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1. Introduction

Exactly solvable lattice models have found numerous applications in the study of
special functions. (See [38-41,25,26,55,37] to name but a few.) Here we use the Gelfand
school interpretation of “special function,” meaning one that arises as a matrix coeflicient
of a group representation. If the group is a complex Lie group or a p-adic reductive
group, these matrix coefficients include highest weight characters and in particular, Schur
polynomials, as well as Demazure characters and various specializations and limits of
Macdonald polynomials. Many of these special functions may be studied by methods
originating in statistical mechanics, by expressing them as a multivariate generating
function (the “partition function”) over the admissible states of a solvable lattice model.
The term “solvable” means that the model possesses a solution of the Yang-Baxter
equation that often permits one to express the partition function of the model in
closed form. Knowing that a special function is expressible as a partition function of
a solvable lattice model then leads to a host of interesting combinatorial properties,
including branching rules, exchange relations under Hecke operators, Pieri- and Cauchy-
type identities, and functional equations.

We will concentrate on the five- and six-vertex models on a square lattice, two-
dimensional lattice models with five (respectively, six) admissible configurations on the
edges adjacent to any vertex in the lattice. The latter models are sometimes referred
to as “square ice” models, as the six configurations index the ways in which hydrogen
atoms may be placed on two of the four edges adjacent to an oxygen atom at each
vertex. Then weights for each configuration may be chosen so that the partition function
records the probabilities that water molecules are arranged in various ways on the
lattice (see for example [4]). More recently, lattice models with different weighting
schemes have been studied in relation with certain stochastic models like the Asymmetric
Simple Exclusion Process (ASEP) or the Kardar-Parisi-Zhang (KPZ) stochastic partial
differential equation. These were shown to be part of a large family of solvable lattice
models, called stochastic higher spin six-vertex models in [7,19]. Solutions to the Yang-
Baxter equation also arise naturally from R-matrices of quantum groups; these higher
spin models were associated to R-matrices for U, (;[2) In this paper, we only make use of
the associated quantum groups to differentiate among the various lattice model weighting
schemes and the resulting solutions to the Yang-Baxter equations.

Subsequently, Borodin and Wheeler [9] introduced generalizations of the above
models, which they call colored lattice models. Antecedents to these colored models
appeared earlier in [8,23]. (A different notion of “colored” models appears in many
other works such as [1].) In [9], “colors” are additional attributes introduced to
the boundary data and internal edges of a given model, corresponding to replacing
the governing quantum group Uq(ﬁ/'\[g) in the setting mentioned above by Uq(glﬂrl).
The partition functions of their colored lattice models are non-symmetric spin Hall-
Littlewood polynomials. These are functions depending on a parameter s, which recover
non-symmetric Hall-Littlewood polynomials when one sets s = 0.
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The idea of introducing “color” in this way may be applied to a wide variety of lattice
models. If one chooses the Boltzmann weights for the colored models appropriately, then
one obtains a refinement of the (uncolored) partition function as a sum of partition
functions indexed by all permutations of colors. Moreover, if the resulting colored model
is solvable, then similar applications to those described above will follow. For example
in [9], properties for these generalizations of Hall-Littlewood polynomials are proved
including branching rules, exchange relations under Hecke divided-difference operators
and Cauchy type identities motivated by the study of multi-species versions of the ASEP.

Inspired by these ideas of Borodin and Wheeler, this paper studies colored versions
of an (uncolored) five-vertex model whose partition function is (up to a constant) a
Schur polynomial sy indexed by a partition A. The states of the uncolored system are
in bijection with the set of semi-standard Young tableaux of shape A, so the partition
function may be evaluated using the combinatorial definition of the Schur function.
This uncolored five-vertex model is a degeneration (crystal limit) of a six-vertex model
described in Hamel and King [27], that is similarly equivalent to the generalization of
the combinatorial definition of the Schur function by Tokuyama [53]. These models were
shown to be solvable by Brubaker, Bump and Friedberg [12]. See Section 3 for the full
definition of the uncolored five-vertex model used in this paper.

In Section 4 we introduce our colored five-vertex model. A color is assigned to each of
the r rows of its rectangular lattice and permuting these colors gives a system for each
element of the symmetric group S,. We introduce Boltzmann weights for the colored
models that simultaneously refine the uncolored model and produce a (colored) Yang-
Baxter equation associated to a quantum superalgebra (see Theorem 4.2). This allows
us to evaluate the partition functions for the colored models for each w € S, and prove
in Theorem 4.4 that they are Demazure atoms of Cartan Type A.

