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1. Introduction

Exactly solvable lattice models have found numerous applications in the study of 
special functions. (See [38–41,25,26,55,37] to name but a few.) Here we use the Gelfand 
school interpretation of “special function,” meaning one that arises as a matrix coefficient 
of a group representation. If the group is a complex Lie group or a p-adic reductive 
group, these matrix coefficients include highest weight characters and in particular, Schur 
polynomials, as well as Demazure characters and various specializations and limits of 
Macdonald polynomials. Many of these special functions may be studied by methods 
originating in statistical mechanics, by expressing them as a multivariate generating 
function (the “partition function”) over the admissible states of a solvable lattice model. 
The term “solvable” means that the model possesses a solution of the Yang-Baxter 
equation that often permits one to express the partition function of the model in 
closed form. Knowing that a special function is expressible as a partition function of 
a solvable lattice model then leads to a host of interesting combinatorial properties, 
including branching rules, exchange relations under Hecke operators, Pieri- and Cauchy-
type identities, and functional equations.

We will concentrate on the five- and six-vertex models on a square lattice, two-
dimensional lattice models with five (respectively, six) admissible configurations on the 
edges adjacent to any vertex in the lattice. The latter models are sometimes referred 
to as “square ice” models, as the six configurations index the ways in which hydrogen 
atoms may be placed on two of the four edges adjacent to an oxygen atom at each 
vertex. Then weights for each configuration may be chosen so that the partition function 
records the probabilities that water molecules are arranged in various ways on the 
lattice (see for example [4]). More recently, lattice models with different weighting 
schemes have been studied in relation with certain stochastic models like the Asymmetric 
Simple Exclusion Process (ASEP) or the Kardar-Parisi-Zhang (KPZ) stochastic partial 
differential equation. These were shown to be part of a large family of solvable lattice 
models, called stochastic higher spin six-vertex models in [7,19]. Solutions to the Yang-
Baxter equation also arise naturally from R-matrices of quantum groups; these higher 
spin models were associated to R-matrices for Uq(ŝl2). In this paper, we only make use of 
the associated quantum groups to differentiate among the various lattice model weighting 
schemes and the resulting solutions to the Yang-Baxter equations.

Subsequently, Borodin and Wheeler [9] introduced generalizations of the above 
models, which they call colored lattice models. Antecedents to these colored models 
appeared earlier in [8,23]. (A different notion of “colored” models appears in many 
other works such as [1].) In [9], “colors” are additional attributes introduced to 
the boundary data and internal edges of a given model, corresponding to replacing 
the governing quantum group Uq(ŝl2) in the setting mentioned above by Uq(ŝlr+1). 
The partition functions of their colored lattice models are non-symmetric spin Hall-
Littlewood polynomials. These are functions depending on a parameter s, which recover 
non-symmetric Hall-Littlewood polynomials when one sets s = 0.
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The idea of introducing “color” in this way may be applied to a wide variety of lattice 
models. If one chooses the Boltzmann weights for the colored models appropriately, then 
one obtains a refinement of the (uncolored) partition function as a sum of partition 
functions indexed by all permutations of colors. Moreover, if the resulting colored model 
is solvable, then similar applications to those described above will follow. For example 
in [9], properties for these generalizations of Hall-Littlewood polynomials are proved 
including branching rules, exchange relations under Hecke divided-difference operators 
and Cauchy type identities motivated by the study of multi-species versions of the ASEP.

Inspired by these ideas of Borodin and Wheeler, this paper studies colored versions 
of an (uncolored) five-vertex model whose partition function is (up to a constant) a 
Schur polynomial sλ indexed by a partition λ. The states of the uncolored system are 
in bijection with the set of semi-standard Young tableaux of shape λ, so the partition 
function may be evaluated using the combinatorial definition of the Schur function. 
This uncolored five-vertex model is a degeneration (crystal limit) of a six-vertex model 
described in Hamel and King [27], that is similarly equivalent to the generalization of 
the combinatorial definition of the Schur function by Tokuyama [53]. These models were 
shown to be solvable by Brubaker, Bump and Friedberg [12]. See Section 3 for the full 
definition of the uncolored five-vertex model used in this paper.

In Section 4 we introduce our colored five-vertex model. A color is assigned to each of 
the r rows of its rectangular lattice and permuting these colors gives a system for each 
element of the symmetric group Sr. We introduce Boltzmann weights for the colored 
models that simultaneously refine the uncolored model and produce a (colored) Yang-
Baxter equation associated to a quantum superalgebra (see Theorem 4.2). This allows 
us to evaluate the partition functions for the colored models for each w ∈ Sr and prove 
in Theorem 4.4 that they are Demazure atoms of Cartan Type A.

Demazure atoms, introduced by Lascoux and Schützenberger [42] and referred to 
as “standard bases” there, decompose Demazure characters into their smallest non-
intersecting pieces. So in particular, summing Demazure atoms over a Bruhat interval 
produces Demazure characters. Mason [47] coined the term “atoms” and showed that 
they are specializations of non-symmetric Macdonald polynomials of Cartan Type A 
with q = t = 0. Basic properties of Demazure atoms and characters are reviewed in 
Section 2.

Demazure characters and Schur polynomials may be viewed as polynomial functions 
in formal variables or as functions on an algebraic torus associated to a given reductive 
group. But they may also be lifted to subsets of the Kashiwara-Nakashima [34] crystal Bλ

whose elements are semistandard Young tableaux of a given shape λ, called Demazure 
crystals. The existence of such a lift of Demazure modules to crystals was shown by 
Littelmann [44] and Kashiwara [32]. Summing the weights of the Demazure crystal 
recovers the Demazure character.

Just as Littelmann and Kashiwara lifted Demazure characters to the crystal, 
polynomial Demazure atoms may also be lifted to subsets of the crystal. We will call 
these sets crystal Demazure atoms. Summing the weights of the crystal Demazure atom, 
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one obtains the usual polynomial Demazure atom. Crystals and the refined Demazure 
character formula are briefly reviewed in Section 5.

Although the theory of Demazure characters and crystals is in place for all Cartan 
types, most of the literature concerning Demazure atoms and the related topic of 
Lascoux-Schützenberger keys (including this paper) is for Cartan Type A. However the 
Bwλ(λ) in Section 9.1 of in [33] are Demazure atoms for crystals of symmetrizable Kac-
Moody Cartan types. Moreover recently [29] (using the results in [33]) defined keys for 
all Kac-Moody Cartan types, with a special emphasis on affine Type A. There are also 
Type C results in [50]. See [28,2] for other recent work on Demazure atoms.

Based on Theorem 4.4, which shows that the partition functions of our colored 
models are Type A Demazure atoms, it is natural to ask for a more refined version 
of the connection between colored ice and the crystal Demazure atoms. In Section 6, we 
accomplish this by exhibiting a bijection between the admissible states of colored ice and 
crystal Demazure atoms as a subset of an associated crystal Bλ. Showing this refined 
bijection is much more difficult than the initial evaluation of the partition function. 
Its proof forms a major part of this paper and builds on Theorem 5.5, which gives 
an algorithmic description of Demazure atoms. This result is proved in Section 8 after 
introducing Kashiwara’s B∞ crystal in Section 7. As a byproduct of our arguments, 
we will also obtain a theory of Demazure atoms on B∞. The proofs take input from 
both the colored ice model and the Yang-Baxter equation, and from crystal base theory, 
particularly Kashiwara’s �-involution of B∞.

Another byproduct of the results in Section 6 is a new formula for Lascoux-
Schützenberger keys in Type A. These are tableaux with the defining property that each 
column (except the first) is a subset of the column before it. What is most important 
is that each crystal Demazure atom contains a unique key. Thus if T ∈ Bλ there is a 
unique key key(T ) that is in the same crystal Demazure atom as T ; this is called the 
right key of T . We will review this theory in Subsection 1.1. Algorithms for computing 
key(T ) may be found in [42,49,43,47,46,56,48,57,58,3,51]. These papers are concerned 
with Type A Demazure atoms, but a few papers consider other Cartan types. Jacon and 
Lecouvey [29] (using the results in [33]) defined keys for all Kac-Moody Cartan types, 
with a special emphasis on affine Type A. There are also Type C results in [50]. See 
[28,2] for other recent work on Demazure atoms.

In this paper we give a new algorithm for computing the Lascoux-Schützenberger 
right key of a tableau in a highest weight crystal. Since this algorithm may be of 
independent interest we will describe it (and the topic of Lascoux-Schützenberger keys) 
in this introduction, in Subsection 1.1 below. We prove the algorithm in Section 9.

This paper also serves as a stepping stone to colored versions of the six-vertex (or 
“ice” type) models of [12] and of [10]. Indeed, since the results of this paper, we have 
shown that analogous colored partition functions recover special values of Iwahori fixed 
vectors in Whittaker models for general linear groups over a p-adic field [11] and their 
metaplectic covers (in progress), respectively. The colored five-vertex model in this paper 
is a degeneration of these models. Other recent developments (since this paper first 
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appeared) include applications of colored lattice models and the Yang-Baxter equation 
to Grothendieck and related polynomials [15,16,14]. See also Remark 4.5.

1.1. Lascoux-Schützenberger keys

Type A Demazure atoms are pieces of Schur functions: if λ is a partition of length 
� r, the Schur function sλ(z1, · · · , zr) can be decomposed into a sum, over the Weyl 
group W = Sr, of such atoms. This is an outgrowth of the Demazure character formula: 
if ∂w is the Demazure operator defined later in Section 2 then ∂wzλ is called a Demazure 
character. Originally these were introduced by Demazure and by Bernstein, Gelfand and 
Gelfand [20,6] to study the cohomology of line bundles on flag and Schubert varieties. 
A variant represents the Demazure character as 

∑
y�w ∂◦

yzλ where ∂◦
y are modified 

operators, and y � w is the Bruhat order. The components ∂◦
yzλ are called (polynomial) 

Demazure atoms.
As we will explain in Section 4, a state of the colored lattice model features r colored 

lines running through a grid moving downward and rightward. These can cross, but 
they are allowed to cross at most once. Each line intersects the boundary of the grid 
in two places, and the colors are permuted depending on which lines cross. Hence they 
determine a permutation w from this braiding, which can be encoded into the boundary 
conditions. This allows us to construct a system Sz,λ,w whose partition function satisfies 
the identity

Z(Sz,λ,w) = zρ∂◦
wzλ, (1.1)

where ρ is the Weyl vector. Here the polynomial ∂◦
wzλ is the Demazure atom.

The Schur function sλ is the character of the Kashiwara-Nakashima [34] crystal 
Bλ of tableaux. The Demazure character formula was lifted by Littelmann [44] and 
Kashiwara [32] to define subsets Bλ(w) ⊆ Bλ whose characters are Demazure characters 
∂wzλ. If w = 1W then Bλ(w) = {vλ} where vλ is the highest weight element. If w0 is the 
long element then Bλ(w0) = Bλ. If w � w′ in the Bruhat order then Bλ(w) ⊆ Bλ(w′).

In Type A, the results of Lascoux and Schützenberger [42] give an alternative 
decomposition of Bλ into disjoint subsets that we will here denote B◦

λ(w). Then

Bλ(w) =
⋃

y�w

B◦
λ(y).

The term Demazure atom is used in the literature to mean two closely related but 
different things: the sets that we are denoting B◦

λ(w) or their characters, which are 
the functions ∂◦

wzλ. When we need to distinguish them, we will use the term crystal 
Demazure atoms to refer to the subsets B◦

λ(w) while their characters will be referred to 
as polynomial Demazure atoms.

Since (up to the factor zρ) the character of the colored system indexed by w is the 
polynomial Demazure atom B◦

λ(w), we may hope that, when we identify the set of states 
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of our model with a subset of Bλ, the set of states indexed by w is B◦
λ(w). This is true and 

we will give a proof of this fact using techniques developed by Kashiwara, particularly the 
�-involution of the B∞ crystal, as well as (1.1), which is proved using the Yang-Baxter 
equation.

As a byproduct of this proof we obtain apparently new algorithms for computing 
Lascoux-Schützenberger right keys, which we now explain.

First, we will explain a theorem of Lascoux-Schützenberger that concerns the following 
question: given a tableau T ∈ Bλ, determine w ∈ W such that T ∈ B◦

λ(w). The set of 
Demazure atoms is in bijection with the orbit Wλ in the weight lattice, and this bijection 
may be made explicit as follows. The weights Wλ are extremal in the sense that they 
are the vertices of the convex hull of the set of weights of Bλ. Each extremal weight wλ

has multiplicity one, in that there exists a unique element uwλ of Bλ with weight wλ. 
These extremal elements are called key tableaux, and they may be characterized by the 
following property: if C1, . . . , Ck are the columns of a tableau T , then T is a key if and 
only if each column Ci contains Ci+1 elementwise.

Lascoux and Schützenberger proved that every crystal Demazure atom contains a 
unique key tableau, and every key tableau is contained in a unique crystal Demazure 
atom. The weight of the key tableau in B◦

λ(w) is wλ. If T ∈ Bλ let key(T ) be the 
unique key that is in the same atom as T . This is called the right key by Lascoux 
and Schützenberger; its origin is in the work of Ehresmann [22] on the topology of flag 
varieties. (There is also a left key, which is key(T ′)′, where T �→ T ′ is the Schützenberger 
(Lusztig) involution of Bλ.)

