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Abstract— Scalp electroencephalogram (EEG) signals 
inherently have a low signal-to-noise ratio due to the way 
the signal is electrically transduced. Temporal and spatial 
information must be exploited to achieve accurate detection 
of seizure events. Most popular approaches to seizure 
detection using deep learning do not jointly model this 
information or require multiple passes over the signal, 
which makes the systems inherently non-causal. In this 
paper, we exploit both simultaneously by converting the 
multichannel signal to a grayscale image and using transfer 
learning to achieve high performance. The proposed system 
is trained end-to-end with only very simple pre- and post-
processing operations which are computationally 
lightweight and have low latency, making them conducive 
to clinical applications that require real-time processing. 
We have achieved a performance of 42.05% sensitivity with 
5.78 false alarm per 24 hours on the development dataset of 
v1.5.2 of the Temple University Hospital Seizure Detection 
Corpus. On a single core CPU operating at 1.7 GHz, the 
system runs faster than real-time (0.58 xRT), uses 16 Gbytes 
of memory, and has a latency of 300 msec. 

I. INTRODUCTION 
The electroencephalogram (EEG) is still the primary tool 
used in hospital clinical and critical care settings to 
diagnose brain-related illnesses. Epilepsy is the fourth 
most common neurological problem – only migraine, 
stroke, and Alzheimer’s disease occur more 
frequently [1]. In 2015, 1.2% of the US population were 
diagnosed with epilepsy (3 million adults and 470,000 
children) [2]. Obviously, this large population of patients 
cannot be monitored by physicians continuously. This is 
particularly true for patients who undergo long-term 
monitoring during in-patient care. Long-term monitoring 
can last more than 24 hours creating an enormous amount 
of data that must be manually reviewed. Ambulatory 
EEGs, which we do not address in this study, generate 
significantly more data and pose even greater challenges. 
Hence, there is a great need for accurate automated 
seizure detection. Seizure prediction, which involves 
prediction of a seizure event before it happens, is even 
more important and is an emerging field. 

There have been many attempts to design systems that 
can detect seizures from noninvasive EEG signals [3][4]. 
However, these high performing systems are often non-
causal and/or non-real time (NRT) and have significant 
amounts of latency because they perform multiple passes 
over the signal. These systems typically preprocess the 
signal, perform feature extraction, and then use several 

deep learning approaches to process these features. 
Postprocessing of hypotheses always seems to play a big 
role in achieving high performance but introduces 
significant amounts of latency. Sharmila et al. [5] have 
done a comprehensive review and concluded that feature 
extraction using a discrete wavelet transform (DWT) is 
the dominant feature extraction approach in this field. 

Golmohammadi [6] and Shah [7] proposed hybrid 
architectures which used linear frequency cepstral 
coefficients (LFCCs) as features followed by 
convolutional (CNNs) and long short-term memory 
networks (LSTM). LFCCs are a filter bank-based 
representation that has been successful in many other 
signal processing applications prior to the introduction of 
deep learning systems. Their methods classify the EEG 
signal into three seizure patterns (e.g., spikes, generalized 
periodic epileptiform discharges) and three background 
categories (e.g., eye movement, artifacts, and 
background). Their sensitivity and specificity were 
approximately 90% and 95%, respectively.  

Craley et al. [8] exploited a hybrid Probabilistic 
Graphical Model CNN (PGM-CNN) for seizure tracking. 
They used an engineered feature called a Coupled Hidden 
Markov Model (CHMM) that is an extension of 
conventional Hidden Markov Models where the current 
state is not only dependent on the states of its own chain 
but also depends on the neighboring chain at the previous 
time-step. The classification results are evaluated on a 
Johns Hopkins University Hospital dataset (JHH) that 
contains 90 seizures from 15 patients [9] and the 
Children’s Hospital of Boston (CHB) dataset that has 185 
recordings from 24 pediatric patients [10]. Their 
proposed method achieved a true positive rate and false 
positive rate of 45% and 1% on JHH, and 61% and 1.3% 
on CHB, respectively. 

