m

J(m) (7a)

s.t. IC in (5) and IR in (6). (7b)

This is a challenging optimization problem as the space of all
mechanisms is infinite dimensional and further the constraints
in (5) and (6) are non-trivial.

We will now show that a special, simplified, class of
mechanisms, m satisfying (5) and (6) is optimal.

Definition 1 (Equal-Spacing and Flat-Rate Mechanism). A
mechanism m = (P,X ) is equal-spacing and flat-rate if

pk(·) = p(·) and xk(·) = x(·) , ∀k ∈ N, (8)

for some functions p : C → R+ and x : C → R+.

Lemma 1. There exists an optimal mechanism m∗ =
(P∗,X ∗) that is equal-spacing and flat-rate, satisfying (8).

Due to space limits, we present the detailed proofs of
all lemmas and theorems in the extended version of this
work [38]. The proof of Lemma 1 involves showing that,
for any optimal mechanism m∗, we can always construct an
equal-spacing and flat-rate mechanism that yields at most the
same objective value. This is mainly done by leveraging the
convexity of G(·). By Lemma 1, we can now drop the index
k in pk and xk.

C. Naive Mechanism

In this subsection, we introduce a naive mechanism that sat-
isfies Definition 1. We use this to show that such a mechanism
can lead to an arbitrarily large cost for the destination when
g(x) = xα, α > 0.

Example 1 (Naive Mechanism). The destination subsidizes
the source’s reported cost; the update policy rule xN (c̃) aims
at minimizing its overall cost in (3), naively assuming the
source’s report is truthful, i.e.,

pN (c̃) =c̃, (9a)

xN (c̃) = arg min
x≥0

xα+1/(α+ 1) + pN (c̃)

x
. (9b)

Solving (9b) further gives xN (c̃) =
[(

1 + 1
α

)
· c̃
] 1

1+α .
Given this naive mechanism, the source solves the following
reporting problem:

c̃∗ = arg max
c̃∈C

c̃− c[(
1 + 1

α

)
· c̃
]1/(1+α)

, (10)

whose solution can be shown to be given by c̃∗ = c̄, i.e., the
optimal reporting strategy is to report the maximal possible
value. This makes the destination’s overall cost be given
by
[
c̄
(
1 + 1

α

)] α
1+α . Note that the ratio of the destination’s

objectives under the source’s optimal report and the true cost is(
c̄
c

) α
1+α , which can be arbitrarily large as c̄ approaches infinity.

Misreports leading to an arbitrarily large cost to the destination
motivates the optimal mechanism design in the next section.

IV. OPTIMAL MECHANISM DESIGN

In this section, we use the results of Lemma 1 to reformulate
(7) and characterize the IC and the IR constraints in (5) and
(6). The optimal mechanism design problem is then reduced
to an infinite-dimensional optimization problem, which we
analytically solve and derive useful insights.

A. Problem Reformulation

Lemma 1 allows us to focus on the equal-spacing and flat-
rate mechanism (i.e., m = (p, x)). To further facilitate our
analysis, we use f(c̃) to denote the update rate rule and h(c̃)
to denote the payment rate rule such that

h(c̃) ,
p(c̃)

x(c̃)
and f(c̃) ,

1

x(c̃)
, ∀c̃ ∈ C. (11)

Since (11) defines a one-to-one mapping between (p, x) and
(f, h), we can focus on m = (f, h) in the following and then
derive the optimal (p∗, x∗) based on the optimal (f∗, h∗).

B. Characterization of IC and IR

1) Incentive Compatibility: We can characterize the IC
constraint in (5) based on Myerson’s work [32].

Theorem 1. A mechanism m = (f, h) is incentive compatible
if and only if the following two conditions are satisfied:

1) f(c) is non-increasing in c ∈ C;
2) h(c) has the following form:

h(c) = c · f(c)−
∫ c

c

f(z)dz +A, (12)

for some constant A ∈ R (here, A does not depend on
c but may depend on f(·).)

2) Individual Rationality: Given an arbitrary incentive
compatible mechanism satisfying (12), to further satisfy the IR
constraint in (6), we have that the minimal A for the incentive
compatible mechanism in Theorem in 1 is

A =

∫ c̄

c

f(z)dz. (13)

We will assume that this choice of A is used in the following.