We will describe two apparently new algorithms that compute key(T ′) and key(T ), 
respectively. The algorithms depend on a map σ : Bλ → W such that if w = w0σ(T )
then T ∈ B◦

λ(w). Thus key(T ) is determined by the condition that wt
(
key(T )

)
=

wλ = w0σ(T )λ. The extremal weight wλ has multiplicity one in the crystal Bλ, so 
the unique key tableau key(T ) with that weight is determined by wλ. To compute it, 
the most frequently occurring entry (as specified by the weight) must appear in every 
column of key(T ), the next most frequently occurring entry must then appear in every 
remaining, non-filled column, and so on. The entries of the columns are thus determined, 
and arranging each column in ascending order we get key(T ).

A formal definition of the map σ will be given later in (5.11). But we will now give 
two algorithms for computing it. Given a tableau T , the first algorithm computes σ(T ′), 
and the second algorithm computes σ(T ). The two algorithms depend on the notion of 
a nondescending product of a sequence of simple reflections si in the Weyl group W . Let 
i1, · · · , ik be a sequence of indices and define the nondescending product Πnd(si1 , · · · , sik

)
to be si1 if k = 1 and then recursively

Πnd(si1 , · · · , sik
) =
{

si1π if si1π > π

π otherwise,
(1.2)

where π = Πnd(si2 , · · · , sik
).
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Remark 1.1. There is another way of calculating the nondescending product. There is a 
degenerate Hecke algebra H with generators Si subject to the braid relations and the 
quadratic relation S2

i = Si.2 Given w ∈ W , set Sw = Sj1 · · · Sj�
where w = sj1 · · · sj�

is 
a reduced expression. Then the Sw (w ∈ W ) form a basis of H, and we will denote by 
{·} the map from this basis to W that sends Sw to w. Then

Πnd(si1 , · · · , sik
) = {Si1 · · · Sik

} .

An element T of Bλ is a semistandard Young tableau with entries in {1, 2, . . . , r} and 
shape λ. There is associated with T a Gelfand-Tsetlin pattern Γ(T ) as follows. The top 
row is the shape λ; the second row is the shape of the tableau obtained from T by erasing 
all entries equal to r. The third row is the shape of the tableau obtained by further erasing 
all r − 1 entries, and so forth. For example suppose that r = 4, λ = (5, 3, 1). Here is a 
tableau and its Gelfand-Tsetlin pattern:

T = 1 1 2 4 4
2 3 4
3

, Γ(T ) =

⎧⎪⎨⎪⎩
5 3 1 0

3 2 1
3 1

2

⎫⎪⎬⎪⎭ . (1.3)

First algorithm

To compute σ(T ′), we decorate the Gelfand-Tsetlin pattern as follows. For each 
subtriangle

x y
z

if z = y then we circle the z. We then transfer the circles in the Gelfand-Tsetlin pattern 
to the following array:

⎡⎢⎢⎣
s1 s2 · · · sr−1

. . .
... . .

.

s1 s2
s1

⎤⎥⎥⎦ . (1.4)

Note that the array of reflections has one fewer row than the first, but that circling 
cannot happen in the top row of the Gelfand-Tsetlin pattern. Now we traverse this array 
in the order bottom to top, right to left. We take the subsequence of circled entries in 
the indicated order, and their nondescending product is σ(T ′).

2 It may be worth remarking that these are the same relations satisfied by the Demazure operators ∂i.
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Second algorithm

To compute σ(T ), we decorate the Gelfand-Tsetlin pattern as follows. For each 
subtriangle

x y
z

if z = x then we circle the z. We then transfer the circles in the Gelfand-Tsetlin pattern 
to the following array:⎡⎢⎢⎣

s1 s2 · · · sr−1
. . .

... . .
.

sr−2 sr−1
sr−1

⎤⎥⎥⎦ . (1.5)

Now we traverse this array in the order bottom to top, left to right. We take the 
subsequence of circled entries in the indicated order, and their nondescending product 
is σ(T ).

Let us illustrate these algorithms with the example (1.3).
For the first algorithm, we obtain the following circled Gelfand-Tsetlin pattern and 

array of simple reflections

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5 3 1 0

3 2 1
3 1

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

⎡⎢⎣ s1 s2 s3

s1 s2

s1

⎤⎥⎦

The first algorithm predicts that if T ′ is the Schützenberger involute of T then σ(T ′) =
s2s1, which is the nondescending product of the circle entries in the order bottom to top, 
right to left. Thus w0σ(T ′) = w0s2s1 = s1s2s3s2. We claim that key(T ′) is the unique 
key tableau with shape (5, 3, 1, 0) having weight w0σ(T ′)λ = (0, 5, 1, 3). Let us check 
this. The tableau T ′ and its key (computed by Sage using the algorithm in Willis [57]) 
are:

T ′ = 1 1 1 2 2
3 3 4
4

, key(T ′) = 2 2 2 2 2
3 4 4
4

.

As claimed wt(key(T ′)) = w0σ(T ′)λ.
For the second algorithm, there are two circled entries, and we transfer the circles to 

the array of reflections as follows:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
5 3 1 0

3 2 1
3 1

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

⎡⎢⎣ s1 s2 s3

s2 s3

s3

⎤⎥⎦

Thus σ(T ) = s2s3 is the (nondescending) product in the order bottom to top, left to 
right. Then if w = w0s2s3 = s3s1s2s1, the right key of T is determined by the condition 
that its weight is wλ = (1, 3, 0, 5). Indeed, the right key of T is

key(T ) = 1 2 2 4 4
2 4 4
4

.

This is the unique key tableau with shape (5, 3, 1, 0) and weight (1, 3, 0, 5).
The two algorithms hinge on Theorem 5.5, which refines results on keys due to Lascoux 

and Schützenberger [42]. The proof of Theorem 5.5 is detailed in the subsequent three 
sections of the paper, and the resulting algorithms are proved in Section 9.

1.2. A sketch of the proofs

In Section 3 we review the Tokuyama model (in its crystal limit), a statistical-
mechanical system Sz,λ whose partition function is zρsλ(z) in terms of the Schur function 
sλ (Proposition 3.2). The states of this 5-vertex model system are in bijection with Bλ. 
For w ∈ W we will describe a refinement Sz,λ,w of this system in Section 4 whose states 
are a subset of those of Sz,λ. The Weyl group element w is encoded in the boundary 
conditions. Thus the set of states of Sz,λ,w may be identified with a subset of Bλ. If S is 
a subset of a crystal, the character of S is 

∑
v∈S zwt(v). Using a Yang-Baxter equation, 

in Theorem 4.4, we are able to prove a recursion formula for the character of Sz,λ,w, 
regarded as a subset of Bλ, and this is the same as the character of the crystal Demazure 
atom B◦

λ(w). This suggests but does not prove that the states of Sz,λ,w comprise 
B◦

λ(w). The equality of Sz,λ,w and B◦
λ(w) is Theorem 5.5. Leveraging the information 

in Theorem 4.4 into a proof of Theorem 5.5 is accomplished in Sections 7 and 8 using 
methods of Kashiwara [32], namely transferring the problem to the infinite B∞ crystal, 
then using Kashiwara’s �-involution of that crystal to transform and solve the problem. 
The information that we obtained from the Yang-Baxter equation in Theorem 4.4 is used 
at a key step (8.3) in the proof. A more detailed outline of these proofs will be given 
near the beginning of Section 7.

The two algorithms are treated in Section 9, but the key insight is earlier in 
Theorem 6.1, where the first algorithm is proved for Sz,λ,w. The idea is that the unique 
permutation w such that a given state of Sz,λ lies in of Sz,λ,w is determined by the 
pattern of crossings of colored lines; these crossings correspond to the circled entries in 
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(1.4). Then with Theorem 5.5 in hand, the result applies to B◦
λ(w). The second algorithm 

is deduced from the first using properties of crystal involutions.
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and DMS-1601026 (Bump). Buciumas was supported by ARC grant DP180103150. 
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supported by the Knut and Alice Wallenberg Foundation. We thank Amol Aggarwal, 
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helpful conversations and communications. We thank the referees for useful comments 
which improved the exposition of the paper.

2. Demazure operators

This section reviews the theory of Demazure operators associated to any complex 
reductive Lie group G. Though most of the applications in the later sections will require 
only the results in Cartan Type A, it is natural to explain the theory using root datum 
for any such G. Let Φ be a root system with weight lattice Λ, which may be regarded 
as the weight lattice of G. Thus if T is a maximal torus of G, then we may identify Λ
with the group X∗(T ) of rational characters of T . If z ∈ T and λ ∈ Λ we will denote by 
zλ the application of λ to z. Let O(T ) be the set of polynomial functions on T , that is, 
finite linear combinations of the functions zλ.

We decompose Φ into positive and negative roots, and let αi (i ∈ I) be the simple 
positive roots, where I is an index set. Let α∨

i ∈ X∗(T ) denote the corresponding simple 
coroots and si the corresponding simple reflections generating the Weyl group W . To 
each simple reflection si with i ∈ I, we define the isobaric Demazure operator acting on 
f ∈ O(T ) by

∂if(z) = f(z) − z−αif(siz)
1 − z−αi

. (2.1)

The numerator is divisible by the denominator, so the resulting function is again in 
O(T ).

It is straightforward to check that ∂2
i = ∂i = si∂i. Given any μ ∈ Λ, set k = 〈μ, α∨

i 〉
so si(μ) = μ − kαi. Then the action on the monomial zμ is given by

∂izμ =

⎧⎪⎪⎨⎪⎪⎩
zμ + zμ−αi + . . . + zsi(μ) if k � 0,
0 if k = −1,
−(zμ+αi + zμ+2αi + . . . + zsi(μ+αi)) if k < −1.

(2.2)

We will also make use of ∂◦
i := ∂i − 1, that is

∂◦
i f(z) := f(z) − f(siz)

α .
zi − 1
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Both ∂i and ∂◦
i satisfy the braid relations. Thus

∂i∂j∂i · · · = ∂j∂i∂j · · · ,

where the number of terms on both sides is the order of sisj in W , and similarly for 
the ∂◦

i . These are proved in [17], Proposition 25.1 and Proposition 25.3. (There is a typo 
in the second Proposition where the wrong font is used for ∂i.) Consequently to each 
w ∈ W , and any reduced decomposition w = si1 · · · sik

, we may define ∂w = ∂i1 · · · ∂ik

and ∂◦
w = ∂◦

i1
· · · ∂◦

ik
. For w = 1 we let ∂1 = ∂◦

1 = 1.
Let w0 be the long Weyl group element. If λ is a dominant weight let χλ denote 

the character of the irreducible representation πλ with highest weight λ. The Demazure 
character formula is the identity, for z ∈ T :

χλ(z) = ∂w0zλ.

For a proof, see [17], Theorem 25.3. More generally for any Weyl group element w, we 
may consider ∂wzλ. These polynomials are called Demazure characters.

Next we review the theory of (polynomial) Demazure atoms. These are polynomials 
of the form ∂◦

wzλ. They were introduced in Type A by Lascoux and Schützenberger [42], 
who called them “standard bases.” The modern term “Demazure atom” was introduced 
by Mason in [47], who showed that they are specializations of nonsymmetric Macdonald 
polynomials, among other things. The following theorem, done for Type A in [42], relates 
Demazure characters and Demazure atoms and is valid for any finite Cartan type.

Theorem 2.1. Let f ∈ O(T ). Then

∂wf(z) =
∑
y�w

∂◦
yf(z). (2.3)

Proof. We prove this by induction with respect to the Bruhat order. Setting φ(w) :=
∂◦

wf(z) and assuming the theorem for w, we must show that for any si with siw > w in 
the Bruhat order,

∑
y�siw

φ(y) = ∂siwf(z). (2.4)

We recall “Property Z” of Deodhar [21], which asserts that if siw > w and siy > y

then the following inequalities are equivalent:

y � w ⇐⇒ y � siw ⇐⇒ siy � siw .

Using this fact we may split the sum on the left-hand side as follows
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∑
y�siw

φ(y) =
∑

y�siw
y<siy

φ(y)+
∑

y�siw
siy<y

φ(y) =
∑

y�siw
y<siy

φ(y)+
∑

siy�siw
y<siy

φ(siy) =
∑
y�w

y<siy

(
φ(y)+φ(siy)

)
.

If siw > w then

φ(w) + φ(siw) = ∂iφ(w). (2.5)

Indeed, since ∂i = ∂◦
i + 1, this is another way of writing

∂◦
siwf(z) = ∂◦

i ∂◦
w f(z) ,

which follows from the definitions.
Using (2.5), we obtain

∑
y�siw

φ(y) = ∂i

( ∑
y�w

y<siy

φ(y)
)

. (2.6)

Still assuming siw > w we will prove that

∂i

∑
y�w

y<siy

φ(y) = ∂i

∑
y�w

φ(y). (2.7)

We split the terms on the right-hand side into three groups and write

∂i

∑
y�w

φ(y) = ∂i

∑
y�w

y<siy
siy�w

(
φ(y) + φ(siy)

)
+ ∂i

∑
y�w

y<siy
siy�w

φ(y).