Demazure atoms, introduced by Lascoux and Schiitzenberger [42] and referred to
as “standard bases” there, decompose Demazure characters into their smallest non-
intersecting pieces. So in particular, summing Demazure atoms over a Bruhat interval
produces Demazure characters. Mason [47] coined the term “atoms” and showed that
they are specializations of non-symmetric Macdonald polynomials of Cartan Type A
with ¢ = ¢t = 0. Basic properties of Demazure atoms and characters are reviewed in
Section 2.

Demazure characters and Schur polynomials may be viewed as polynomial functions
in formal variables or as functions on an algebraic torus associated to a given reductive
group. But they may also be lifted to subsets of the Kashiwara-Nakashima [34] crystal B)
whose elements are semistandard Young tableaux of a given shape A, called Demazure
crystals. The existence of such a lift of Demazure modules to crystals was shown by
Littelmann [44] and Kashiwara [32]. Summing the weights of the Demazure crystal
recovers the Demazure character.

Just as Littelmann and Kashiwara lifted Demazure characters to the crystal,
polynomial Demazure atoms may also be lifted to subsets of the crystal. We will call
these sets crystal Demazure atoms. Summing the weights of the crystal Demazure atom,
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one obtains the usual polynomial Demazure atom. Crystals and the refined Demazure
character formula are briefly reviewed in Section 5.

Although the theory of Demazure characters and crystals is in place for all Cartan
types, most of the literature concerning Demazure atoms and the related topic of
Lascoux-Schiitzenberger keys (including this paper) is for Cartan Type A. However the
By (A) in Section 9.1 of in [33] are Demazure atoms for crystals of symmetrizable Kac-
Moody Cartan types. Moreover recently [29] (using the results in [33]) defined keys for
all Kac-Moody Cartan types, with a special emphasis on affine Type A. There are also
Type C results in [50]. See [28,2] for other recent work on Demazure atoms.

Based on Theorem 4.4, which shows that the partition functions of our colored
models are Type A Demazure atoms, it is natural to ask for a more refined version
of the connection between colored ice and the crystal Demazure atoms. In Section 6, we
accomplish this by exhibiting a bijection between the admissible states of colored ice and
crystal Demazure atoms as a subset of an associated crystal By. Showing this refined
bijection is much more difficult than the initial evaluation of the partition function.
Its proof forms a major part of this paper and builds on Theorem 5.5, which gives
an algorithmic description of Demazure atoms. This result is proved in Section 8 after
introducing Kashiwara’s By, crystal in Section 7. As a byproduct of our arguments,
we will also obtain a theory of Demazure atoms on B.,. The proofs take input from
both the colored ice model and the Yang-Baxter equation, and from crystal base theory,
particularly Kashiwara’s x-involution of B.

Another byproduct of the results in Section 6 is a new formula for Lascouz-
Schiitzenberger keys in Type A. These are tableaux with the defining property that each
column (except the first) is a subset of the column before it. What is most important
is that each crystal Demazure atom contains a unique key. Thus if T' € B, there is a
unique key key(7T) that is in the same crystal Demazure atom as T'; this is called the
right key of T. We will review this theory in Subsection 1.1. Algorithms for computing
key(T) may be found in [42,49,43,47,46,56,48,57,58,3,51]. These papers are concerned
with Type A Demazure atoms, but a few papers consider other Cartan types. Jacon and
Lecouvey [29] (using the results in [33]) defined keys for all Kac-Moody Cartan types,
with a special emphasis on affine Type A. There are also Type C results in [50]. See
[28,2] for other recent work on Demazure atoms.

In this paper we give a new algorithm for computing the Lascoux-Schiitzenberger
right key of a tableau in a highest weight crystal. Since this algorithm may be of
independent interest we will describe it (and the topic of Lascoux-Schiitzenberger keys)
in this introduction, in Subsection 1.1 below. We prove the algorithm in Section 9.

This paper also serves as a stepping stone to colored versions of the six-vertex (or
“ice” type) models of [12] and of [10]. Indeed, since the results of this paper, we have
shown that analogous colored partition functions recover special values of Iwahori fixed
vectors in Whittaker models for general linear groups over a p-adic field [11] and their
metaplectic covers (in progress), respectively. The colored five-vertex model in this paper
is a degeneration of these models. Other recent developments (since this paper first
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appeared) include applications of colored lattice models and the Yang-Baxter equation
to Grothendieck and related polynomials [15,16,14]. See also Remark 4.5.

1.1. Lascoux-Schiitzenberger keys

Type A Demazure atoms are pieces of Schur functions: if A is a partition of length
< r, the Schur function sx(z1,---,2,) can be decomposed into a sum, over the Weyl
group W = S,., of such atoms. This is an outgrowth of the Demazure character formula:
if 9,, is the Demazure operator defined later in Section 2 then 9,,2* is called a Demazure
character. Originally these were introduced by Demazure and by Bernstein, Gelfand and
Gelfand [20,6] to study the cohomology of line bundles on flag and Schubert varieties.

A variant represents the Demazure character as . 8;z)‘ where 0, are modified

<w
operators, and y < w is the Bruhat order. The comporfents 0;z)‘ are called (polynomial)
Demazure atoms.

As we will explain in Section 4, a state of the colored lattice model features r colored
lines running through a grid moving downward and rightward. These can cross, but
they are allowed to cross at most once. Each line intersects the boundary of the grid
in two places, and the colors are permuted depending on which lines cross. Hence they
determine a permutation w from this braiding, which can be encoded into the boundary
conditions. This allows us to construct a system &, » ,, whose partition function satisfies

the identity
Z(Gyrw) = 20527, (1.1)

where p is the Weyl vector. Here the polynomial 95z* is the Demazure atom.

The Schur function s, is the character of the Kashiwara-Nakashima [34] crystal
By of tableaux. The Demazure character formula was lifted by Littelmann [44] and
Kashiwara [32] to define subsets By (w) C By whose characters are Demazure characters
0wz If w = 1y then By(w) = {vy} where vy is the highest weight element. If wy is the
long element then By (wg) = By. If w < w’ in the Bruhat order then By (w) C By (w').

In Type A, the results of Lascoux and Schiitzenberger [42] give an alternative
decomposition of B into disjoint subsets that we will here denote BS(w). Then

Ba(w) = | B3(v).

ysw

The term Demazure atom is used in the literature to mean two closely related but
different things: the sets that we are denoting B (w) or their characters, which are
the functions 0%z*. When we need to distinguish them, we will use the term crystal
Demazure atoms to refer to the subsets B (w) while their characters will be referred to
as polynomial Demazure atoms.

Since (up to the factor z”?) the character of the colored system indexed by w is the
polynomial Demazure atom BS(w), we may hope that, when we identify the set of states



[ B. Brubaker et al. / Journal of Combinatorial Theory, Series A 178 (2021) 10535/

of our model with a subset of By, the set of states indexed by w is B (w). This is true and
we will give a proof of this fact using techniques developed by Kashiwara, particularly the
*-involution of the By, crystal, as well as (1.1), which is proved using the Yang-Baxter
equation.

As a byproduct of this proof we obtain apparently new algorithms for computing
Lascoux-Schiitzenberger right keys, which we now explain.

First, we will explain a theorem of Lascoux-Schiitzenberger that concerns the following
question: given a tableau T' € By, determine w € W such that T € BS(w). The set of
Demazure atoms is in bijection with the orbit W A in the weight lattice, and this bijection
may be made explicit as follows. The weights WA are extremal in the sense that they
are the vertices of the convex hull of the set of weights of By. Each extremal weight wA
has multiplicity one, in that there exists a unique element u,, of B) with weight wA.
These extremal elements are called key tableauz, and they may be characterized by the
following property: if C1,...,Cy are the columns of a tableau T, then T is a key if and
only if each column C; contains C; 11 elementwise.

Lascoux and Schiitzenberger proved that every crystal Demazure atom contains a
unique key tableau, and every key tableau is contained in a unique crystal Demazure
atom. The weight of the key tableau in BS(w) is wA. If T" € By let key(T) be the
unique key that is in the same atom as T. This is called the right key by Lascoux
and Schiitzenberger; its origin is in the work of Ehresmann [22] on the topology of flag
varieties. (There is also a left key, which is key(T")’, where T' — T" is the Schiitzenberger
(Lusztig) involution of B).)

We will describe two apparently new algorithms that compute key(7”) and key(T),
respectively. The algorithms depend on a map o : By — W such that if w = woo(T)
then T € B (w). Thus key(T) is determined by the condition that wt(key(T)) =
wA = woo(T)A. The extremal weight w\ has multiplicity one in the crystal By, so
the unique key tableau key(T') with that weight is determined by wA. To compute it,
the most frequently occurring entry (as specified by the weight) must appear in every
column of key(T"), the next most frequently occurring entry must then appear in every
remaining, non-filled column, and so on. The entries of the columns are thus determined,
and arranging each column in ascending order we get key (7).

A formal definition of the map o will be given later in (5.11). But we will now give
two algorithms for computing it. Given a tableau T, the first algorithm computes o (7"),
and the second algorithm computes (7). The two algorithms depend on the notion of
a nondescending product of a sequence of simple reflections s; in the Weyl group W. Let
i1, , i be a sequence of indices and define the nondescending product Ilya(si,, -+ , Si,)
to be s;, if £ =1 and then recursively

sipm if spym>T

Hnd(si1,~-~ ;Sik) = { (1.2)

T otherwise,

where m = I,a(Siy, -+ 5 Si))-
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Remark 1.1. There is another way of calculating the nondescending product. There is a
degenerate Hecke algebra H with generators S; subject to the braid relations and the
quadratic relation S? = S;.> Given w € W, set Sy, = Sj, --- S, where w = sj, -+~ 55, is
a reduced expression. Then the S, (w € W) form a basis of H, and we will denote by
{-} the map from this basis to W that sends S,, to w. Then

Hnd(si1>"' 7Sik) = {Sl S'Lk}

An element T of By is a semistandard Young tableau with entries in {1,2,...,7} and
shape A. There is associated with T' a Gelfand-Tsetlin pattern I'(T") as follows. The top
row is the shape A; the second row is the shape of the tableau obtained from T by erasing
all entries equal to 7. The third row is the shape of the tableau obtained by further erasing
all 7 — 1 entries, and so forth. For example suppose that r =4, A = (5,3,1). Here is a
tableau and its Gelfand-Tsetlin pattern:

5 3 1 0
, (1) = . (1.3)

4\4

‘C\D[\DH
w

First algorithm

To compute o(7T”), we decorate the Gelfand-Tsetlin pattern as follows. For each
subtriangle

z

if z = y then we circle the z. We then transfer the circles in the Gelfand-Tsetlin pattern
to the following array:

S1 52 Sr—1

(1.4)
S1 S92
51

Note that the array of reflections has one fewer row than the first, but that circling
cannot happen in the top row of the Gelfand-Tsetlin pattern. Now we traverse this array
in the order bottom to top, right to left. We take the subsequence of circled entries in
the indicated order, and their nondescending product is o(T").

2 It may be worth remarking that these are the same relations satisfied by the Demazure operators ;.
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Second algorithm

To compute o(T), we decorate the Gelfand-Tsetlin pattern as follows. For each
subtriangle

z

if 2 = z then we circle the z. We then transfer the circles in the Gelfand-Tsetlin pattern
to the following array:

S1 52 Sr—1

(1.5)

Now we traverse this array in the order bottom to top, left to right. We take the
subsequence of circled entries in the indicated order, and their nondescending product
is o(T).

Let us illustrate these algorithms with the example (1.3).
For the first algorithm, we obtain the following circled Gelfand-Tsetlin pattern and
array of simple reflections

5 3 1 0
@ S9 S3

2 1
0,7 b [T e

S1

The first algorithm predicts that if 7" is the Schiitzenberger involute of T' then o(T") =
$281, which is the nondescending product of the circle entries in the order bottom to top,
right to left. Thus woo(T") = wpsas; = s1528352. We claim that key(T”) is the unique
key tableau with shape (5,3,1,0) having weight woo(T")\ = (0,5,1,3). Let us check
this. The tableau 7" and its key (computed by Sage using the algorithm in Willis [57])

are:
|1 1]2]2] key(T,):2222\2\.
3|34 3
4 4

As claimed wt(key(T")) = woo (T") .
For the second algorithm, there are two circled entries, and we transfer the circles to
the array of reflections as follows:
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5 3 1 0
3 2 (1) 51@82 53@
3 1 7

53

Thus o(T) = s2s3 is the (nondescending) product in the order bottom to top, left to
right. Then if w = wgsss3 = s38182871, the right key of T' is determined by the condition
that its weight is wA = (1, 3,0,5). Indeed, the right key of T is

key(T) = 4|4|.

‘»&w»—x
B

This is the unique key tableau with shape (5,3, 1,0) and weight (1,3,0,5).

The two algorithms hinge on Theorem 5.5, which refines results on keys due to Lascoux
and Schiitzenberger [42]. The proof of Theorem 5.5 is detailed in the subsequent three
sections of the paper, and the resulting algorithms are proved in Section 9.

1.2. A sketch of the proofs

In Section 3 we review the Tokuyama model (in its crystal limit), a statistical-
mechanical system &, whose partition function is z°sx(z) in terms of the Schur function
sx (Proposition 3.2). The states of this 5-vertex model system are in bijection with By.
For w € W we will describe a refinement &, » ,, of this system in Section 4 whose states
are a subset of those of &, . The Weyl group element w is encoded in the boundary
conditions. Thus the set of states of &, » ., may be identified with a subset of By. If S is
a subset of a crystal, the character of S'is ) ¢ z"'("), Using a Yang-Baxter equation,
in Theorem 4.4, we are able to prove a recursion formula for the character of &, ) .,
regarded as a subset of B), and this is the same as the character of the crystal Demazure
atom BS(w). This suggests but does not prove that the states of &, . comprise
BS (w). The equality of &, ., and BS(w) is Theorem 5.5. Leveraging the information
in Theorem 4.4 into a proof of Theorem 5.5 is accomplished in Sections 7 and 8 using
methods of Kashiwara [32], namely transferring the problem to the infinite Bo, crystal,
then using Kashiwara’s x-involution of that crystal to transform and solve the problem.
The information that we obtained from the Yang-Baxter equation in Theorem 4.4 is used
at a key step (8.3) in the proof. A more detailed outline of these proofs will be given
near the beginning of Section 7.

The two algorithms are treated in Section 9, but the key insight is earlier in
Theorem 6.1, where the first algorithm is proved for &, » ,,. The idea is that the unique
permutation w such that a given state of &, lies in of &, ), is determined by the
pattern of crossings of colored lines; these crossings correspond to the circled entries in
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(1.4). Then with Theorem 5.5 in hand, the result applies to BS (w). The second algorithm
is deduced from the first using properties of crystal involutions.

Acknowledgments: This work was supported by NSF grants DMS-1801527 (Brubaker)
and DMS-1601026 (Bump). Buciumas was supported by ARC grant DP180103150.
During his time at Stanford University (when this paper was written), Gustafsson was
supported by the Knut and Alice Wallenberg Foundation. We thank Amol Aggarwal,
Alexei Borodin, Vic Reiner, Anne Schilling, Michael Wheeler and Matthew Willis for
helpful conversations and communications. We thank the referees for useful comments
which improved the exposition of the paper.

2. Demazure operators

This section reviews the theory of Demazure operators associated to any complex
reductive Lie group G. Though most of the applications in the later sections will require
only the results in Cartan Type A, it is natural to explain the theory using root datum
for any such G. Let ® be a root system with weight lattice A, which may be regarded
as the weight lattice of G. Thus if T is a maximal torus of G, then we may identify A
with the group X*(7T') of rational characters of T. If z € T and A € A we will denote by
z* the application of A to z. Let O(T) be the set of polynomial functions on 7', that is,
finite linear combinations of the functions z*.

We decompose ® into positive and negative roots, and let a; (i € I) be the simple
positive roots, where I is an index set. Let o € X, (T') denote the corresponding simple
coroots and s; the corresponding simple reflections generating the Weyl group W. To
each simple reflection s; with ¢ € I, we define the isobaric Demazure operator acting on

feo(T) by

f(z) =2 f(si7)

1—z—

0if(z) = (2.1)

The numerator is divisible by the denominator, so the resulting function is again in
o(T).

It is straightforward to check that 8? = 9; = 5;0;. Given any u € A, set k = (u, o))
so s;(p) = p — kay. Then the action on the monomial z# is given by

zh oz g5 ) if k>0,
0;z' =40 if k=—1, (2.2)
—(zttei gt o gsileted)) i k< 1.

We will also make use of 97 := 0; — 1, that is
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Both 0; and 97 satisfy the braid relations. Thus
8;0;0; - - = 0,0,0; - - ,

where the number of terms on both sides is the order of s;s; in W, and similarly for
the 97. These are proved in [17], Proposition 25.1 and Proposition 25.3. (There is a typo
in the second Proposition where the wrong font is used for 9;.) Consequently to each
w € W, and any reduced decomposition w = s;, - - s;,, we may define 9,, = 0;, --- 0,
and 0y, = 07 -+ 0; . For w =1 we let 0; = 07 = 1.

Let wp be the long Weyl group element. If A is a dominant weight let x, denote
the character of the irreducible representation m) with highest weight A\. The Demazure
character formula is the identity, for z € T":

xa(z) = 8woz)‘.

For a proof, see [17], Theorem 25.3. More generally for any Weyl group element w, we
may consider 9,z*. These polynomials are called Demazure characters.

Next we review the theory of (polynomial) Demazure atoms. These are polynomials
of the form 99z*. They were introduced in Type A by Lascoux and Schiitzenberger [42],
who called them “standard bases.” The modern term “Demazure atom” was introduced
by Mason in [47], who showed that they are specializations of nonsymmetric Macdonald
polynomials, among other things. The following theorem, done for Type A in [42], relates
Demagzure characters and Demazure atoms and is valid for any finite Cartan type.

Theorem 2.1. Let f € O(T). Then

Duf(z) =) 05 f(2). (2.3)

ysw

Proof. We prove this by induction with respect to the Bruhat order. Setting ¢(w) :=
92 f(z) and assuming the theorem for w, we must show that for any s; with s;w > w in
the Bruhat order,

Z Cb(y) = 8s1zwf(z)- (2'4)

Yy<siw

We recall “Property Z” of Deodhar [21], which asserts that if s;w > w and s;y > y
then the following inequalities are equivalent:

y<w <~ Yy < s;w = Sy < S;w .

Using this fact we may split the sum on the left-hand side as follows
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Yo =D s+ D s = D o+ Y. dsw)= Y (dy)+e(siy)) -

Y<S;w Y<S;w Y<S;w Y<S; W SiYKS; W y<w
Yy<s;y 5:Y<y Yy<s;y y<siy Yy<siy

If s;w > w then

p(w) + ¢(siw) = didp(w). (2.5)

Indeed, since 0; = 05 + 1, this is another way of writing

95wl (2) = 070, f(2),

which follows from the definitions.
Using (2.5), we obtain

> o) = (Z oy))- (2.6)

YKS; W

Still assuming s;w > w we will prove that

% Y oy) =) 6(y) (2.7)

y<w ysw
y<siy

We split the terms on the right-hand side into three groups and write

0> ) =0 Y (¢W) +d(siy) +0: > y).

y<w y<w y<w
y<s;y y<s;y
SiySw siy;{w

Now using (2.5) again this equals

0; Z 9id(y) + 0 Z o(y)

ySw ysw
y<s;y y<s;y
Siysw siygw

and remembering that 97 = 9; this equals

(Y e+ Y o) =0 Y o)

ysw ysw ysw
y<s;y y<s;y y<siy
SiySw siyy(w

proving (2.7).
Now (2.4) follows using (2.6), (2.7) and our induction hypothesis. O
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3. Ice models for GL(r)

In statistical mechanics, an ensemble is a probability distribution over every possible
admissible state (i.e., microscopic arrangement) of particles in a given physical system.
The probability of any given state is measured by its Boltzmann weight, which is
calculated by computing the energy associated to all local interactions between particles.
If there are only finitely many admissible states in the ensemble (as in all of the examples
in this paper), then the partition function is defined to be a sum of the Boltzmann weights
of each state. While computing the partition function explicitly is often intractable, there
is a nice class of so-called solvable models [4,30] for which the partition function may be
computed using a microscopic symmetry of the partition function known as the Yang-
Bazter equation. With few exceptions, solvable models are based on two-dimensional
physical systems.

Ice-type models, including the siz-verter model and the five-vertexr model, are a class
of two-dimensional solvable models based on a square, planar grid in which admissible
states are determined by associating one of two spins {+, —} to each edge. See Fig. 1 for
an example. The term siz-vertex refers to the fact that only six admissible configurations
of spins are allowed on the four edges adjacent to any vertex in the grid. Similarly, five-
vertex models are systems, typically degenerations of six-vertex models, in which only
five local configurations are allowed. An example of such a set of configurations can be
found in Fig. 2 where the configuration labeled by is removed. In the next two sections,
we will revisit all of the above terms and give precise definitions for an ensemble of
admissible states and associated weights that result in a solvable model first for a five-
vertex model based on the configurations in Fig. 2, and then generalizations thereof.
Our Boltzmann weights for states will depend on several complex variables and while
they will not try to model the probability distribution of a physical system, they will
nonetheless result in solvable variants of the above five-vertex model whose partition
functions are explicitly evaluable as Demazure atoms.

More precisely, inspired by colored lattice models in Borodin and Wheeler [9], we will
show that Demazure atoms and characters for GL(r) can be represented as partition
functions of certain “colored five-vertex models.” Strictly speaking, it is no longer true
that there are only five allowed configurations at a vertex. Still, the allowed configurations
can be classified into five different groups, which we will denote ay, a,, by, c; and ