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Abstract
Recent technological advancements in the automotive and transportation industry established a firm foundation for develop-
ment and implementation of various connected and automated vehicle solutions around the globe. Wireless communication
technologies such as the dedicated short-range communication protocol are enabling information exchange between vehicles
and infrastructure. This research paper introduces an intersection management strategy for a corridor with automated vehi-
cles utilizing vehicular trajectory-driven optimization method. Trajectory-Driven Optimization for Automated Driving pro-
vides an optimal trajectory for automated vehicles based on current vehicle position, prevailing traffic, and signal status on
the corridor. All inputs are used by the control algorithm to provide optimal trajectories for automated vehicles, resulting in
the reduction of vehicle delay along the signalized corridor with fixed-time signal control. The concept evaluation through
microsimulation reveals that, even with low market penetration (i.e., less than 10%), the technology reduces overall travel
time of the corridor by 2%. Further increase in market penetration produces travel time and fuel consumption reductions of
up to 19.5% and 22.5%, respectively.

To improve efficiency and safety of road transportation
systems (without adding physical capacity) researchers
began to investigate the synergy between the information
and communication technologies and the automotive
industry. Those modern technologies paved the way for
a new automotive revolution supported and initiated by
the growing connected vehicle technology. The Fixing
America’s Surface Transportation (FAST) Act was intro-
duced in 2015 with the goal of providing long-term fund-
ing for surface transportation planning and investment
(1). As auto manufacturers and academia are responding
rapidly by offering various self-driving solutions readily
available, United States Department of Transportation
(U.S. DOT) issued a primer on connected vehicles envi-
ronment as a part of the Architecture Reference for
Cooperative and Intelligent Transportation (ARC-IT) to
provide an overview and discuss relevant issues pertain-
ing to the overall concept implementation (2). Under the
Connected Vehicle Pilot Deployment Program, U.S.
DOT Joint Program Office (JPO) has selected three pilot
sites—New York City, New York; Interstate 80 (I-80) in
Wyoming; and Tampa, Florida—for which they success-
fully developed the concept of operations (ConOps),
deployment outreach plan, and deployment readiness

summary (3, 4). All those efforts are indicating the rising
need for efficient and easily implementable control sys-
tems that can utilize the connected vehicle environment.

Over the past decade, the contemporary traffic opera-
tion and control strategies focused mainly on fixed-time,
actuated, traffic-responsive pattern selection (TRPS),
and adaptive traffic control (5). The fixed-time control
with predetermined time-of-day (TOD) plan is still
widely used across the country since it is fairly easy to
implement. Where more complex traffic patterns are
observed, many agencies opted for adaptive traffic con-
trol solutions because of frequently observed day-to-day
and hour-to-hour volume variations. Almost all adaptive
signal control systems utilize the projections of vehicle
arrivals (6). In many cases, because of the stochastic
nature of the vehicular movement, such predictions of
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vehicle arrivals are not sufficiently accurate and can
undermine the intersection performance.

Nonetheless, some recent studies show that the prede-
termined TOD control approach along with reliable pre-
vailing traffic information can provide an adequate
system efficiency (7). Such systems heavily rely on the
traffic counts and turning movement data that is natu-
rally associated with a significant level of variation. The
connected vehicle concept supported by the data
exchange protocols constitute a controlled environment
for an instantaneous exchange of information between
vehicles and signal controllers (8). This environment
opens multiple opportunities for cooperative applica-
tions allowing more efficient and reliable vehicle opera-
tions (9–11). The connected vehicle and infrastructure
environment attributes can be utilized to develop a new
traffic control paradigm, where the control system is
designed to convey the most desirable speed to individual
road vehicles, based on the current state of traffic
streams, the state of signalization, and the position of
the individual vehicles in real time.

The primary idea presented in this paper proposes a
new signal control paradigm where the traffic streams
are manipulated to conform to the signal control devices.
Signal status parameters such as cycle length and remain-
ing green/red time are continuously captured by the con-
trol instance. At the same time, vehicles provide their
position through the connected vehicle environment.
Both inputs are then used by a predictive, trajectory-dri-
ven, control algorithm, namely Trajectory-Driven
Optimization for Automated Driving (TOAD), to adjust
the trajectory of each automated vehicle in the system.
As the proposed control strategy was developed to
manipulate the prevailing traffic flow, rather than adjust-
ing the signal timing and configuration, simple pre-timed
devices are sufficient for the successful system operation.

This paper is organized as follows. The relevant
research in the area of signal control optimization is sum-
marized in the next section. In the following section, the
TOAD algorithm is introduced through proposed system
architecture and optimization-based control approach.
The optimization example section demonstrates the
determination of the optimal vehicle trajectories. The sec-
tion of evaluations includes test-bed development and
simulation results. Findings and concluding remarks are
addressed in the last section.

Relevant Research

Because of its limited ability to deal with traffic flow
fluctuations, the fixed-time control was replaced by more
sophisticated solutions such as adaptive traffic control
and actuated systems (12–14). Thus, the adaptive signal
control strategy gained a significant deal of attention

around the globe. One of the very first studies conducted
for the adaptive system in Sydney, Australia, namely
SCAT, estimated travel time reductions to reach 39.5%
in the peak period (12). Similarly, initial travel time sav-
ings for the Split, Cycle, Offset Optimization Technique
(SCOOT) were estimated to reach 35% (12). Although
the adaptive approach has been proven to bring direct
benefits to users and agencies, some recent evaluations
revealed significantly lower benefits than those initially
reported (15, 16). It is also known that all adaptive signal
control systems inevitably depend on the projections of
vehicle arrivals, and reliability of the detection system.
Because of this, and many other known issues, a study
conducted by the Federal Highway Administration
(FHWA) reported some direct concerns from practi-
tioners whether the adaptive signal control system would
resolve the mobility issues as was expected at the early
stage of development (17). Some implementation cost
analysis performed by U.S. DOT in January 2013 esti-
mated average implementation costs for adaptive signal
control technologies (ASCTs) to be between $46,000 and
$65,000 for a single intersection (18).

Because of the above-mentioned financial and
operational constraints of the adaptive systems, researchers
focused on alternative methods to improve mobility perfor-
mance. The benefit of utilizing vehicle-to-infrastructure
(V2I) communication to improve operation of fixed-time
intersections has been studied extensively over the past
decade. The main idea behind the concept is to provide
the advisory speed through an on-board device to
improve the safety, environmental, and mobility perfor-
mance of a fixed-time intersection (18–21). In-Vehicle
Signal Assistance (ISA) is one of the connected vehicles
applications utilizing V2I communications (22). Vehicles
equipped with the ISA application receive real-time sig-
nal phase and timing (SPaT) data from the intersection
where the vehicles approach (22). With the SPaT broad-
casted message, the ISA application conveys the current
signal status to the driver via a graphical display unit
(e.g., an opt-in LCD panel or head-up display, an exter-
nal smartphone, or tablet PC.)

Besides SPaT-related studies, many authors examined
potential benefits of different control systems under con-
nected and automated vehicle (CAV) environment. To
that end, several promising algorithms for the autono-
mously controlled vehicle have been invented in past sev-
eral years where the trajectories of vehicles are
manipulated to safely cross an intersection and minimize
the intersection delay (23–26). In addition, several studies
optimizing the phases of a signal using the information
from connected vehicles were introduced (27–29). The
common limitation of the above-mentioned work is the
assumption of a 100% penetration rate of equipped
vehicles.
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Against the existing efforts, the main contribution of
this study is to introduce a new signal control paradigm
for CAVs with imperfect market penetration rate. The
idea proposes a solution where the traffic streams are
manipulated to conform to existing signal control devices
in the field. The TOAD algorithm produces the most
desirable speed to automated vehicles in the signalized
corridor, with respect to the current state of traffic
streams, the state of signalization (SPaT), and the posi-
tion of the individual vehicles in real time. The proposed
solution does not require any additional investments into
control and detection systems; thus, simple pre-timed
devices are sufficient for the system implementation
under CAV environment.

Methodology

Proposed Control Architecture

The methodology presented in this paper introduces con-
trol strategy for a signalized arterial with fixed-time sig-
nals under imperfect market penetration of the CAV
technology. The methodology assumes the provision of
vehicular parameters such as speed and position by utiliz-
ing CAV environment (Figure 1). The computer system,
namely TOAD control agent, handles both information
exchange and proactive adjustment of vehicles’ trajec-
tories. The TOAD control agent collects necessary vehi-
cular and signal status information from equipped
vehicles and traffic signal controllers to determine the
optimal speed for every CAV in the system, while allow-
ing regular, unequipped vehicles to maintain safe and
uninterrupted movement along the corridor. Both auto-
mated and unequipped vehicles share the same roadway
facility, allowing automated vehicles to operate on a

conventional signalized corridor with imperfect market
penetrations.

Trajectory-Driven Optimization

The majority of signal timing applications are evaluated
through the time-space diagram as the primary measure
of the control strategy operation. To that end, a control
algorithm generates optimal, time-distance, vehicular tra-
jectories for all automated vehicles in the system.

The assumptions of the model are the following: (1)
all CAVs are completely controlled by the TOAD agent,
and follow generated trajectory with 100% compliance;
(2) other vehicles from the general traffic are not con-
trolled by TOAD; (3) the corridor utilizes fixed-timing
plan with optimized parameters (i.e., cycle, split, offset)
according to existing traffic conditions; (4) the prevailing
traffic conditions are incorporated into the trajectory
prediction and are collected using mid-block detectors.
The final output of the proposed control algorithm are
longitudinal speed profiles delivered to each individual
automated vehicle in the control space.

The methodology assumes that the vehicle trajectory
can be defined as a cubic interpolated spline allowing
flexible accommodation of the trajectory to the given sig-
nal timing obstacles in the time-distance searching space.
An example of such trajectory is illustrated in Figure 2,
where control points p1 t1, y1ð Þ . . . pM tM , yMð Þ were used
for the trajectory interpolation. By respecting interpola-
tion and monotonicity rules, the trajectory T will be pro-
duced in the field of real numbers giving the sequence of
coordinates in the defined coordinate space (27):

T : tT = t1, . . . . . . :, tnð Þ; yT = y1, . . . . . . :, ynð Þ

Figure 1. Proposed corridor control architecture.
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The main objective of the trajectory optimization is to
minimize the sum of all the trajectory curves for vehicles
in the control space C. The length of the curve illustrated
in Figure 2, with n number of elements of the trajectory,
is therefore calculated as the sum of Euclidean distances
between successive xi and yi elements of the trajectory
as follows:

Trajectory Length=
Xn�1

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2i +Dy2i

q

=
Xn�1

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti+ 1 � tið Þ2 + yi+ 1 � yið Þ2

q

where

Dt=change in time

Dy=change in distance

To maintain cruising condition along the green-band
of the corridor and comply with the posted speed limit,
the optimization model is formulated for the corridor
with N number of vehicles, and M number of control
points for each vehicle trajectory, as presented in Table 1.

The first and second groups of constraints are designed
to adjust the trajectory curve for two possible cases
(Figure 2), that is, passing during the green interval, G,
starting with the predefined beginning of green (bog)
(Figure 2a) or passing during the red interval, R (Figure
2b). It is noted that all combinations are possible, for
example, a vehicle can pass on the green at the first, but
arrive on the red at the second intersection, and so forth.
Such a transformation allows nonlinear optimization
techniques, for example, genetic algorithm (GA), to eval-
uate all possible combinations and determine the best
individual (31). Determined individual is the most opti-
mal vehicle trajectory to minimize total travel time of the
corridor while satisfying defined safety constraints
(Table 1). The third group of constraints was introduced
to adjust the slope of trajectories so that they do not vio-
late the speed limit of a road section, taking into consid-
eration current distance of a vehicle to intersections.
Those distances are denoted as d1, d2 . . . dM representing
the distance to the first, second, and Mth intersection,
respectively. The fourth group of constraints was
included to prevent vehicles from traveling faster than
the prevailing traffic in the mixed-traffic mode where no
reserved lanes for automated vehicles are provided. This
group of constraints adjusts speed of a vehicle j, on a dis-
tance d from the downstream intersection M. The pre-
vailing speed constraint is based on the reading from the
nearest downstream speed detector D and is a result of a
short-term prediction of vehicle delay. The last group of
constraints was designed to prevent the collision of the
leading and the following vehicle in the control environ-
ment by maintaining the safety headway denoted as h,
which is possible as the assumption of the model is that
all vehicles in the system share their position with the
control agent. The objective function is defined as length

Figure 2. Trajectory defined using cubic interpolation: (a) arrival during red interval, and (b) arrival during green interval.

Table 1. The Artificial Neural Network Model Design

Training algorithm Levenberg-Marquardt

Initialization function Nguyen-Widrow
Hidden layers 1
Output layers 1
Hidden layer neurons 25
Validation range
(mean squared error)

–1.41 to 1.18 s
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of a curve approximated using H number of control
points p t, yð Þ.

MIN
XN
j= 0

XM
j= 1

Length p1+ 2H + 1ð Þj, pH + 2H + 1ð Þj
� �

The first constraint is designed with the purpose of con-
trol point allocation to represent the ‘‘green time arrival,’’
if control point values are inside the red time interval
where the slope between intersections (M) and the subse-
quent intersection (M + 1) is defined using H number
of control points for each vehicle j.

tM + 2H + 1ð Þj � t M + 1ð Þ+ 2H + 1ð Þj = 0; tM + 2H + 1ð Þj 2 G38j 2

The second constraint is defined similarly with control
point allocation to represent the ‘‘red time arrival’’ curve,
if control point values are inside the red time interval was
defined as follows:

� tM + 2H + 1ð Þj + bogM ł 0;X M + 1ð Þ+ 2H + 1ð Þj 2 RH 8j 2 C

where for intersectionM its beginning of green is denoted
as bogM and red interval length as RH . The third con-
straint, which constrains the slope of curves to prevent
generation of trajectories that would exceed posted speed
limit, is correspondingly defined as:

dM=(tH + 2H + 1ð Þj � t H�1ð Þ+ 2H + 1ð Þj)łSpeed Limit

where dM is remaining distance of a vehicle j to inter-
section M : The fourth constraint whose purpose is to
constrain the slope of a curves to prevent collision of the
leading and following vehicle ( j) and j+ 1ð Þ using time
headway h is defined as follows:

(XM + 2H + 1ð Þj + h)� X M + 1ð Þ+ 2H + 1ð Þ j+ 1ð Þ ł 0

And finally, the final constraint, with the purpose to con-
strain the slope of curves in accordance to the prevailing
traffic conditions causing predicted delay (d):

(XM + 2N + 1ð Þj + d)� X M + 1ð Þ+ 2N + 1ð Þj ł 0

More details in relation to short-term prediction of pre-
vailing traffic conditions and determination of the pre-
dicted delay (d) is provided later in a separate section of
this paper.

Optimization Example

The problem formulated in the previous section was
demonstrated using a realistic scenario where a platoon
consisting of 25 vehicles passed through a signalized cor-
ridor with three signalized intersections and speed limit
of 55mph (88.51km/h). Assumed green interval of each

intersection was 20, 30, and 25 s, followed by the red
interval of the same length, for intersection one to three,
respectively. The lengths of the corridor links were
1,640 ft (500m) between intersections one and two, and
1,312 ft (400m) between intersections two and three, as
indicated in Figure 3. The leading vehicle of the platoon
was 2,788 ft (850m) from the stop bar of the first inter-
section, and the last vehicle was 3,215 ft (980m) from the
stop bar. Vehicles in between had assumed headway of
10–16 ft assigned randomly.

The problem was successfully solved using GA pro-
grammed in MATLAB with the population size of 50
(32). The program successfully returned an optimal solu-
tion after evaluating 43 generations and 1,344 different
individuals, with CPU time less than 120 s. It is noted
that this numerical example represents only one iteration
of the TOAD control algorithm. For the evaluation pur-
pose, the same solution will be executed in the second-
by-second fashion, every time updating vehicle speed
and positions. The optimal solutions with corresponding
vehicular trajectories are illustrated in Figure 3.

The overall optimization framework is illustrated in
Figure 4. The procedure starts by collecting the distance
to all intersections downstream of the vehicle and speed
information of the first vehicle j= 1 followed by the col-
lection of the current signalization status. The signal sta-
tus includes the bog for the next several cycles of all
corridor intersections as illustrated in the time-space dia-
gram in Figure 3. With known position and signalization
information, the GA algorithm described in the previous
section is executed to manipulate a chromosome con-
sisted of control points p1 . . . pM until the optimal solu-
tion comprising the best possible individual is produced.
After storing the best individual into the pool of solved

Figure 3. Optimal trajectories for a platoon of 25 automated
vehicles.
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trajectories T1 . . . Tn its position is further included into
the constraint of the next vehicle j= 2 to avoid violation
of the safety headway (h) and collision of the two succes-
sive vehicles. The procedure is further continued until the
trajectory is determined for the last vehicle =N . After
creating the most desirable predictive trajectory for the
last vehicle, the information is returned to the control
agent for immediate execution after which the new itera-
tion of the control algorithm is started again updating all
necessary information and generating updated trajec-
tories for vehicles j= 1, . . . , j=N .

Short-Term Prediction of Prevailing Traffic Conditions

Without predicted vehicle delay, application of the gen-
erated trajectory is challenging, as the vehicle cannot
fully achieve assigned speed profile because of the influ-
ence of downstream traffic. Although traffic control
devices are highly accessible in the current state of tech-
nology, it is often not possible to have data collection
devices densely deployed. To have a reasonable number
of data collection points, but still provide accurate infor-
mation about prevailing traffic conditions, it is necessary
to incorporate a short-term prediction of the traffic para-
meters for vehicles entering the control space. To allow
accurate short-term prediction of vehicle delay, a multi-
layer perceptron artificial neural network (MLPANN)
trained with available traffic stream factors is designed

and presented in this section. The purpose of the devel-
oped model is to predict delay over the horizon of 200 s,
allowing described adjustment of the vehicle trajectory.
MLPANN solves problems stochastically allowing accu-
rate solutions for non-linear function approximation,
regression, and classification tasks. The MLPANN
model is trained using the following parameters obtained
from the microsimulation model for signalized corridor:

1) Spot speed obtained from fixed point sensors (e.g.,
loop detector, CCTV camera, microwave sensor)

2) Vehicle counts from fixed point sensors
3) Travel time obtained from Bluetooth or Wi-Fi

sensors
4) Signal setup (i.e., green interval length) obtained

from the controller.

The MLPANN network was trained using Levenberg-
Marquardt algorithm and the training set was created
using microsimulation platform. The training parameters
for a signalized corridor cover the following value
ranges:

1) Vehicle delay: 0–1,900 s/corridor link
2) Mid-block detector vehicle counts (0–160 vehi-

cles/100 s)
3) Link travel time: 0–1,900 s
4) Traffic flow speed: 0–100km/h.

Figure 4. Control algorithm framework.
Note: bog = beginning of green; eog = end of green.
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The trained network integrates into existing microsimu-
lation test-bed and its prediction result is predicted delay,
that additionally constrains the slope of the predicted
vehicle trajectory (Figure 5). This additional constraint
provides more realistic predictions of the vehicle arrival
at the stop bar.

Evaluations

Design of Simulation Test-Bed

The simulation test-bed used in this paper integrates: (1)
an external server for calculation and optimization; and
(2) a microscopic traffic simulator. While the micro-
scopic simulator provides vehicular information for each
individual vehicle in the network (i.e., distance to the
stop bar, current vehicle speed, and signalization status),
optimizer solves a non-linear optimization problem with
the data input obtained for each individual vehicle. To
adequately implement both tasks mentioned above, the
optimizing task is handled by MATLAB and

microscopic traffic simulator PTV VISSIM where the
exchange of information between MATLAB and
VISSIM is conveyed through Common Object Model
(COM) (32–34). As illustrated in Figure 6, the executive
code written in Microsoft C# serves as a control agent
instance, synchronizes information flow, combines para-
meters obtained from both platforms, and executes the
optimal trajectories determined by the algorithm in the
microsimulation.

The test-bed selected for the system evaluation is
located in Princeton Township, New Jersey (Figure 7). A
section of US-1 in Mercer County, between Carnegie
Center Boulevard and Ridge Road, is about 5mi long,
with mainly six lanes in two directions. Coordinated
intersections include jug-handle ramps with no left turns
allowed from the main line (i.e., US 1). The roadway has
a speed limit of 55mph. The developed simulation model
was calibrated and fine-tuned to represent the actual
field conditions. Travel time was selected as an index of
comparison. The field travel time data obtained from
GPS-equipped probe vehicles were used as ground truth
travel time. VISSIM provides a possibility of using 25
different variables for the purpose of calibration; how-
ever, the number of combinations for the 25 parameters
is enormous. Therefore, the quasi-Monte Carlo (QMC)
algorithm was applied to reduce the number of combina-
tions down to a reasonable level. After multiple simula-
tion runs were conducted using QMC-based parameter
sets, the parameter values were calibrated and selected
for further research.

Simulation Results

To properly estimate potential benefits of proposed
TOAD control algorithm, the traffic volume scenarios

Figure 5. Integration of predicted vehicle delay into
microsimulation test-bed.
Note: ANN = artificial neural network.

Figure 6. Simulation test-bed framework.
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included stable (i.e., level of service [LOS] C) and
unstable traffic conditions (i.e., LOS E). Eleven different
market penetration conditions (0%–100%, in 10% incre-
ments) were examined with five consecutive simulation
runs for both volume scenarios, resulting in 110

simulation runs. The aggregated simulation results are
illustrated in Figure 8.

It is obvious from Figure 8 that all observed para-
meters decrease with the increase in market penetration
rate. The low market penetration rates (i.e., 0%–20%) of

Figure 7. VISSIM model for selected test corridor in Princeton, New Jersey.

Figure 8. Corridor performance under different volume and market penetration levels.
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automated vehicles produced marginal reductions in
overall corridor travel time ranging from 0.5% to 1.95%
depending on corridor congestion level. Under uncon-
gested traffic conditions, some significant travel time
reduction is visible after 50% of market penetration,
achieving up to 19.5% of travel time reductions under
the 100% market penetration scenario. Under congested
conditions, the travel time reductions are lower and did
not exceed 9%. This is mainly because of reduced poten-
tial of the TOAD algorithm in congested conditions
where automated vehicle have less freedom to comply
with the optimal speed. Similar trends and influences
of the congestion are detected for the average number of
stops, and average vehicular delay. The total number
of served vehicles increases with market penetration of
TOAD technology in both traffic condition scenarios.

The environmental impacts of the TOAD algorithm
are examined using the vehicle fuel consumption and
emission model introduced by Rakha et al. (35).
Although some intersections produced generally higher
magnitudes of fuel consumption, the reductions gener-
ally range between 0.1% and 20% depending on market
penetration rate.

Tables 2 and 3 summarize fuel consumption on corri-
dor intersections under different market penetration con-
ditions. Expectedly, the fuel consumption decreases with
increase in market penetration of automated vehicles
where reductions are ranging from 0.3% to 22.4% in
uncongested and 0.1% to 11.3% in congested conditions.
The magnitude of reduction is also of interest. While
intersections 1–3 have the highest fuel reductions, on
intersections 4–6 reductions are slightly lower because of
different intersection geometry, arrival type, and signal
timing settings. The impact of congestion on fuel savings
is obvious and is lower under congested traffic
conditions.

Concluding Remarks

The increasing need for mobility yielded significant tech-
nological changes in contemporary transportation.
While notable advances have been made in the field of
intersection control over the past few decades, contem-
porary intersection control strategies inevitably depend
on the prediction of various traffic flow parameters that
are highly stochastic in their nature. Consequently, it is

Table 2. Simulated Results for Total Fuel Consumption in Liters/Hour and Percent Reductions under Uncongested Conditions

Intersection 1 Intersection 2 Intersection 3 Intersection 4 Intersection 5 Intersection 6

0% 30.4 19.9 31.3 9.6 10.4 22.9
10% 20.3% 0.0% 21.3% 0.0% 21.0% 20.4%
20% 22.3% 24.5% 22.2% 23.1% 21.9% 21.3%
30% 27.2% 27.0% 25.8% 26.3% 22.9% 21.3%
40% 28.9% 29.5% 27.3% 27.3% 24.8% 22.2%
50% 212.5% 211.1% 28.3% 29.4% 26.7% 22.6%
60% 214.5% 214.6% 210.5% 210.4% 26.7% 25.7%
70% 216.8% 216.1% 211.8% 211.5% 27.7% 27.4%
80% 220.7% 218.1% 213.7% 212.5% 28.7% 28.7%
90% 221.1% 219.6% 215.0% 213.5% 210.6% 29.6%
100% 222.4% 219.6% 220.1% 215.6% 211.5% 210.9%

Table 3. Simulated Results for Total Fuel Consumption in Liters/Hour and Percent Reductions under Congested Conditions

Intersection 1 Intersection 2 Intersection 3 Intersection 4 Intersection 5 Intersection 6

0% 47.1 30.9 48.5 14.9 16.1 35.5
10% 20.4% 20.3% 20.8% 20.1% 20.1% 20.6%
20% 21.3% 21.9% 21.6% 20.7% 21.2% 20.8%
30% 23.2% 24.5% 24.5% 21.3% 21.9% 21.4%
40% 24.5% 25.5% 24.7% 22.0% 21.9% 21.4%
50% 25.9% 26.5% 25.4% 22.7% 22.5% 22.3%
60% 27.9% 28.1% 26.6% 23.4% 25.0% 22.8%
70% 29.3% 29.7% 27.2% 24.0% 25.6% 23.1%
80% 29.8% 210.0% 27.6% 24.0% 26.2% 23.4%
90% 210.2% 210.4% 28.5% 24.0% 26.8% 23.7%
100% 211.0% 211.3% 29.1% 24.7% 27.5% 23.8%
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expected that a new emerging concept of connected vehi-
cles can provide unbiased, real-time traffic stream
information.

The FAST Act and the Advanced Transportation and
Congestion Management Technologies Deployment
Program are just two out of many notable U.S. DOT
efforts that aim to incorporate connected vehicle concept
into reality. To that end, many research and implementa-
tion activities were conducted to promote and improve
connected vehicle concept. Specifically, intersection con-
trol for autonomous vehicles, and other cooperative
driving solutions, represent an innovative way to change
existing intersection control paradigm. Although scienti-
fically and conceptually adequate, those solutions require
either 100% market penetration of technology, or sub-
stantial time and cost resources to achieve detectable
benefits to road users and community.

The TOAD control algorithm proposed in this study
recommends the utilization of existing fixed-time signal
control devices under connected vehicle environment.
Under connected vehicle environment, all vehicular and
signal-related parameters are known and can be shared
with the control agent to control automated vehicles
while improving the mobility of the signalized corridor.
Since the whole concept of connected vehicles is likely to
be initiated gradually, the TOAD control strategy was
designed to work under imperfect market penetration
level of automated vehicles technology. The control algo-
rithm was tested through a series of simulation scenarios
and it was discovered that, even with low market pene-
tration, the technology reduces overall travel time of the
corridor by 2% and 1.8% under congested and uncon-
gested traffic conditions, respectively. Further increase in
market penetration rate reduces overall travel time of the
signalized corridor by almost 19.5% and fuel consump-
tion by 20%.

It is worth clearly noting that besides the mobility
improvement, the TOAD control strategy utilizes exist-
ing fixed-time controllers eliminating significant initial
investments. Using artificial intelligence model, the costs
of the traffic detection system is minimized allowing
application of a single mid-block detector per corridor
link. Moreover, the strategy is easily implementable
under existing infrastructure conditions, allowing a
smooth transition from the contemporary signal control
into CAV environment. Further extension of this work
would include recovery from pedestrian and preemption
calls. This can be achieved by readjusting optimization
constraints using preemption parameters to adjust vehi-
cle trajectory prediction. Furthermore, the extension
should also address implementation of the algorithm on
the network level. To that end, a route choice and route
assignment aspects should be incorporated into the con-
trol algorithm and optimization framework
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