Now using (2.5) again this equals

∂i

∑
y�w

y<siy
siy�w

∂iφ(y) + ∂i

∑
y�w

y<siy
siy�w

φ(y),

and remembering that ∂2
i = ∂i this equals

∂i

( ∑
y�w

y<siy
siy�w

φ(y) +
∑
y�w

y<siy
siy�w

φ(y)
)

= ∂i

∑
y�w

y<siy

φ(y),

proving (2.7).
Now (2.4) follows using (2.6), (2.7) and our induction hypothesis. �
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3. Ice models for GL(r)

In statistical mechanics, an ensemble is a probability distribution over every possible 
admissible state (i.e., microscopic arrangement) of particles in a given physical system. 
The probability of any given state is measured by its Boltzmann weight, which is 
calculated by computing the energy associated to all local interactions between particles. 
If there are only finitely many admissible states in the ensemble (as in all of the examples 
in this paper), then the partition function is defined to be a sum of the Boltzmann weights 
of each state. While computing the partition function explicitly is often intractable, there 
is a nice class of so-called solvable models [4,30] for which the partition function may be 
computed using a microscopic symmetry of the partition function known as the Yang-
Baxter equation. With few exceptions, solvable models are based on two-dimensional 
physical systems.

Ice-type models, including the six-vertex model and the five-vertex model, are a class 
of two-dimensional solvable models based on a square, planar grid in which admissible 
states are determined by associating one of two spins {+, −} to each edge. See Fig. 1 for 
an example. The term six-vertex refers to the fact that only six admissible configurations 
of spins are allowed on the four edges adjacent to any vertex in the grid. Similarly, five-
vertex models are systems, typically degenerations of six-vertex models, in which only 
five local configurations are allowed. An example of such a set of configurations can be 
found in Fig. 2 where the configuration labeled b1 is removed. In the next two sections, 
we will revisit all of the above terms and give precise definitions for an ensemble of 
admissible states and associated weights that result in a solvable model first for a five-
vertex model based on the configurations in Fig. 2, and then generalizations thereof. 
Our Boltzmann weights for states will depend on several complex variables and while 
they will not try to model the probability distribution of a physical system, they will 
nonetheless result in solvable variants of the above five-vertex model whose partition 
functions are explicitly evaluable as Demazure atoms.

More precisely, inspired by colored lattice models in Borodin and Wheeler [9], we will 
show that Demazure atoms and characters for GL(r) can be represented as partition 
functions of certain “colored five-vertex models.” Strictly speaking, it is no longer true 
that there are only five allowed configurations at a vertex. Still, the allowed configurations 
can be classified into five different groups, which we will denote a1, a2, b2, c1 and c2

in keeping with notational conventions of [4]. Before introducing the colored models, we 
begin with a model that is not new, but rather a special case of models due to Hamel 
and King [27] and Brubaker, Bump and Friedberg [12].

Our five-vertex models will occur on square grids inside a finite rectangle of fixed size. 
Then to describe the ensemble of admissible states of the model, it suffices to specify 
the size of the rectangle and the spins associated to edges along the boundary of this 
rectangle. Indeed, then the admissible states will consist of all possible assignments of 
spins to the remaining edges of the grid so that every vertex has adjacent edges in one 
of the five allowable configurations of Fig. 2 (those not of form b1).
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z3 z3 z3 z3 z3

z2 z2 z2 z2 z2

z1 z1 z1 z1 z1

− + − + −

+ + − − +

+ + + − +

+ + + + +

+ − − − + −

+ + + − − −

+ + + + − −

4 3 2 1 0

3

2

1

Fig. 1. A state of a five-vertex model system with N = 4, r = 3 and λ = (2, 1, 0).

a1 a2 b1 b2 c1 c2

+

+

+

+

zi −

−

−

−

zi +

−

+

−

zi −

+

−

+

zi −

+

+

−

zi +

−

−

+

zi

1 zi 0 zi zi 1

Fig. 2. Boltzmann weights wt(v) for a vertex v in the i-th row of the uncolored system.

Given an integer partition λ = (λ1, . . . , λr) with r parts, our grid will have r rows and 
N + 1 columns, where N is a fixed integer at least λ1 + r − 1. In order to enumerate the 
vertices, the columns are labeled 0 to N from right to left, and the rows are labeled 1 to r
from top to bottom. Vertices occur at every crossing of rows and columns and boundary 
edges are those edges in the grid connected to only one vertex. The spins {+, −} of the 
edges on the boundary are fixed according to the choice of λ by the following rules. For 
the top boundary edges, we put − in the columns labeled λi + r − i for i ∈ {1, . . . , r}
and + in the remaining columns. Then, we put + on all the left and bottom boundary 
edges and − on the right boundary edges. As noted above, an (admissible) state s of 
the resulting system assigns spins to the interior edges so that each vertex is one of the 
five configurations in Fig. 2 excluding patterns of type b1, which are not allowed (or 
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equivalently, are assigned weight 0). An example of an admissible state for λ = (2, 1, 0)
and N = 4 is given in Fig. 1.

Next we describe the Boltzmann weight β(s) of a state s. It will depend on a choice 
of r complex numbers z = (z1, . . . , zr) in (C×)r. We set

β(s) :=
∏

v: vertex in s

wt(v),

where the function wt(v) is defined in Fig. 2; the display of the variable zi in the middle 
of a configuration is a reminder that the weight of a configuration is a function of the 
row in which it appears. For example, one may quickly check that the state in Fig. 1 has 
Boltzmann weight z3

1z2
2z3.

Let Sz,λ denote the ensemble of all admissible states with boundary conditions 
dictated by λ and weights depending on parameters z = (z1, . . . , zr). Further define 
the partition function Z(Sz,λ) to be the sum of the Boltzmann weights over all states 
in the ensemble. Our notation suppresses the choice of number of columns N ; indeed, 
the partition function is independent of any such (large enough) choice, since adding 
columns to the left of the λ1 + r − 1 column adds only a1 patterns, which have weight 1.

We will next describe bijections between states of this system and two other sets of 
combinatorial objects: Gelfand-Tsetlin patterns with top row λ and semistandard Young 
tableaux of shape λ with entries in {1, 2, . . . , r}. These will allow us to conclude that 
Z(Sz,λ) is, up to a simple factor, the Schur polynomial sλ(z).

Our boundary conditions imply via a combinatorial argument ([4] Section 8.3 or 
Proposition 19.1 in [13]) that in any given state s of the system, the number of − spins 
on the N + 1 vertical edges between row i − 1 and row i will be exactly r + 1 − i. Let 
(i, j) with r � j � i enumerate these spins and let Ai,j be their corresponding column 
numbers, in descending order. Then

GTP(s) :=

⎧⎪⎪⎨⎪⎪⎩
A1,1 A1,2 · · · A1,r

A2,2 · · · A2,r

. . .
... . .

.

Ar,r

⎫⎪⎪⎬⎪⎪⎭
is a left-strict Gelfand-Tsetlin pattern, meaning that Ai,j > Ai+1,j+1 � Ai,j+1. This 
follows from Proposition 19.1 of [13], taking into account the omission of b1 patterns in 
Fig. 2, which implies that the inequality Ai,j > Ai+1,j+1 is strict.

Remark 3.1. If we allowed patterns of type b1 we would have Ai,j � Ai+1,j+1 � Ai,j+1
and Ai,j > Ai,j+1.

Since GTP(s) is left-strict, we may subtract ρr+1−i := (r − i, r − i −1, · · · , 0) from the 
i-th row of GTP(s) to obtain another Gelfand-Tsetlin pattern. We denote this reduced
pattern by
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GTP◦(s) :=

⎧⎪⎪⎨⎪⎪⎩
a1,1 a1,2 · · · a1,r

a2,2 · · · a2,r

. . .
... . .

.

ar,r

⎫⎪⎪⎬⎪⎪⎭ , (3.1)

whose entries are ai,j = Ai,j −r+j. The top row of GTP◦(s) is λ. The map s �→ GTP◦(s)
is easily seen to be a bijection between the states of Sz,λ and the set of Gelfand-Tsetlin 
patterns with top row λ.

There is also associated with a state s a semistandard Young tableau, which may be 
described as follows. Let Bλ be the set of semi-standard Young tableaux of shape λ with 
entries in {1, 2, 3, . . . , r}. We first associate a tableau T ∈ Bλ with any Gelfand-Tsetlin 
pattern. The top row of the pattern is the shape λ of T. Removing the cells labeled 
r from the tableau results in the shape that is the second row of the Gelfand-Tsetlin 
pattern, etc. This procedure is reversible and so there is another bijection between Bλ

and Gelfand-Tsetlin patterns with top row λ. We may compose this with our previous 
bijection between Sz,λ and Gelfand-Tsetlin patterns. Given an admissible state s, we 
will denote the associated tableau by T(s).

For example with the state s in Fig. 1, we have

GTP(s) =
{4 2 0

2 1
1

}
, GTP◦(s) =

{2 1 0
1 1

1

}
, T(s) = 1 3

2
.

The set Bλ has the structure of a Kashiwara-Nakashima crystal of tableaux (see 
[34,18]). As such it comes with a weight map wt : Bλ −→ Λ, where Λ 
 Zr denotes 
the weight lattice for G = GL(r). If T ∈ Bλ, then identifying Λ with Zr, we define 
wt(T) = (μ1, · · · , μr) where μi is the number of entries in T equal to i.

Proposition 3.2. Let λ ∈ Λ be a dominant weight and s ∈ Sz,λ be an admissible state of 
the uncolored five-vertex model defined above.

(i) The Boltzmann weight β(s) and the weight map of the associated tableau T(s) are 
related by

β(s) = zρ+w0 wt(T(s)).

(ii) The partition function of an ensemble Sz,λ is related to Schur functions by

Z(Sz,λ) = zρ sλ(z).

To illustrate (i), in the example of Fig. 1, we have

β(s) = z3
1z2

2z3, zρ = z2
1z2, and zw0 wt(T(s)) = z1z2z3.
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Proof of Proposition 3.2. To prove (i), note that from the weights in Fig. 2 a vertex in 
the i-th row contributes a factor of zi if and only if the spin to the left of the vertex is −. 
Hence the power of zi equals the number of − spins on the horizontal edges in the i-th 
row, not counting the − on the right boundary edge. Now such − occur on the horizontal 
edges between the Ai,j and Ai+1,j+1 columns, or to the right of the Ai,r column. Hence 
the power of zi in Sz,λ is

r∑
j=i

Ai,j −
r−1∑
j=i

Ai+1,j+1 =

⎛⎝ r∑
j=i

ai,j −
r∑

j=i+1
ai+1,j

⎞⎠+ r − i.

The term in parentheses is the number of r + 1 − i entries in the tableau T(s). Taking 
the product over all i gives (i).

Using (i) and the combinatorial formula

sλ(z) =
∑
T

zwtT

for the Schur function we have Z(Sz,λ) = zρ sλ(w0z). Part (ii) now follows from the 
symmetry of the Schur function. �

Alternatively, we can evaluate the partition function using a local symmetry known as 
the Yang-Baxter equation, which is Theorem 3.3 below. To state this we need to introduce 
a new type of vertices that we will call rotated vertices. These vertices are rotated by 45 
degrees counterclockwise and there are two parameters zi, zj associated to each vertex. 
We denote such rotated vertices by Rzi,zj

(here we use R as their Boltzmann weights 
may be alternately viewed as entries of an R-matrix that “solves” a lattice model). These 
vertices can be attached to the grid systems we defined before, like the one in Fig. 1 to 
obtain new systems. It is by working with these new systems that we can use the Yang-
Baxter equation and derive functional equations for the partition function of our initial 
system (the one without any rotated vertices).

The Boltzmann weights of the rotated vertices are different from the Boltzmann 
weights of the regular vertices and are given in Fig. 3.

+

+ +

++

Rzi,zj

−

− −

−

Rzi,zj

−

+ −

+

Rzi,zj

−

+ +

−

Rzi,zj

+

− −

+

Rzi,zj

zj zi zi − zj zi zj

Fig. 3. The R-matrix for the uncolored system. From [10] we know that we may regard this combinatorial 
R-matrix as the “crystal limit” of the Uq(ĝl(1|1)) R-matrix when q → 0.
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Now consider the following two miniature systems that contain both regular and 
rotated vertices:

a

b

c

d

e

f

g

h

i

zi

zj

Rzi,zj

a

b

c

d

e

f

j

k

l

zj

zi

Rzi,zj
(3.2)

Here, as with the system defined before, we fix the spins of the exterior edges 
(a, b, c, d, e, f). An assignment of spins to the interior edges is again called a state. Both 
systems have a partition function defined by summing the weights of the admissible 
states made from all possible assignments of spins to the interior edges (g, h, i in the left 
system, or j, k, l on the right). The weight of the entire state is computed just as above: 
we take a product of the weights of each vertex using the weights of the regular vertices 
that are given in Fig. 2 and the weights of the rotated vertices that are given in Fig. 3.

For example if (a, b, c, d, e, f) = (+, −, +, −, +, +) there is only one choice (g, h, i) =
(−, +, +) that gives a nonzero contribution to the first system, and the partition function 
is the Boltzmann weight zizj of this state. For the second system, there are two states 
with nonzero contribution, namely (j, k, l) = (−, +, +), with weight z2

j and (+, −, −)
with weight zj(zi − zj). The partition function again equals zizj .

Theorem 3.3. Let a, b, c, d, e, f ∈ {+, −}. Then the partition functions of the two systems 
in (3.2) are equal.

Proof. This is a special case of a Yang-Baxter equation found in [12]. Referring to the 
arXiv version of the paper, the Boltzmann weights are in Table 1 of that paper with 
ti = 0. �

The symmetry of the Schur function may be easily deduced from this via a procedure 
called the “train argument” that amounts to repeated use of Theorem 3.3 on a larger 
grid system with an attached rotated vertex as later illustrated in Fig. 8 for the colored 
five-vertex model. See also [12, Lemma 4], leading to an alternate proof of the evaluation 
of the partition function.

The models of this section may be described as the “uncolored” (or equivalently “one-
colored”) version of our five-vertex models. They were known before the writing of this 
paper. In the next section, we present a generalization known as colored models, which 
are new. We will prove a Yang-Baxter equation in the colored setting (Theorem 4.2) that 
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will then be used to relate the partition function of the lattice models to the Demazure 
atoms.

4. Colored ice models for GL(r)

There are multiple ways to depict admissible states of the six-vertex model. Many of 
these are described in Chapter 8 of Baxter’s inspiring book [4]. In particular, rather than 
using spins or arrows to decorate edges, one can instead use the presence or absence of a 
line (or “path”) along an edge. These are the “line configurations” in [4], Figure 8.2. Our 
convention will be that the presence of a line corresponds to a − spin, so that admissible 
states may be viewed as a collection of paths moving downward and rightward through 
the lattice. Inspired by ideas of Borodin and Wheeler [9] in the context of certain other 
solvable lattice models, we may assign colors to each such path to refine the partition 
function of the prior section to produce polynomial Demazure atoms.

First we describe the relevant solvable colored lattice model. Just as before, upon 
fixing a dominant weight λ = (λ1, . . . , λr), we begin with a rectangular lattice of N + 1
columns (N � λ1 + r − 1) and r rows whose edges are to be assigned spins ± according 
to a five-vertex model. Moreover, to each edge with − spin, we assign a “color,” an 
additional attribute from a finite set {c1, · · · , cr} of size equal to the number of rows 
in the model. We will order these colors by c1 > c2 > · · · > cr. By a colored spin we 
mean either +, or a color ci. For the purpose of comparing with the uncolored system, 
we regard a colored spin ci as a spin − with an extra piece of data, namely a color.

To each dominant weight λ, we now define r! distinct partition functions. Given w ∈
W = Sr and a vector of colors c = (c1, · · · , cr), let wc be the permuted vector of colors, 
that is (wc)i = cw−1i. We will call such vectors of colors flags. Now assign boundary 
conditions to the colored lattice model as follows. To the vertical top boundary edges, 
we assign spins − in the columns labeled λi + r − i as before (1 � i � r). Now however 
we also need to assign colors to these edges, and we assign the color ci to the λi + r − i

column. Each edge along the right boundary is also assigned a − spin, but here we assign 
the colors wc in order from top to bottom. Just as before, all remaining boundary spins 
along the bottom, left, and top are +.

Admissible states are then assignments of colored spins to the interior edges such 
that every vertex has adjacent spins as in Fig. 4 with the understanding that the colors 
red > blue may be replaced by any colors ci and cj with ci > cj . Boltzmann weights for 
each vertex are listed in the figure as well. We denote the resulting system of admissible 
states as Sz,λ,w. The configurations in Fig. 4 ensure that each color will determine a 
path, moving downward and rightward through the lattice. The choice of w ∈ W then 
specifies the row where each colored path exits the right-hand boundary. As before, we 
denote by Z(Sz,λ,w) the partition function of the colored lattice model.

For example, let r = 3. We will denote the three colors c1, c2 and c3 as R (red), B (blue) 
and G (green) in the figures. Take w = s1s2. Then c = (R, B, G) and wc = (G, R, B). 
With λ = (2, 1, 0) the system Sz,λ,w has two states, which are illustrated in Fig. 5.
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Fig. 4. Colored Boltzmann weights for two colors ci and cj , portrayed as red (R) and blue (B). We assume 
that red > blue. If the configuration is not in the table, the weight is zero. The weights are not quite 
symmetric in the colors, since in the a2 patterns, the smaller of the two involved colors (blue) is not allowed 
on the right edge and the larger color is not allowed on the bottom edge. With our boundary conditions, 
the patterns with four edges all red or blue could be omitted, but this would change the R-matrix in Fig. 6; 
see Remark 4.3. This would not affect the results of this paper, but we prefer these weights for consistency 
with the uncolored case. (For colored versions of this and subsequent figures, the reader is referred to the 
web version of this article.)

Proposition 4.1. For any dominant weight λ, Sz,λ = �w∈W Sz,λ,w (disjoint union) 
where a colored spin ci is mapped to spin −, and hence

Z(Sz,λ) =
∑

w∈W

Z(Sz,λ,w).

Proof. We may begin with a state of the uncolored system and assign colors to the edges 
with − spins. Along the top row, assign color ci to the − spin in column λi + r − i as 
directed for colored ice states. We will argue that there is a unique way of coloring the 
remaining − spins that is consistent with the configurations in Fig. 4.

The boundary spins on the left edge are all +, so they do not need colors assigned. 
After this, we proceed inductively, rightwards and downwards row by row, adding color 
to the − spins of the state using the weights from Fig. 4. The key observation is that at 
a vertex labeled as follows:

a

b

c

d

zi
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Fig. 5. The two states of the system Sz,(2,1,0),s1s2 where c = (R, B, G) (red, blue, green) and wc = s1s2c =
(G, R, B). The dashed lines �i, and the intermediate flags ci will be used in the proof of Theorem 6.1. 
Each intermediate flag ci is the sequence of colors through the line �i, and is obtained from the previous 
ci−1 by interchanging some colors on the vertical edges that intersect it. Because �r−1 only intersects one 
vertical edge, no interchanges are possible at the last step, meaning that cr−1 = cr. Note that, while the 
flag wc = s1s2c = (G, R, B) denoting the right boundary condition is read from the top down, the last line 
�3 intersects the same edges from the bottom up. Thus, c3 = w0s1s2c = (B, R, G).

the colored spins a and b and the spins ± of c and d determine a unique color at c

and d with non-zero weight according to Fig. 4. Indeed, colored spin is conserved at 
a vertex, meaning that the total incoming (top and left) colored spins counted with 
multiplicity equals the total outgoing (bottom and right) colored spins. Moreover for the 
a2 configurations if a and b are of different colors, then d will be the smaller of the two 
colors. We see that the assignment of colors is completely deterministic, and the colored 
state falls into a unique one of the ensembles Sz,λ,w.
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R

R R

R
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zi − zj zi zi zj zi − zj zi

Fig. 6. The colored R-matrix.

Now mapping colored spins ci to spin −, the colored Boltzmann weights of Fig. 4 map 
to the uncolored Boltzmann weights of Figs. 2, thus proving both statements. �

There is again a Yang-Baxter equation.

Theorem 4.2. Using the Boltzmann weights in Fig. 4 for the regular vertices and the 
R-matrix in Fig. 6 for the rotated vertices, let a, b, c, d, e, f be colored spins. Then the 
partition functions of the (now colored) systems depicted in (3.2) are equal.

Proof. In order for either side of (3.2) to be nonzero, each color that appears on a 
boundary edge a, b, c, d, e, f must appear an even number of times (and therefore at least 
twice), since otherwise according to Figs. 4 and 6, the Boltzmann weight of the state is 
zero. Therefore at most 3 colors can appear among a, b, c, d, e, f and the interior edges 
cannot involve any further colors. Thus there are only a fixed finite number (46 = 4096) 
of cases to be considered (independent of the number of colors r), and this can easily be 
checked using a computer. (To check this we used the Sage mathematical software.) �
Remark 4.3. It may be checked that the colored R-matrix (with r colors) in Fig. 6 is the 
limit as q → ∞ of the R-matrix of a Drinfeld twist of Uq

(
ŝl(r|1)
)
. It is also possible to 

vary the Boltzmann weights as follows: in Fig. 4, omit the a2 patterns in which all four 
edges have the same color; and in Fig. 6, change the Boltzmann weights of the patterns 
in which all four edges have the same color from zi to zj . These changes do not affect 
any of the arguments in this paper since the changed patterns do not appear in any of 
the states of the systems we consider, but they change the underlying quantum group 
to a Drinfeld twist of Uq(ŝlr+1).

Our next result shows that the colored partition function with r colors and r rows is 
a polynomial Demazure atom for GL(r) up to a factor of zρ.
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+ + + + + B B B B

+ + + + + + + + G

7 6 5 4 3 2 1 0

1

2

3 z3 z3 z3 z3 z3 z3 z3 z3

z2 z2 z2 z2 z2 z2 z2 z2

z1 z1 z1 z1 z1 z1 z1 z1

GTP(s) =
{

7 3 0
3 0

0

}
, GTP◦(s) =

{
5 2 0

2 0
0

}
,

T(s) = 2 2 3 3 3

3 3
, string(1,2,1)(T) =

⎡⎢⎣ 0 0

0

⎤⎥⎦ .

Fig. 7. The ground state. In this unique state with maximal number of crossings of colored lines, we have 
β(s) = zλ+ρ, wt(T(s)) = zw0(λ+ρ). Note that since we read the “flag” of colors on the right edge from top 
to bottom, it is this ground state corresponding to w = 1 that has the maximum number of crossings.

Theorem 4.4. For every w ∈ W we have

Z(Sz,λ,w) = zρ∂◦
wzλ.

Proof. The proof is by induction with respect to Bruhat order. If w = 1W , it is easy to 
see that there is a unique state in Sz,λ,1W

and its Boltzmann weight is zρ+λ (see Fig. 7). 
Thus it suffices to show that for each si and w with siw > w,

z−ρZ(Sz,λ,siw) = ∂◦
i

(
z−ρZ(Sz,λ,w)

)
. (4.1)

Let wc = d = (d1, · · · , dr). Since siw > w, we have di > di+1. Consider the partition 
function of the system in Fig. 8 (top). This is a system like the one portrayed in Fig. 5
but with an attached rotated vertex zi+1, zi on the left. We only exhibit two of the rows 
of the system because this is where the interesting changes occur. Also note that the 
parameters of the two rows are flipped, so now the top row has parameter zi+1 and the 
bottom row has parameter zi.

Consulting Fig. 6, the rotated vertex (or the R-matrix) has only one possible 
admissible configuration (with all + spins). This means the partition function of the 
top system in Fig. 8 will be equal to the Boltzmann weight of
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Fig. 8. Top: the system Ssiz,λ,w with the R-matrix attached. Bottom: after using the Yang-Baxter equation.

+

+ +

+

Rzi+1,zi

times the partition function of the system with the rotated vertex removed. This is then 
ziZ(Ssiz,λ,w). Note that zi and zj in Fig. 6 become here zi+1 and zi, respectively. We 
are using red and blue for the colors di and di+1, respectively.

After repeated use of the Yang-Baxter equation (Fig. (3.2)), we move the rotated 
vertex to the right, switch the parameters of the two rows and obtain a system with the 
same partition function by Theorem 4.2. This is the system on the bottom of Fig. 8. 
This method of Baxter is sometimes called the “train argument.”

Now looking at the possible weights from Fig. 6, the R-matrix has two admissible 
configurations (third and fifth on the second row) and so the equality of partition 
functions from Fig. 8 becomes the identity

ziZ(Ssiz,λ,w) = zi+1Z(Sz,λ,w) + (zi+1 − zi) Z(Sz,λ,siw).

Since zαi = zi/zi+1, the above identity may be rewritten as

Z(Sz,λ,siw) = −(1 − zαi)−1(Z(Sz,λ,w) − zαiZ(Ssiz,λ,w)). (4.2)

The right-hand side can be interpreted as the operator −(1 − zαi)−1(1 − zαisi) applied 
to Z(Sz,λ,w). Note that
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∂◦
i = −(1 − zαi)−1(1 − si), and hence zρ∂◦

i z−ρ = −(1 − zαi)−1(1 − zαisi).

Using this, (4.1) follows from (4.2). �
Remark 4.5. It was recently found by Brubaker, Bump and Friedberg that a variation 
of the Boltzmann weights produces the Demazure character zρ∂wzλ instead of the 
Demazure atom zρ∂◦

wzλ in Theorem 4.4. The modification is to interchange red and 
blue in the third case of Fig. 4. This will be discussed in a subsequent paper.

5. Demazure crystals and atoms

A refined Demazure character formula in the context of crystals was obtained by 
Littelmann [44] and Kashiwara [32] for any symmetrizable Kac-Moody Cartan type. 
We begin this section by reviewing this refinement for finite Cartan types. Then, after 
introducing string data on a crystal, we specialize to Cartan Type A and describe an 
important map σ from the crystal to the Weyl group which allows us to identify Demazure 
atoms with subsets of the highest weight crystal and characterize the vertices belonging 
to this crystal. This result (Theorem 5.5) is one of the main results in this paper and its 
proof is ultimately completed in Section 8.

Let us fix a finite Cartan type with weight lattice Λ. Let λ be a dominant weight, 
which we assume to be a partition. Then there is a unique irreducible representation πλ

of highest weight λ, and a corresponding normal crystal Bλ whose character is the same 
as that of πλ.

Recall that crystals come equipped with Kashiwara maps ei, fi : Bλ → Bλ ∪ {0} and 
ϕi, εi : Bλ → Z (see [34]). For a crystal B an element v is called a highest weight element
if ei(v) = 0 for all i; similarly it is lowest weight if all fi(v) = 0. The crystal Bλ has unique 
highest and lowest weight elements vλ and vw0λ, respectively; with weights wt(vλ) = λ

and wt(vw0λ) = w0λ.
With B = Bλ let Z[B] be the free abelian group on B. We define a map ∂i : B −→ Z[B]

in terms of the Kashiwara operators ei and fi by

∂iv =

⎧⎪⎪⎨⎪⎪⎩
v + fiv + . . . + fk

i v if k � 0,
0 if k = −1,
−(eiv + . . . + e−k−1

i v) if k < −1,

where k = 〈wt(v), α∨
i 〉. This lifts the Demazure operator ∂i to the crystal; indeed, 

composing with the familiar weight map on the crystal (described in Section 3) produces 
the Demazure operators of (2.1), and so we will use the same notation for the operator 
in both contexts.

By an i-root string we mean an equivalence class of elements of B under the equivalence 
relation that x ≡ y if x = er

i y or x = fr
i y for some r. An i-root string S has a unique 
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highest weight element uS characterized by ei(uS) = 0. We may now state the refined 
Demazure character formula of Littelmann and Kashiwara.

Theorem 5.1 (Littelmann, Kashiwara). Let B = Bλ.

(i) There exist subsets B(w) of B indexed by w ∈ W such that B(1) = {vλ}, B(w0) = B
and if siw > w then

B(siw) = {x ∈ B | er
i x ∈ B(w) for some r} .

(ii) If S is an i-root string then B(w) ∩ S is one of the three possibilities: ∅, S or {uS}.
(iii) We have ∑

x∈B(w)

zwt(x) = ∂wzλ .

See [32] or [18] Chapter 13 for proof.

Demazure characters and atoms were defined in Section 2 as functions on the complex 
torus T . The preceding theorem allows us to lift Demazure characters to the crystal 
B = Bλ; as in the theorem, we will denote these (lifted) Demazure characters by B(w)
for w ∈ W . Let B◦(w) (w ∈ W ) be a family of disjoint subsets of B. We call these a 
family of crystal Demazure atoms if

B(w) =
⋃

y�w

B◦(y). (5.1)

Lemma 5.2. If a family of disjoint subsets B◦(w) satisfying (5.1) exists it is unique.

Proof. Let us identify a subset S of B with the element 
∑

v∈S v of the free abelian group 
Z[B]. Then we may rewrite (5.1) as

B(w) =
∑
y�w

B◦(y).

By Möbius inversion with respect to the Bruhat order ([54,52]) this is equivalent to

B◦(w) =
∑
y�w

(−1)�(w)−�(y)B(y).

This characterization of B◦(w) as an element of Z[B] proves the uniqueness. �
For the remainder of the section, we specialize to Cartan Type A. As explained in the 

Introduction, in a decomposition of the set of tableaux in a GL(r) crystal Bλ is given by 
the theory of Lascoux-Schützenberger keys. We will give another algorithm to compute, 
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for any v ∈ B, the element w ∈ W such that v ∈ B◦(w) and show that the resulting 
subsets satisfy (5.1), making them a family of crystal Demazure atoms. This algorithm 
makes use of the string or BZL patterns for vertices in a crystal, which we now describe. 
These patterns were introduced in [5] for Type A, and more generally in [45]. See also [18]
Chapter 11 and [13] Chapters 2 and 5.

Let i = (i1, · · · , iN ) be a reduced word for w0 = si1 · · · siN
. Given any v ∈ Bλ, let 

b1 := b1(v) be the largest nonnegative integer such that f b1
i1

v �= 0. Then let b2 be the 
largest integer such that f b2

i2
f b1

i1
v �= 0. Continuing, we obtain f bN

iN
· · · f b2

i2
f b1

i1
v = vw0λ as 

explained in [45]. We will denote the resulting vector of lengths in root strings by

string(f)
i (v) := (b1, · · · , bN ). (5.2)

Dually, let c1, · · · , cN be the maximum values such that eck
ik

· · · ec2
i2

ec1
i1

v �= 0 for k =
1, 2, · · · , N . Then ecN

iN
· · · ec2

i2
ec1

i1
v = vλ and we define

string(e)
i (v) := (c1, · · · , cN ). (5.3)

The map α �→ −w0α permutes the positive roots, and in particular the simple roots. 
Thus there is a bijection i �→ i′ of the set I of indices such that αi′ = −w0αi and 
w0siw

−1
0 = si′ . In the GL(r) case I = {1, · · · , r − 1} and i′ = r − i. The crystal also has 

a map v �→ v′, the Schützenberger or Lusztig involution, such that if v ∈ B then

fi(v′) = (ei′(v))′, ei(v′) = (fi′(v))′. (5.4)

It follows from (5.4) that if i′ = (i′
1, · · · , i′

N ) then

string(e)
i′ (v) = string(f)

i (v′). (5.5)

Littelmann [45] observed that for certain “good” choices of long word i the set of 
possible string patterns can be easily characterized. Although Littelmann gives good 
word choices for the classical Cartan types, our results are mainly for Type A and we 
will specialize to the GL(r) case for the remainder of this section, indeed for the rest of 
the paper. For GL(r), one such Littelmann good word is

i = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1, · · · , r, r − 1, · · · , 3, 2, 1). (5.6)

Thus

i′ = (r − 1, r − 2, r − 1, r − 3, r − 2, r − 1, · · · , r − 3, r − 2, r − 1). (5.7)
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Following [45] we arrange the string pattern string(e)
i′ (v) = (b1, b2, · · · ) in an array

string(e)
i′ (v) =

⎡⎢⎢⎣
. . .

...
...

b4 b5 b6
b2 b3

b1

⎤⎥⎥⎦ (5.8)

in which the bi satisfy the Littelmann cone inequalities

b1 � 0, b2 � b3 � 0, b4 � b5 � b6 � 0 , · · · . (5.9)

Following [13] we decorate the string pattern (5.8) by circling certain bi according to 
these cone inequalities.

Circling Rule 5.3. Let b = (b1, b2, · · · , bN ) where N = r(r − 1)/2 be a sequence of 
nonnegative integers satisfying (5.9). We arrange the sequence in an array (5.8) and 
decorate it by circling an entry bi if it is minimal in the cone. Explicitly, if i is a triangular 
number, so that bi is at the right end of its row, the condition for circling it is that bi = 0; 
otherwise, the condition for circling is that bi = bi+1.

Let (i1, i2, i3, i4, i5, i6, · · · ) be the sequence (1, 2, 1, 3, 2, 1, · · · ) of (5.6). We transfer the 
circles from the string pattern to the following array made with the simple reflections:⎡⎢⎢⎣

. . .
...

...
si6 si5 si4

si3 si2
si1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
. . .

...
...

s1 s2 s3
s1 s2

s1

⎤⎥⎥⎦ . (5.10)

Remark 5.4. Note that the horizontal orders of the entries in (5.8) and (5.10) are different.

If v ∈ Bλ, let (sj1 , · · · , sjk
) be the subsequence of (si1 , si2 , si3 , · · · ) = (s1, s2, s1, s3, s2,

s1, · · · ) consisting of the circled reflections in (5.10) derived from the string pattern 
string(e)

i′ (v). Here i′ is the specific sequence in (5.7). With the nondescending product 
Πnd defined in (1.2), define σ : Bλ → W by

σ(v) := Πnd(sj1 , · · · , sjk
). (5.11)

For example, suppose that the string pattern is:⎡⎣ 1 1

0

⎤⎦ . (5.12)

The circling rule tells us to circle b1 and b2 since b1 = 0 and b2 = b3. Thus we circle 
these entries:
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⎡⎣ s1 s2

s1

⎤⎦
and σ(v) = Πnd(s1, s1) =

{
S2

1
}

= s1 in this case, using the notation of Remark 1.1.
We may now state one of our main results. Let Wλ be the stabilizer of λ in W . Note 

that if w, w′ ∈ W lie in the same coset of W/Wλ then Bλ(w) = Bλ(w′). We will say that 
w ∈ W is λ-maximal if it is the longest element of its coset.

Theorem 5.5. Let B = Bλ be the GL(r) crystal of tableaux with highest weight λ. There 
exist a family of subsets B◦(w) of B indexed by w ∈ W such that B◦(w) = B◦(w′) if and 
only if w, w′ lie in the same coset of W/Wλ; otherwise they are disjoint, and such that 
the decomposition (5.1) is satisfied. If w is the longest element of this coset, then

B◦(w) = {v ∈ B | w0σ(v) = w}. (5.13)

If w is not the longest element of its coset then the equation w0σ(v) = w has no solutions.

This is a refinement of results of Lascoux and Schützenberger [42], and is one 
of the main points of the paper. Equation (5.13), together with the definition and 
properties of σ, leads to the algorithmic characterization of the crystal Demazure atom 
in Subsection 1.1. The proof of Theorem 5.5 will be given later, in Section 8. One may 
check that the definition of σ in (5.11) agrees with the one derived from reduced pipe 
dreams in Section 1.4 of [36] (and originally in [24]) under a natural bijection between 
such pipe dreams and states of our lattice models.

6. A bijection between colored states and Demazure atoms

We return now to colored ice models and their relation to crystals for GL(r). Recall 
from Proposition 4.1 that the admissible states of colored ice Sz,λ,w with w ∈ W partition 
the set of admissible states of uncolored ice in the system Sz,λ. The map from any Sz,λ,w

to Sz,λ is simply given by ignoring the colors (i.e., replacing each colored edge by a −
spin). In Section 3 we defined a map s → T(s) from Sz,λ to Bλ. In this section, we 
characterize the image of Sz,λ,w under this map. This will be a key ingredient in the 
proof of Theorem 5.5 in Section 8.

Let v → v′ be the Schützenberger (Lusztig) involution of Bλ.

Theorem 6.1. If w ∈ W and s ∈ Sz,λ, then s ∈ Sz,λ,w if and only if w0σ
(
T(s)′) = w.

Thus once Theorem 5.5 is proved, we may compare Theorem 6.1 with (5.13) to see 
that the map s → T(s)′ sends the ensemble Sz,λ,w to the Demazure atom B◦

λ(w).
Before we prove Theorem 6.1 we give an example. In Fig. 9, we have labeled the 

elements of the GL(3) crystal Bλ (λ = (2, 1, 0)) by a flag indicating the colors along the 
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right edge of the corresponding state. These colors are read off from top to bottom 
on the horizontal edges at the right boundary of the grid. In the decomposition of 
Proposition 4.1, the flag is a permutation wc of the colors of the standard flag, which 
we are taking to be c = (R, B, G). For example, to compute the flags for the elements

1 3
2

and 1 2
2

(6.1)

we construct the corresponding states as in Fig. 5 and then read off the colors from the 
right edge, which are (G, R, B) for both states. In Fig. 9 these colors are represented 
as a flag. The flag allows us to read off the unique y ∈ W such that the corresponding 
state s is in Sz,λ,y. For example in the two states in (6.1), we have the flag (G, R, B) =
s1s2(R, B, G) and so y = s1s2.

Now let us also verify Theorem 5.5 and Theorem 6.1 for the patterns in Fig. 5. Both 
are in the system Sz,(2,1,0),s1s2 . Their string patterns string(e)

i′ (T′) = string(f)
i (T) are 

shown in Table 1.

2 3
3

1 3
3

2 2
3

1 3
2

1 2
3

1 2
2

1 1
3

1 1
2

R
B
G

R
G
B

G
R
B

G
R
B

B
R
G

B
G
R

B
G
R

G
B
R

1 2

2 1

2 1

21

0 0
0

0 0
1

1 1
0

2 1
0

1 0
0

1 0
1

1 0
2

1 2
1

1 2

2 1

2 1

21

Fig. 9. Left: The GL(3) crystal of highest weight λ = (2, 1, 0), showing the “flags” that are the colors of the 
right edges of the corresponding states, read from top to bottom. The highest weight element is at the top. 
Right: the same crystal, showing the pattern string(f)

i
that controls both the crossings of colored lines in 

the state, and which also carry information about the Demazure crystals.
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Table 1
String patterns for the examples shown in Fig. 5 with 
tableau T and its Schützenberger involution T′.

T T
′ string(f)

(1,2,1)(T) = string(e)
(2,1,2)(T′)

1 2

2

2 2

3

⎡⎢⎣ 2 1

0

⎤⎥⎦

1 3

2

1 2

3

⎡⎢⎣ 1 1

0

⎤⎥⎦

We have σ(T′) = s1 in both cases; indeed for the first row in Table 1, σ(T′) =
Πnd(s1) = s1 and in the second row σ(T′) = Πnd(s1, s1) = s1, and in both cases 
w0σ(T′) = s1s2. Moreover the two patterns T′ comprise the Demazure atom B◦(s1s2)
since they are the two patterns in B(s1s2) that are not already in B(s2). Thus we have 
confirmed both Theorem 5.5 and Theorem 6.1 for one particular Demazure atom.

Proof of Theorem 6.1. First we will show that the circled locations in GTP◦(s) corre-
spond to a2 vertices in the state s (by the labeling in Fig. 4), which are places where the 
colored lines may cross.

Let s be a state of Sz,λ,y. Let GTP◦(s) and T ∈ Bλ be the corresponding Gelfand-
Tsetlin pattern and tableau as described in Section 3 (using the embedding of Sz,λ,y into 
Sz,λ). We take v = T′ in (5.8) so we are using string(e)

i′ (T′) = string(f)
i (T) represented as 

a vector (b1, b2, · · · ). Let us consider how the circles may be read off from the Gelfand-
Tsetlin pattern with entries ai,j as in (3.1). According to Proposition 2.2 of [13],

b1 = ar,r − ar−1,r

b2 = (ar−1,r−1 + ar−1,r) − (ar−2,r−1 + ar−2,r),

b3 = ar−1,r − ar−2,r,

b4 = (ar−2,r−2 + ar−2,r−1 + ar−2,r) − (ar−3,r−2 + ar−3,r−1 + ar−3,r),

b5 = (ar−2,r−1 + ar−2,r) − (ar−3,r−1 + ar−3,r),

b6 = ar−2,r − ar−3,r,

...

(6.2)

These imply that the circled locations depend on equalities between entries in GTP(s) or, 
equivalently, GTP◦(s). For example b2 is circled if and only if ar−1,r−1 = ar−2,r−1. With 
Ai,j the entries in GTP(s), so that Ai,j = ai,j + r − j, this is equivalent to Ar−1,r−1 =
Ar−2,r−1, and similarly if any bk is circled then we have Ai,j = Ai−1,j for the appropriate 
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i, j. Now recall that in the bijection T ↔ s, Ai,j is the number of a column where a 
vertical edge has a colored spin. Therefore from the admissible colored ice configurations 
of Fig. 4, the circled entries in (5.8) correspond to vertices of type a2 in the state of ice 
s. These are locations where two colored lines may cross. From Fig. 4 the lines will cross 
if and only if the left edge color is greater than the top edge color at the vertex, which 
is equivalent to the assumption that they have not crossed previously.

We consider a sequence of lines �i through the grid, i = 0, . . . , r to be described as 
follows. The line �i begins to the left of the grid between the i-th and (i + 1)-th row, 
or above the first row if i = 0, or below the r-th row if i = r. It traverses the grid, 
then moves up to the northeast corner. See Fig. 5 where these lines are drawn in two 
examples.

Each �i intersects exactly r colored lines, and we can read off the colors sequentially; 
let ci be the corresponding sequence of colors. Thus c0 = c, while cr = w0yc, where y
is the Weyl group element we wish to compute. The w0 in this last identity is included 
because the line �r visits the horizontal edges on the right edge from bottom to top, 
whereas in describing the flag yc, the reading is from top to bottom. (See Fig. 5.)

As we have already noted, the circled entries in (5.8) correspond to a2 patterns in 
the state. These are places where two colored lines may cross. The crossings interchange 
colors and each corresponds to a simple reflection that is circled in (5.10). So if i > 0 we 
may try to compute ci from ci−1 by applying the circled reflections in the i-th row of 
(5.10). Remembering from the proof of Proposition 4.1 that the colors in the i-th row are 
assigned from right to left, this means (subject to a caveat that we will explain below) 
that

ci = (sr−i)i · · · (s3)i(s2)i(s1)ici−1,

where (sj)i denotes sj if sj is circled in the i-th row of (5.10), and (sj)i = 1 if sj is not 
circled.

If i = r, there is no i-th row to (5.10), and correspondingly cr = cr−1. This is as it 
should be since at this stage there is only a single colored vertical edge that intersects 
the line �r−1, and no interchanges are possible. (See Fig. 5.)

We mentioned that there is a caveat in the above explanation. This is because from 
Fig. 4 we see that in an a2 vertex, if the color c is left of the vertex and d is above, 
the colored lines will cross if c > d but not otherwise. In particular, two colored lines 
can only cross once. More precisely, if two colored lines meet more than once (at a2

vertices) they will cross the first time they meet, and never again. For this reason, 
the permutation that turns c0 = c into cr = w0yc is the nondescending product 
Πnd(si1 , · · · , sik

) where (si1 , · · · , sik
) is the subsequence of circled simple reflections in 

(5.10). Note that according to the definition of Πnd(si1 , · · · , sik
) in equation (1.2), the 

circled simple reflections corresponding to the a2 patterns where there is a crossing 
play a role in recursively defining Πnd(si1 , · · · , sik

), while the circled simple reflections 
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corresponding to the a2 patterns where there is no crossing do not affect the product. 
Therefore y = w0 Πnd(si1 , · · · , sik

) = w0σ(T′).
This shows that s ∈ Sz,λ,y implies y = w0σ(T(s)′). By Proposition 4.1, if s /∈ Sz,λ,y

then s ∈ Sz,λ,y′ with y �= y′ ∈ W , which we have shown implies that y �= y′ =
w0σ(T′). �
Proposition 6.2. Suppose that a part of λ is repeated, so that λi = λi+1 = . . . = λj = c. 
Then each pair of colored lines through the top boundary edges in columns c +r−i, · · · , c +
r − j must cross. Thus if Sz,λ,w is nonempty, then w is the shortest Weyl group element 
in its coset in W/Wλ.

Proof. We are only considering states in which there are no b1 patterns since these have 
weight 0 in Fig. 4. We leave it to the reader to convince themselves that because of this, 
colored lines that start in adjacent columns, or more generally in columns not separated 
by a + spin on the top boundary edge must cross. Because we read the colors on the top 
boundary vertical edges from left to right and on the right horizontal boundary edges 
from top to bottom, this means that the colors are in the same order. Hence if Sz,λ,w

is nonempty, w does not change the order of colors corresponding to equal parts in the 
partition λ. This is the same as saying that it is the shortest element of its coset in 
W/Wλ. �
Corollary 6.3. If v ∈ Bλ then σ(v) is the longest element of its coset in W/Wλ.

Proof. Let s be the state such that T(s)′ = v. Then s ∈ Sz,λ,w with w = w0σ(v) by 
Proposition 4.1 and Theorem 6.1. Thus, according to Proposition 6.2, w0σ(v) is the 
shortest element in its coset and therefore σ(v) is the longest element of its coset. �
7. Demazure atoms in B∞

The results in this and the subsequent sections are for Cartan type A. Before we can 
prove Theorem 5.5 in the next section, we will need to introduce two tools: a lift to an 
infinite crystal B∞ and an involution on this crystal. Both will be defined later in this 
section and they will be used to show the inclusion Bλ(w) ⊆ {v ∈ Bλ | w0σ(v) � w}, by 
first showing its B∞-analogue in Lemma 7.6. In Section 8 we will then show that this is 
actually an equality, proving Theorem 5.5, using input from the lattice model results in 
the previous sections. A summary of how we will prove these statements is illustrated in 
Fig. 10 and will be detailed further below.

Although Littelmann [44] proved the refined Demazure character formula Theorem 5.1
for many semisimple Lie algebras using tableaux methods, Kashiwara [32] introduced 
the two tools mentioned above to prove it completely for symmetrizable Kac-Moody Lie 
algebras.

The first innovation in [32] is to prove the formula indirectly by working not with Bλ

but with the infinite crystal B∞ that is the crystal base of a Verma module. That is, 
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B∞ B∞(w) ⊆ {v ∈ B∞ | w0σ(v) � w} B∞(w) = {v ∈ B∞ | w0σ(v) � w}

Bλ Bλ(w) ⊆ {v ∈ Bλ | w0σ(v) � w} Bλ(w) = {v ∈ Bλ | w0σ(v) � w}

�-involution

lift

lattice model

Lemma 7.6 Theorem 8.1

Equation (8.1) Theorem 5.5

Fig. 10. Summary of arguments used in Sections 7 and 8 to prove Theorem 5.5, one of the main results of 
this paper, and its analog for B∞ Theorem 8.1.

Theorem 5.1 is true for B∞ as well as Bλ meaning that we also have Demazure crystals 
B∞(w) for B∞. One may embed Bλ into B∞, and the preimage of the Demazure crystal 
B∞(w) in B∞ is the Demazure crystal Bλ(w). In [32,18,31] proofs of the refined Demazure 
character formula proceed by proving a version on B∞ first.

The second innovation in [32] is to make use of an involution � which, as we will 
explain, interchanges two natural parametrizations of the crystal by elements of a convex 
cone in ZN .

In proving Theorem 5.5 we will use both of these ideas from [32], namely to lift 
the problem to B∞ crystal and to exploit the properties of the �-involution. Two 
references adopting a point of view similar to Kashiwara’s are Bump and Schilling [18]
and Joseph [31]. Both these references treat the Demazure character formula in the 
context of B∞ and the �-involution.

The notion of crystal Demazure atoms can be adapted to B∞; we define these to 
be subsets B◦(w) that are disjoint and satisfy (5.1). By Lemma 5.2 these conditions 
determine the atoms.

For Type A the existence of a family of crystal Demazure atoms for B∞ will be proved 
in Corollary 8.2 in the next section. In fact, the characterizations of B(w) and B◦(w) for 
Type A in terms of the function σ translate readily to B∞. The �-involution of B∞ is 
not a crystal graph automorphism, but it has other important properties. In particular, 
it maps the Demazure crystal B(w) into B(w−1). So using the �-involution we are able 
to reformulate Theorem 5.5, or more precisely the corresponding identity for B∞(w), as 
the identity

B∞(w−1) = {v ∈ B | w0σ(v	) � w}. (7.1)

The definition of σ for Bλ was given in terms of Gelfand-Tsetlin patterns, but it may 
be restated in terms of string data (5.8). As we will explain later in this section, the �-
involution transforms the string data into other natural data. (See (7.3).) In Lemma 7.4
below we have an explicit formula for σ(v	) in terms of this data. Thus (7.1) becomes 
amenable to proof. The main details are in the proof of Lemma 7.5, which contains 
partial information about how σ(v	) changes when fk is applied to v. The proof of this 
lemma is technical, but the starting point is the formula (7.11) for fk(v) in terms of 
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data that we have in hand due to Lemma 7.3. Once Lemma 7.5 is proved, we conclude 
this section with Lemma 7.6 which makes progress towards showing (7.1) by proving the 
inclusion of the left-hand side in the right-hand side.

Then, using the information that we have obtained from the Yang-Baxter equation 
in Theorem 4.4, we can leverage this inclusion to prove Theorem 5.5 in Section 8. Note 
that this is a statement about Bλ, not B∞. Equation (7.1) is equivalent to Theorem 8.1, 
which is proved after Theorem 5.5 by going back to B∞. Theorem 8.1 would of course 
imply Theorem 5.5, but we prove Theorem 5.5 first where we can apply Theorem 4.4. 
Thus we go back and forth between B∞ and Bλ in order to prove everything. Finally in 
Corollary 8.2 we obtain a characterization of crystal Demazure atoms in B∞.

In [32,18], the construction of B∞ for any Cartan type depends on the choice of a 
reduced decomposition of the long Weyl group element w0 = si1 · · · siN

. A main feature 
of the theory is that the crystal is independent of this choice of decomposition; to change 
to another reduced decomposition one may apply piecewise linear maps to all data. 
On the other hand, Littelmann [45] showed that one particular choice of reduced word 
is especially nice, and it is this Littelmann word that is important for us. Given this 
choice, elements of the crystal are parametrized by data from which we can read off the 
Demazure atoms.

We recall Kashiwara’s definition of B∞ for an arbitrary Cartan type before specializing 
to the GL(r) (Cartan Type Ar−1) crystal. (For further details and proofs see [32] and 
Chapter 12 of [18].)

If i ∈ I, the index set for the simple reflections, let Bi be the elementary crystal defined 
in [32] Example 1.2.6 or [18] Section 12.1. This crystal has one element ui(a) of weight 
aαi for every a ∈ Z on which the crystal operators ei and fi act as ei(ui(a)) = ui(a + 1)
and fi(ui(a)) = ui(a − 1). Let i = (i1, · · · , iN ) be a sequence of indices such that 
w0 = siN

· · · si1 is a reduced expression of the long Weyl group element and let

Bi = Bi1 ⊗ · · · ⊗ BiN
.

Remark 7.1. We recall that there is a difference between notation for tensor product of 
crystals between [32] and [18]. We will follow the second reference, so to read Kashiwara 
or Joseph, reverse the order of tensor products, interpreting x ⊗ y as y ⊗ x.

Let u0 = ui1(0) ⊗ · · · ⊗ uiN
(0) ∈ Bi, and let Ci be the subset of ZN consisting of all 

elements a = (a1, · · · , aN ) such that

ui(a) = u(a) = ui1(−a1) ⊗ · · · ⊗ uiN
(−aN ) (7.2)

can be obtained from u0 by applying some succession of crystal operators fi. Then Ci
is the set of integer points in a convex polyhedral cone in RN . We regard Ci, embedded 
via the map a �→ u(a) to be a subcrystal of Bi; this requires redefining ei(v) = 0 if 
εi(v) = 0. With this exception, the Kashiwara operators ei, fi, εi and ϕi are the same 
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as for the ambient crystal Bi. If j is another reduced expression for w0 then there is a 
piecewise-linear bijection Ci −→ Cj that is an isomorphism of crystals; in this sense the 
crystal Ci is independent of the choice of word i. The crystal B∞ is defined to be this 
crystal.

In B∞ the element u0 is the unique highest weight element, and the unique element of 
weight 0. If x ∈ B∞ then, as with the finite crystals Bλ, the integer εi(x) is nonnegative 
and equals the number of times ei may be applied to x, i.e. εi(x) = max{k|ek

i (x) �= 0}. 
On the other hand fi(x) is never 0, so ϕi(x) has no such interpretation. It still has 
meaning and the identity ϕi(x) − εi(x) = 〈wt(x), α∨

i 〉 holds.
Because fi(x) is never 0, the string patterns string(f)

i (v) cannot be defined for B∞

since the sequence fk
i v never terminates. However string(e)

i (v) can be defined by (5.3). 
Interestingly, for each reduced word i representing w0, the set {string(e)

i (v) | v ∈ B∞}
coincides with the cone Ci. However the data a such that (7.2) holds is not the string 
data. Rather, there is a weight-preserving bijection � : B∞ → B∞ of order two such that

a = string(e)
i (v	), v = ui(a) . (7.3)

This is true for any reduced word i, and � is independent of i. This is Kashiwara’s �-
involution. See [32], [18] and [31]. Equation (7.3) is Theorem 14.16 in [18], or see the 
proof of Proposition 3.2.3 in [31].

Let λ be a dominant weight. There is a crystal Tλ with a single element tλ of weight λ; 
then Tλ ⊗ B∞ is a crystal identical to B∞ except that the weights of its elements are all 
shifted by λ. Thus its highest weight element is tλ ⊗u0 with weight λ. If Bλ is the crystal 
with highest weight λ, then Bλ may be embedded in Tλ ⊗ B∞ by mapping the highest 
weight vector vλ to tλ ⊗ u0. Let ψλ : Bλ → B∞ be the map such that v �→ tλ ⊗ ψλ(v) is 
this embedding of crystals.

Demazure crystals are defined for B = B∞ as follows. If w = 1 then B(w) = {u0}. 
Then recursively: if si is a simple reflection such that siw > w we define B(siw) to be 
the set of all v ∈ B such that ek

i v ∈ B(w) for some k � 0. Theorem 5.1 (i) remains valid 
for B∞. The theory of Demazure crystals for B∞ is related to the theory for Bλ by the 
fact that Bλ(w) is the preimage of the corresponding B∞ Demazure crystal under the 
embedding of Bλ into Tλ ⊗ B∞. See [32] and [18] Chapters 12 and 13.

Now we specialize to GL(r) crystals; the Cartan type is Ar−1. If we use either the 
Littelmann word (5.6) or i′ in (5.7) then the cone Ci is characterized by the inequalities 
(5.9). See [45] Theorem 5.1 or [13], Proposition 2.2. Now ψλ is a crystal morphism, so if 
v ∈ Bλ then

string(e)
i′ (ψλ(v)) = string(e)

i′ (v).

Thus we may define σ : B∞ → W by (5.11) and if v ∈ Bλ then σ(ψλ(v)) = σ(v). Then 
we may define B◦(w) by (5.13) also for B = B∞ and B◦

λ(w) is the preimage of B◦
∞(w)

under the map ψλ.
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Let i be as in (5.7) so that i′ = (1, 2, 1, 3, 2, 1, · · · ). Let

v = D1 ⊗ · · · ⊗ Dr−1 ∈ B∞ ⊂ Bi, Di ∈ Br−i ⊗ · · · ⊗ Br−1. (7.4)

Specifically we may write

Di = Di(v) = ur−i(−di,r−i) ⊗ · · · ⊗ ur−1(−di,r−1) =
r−1⊗

j=r−i

uj(−di,j). (7.5)

Remembering (7.3), for v to be in B∞ the entries dij = dij(v) must lie in the Littelmann 
cone (5.9), which in our present notation is determined by the inequalities

di,j � di,j+1, (r − i � j � i).

Let ci,j = ci,j(v) = di,j − di,j+1 � 0.

Remark 7.2. Initially di,j is defined if r − i � j � r − 1 but we extend this to j = r with 
the convention that di,r = 0. Hence by this convention ci,r−1 = di,r−1. This convention 
will prevent certain cases having to be treated separately.

By [18] Lemma 2.33 the function ϕk (part of the data defining a crystal) is given by

ϕk(v) = max
i

(Φi,k(v)) (7.6)

where

Φi,k = Φi,k(v) = ϕk(Di) +
∑
�<i

〈wt(D�), α∨
k 〉 .

Lemma 7.3. Assume that r − k � i � r − 1. Then

ϕk(Di) =
{

ci,k−1 if k > r − i;
−di,k if k = r − i,

(7.7)

and

Φi,k − Φi+1,k = ci,k − ci+1,k−1. (7.8)

Proof. First assume that r − k + 1 � i � r − 1. Then using Lemma 2.33 of [18] again, 
ϕk(Di) is the maximum over r − i � j � r − 1 of

ϕk(uj(−di,j)) +
〈 ∑

−di,�α�, α∨
k

〉
.

r−i��<j
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By the definition of the elementary crystal ([18] Section 12.1) we have ϕk(uj(−di,j)) =
−∞ unless j = k, so

ϕk(Di) = ϕk(uk(−di,k)) +
〈 ∑

r−i��<k

−di,�α�, α∨
k

〉
= −di,k + di,k−1 = ci,k−1

proving (7.7). Here we have used the fact that ϕk(uk(−a)) = −a, as well as 〈α�, α∨
k 〉 = −1

if l = k ± 1 and 2 if l = k, and 0 otherwise. Now

Φi,k − Φi+1,k = ϕk(Di) − ϕk(Di+1) − 〈wt(Di), α∨
k 〉

and with r − k + 1 � i � r − 1 we have (using Remark 7.2 if k = r − 1)

〈wt(Di), α∨
k 〉 = di,k−1 − 2di,k + di,k+1 = ci,k−1 − ci,k.

Combining this with (7.7) we obtain (7.8). The case k = r − i is similar, except that 
di,k−1 is replaced by zero where it appears. �

We now wish to use some nondescending products. We will use the notation of 
Remark 1.1. Let

Ωi(Di) =
∏

1�j�i
ci,r−1+j−i=0

Sj . (7.9)

Define σ† : B∞ → W by

σ†(v) = {Ωr−1(Dr−1) · · · Ω1(D1)} . (7.10)

From Remark 1.1 the brackets {·} here mean that the product is taken in the degenerate 
Hecke algebra, then the resulting basis vector is replaced by the corresponding Weyl 
group element.

Lemma 7.4. We have

σ†(v) = σ(v	)−1.

Proof. By (7.3), the string pattern string(e)
i′ (v	) is the sequence (b1, b2, . . .) such that

v = ui′
1
(−b1) ⊗ ui′

2
(−b2) ⊗ · · · .

Put these into an array as in (5.8) and circle entries as in Circling Rule 5.3. Thus the bk

are the di,j in the order determined by (7.4) and (7.5). Since ci,j = di,j − di,j+1 (with 
the caveat in Remark 7.2) we see that if bk equals di,j , it is circled if and only if ci,j = 0. 
Recall that
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σ(v	) = Πnd(sj1 , · · · , sjk
) = {Sj1 · · · Sjk

}

where sj1 , sj2 , · · · are the circled elements. Now Sj1 , Sj2 , · · · are exactly the entries 
that appear in the product (7.10), but they appear in reverse order; so what we get 
is σ(v	)−1. �
Lemma 7.5. We have either σ†(v) = σ†(fkv) or σ†(v) = skσ†(fkv).

Proof. Let p be the first value of i where Φi,k(v) attains its maximum. By [18]
Lemma 2.33

fk(v) = D1 ⊗ · · · ⊗ fk(Dp) ⊗ · · · ⊗ Dr−1. (7.11)

Furthermore, by applying the same Lemma to fk(Dp) and using the fact that 
ϕk(uj(−di,j)) = −∞ unless j = k we have

fk(Dp) = ur−p(−dp,r−i) ⊗ · · · ⊗ uk(−dp,k − 1) ⊗ · · · ⊗ ur−1(−dp,r−1)

meaning that fk acting on v has the effect that dp,k is replaced by dp,k + 1.
We factor Ωp(Dp) = Ω′

p(Dp)Ω′′
p(Dp) where

Ω′
p(Dp) =

∏
1�j�k+p−r

cp,r−1+j−p=0

Sj , Ω′′
p(Dp) =

∏
k+p−r+1�j�p
cp,r−1+j−p=0

Sj .

We will prove that

Ω′
p(Dp)Ω′′

p(Dp) = Ω′′
p(Dp)Ω′

p(Dp), Ω′
p(fkDp)Ω′′

p(fkDp) = Ω′′
p(fkDp)Ω′

p(fkDp).
(7.12)

Indeed, every Sj above with 1 � j � k+p −r commutes with every Sj′ with k+p −r+1 �
j′ � p with one possible exception: Sk+p−r does not commute with Sk+p−r+1. These 
factors are both present if both cp,k−1 = cp,k = 0. Now since i = p is the first value that 
maximizes Φi,k we have

0 < Φp,k − Φp−1,k = cp,k−1 − cp−1,k (7.13)

by (7.8). Now cp−1,k � 0 and so cp,k−1 > 0. Hence Ω′
p(Dp) does not involve Sk+p−r, 

proving the first identity in (7.12). On the other hand dp,k(fkv) = dp,k(v) + 1 while 
dp,j(fkv) = dp,j(v) for all j �= k. Therefore cp,k(fkv) = cp,k(v) + 1 > 0 and so Sk+p−r−1
does not appear in Ω′′

p(fkDp), proving the second identity in (7.12).
Now using (7.12) we may rearrange the products and write σ†(v) = {σ†

1(v)σ†
2(v)σ†

3(v)}
where

σ†
1(v) = Ωr−1(Dr−1) · · · Ωp+1(Dp+1)Ω′′

p(Dp(v)),
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σ†
2(v) = Ω′

p(Dp(v))Ωp−1(Dp−1) · · · Ωr−k(Dr−k),

σ†
3(v) = Ωr−k−1(Dr−k−1) · · · Ω1(D1),

and similarly for fkv. Here all factors Ωi(Di) with i �= p are the same for v and fkv

so we omit the v from the notation except when i = p. Then we trivially have that 
σ†

3(fkv) = σ†
3(v) and will show that

σ†
1(fkv) = σ†

1(v) or Skσ†
1(fkv) (7.14)

and

σ†
2(fkv) = σ†

2(v). (7.15)

The lemma will follow upon demonstrating these two identities.
Let us prove (7.14). Since cp,k(fkv) = cp,k(v) + 1 > 0 as shown above, we have that 

Ω′′
p(Dp(fkv)) = Ω′′

p(fkDp(v)) = Ω′′
p(Dp(v)) unless cp,k = 0. If this is true we are done, so 

we assume that cp,k = 0. Then

Ω′′
p(Dp) = Sk+p−r+1Ω′′

p(fkDp).

Thus what we must show is that either

Ωr−1(Dr−1) · · · Ωp+1(Dp+1)Sk+p−r+1 =
{

SkΩr−1(Dr−1) · · · Ωp+1(Dp+1) or
Ωr−1(Dr−1) · · · Ωp+1(Dp+1).

(7.16)

We will prove this, obtaining a series of inequalities along the way. First consider 
Ωp+1(Dp+1)Sk+p−r+1. Let us argue that Ωp+1(Dp+1) involves Sk+p−r+1. Indeed, its 
presence is conditioned on cp+1,k−1 = 0. Now since the first value where Φi,k attains 
its maximum is at i = p, we have 0 � Φp,k − Φp+1,k = cp,k − cp+1,k−1. Therefore 
cp+1,k−1 � cp,k = 0, so cp+1,k−1 = 0. Thus Ωp+1(Dp+1) involves Sk+p−r+1 and 
cp+1,k−1 = cp,k = 0. Now unless cp+1,k = 0, the product Ωp+1(Dp+1) does not involve 
Sk+p−r+2 and so Ωp+1(Dp+1) = · · · Sk+p−r+1 · · · , where the second ellipsis represents 
factors that all commute with Sk+p−r+1. Therefore since S2

k+p−r+1 = Sk+p−r+1 we have 
Ωp+1(Dp+1)Sk+p−r+1 = Ωp+1(Dp+1), and (7.16) is proved. This means that we may 
assume that cp+1,k = 0 and so Ωp+1(Dp+1) = · · · Sk+p−r+1Sk+p−r+2 · · · where again the 
second ellipsis represents factors that all commute with Sk+p−r+1. Now we use the braid 
relation and write

Ωp+1(Dp+1)Sk+p−r+1 = · · · Sk+p−r+1Sk+p−r+2 · · · Sk+p−r+1

= · · · Sk+p−r+2Sk+p−r+1Sk+p−r+2 · · · .

The first ellipsis represents factors that commute with Sk+p−r+2 and so we obtain
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Ωp+1(Dp+1)Sk+p−r+1 = Sk+p−r+2Ωp+1(Dp+1).

We wish to repeat the process so we consider now Ωp+2(Dp+2)Sk+p−r+2. To continue, we 
need to know that cp+2,k−1 = 0. Because the first value where Φi,k attains its maximum 
is at i = p, we have 0 � Φp,k − Φp+2,k = cp,k − cp+1,k−1 + cp+1,k − cp+2,k−1. Since we 
already have cp,k = cp+1,k−1 = cp+1,k = 0 we have cp+2,k−1 � cp+1,k = 0 so cp+2,k−1 = 0
as required. Now the same argument as before produces either Ωp+2(Dp+2)Sk+p−r+2 =
Ωp+2(Dp+2), in which case we are done, or

Ωp+2(Dp+2)Sk+p−r+2 = Sk+p−r+2Ωp+1(Dp+1)

and the further equality cp+2,k = 0. Repeating this argument gives a succession of 
identities which together imply (7.16) and (7.14).

Now let us prove (7.15). We recall that Dp(fkv) = fkDp(v) differs from Dp(v) in 
replacing dp,k by dp,k + 1. This can change only the last factor in Ω′

p(Dp), and this only 
if dp,k = dp,k−1 − 1. Therefore we may assume that cp,k−1 = 1 and Ω′

p(Dp(fkv)) =
Ω′(Dp(v))Sk+p−r. Therefore what we must prove is that

Sk+p−rΩp−1(Dp−1) · · · Ωr−k(Dr−k) = Ωp−1(Dp−1) · · · Ωr−k(Dr−k). (7.17)

Thus consider Sk+p−rΩp−1(Dp−1). We have cp−1,k < cp,k−1 = 1 by (7.13), and so 
cp−1,k = 0. This means that Ωp−1(Dp−1) has Sk+p−r as a factor, and unless it also 
has Sk+p−r−1 as a factor, we obtain Sk+p−rΩp−1(Dp−1) = Ωp−1(Dp−1), which implies 
(7.15). Therefore we may assume that Ωp−1(Dp−1) has Sk+p−r−1 as a factor, which 
means that cp−1,k−1 = 0, which we now assume. Now we use Sk+p−rΩp−1(Dp−1) =
Sk+p−r · · · Sk+p−r−1Sk+p−r · · · where the first ellipsis represents factors that commute 
with Sk+p−r and the second ellipsis represents factors that commute with Sk+p−r−1. 
Using the braid relation we obtain

Sk+p−rΩp−1(Dp−1) = Ωp−1(Dp−1)Sk+p−r−1.

We repeat the process. The next step is to prove that either

Sk+p−r−1Ωp−2(Dp−2) = Ωp−2(Dp−2) or Ωp−2(Dp−2)Sk+p−r−2.

If Sk+p−r−1Ωp−2(Dp−2) = Ωp−2(Dp−2) then (7.15) follows and we may stop; otherwise 
we will prove the second identity together with the equation cp−2,k = cp−2,k−1 = 0 that 
will be needed for subsequent steps. Since i = p is the first value to maximize Φi,k we 
have, using (7.8)

0 < Φp,k −Φp−2,k = Φp,k −Φp−1,k +Φp−1,k −Φp−2,k = cp,k−1 −cp−1,k +cp−1,k−1 −cp−2,k.

We already have cp,k−1 = 1 while cp−1,k = cp−1,k−1 = 0, so cp−2,k = 0. This means 
that Ωp−2(Dp−2) has a factor Sk+p−r−1. Unless it also has a factor Sk+p−r−2 we 
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have Sk+p−r−1Ωp−2(Dp−2) = Ωp−2(Dp−2) and we are done. If it does have the factor 
Sk+p−r−2 then we have cp−2,k−1 = 0 and Sk+p−r−1Ωp−2(Dp−2) = Ωp−2(Dp−2)Sk+p−r−2
follows from the braid relation. Continuing this way, we obtain a sequence of identities 
cp−a,k = 0 and

Sk+p−r+1−aΩp−a(Dp−a) = Ωp−a(Dp−a) or Ωp−a(Dp−a)Sp+k−r−a.

If first alternative is true we may stop, since then (7.17) is proved and we are done. 
Otherwise if the second equality is true we have also cp−a,k−1 = 0, which is used to 
prove cp−a−1,k = 0 by an argument as above based on (7.8) and move to the next stage. 
Finally, with cr−k,k = 0, the last identity to be proved is

S1Ωr−k(Dr−k) = Ωr−k(Dr−k),

and this time there is no second alternative. This is true since then the first factor of 
Ωr−k(Dr−k) is S1, and S2

1 = S1. Now (7.17) is proved, establishing (7.15). �
Lemma 7.6. Let w ∈ W . Then

B∞(w−1) ⊆ {v ∈ B∞ | w0σ(v	) � w} (7.18)

and

B∞(w) ⊆ {v ∈ B∞ | w0σ(v) � w} . (7.19)

We will improve the inclusions in this Lemma later in Theorem 8.1 to equalities, taking 
into account the additional information we have from Theorem 4.4.

Proof of Lemma 7.6. By [32] or [18] Theorem 14.17, the �-involution takes B∞(w−1) to 
B∞(w). Thus (7.18) and (7.19) are equivalent. Using Lemma 7.4 and the fact that the 
inverse map on W preserves the Bruhat order, (7.18) is also equivalent to

B∞(w) ⊆ {v ∈ B∞ | σ†(v)w0 � w} , (7.20)

which we will now prove by induction on �(w). If w = 1 then B∞(1) = {u0}, where u0 is 
the highest weight vector in B∞. For v = u0 all the conditions ci,r−1+j−1 = 0 are satisfied 
in (7.9) and it follows that σ†(u0) = w0, so (7.20) is satisfied in this case. Now assume 
that (7.20) is true for w; we show that if si is a simple reflection and siw > w then it is 
also true for siw. Now, by Theorem 5.1 (i) for B = B∞, if v ∈ B∞(siw) then there is a 
v1 ∈ B∞(w) such that v and v1 lie in the same root string. Note that Lemma 7.5 implies 
that if v, v1 lie in the same i-string then either σ†(v1) = σ†(v) or σ†(v1) = siσ

†(v). 
Then σ†(v1)w0 � w by induction, and σ†(v)w0 = σ†(v1)w0 or siσ

†(v1)w0; in either case 
σ†(v)w0 � siw. �
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8. Proof of Theorem 5.5

In this section we will prove Theorem 5.5 and its B∞ analogue.

Proof of Theorem 5.5. We consider the preimage in Bλ of both sides of the identity in 
Lemma 7.6 under the map ψλ : Bλ → B∞ defined in Section 7 and we obtain the inclusion 
of sets

Bλ(w) ⊆ {v ∈ Bλ | w0σ(v) � w} =
⋃

y�w

{v ∈ Bλ | w0σ(v) = y}. (8.1)

We claim that, in fact, these sets are equal, which would give us (5.1). We caution the 
reader that the Kashiwara involution � (which is not a crystal isomorphism) does not 
preserve Bλ embedded in the crystal via ψλ. What is true is that it maps B∞(w) into 
B∞(w−1), and the preimage of B∞(w) in Bλ is Bλ(w). That is all that is needed for 
(8.1).

Let X and Y be the two subsets of Bλ on the left- and right-hand sides of (8.1). We 
have just shown that X ⊆ Y . Now, on the one hand, we have from Theorem 5.1 (iii)
that ∑

T∈X

zwt(T) = ∂wzλ . (8.2)

On the other hand, using the bijection between the crystal Bλ and the ensemble of 
states Sz,λ together with Theorem 6.1, we have that∑

T∈Y

zwt(T) :=
∑
y�w

∑
v∈Bλ

w0σ(v)=y

zwt(v) =
∑
y�w

∑
s∈Sz,λ,y

zwt(T(s)′) .

The Schützenberger involution satisfies the property that wt(T′) = w0 wt(T). Using 
this, then (i) of Proposition 3.2 and then Theorem 4.4 we get that∑

s∈Sz,λ,y

zwt(T(s)′) =
∑

s∈Sz,λ,y

zw0 wt(T(s)) = z−ρZ(Sz,λ,y) = ∂◦
yzλ .

Finally by Theorem 2.1 and comparing with (8.2), it follows that∑
T∈Y

zwt(T) =
∑
y�w

∂◦
yzλ = ∂wzλ =

∑
T∈X

zwt(T). (8.3)

Setting z = 1T in the above equality shows that X and Y have the same cardinality. 
Therefore X = Y .

The assertion that w0σ(v) = w implies that w is the longest element of its coset in 
W/Wλ is Corollary 6.3. �
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Now that Theorem 5.5 is proved, we have an analogous characterization of Demazure 
crystals and Demazure atoms in B∞.

Theorem 8.1. For any w ∈ W ,

B∞(w) = {v ∈ B∞ | σ†(v)w0 � w} = {v ∈ B∞ | w0σ(v) � w} . (8.4)

The map σ satisfies

w0σ(v)w0 = σ†(v) = σ(v	)−1. (8.5)

Proof. The identities

Bλ(w) = {v ∈ Bλ | σ†(v)w0 � w} = {v ∈ Bλ | w0σ(v) � w}

have been proved for the finite crystal Bλ, and since the images of ψλ exhaust B∞, (8.4)
follows. The identity (8.5) follows using Lemma 7.4. �

Now the Demazure atoms in B∞ may be defined as

B◦
∞(w) = {v ∈ B∞ | σ†(v)w0 = w} = {v ∈ B∞ | w0σ(v) = w} . (8.6)

Corollary 8.2. The subsets B◦
∞(w) are a family of crystal Demazure atoms for B∞.

Proof. These are obviously a family of disjoint subsets of B∞ and by Theorem 8.1 they 
satisfy the characterizing identity (5.1). �
9. Proof of the algorithms for computing Lascoux-Schützenberger keys

We now prove the algorithms from Subsection 1.1. For the first algorithm, given any 
tableau T ∈ Bλ, we compute σ(T ′) by means of the definition (5.11). Thus we consider 
string(e)

i′ (T ′) = string(f)
i (T ) = (b1, b2, · · · ), where the Gelfand-Tsetlin pattern of T is the 

array (aij) and the bi are given by the formula (6.2). Then

b1 = 0 ⇐⇒ ar,r = ar−1,r,

b2 = b3 ⇐⇒ ar−1,r−1 = ar−2,r−1,

b3 = 0 ⇐⇒ ar−1,r = ar−2,r,

...

and so forth. This means that the circled entries in (1.4) are the same as in (5.10). 
Therefore the first algorithm follows from Theorem 5.5.
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We may now prove Algorithm 2. The idea is to deduce it from Algorithm 1 (which is 
already proved) for the crystal B−w0λ. Now −w0λ = (−λr, · · · , −λ1) is not a partition 
(since its entries may be negative) but it is a dominant weight. Fortunately the facts 
that we need, particularly the map to Gelfand-Tsetlin patterns and Algorithm 1, may be 
extended to crystals Bλ where λ is a dominant weight by the following considerations.

If λ = (λ1, · · · , λr) a dominant weight (that is, λ1 � · · · � λr but the entries may 
be negative) then for sufficiently large N , λ + Nr = (λ1 + N, · · · , λr + N) is a partition 
and Bλ+(Nr) is a crystal of tableaux. To put this into context, Bλ is the crystal of the 
representation πλ of GL(r) with highest weight λ, and Bλ+(Nr) is the crystal of detN ⊗πλ. 
The crystal graph of Bλ+(Nr) is isomorphic to that of Bλ and we may transfer results 
such as Theorem 5.5 from Bλ+(Nr) to Bλ.

In particular let Pλ be the space of Gelfand-Tsetlin patterns with top row λ. Let 
Γ : Bλ −→ Pλ be the map defined in the introduction for λ a partition. If λ is a 
dominant weight, then Γ : Bλ −→ Pλ may be similarly defined; for if v ∈ Bλ and T is 
the corresponding element of Bλ+(Nr), then Γ(T ) is defined and we define Γ(v) to be 
the Gelfand-Tsetlin pattern obtained from Γ(T ) by subtracting N from every element of 
Γ(T ). The map σ : Bλ −→ W is also defined and Algorithm 1 is valid.

Now there are maps α1, α2 : Pλ −→ W corresponding to Algorithm 1 and Algorithm 2 
of the introduction. Thus if a = (aij) is a Gelfand-Tsetlin pattern, then for each (i, j)
with ai,j = ai−1,j we circle the corresponding entry in (1.4) and α1(a) will be the 
nondescending product of the circled reflection in order from bottom to top, right to 
left; and similarly to compute α2(a) we circle the entries of (1.5) when ai,j = ai−1,j−1
and take the nondescending product in order from bottom to top, left to right.

There is an operation −rev on Gelfand-Tsetlin patterns that maps Pλ to P−w0λ that 
negates the entries in a pattern a and mirror-reflects them from left to right, so if r = 3

−rev
({

λ1 λ2 λ3
a b

c

})
=
{−λ3 −λ2 −λ1

−b −a
−c

}
.

As further discussed in [13], there is a map φλ : Bλ −→ B−w0λ that maps the highest 
weight element to the highest weight element and has the effect that φλ(eiv) = ei′φλ(v), 
where we recall that i′ = r − i.

Proposition 9.1. For all T ∈ Bλ

σ(φλ(T )) = w0σ(T )w−1
0 . (9.1)

Proof. Note that w �→ w0ww−1
0 is the automorphism of W that sends the simple 

reflection si to si′ . So by the definition of the Demazure crystals it is clear that 
φλBλ(w) = B−w0λ(w0ww−1

0 ). Hence φλ(B◦
λ(w)) = B◦

−w0λ(w0ww−1
0 ). By Theorem 5.5, we 

may characterize σ(T ) as the shortest Weyl group element such that T ∈ B◦
λ(w0σ(T )). 

Equation (9.1) follows. �
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The map φλ intertwines the Schützenberger-Lusztig involutions v �→ v′ on Bλ and 
B−w0λ. We will denote φ′

λ(v) = φλ(v′) = φλ(v)′. Let τ : W −→ W be conjugation by 
w0. We have a commutative diagram

Bλ B−w0λ

Pλ P−w0λ

W W

φ′
λ

Γ Γ
−rev

α2 α1

τ

Indeed, the top square commutes by (2.12) of [13], which is proved there using the 
description of the Schützenberger involution on Gelfand-Tsetlin patterns in [35]. The 
commutativity of the bottom square is clear from the definitions of α1 and α2, bearing 
in mind that w0siw

−1
0 = si′ when circling (1.4) and (1.5).

We may now prove the second algorithm. If T ∈ Bλ, the commutative diagram shows 
that

w0α2(Γ(T ))w−1
0 = α1(Γ(φλ(T )′)) = σ(φλ(T )) = w0σ(T )w−1

0

where the second step is by applying Algorithm 1 to φλ(T )′ ∈ B−w0λ and the last step 
is by (9.1). Therefore σ(T ) = α2(Γ(T )), which is Algorithm 2.
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