(a) (b)

Fig. 1: Illustration of IC and IR under a mechanism satisfying (12) and (13):
The source’s payoff comparison between (a) a truthful report (c̃ = c) and (b)
an over-report (c̃ > c).

We present an example in Fig. 1 to illustrate (12) and (13).
Under a non-increasing f(·) and h(·) satisfying (12) and (13),
a truthfully reporting source receives a payoff of

∫ c̄
c
f(t)dt, as

shown in Fig. 1 (a); when the source reports c̃, its payoff is
(c̃− c)f(c̃)+

∫ c̄
c̃
f(t)dt. As shown in Fig. 1 (b), such an over-

report incurs a payoff loss. Similarly, an under-report would
also incur a payoff loss. This demonstrate IC. In addition, the
source’s payoff is always non-negative for any c and becomes
0 only when c approaches c̄. This demonstrates IR.

C. Mechanism Optimization Problem
Based on (12) and (13), we can focus on optimizing

the update rate function f(c) only in what follows. Since∫ c̄
c
|f(c)|2dΓ(c) < +∞, the update rate function f(·) lies in

the Hilbert space L2(Γ) associated to the CDF Γ(c).
By Theorem 1, we transform the destination’s problem into

min
f(·)

J(f) , Ec
[
G

(
1

f(c)

)
f(c) + c · f(c) +

∫ c̄

c

f(z)dz

]
(14a)

s.t. f(·) ∈ F , {f(·) : f(c) ≥ 0, f ′(c) ≤ 0, ∀c ∈ C} .
(14b)

This is a functional optimization problem. To derive insightful
results, we first relax the constraint in (14b) and then show
when such a relaxation in fact leads to a feasible solution
f∗(·) (i.e., when it automatically satisfies (14b)).

We introduce the definition of the source’s virtual cost
analog to the standard definition of virtual value in [32]:

φ(c) , c+
Γ(c)

γ(c)
, (15)

which allows us to transform the destination’s problem as in
the following lemma:

Lemma 2. The objective in (14a) can be rewritten as

J(f) = Ec
[
G

(
1

f(c)

)
f(c) + f(c)φ(c)

]
. (16)

The proof of Lemma 2 simply involves changing the order
of integration. If we relax the constraint f ′(c) ≤ 0, Lemma 2
makes the problem in (14) decomposable across every c ∈ C.
Each subproblem is given by

min
f(c)

G

(
1

f(c)

)
f(c) + f(c)φ(c), (17)

which can be solved separably. We are now ready to introduce
the solution to problem (14):

Theorem 2. If φ(c) is non-decreasing, the optimal mechanism
m∗ = (f∗, h∗) satisfies (12), (13), where f∗(·) satisfies

g

(
1

f∗(c)

)
1

f∗(c)
−G

(
1

f∗(c)

)
︸ ︷︷ ︸

Marginal AoI Cost Reduction

= φ(c)︸︷︷︸
Virtual Cost

, ∀c ∈ C. (18)

To comprehend the above results, the optimal f∗(·) equal-
izes the marginal AoI cost reduction and the virtual cost φ(c)
for all c ∈ C. To see when (18) yields a feasible solution
satisfying (14b), note that there always exists a unique positive
value of the optimal f∗(c) for each c in (18), and so the
optimal f∗(c) for each c in (18) is well defined. In addition,
if φ(c) is non-decreasing in c, f∗(c) is non-increasing in c.1

A non-decreasing virtual cost is in fact satisfied for a wide
range of distributions of the source’s sampling cost. We will
focus on such specific distributions in Section V and generalize
Theorem 2 to the more general (potentially not monotonic)
virtual cost case in [38].

V. PERFORMANCE COMPARISON

In this section, we present analytical and numerical studies
to understand when the optimal mechanism in Theorem 2 is
most beneficial, compared against the naive mechanism in (9).

We assume a power age cost function [22]: g(x) = xα

for some α ∈ (0,∞). In the following, we consider both a
uniform distribution and a truncated exponential distribution
of the source’s sampling cost.2

A. Uniform Distribution

We first compare the performance under a uniform distri-
bution of the sampling cost on the interval [c, c̄]. The naive
mechanism leads to an overall cost of the destination of

JN =

[
c̄

(
1 +

1

α

)] α
1+α

. (19)

The complete information benchmark leads to an overall cost:

JC =
c̄

1+2α
1+α − c

1+2α
1+α

c̄− c
1 + α

1 + 2α

(
1 +

1

α

) α
1+α

. (20)

Hence, we have

JN
JC

=

(
1 +

α

1 + α

)[
(c̄− c)c̄

α
1+α

c̄
1+2α
1+α − c

1+2α
1+α

]
≤ 1 +

α

1 + α
, (21)

indicating that, under the uniform distribution, the naive mech-
anism incurs a bounded loss due to private information.

On the other hand, the optimal mechanism in Theorem 2
leads to an overall cost of

J∗ =

[
2

(
1 +

1

α

)] α
1+α

(
1 + α

1 + 2α

) {(c− c
2 )

1+2α
1+α

} ∣∣∣c̄
c

c̄− c
. (22)

1The condition of the virtual cost φ(c) being non-decreasing is known as
the regularity condition in [32].

2These two distributions of costs are also considered in [37].
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Fig. 2: Performance comparison under the uniform distribution with different upper bounds of the sampling cost c̄ in (a), (b) and with different age sensitivity
coefficients α in (c). We set α = 1 in (a) and (b) and c̄ = 30 in (c).
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Fig. 3: Performance comparison under the truncated exponential distribution with different upper bounds of the sampling cost c̄ in (a), (b) and with different
age sensitivity coefficients α in (a), (c).

It then follows that

J∗

JC
=

{
(c− c

2 )
1+2α
1+α

} ∣∣∣c̄
c

c̄
1+2α
1+α − c

1+2α
1+α

2
α

1+α ≤ 2
α

1+α . (23)

Equations (21) and (23) imply that, under the uniform dis-
tribution, the performance gain of the optimal mechanism
compared to the naive mechanism is limited.

In Fig. 2, we numerically compare the performances of
the proposed optimal mechanism, the naive mechanism, and
the complete information benchmark. We observe a relatively
small gap between the proposed optimal mechanism and the
naive mechanism in Fig. 2(a). In Fig. 2(b), both the proposed
optimal mechanism and the naive mechanism approach their
upper bounds in (21) and (23).

B. Truncated Exponential Distribution
In this subsection, we consider an exponential distribution of

the sampling cost truncated on the interval [0, c̄], i.e., assuming
c = 0. The corresponding PDF is

γ(c) =
1
λ exp(−c/λ)

1− exp(−c̄/λ)
, (24)

and we fix λ = 1. Note that the performance of the naive
mechanism only depends on c̄ instead of the specific distribu-
tion of c. Hence, the overall cost is the same as in (19).

The lower bound of the overall cost under complete infor-
mation is:

JC =
(1 + 1

α )
α

1+α

1− e−c̄

[
Γ

(
2α

1 + α
+

1

α
, 0

)
− Γ

(
2α+ 1

1 + α
, c̄

)]
,

(25)

where Γ(s, x) =

∫ ∞
x

ts−1 exp(−t) dt. Note that (25) con-

verges to a finite value when c̄ → ∞. Finally, the optimal
mechanism leads to an overall cost of:

J∗ =
(1 + 1

α )
α

1+α

1− e−c̄

∫ c̄

0

(t− 1 + exp(t))
a

1+a exp(−t)dt. (26)

Fig. 3(a) shows that overall costs of the destination under
both the optimal mechanism and the complete information
benchmark converge to some constants as c̄ increases. The
naive mechanism in this case leads to an unbounded overall
cost as c̄ increases. In Fig. 3(b), we observe a small gap
between the proposed optimal mechanism and the complete
information benchmark. In particular, we have J∗/JC ≈ 2
when c̄ ≥ 10. Therefore, we have shown that under the
truncated exponential distribution, the proposed optimal mech-
anism can lead to unbounded benefits, compared against the
naive mechanism. Fig. 3(c) shows that the proposed optimal
mechanism becomes more beneficial when the destination is
more sensitive to AoI, compared with the naive mechanism.

VI. CONCLUSIONS

We have studied the fresh information acquisition problem
in the presence of private information. We have designed an
optimal mechanism to minimize the destination’s AoI cost
and its payment to the source, while satisfying the truthful
reporting and individual rationality constraints. Our analysis
revealed that the proposed optimal mechanism may lead to
an unbounded benefit, compared against a naive benchmark,
though this gain depends on the distribution of the sampling
cost.
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