Emami et al. [11] proposed an end-to-end seizure 
detection system without the need for feature extraction. 
First, they filter the raw EEG signals with a bandpass and 
a notch filter. Then they converted this multichannel time 
series to an image, replicating what neurologists used to 
manually interpret an EEG. Next, a CNN was employed 
to detect seizure events. They achieved a true positive 
rate of 74% with a false alarm rate of 0.2 per hour on data 
from eight subjects collected at the NTT Medical Center 
Tokyo and 16 subjects collected at the University of 
Tokyo Hospital. 
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Gomes et al. [12] proposed another end-to-end seizure 
detection system based on processing EEGs as images 
using CNNs. They exploited data augmentation by using 
small shifts of overlapping windows for training. They 
evaluated their approach on two datasets: CHB and the 
European Epilepsy Database (EPILEPSIAE) [13]. On 
CHB, they achieved an accuracy of 99.3%, a specificity 
of 99.6%, and a false alarm rate of 0.5 per hour for 92% 
of the patients. On EPILEPSIAE, their accuracy and 
specificity were 98.0% and 98.3%, respectively, with 1.0 
per hour false alarm rate for 80% of the patients. 

In this paper, we propose the application of transfer 
learning to the seizure detection problem, as shown in 
Figure 1. We will focus on seizure detection on the 
Temple University Hospital Seizure Database 
(TUSZ) [14]. Since high quality annotated data is in short 
supply, transfer learning can provide a more efficient and 
effective way to train a neural network.  

II. APPLICATION OF TRANSFER LEARNING 

Manual interpretation of an EEG signal requires 
detection of very subtle pattens. Accurate classification 
of these patterns requires a deep learning system with 
many parameters, which in turn, requires large amounts 
of manually annotated training data. When the number of 
model parameters greatly exceeds the number of patterns 
available for training, overfitting becomes a huge 
concern. Dropout, batch normalization and other 
regularization methods attempt to mitigate this, but a 
better approach is to add relevant data from other sources. 

Neurologists are capable of manually interpreting EEGs 
with accuracies that can exceed machine 
performance [6][15]. Hence, we are confident that there 
is adequate information content in the signal, particularly 
visualizations of the waveforms, to classify seizures. 
Image processing approaches are emerging, such as those 
disclosed in ImageNet competitions [16], that attempt to 
emulate the way humans interpret visual data in an 
application independent manner. In this way, we can 

leverage vast amount of image training data available 
from other applications, such as object recognition and 
autonomous vehicle navigation. In this paper, we attempt 
to leverage these pretrained models from the ImageNet 
competition and adapt them to seizure detection. 

One of the well-known and efficient networks that has 
achieved good performance is ResNet18 [17]. It is a type 
of deep residual network that overcame the limitations of 
training very deep networks by introducing identity 
shortcut connections between the layers. The ResNet18 
model consists of four module blocks as shown in 
Figure 2. Key parameters for each layer are given in 
Figure 3. The input block contains a two-dimensional 
CNN followed by batch normalization and max pooling. 
The output block consists of an average pooling 
operation that improves generalization and a linear layer 
that performs classification. The parameter (64,64) in 
Figure 3 refers to the dimensions of the input and output 
planes (channels), respectively.  

The four hidden layers are similar in design. The first 
layer consists of two blocks referred to as Basic blocks. 
Each of these Basic blocks contains a CNN, a batch 
normalization block, and a second CNN. The remaining 
three layers contain a Basic block, followed by a 

 

Figure 1. An image processing approach to seizure detection 
 

 

Figure 2. A typical block in the ResNet-18 architecture 

 

Figure 3. An overview of the ResNet-18 architecture 
 
 



V. Khalkhali et al.: Low Latency Real-Time Seizure Detection… Page 3 of 7 

IEEE SPMB 2021 December 4, 2021 

downsample block, followed by a second Basic block. 
The downsample block adapts the input and output sizes 
of the Basic blocks so that they can be concatenated. The 
network is loaded with pretrained parameters from 
ImageNet. During training, we optimize parameters 
using a cross-entropy loss function with predefined prior 
probabilities (weights).  

Seizures occur about 7% of the time in the TUSZ Corpus. 
Since the distribution of classes is highly unbalanced, we 
must adjust the weights of the loss function. Hence, to 
better balance the number of seizure and background 
patterns, we randomly selected one-fifth of the 
background patterns. It was observed that using all the 
background samples did not improve the results. In 
practice, we have used about 30,000 samples for seizure 
events and 100,000 samples for background events in an 
HDF5 database format [18]. Since, the samples in HDF5 
files are arranged sequentially, random sampling 
(without replacement) removes the need for a windowing 
process with predefined overlaps. 

To further adjust for the unbalanced number of samples 
in the two classes, we include prior probabilities in the 
loss function computation: 

𝜔𝑏 =
𝑁𝑠𝑒𝑖𝑧

𝑁
,    𝜔𝑠 =

𝑁𝑏𝑐𝑘𝑔

𝑁
 , (1) 

where 𝑁, 𝑁𝑠𝑒𝑖𝑧, and 𝑁𝑏𝑐𝑘𝑔 are the total number of 
samples, the number of seizure samples, and the number 
of background samples, respectively. Variables 𝜔𝑏 and 
𝜔𝑠 are the background and seizure weights, respectively. 

The loss function is defined as: 

𝑙𝑜𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝜔𝑏 ∗ 𝑙𝑜𝑠𝑠(𝑥𝑖, 𝑏) + 𝜔𝑠 ∗ 𝑙𝑜𝑠𝑠(𝑥𝑖, 𝑠), (2) 

where 𝑥𝑖, 𝑏, 𝑠 are the 𝑖th input sample, the background 
class index, the seizure class index, respectively. The 
function 𝑙𝑜𝑠𝑠(𝑥, 𝑦) is the balanced loss function, 
typically implemented as cross-entropy or mean square 
error. The weighted loss function defined in (2) alleviates 
the unbalanced number of samples in the two classes and 
avoids biased learning. 

Stochastic gradient descent (SGD) with an adaptive step 
size is used with 25 epochs and a batch size of 8. During 
the training process, random resized crop and random 
horizontal flip transformations, similar to what is used in 
the training process for this system in ImageNet [16], 
were exploited to force the network to learn 
spatiotemporal information. 

III. EXPERIMENTATION 

Our focus in this study was TUSZ v1.5.2, which was used 
in the NeurekaTM 2020 Epilepsy Challenge [3]. Some 
relevant statistics of the corpus are shown in Table 1. The 
EEG signals in TUSZ are preprocessed using montages 
to suppress background noise and accentuate spikes [19]. 

These montages produce 21 differential signals extracted 
from 19 raw channels. The channels are decimated to 
50 Hz since there is little useful information above 25 Hz 
and this reduces the processing time considerably. 

Scaling or normalization of the resulting signals is a very 
important next step. Channel dependent or global 
normalization does not work well for this data. Moving 
average filters, which are also popular, can significantly 
diminish spike behavior. Outlier removal is another 
popular method for artifact removal, but in practice this 
approach also tends to remove many seizure events. We 
chose to implement a local scaling approach, which we 
refer to as max local scaling, in which all samples in a 
window are scaled between [−1, +1]: 

𝐴𝑚𝑎𝑥[𝑛] = max(|𝐴[𝑖]|) ;  𝑛 − 𝑁
2⁄ ≤ 𝑖 ≤ 𝑛 + 𝑁

2⁄  , (3)  
�̂�[𝑛] = 𝐴[𝑛] 𝐴𝑚𝑎𝑥[𝑛]⁄ .  (4) 

where 𝐴 is amplitude, 𝑛 is the current sample and 𝑁 is 
the number of samples in a window centered around the 
current sample. �̂�[𝑛] is the locally scaled sample. 

In our work, we found that implementing local scaling 
with a 6-second center-aligned window gives good 
results. Figure 4 shows two windows with spikes that 
have been scaled. The orange waveform corresponds to 
the original signal and blue waveform represents the 
rescaled signal. 

Note that this type of scaling removes the absolute energy 
of the signal as a feature. In some types of seizures, the 
evolution of energy over time is important. We could add 
energy back as an additional feature, but in the current 
work we treat each window as an independent sample. 
We use a postprocessor to consider the sequences of 

Table 1. TUSZ v1.5.2 statistics 

Description Train Dev 

Patients 592 50 
Sessions 1247 342 

Files 5521 1656 
Files with Seizure 840 246 

Patients with Seizure 199 39 
Seizure Events 2332 599 
Total Dur (sec.) 2,910,639 1,598,493 

Seizure Duration Ratio 6.34% 8.96% 
 
 
 

  
Figure 4. Window normalization with max local scaling 
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events and make a final decision based on the evolution 
over time of these events. 

The next step for data preparation is converting all 
samples into grayscaled images. Since in the previous 
step EEG signals have been scaled such that the 
amplitudes are limited to the range [−1, +1], conversion 
to a grayscaled image where pixels fall in the range 
[0, 255] is straightforward. Through experimentation, we 
found using 256 samples for every window for every 
channel is efficient. But, since it is necessary to use a 
square shaped image as input to the ImageNet system, 
and the height of windows is equal to the number of 
montages, then rescaling these images is necessary. 
Therefore, the windows are resized from 20 × 256 to 
256 × 256 with cubic interpolation. Several examples of 
the resulting images are shown in Figure 5. The 
confusion matrices for ResNet18 are shown in Table 2 
for the training data (closed-loop training) and the 
development data (open-loop training) Table 3. 

IV. POSTPROCESSING 
As we have stated, seizure detection is a challenging 
problem. The raw classification performance of 
ResNet18 is poor and needs additional postprocessing. 
Our postprocessor is based on three parameters: 

• Seizure confidence threshold, 𝑆𝑡ℎ: events with 
probabilities less than this threshold are classified as 
background while events with higher probabilities are 
classified as seizures; 

• Minimum acceptable background duration, 𝐵𝐷𝑚𝑖𝑛: all 
background events with a duration less than this value 
are converted to seizure events; 

• Minimum acceptable seizure duration, 𝑆𝐷𝑚𝑖𝑛: all seizure 
events with a duration less than this value are converted 
to background. 

The first parameter reduces noisy decisions by increasing 
the seizure confidence threshold. The second and third 
parameters act similar to dilation and erosion in 
morphological image processing [20]. Once the 
threshold 𝑆𝑡ℎ  is applied, then all background windows 
between two seizure events with a duration less than 
𝐵𝐷𝑚𝑖𝑛 will be classified as seizures. Similarly, all seizure 
events with a duration less than 𝑆𝐷𝑚𝑖𝑛 will be classified 
as background. 

Postprocessing has a significant impact on both the 
misclassification errors and the false alarm rate. Figure 6 
shows the sensitivity as a function of the detection 
latency. Figure 7 shows the false alarm rate as a function 
of the detection latency. Detection delay is defined as the 
summation of minimum acceptable duration of 
background and seizure events: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 = 𝐵𝐷𝑚𝑖𝑛 + 𝑆𝐷𝑚𝑖𝑛. (5) 

The false alarm rate is significantly reduced by increasing 
the detection delay. There is also a moderate reduction in 
sensitivity. 

V. EVALUATION RESULTS 

Several metrics for evaluating the efficiency of EEG 
seizure detection systems are discussed extensively in 
Shah et al. [4]. In Figure 8 we compare the performance 
of the proposed system to two other previously published 
systems: a hybrid CNN/LSTM system (cnn_lstm) 
developed by Golmohammadi [6] and a multiphase 
system (mphase) developed by Shah [7]. This 
comparison was performed on the development data set 
(dev) using the OVLP scoring metric [21]. Note that we 
focus on performance for the range [0,0.1] where false 
alarms are very low. This is the operating region of most 
interest for this application. In Figure 9, a similar analysis 
is shown for the blind evaluation set (eval). It is important 
to note that no tuning was performed based on the 
evaluation set results. 

The seizure sensitivity and false alarm rate of the new 
system, which are 42.05% and 5.78/24h, respectively, are 
marginally better than our previous best results (40.12% 
and 6.62/24h for the multiphase system). However, it is 
important to note that the resnet system is much simpler, 
has much less latency, and runs faster than real-time on 

 

Figure 5. Grayscale images of background windows (first 
row) and seizure windows (second row) 

Table 2. The confusion matrix for the training dataset 

Training 
Detected 

Background Seizure 

Actual 
Background 84.67% 17.30% 

Seizure 20.35% 79.65% 
 

Table 3. The confusion matrix for the development dataset 

Development 
Detected 

Background Seizure 

Actual 
Background 82.70% 17.30% 

Seizure 39.53% 60.47% 
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relatively modest computing resources. This makes it 
ideal for critical care applications. 

In Table 4 and Table 5, we compare the results of the 
proposed system to several leading systems including 
two of the top systems that participated in the NeurekaTM 
2020 Epilepsy Challenge [3]. These tables include the 
raw scores for sensitivity, specificity, and the false alarm 
rate for four scoring metrics. The last metric, time-
aligned event scoring (TAES), also shows the final 
weighted score (WGT) using the weighting function 
adopted for the competition. 

From these results, we see that the performance of the 
resnet system still lags the two best performing systems 
from the competition, sia and pnc98. However, the resnet 
system was designed to be real-time and low latency, 
while the best performing systems in the competition 
were non-real time with infinite latency and focused 
more on minimizing the weighted error metric. The 
competition’s weighted error metric placed a great 
emphasis on minimizing the false alarm rate, since this is 

a crucial parameter in critical care applications, so it was 
prudent for these system developers to sacrifice 
sensitivity for the competition. 

Also, the competition applied a penalty based on the 
number of channels used, encouraging participants to use 
as few channels as possible. We have not explored this 
dimension with the resnet system yet. Using a reduced 
number of channels is more relevant to consumer-grade 
applications. In critical care applications, all available 
channels are collected and processed, so aside from the 
computational considerations, there is no benefit to 
reducing the number of channels processed. 

VI. CONCLUSIONS 

Designing high sensitivity, low false alarm, and low 
delay seizure detection systems from noninvasive 
electroencephalogram scalp measurements is 
challenging. We have shown that with some trade-offs 
between three critical parameters – sensitivity, false 
alarm rate, and detection delay – real-time performance 
can be achieved without sacrificing performance. 

 
Figure 8. An ROC comparison on the development dataset 

 
Figure 9. An ROC comparison on the evaluation dataset 

 
  

 

Figure 6. Sensitivity as a function of delay 

 
Figure 7. False alarm rate as a function of delay 
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Transfer deep learning is the core of the proposed system 
and helps our approach in two important ways: 
spatiotemporal interpretation of EEG signals and neural 
network convergence. The multiresolution convolutional 
layers in ResNet18 can effectively encode spatial and 
temporal relationships. Data augmentation in transfer 
learning makes the training fast and more importantly, it 
improves the convergence of a large neural network 
significantly. While the number of samples in our 
database is relatively large, we do observe overfitting 
tendencies on the training dataset. Though cross-
validation was used, we plan to explore other pretrained 
ImageNet networks to assess their impact on overfitting 
and maintain generality.  
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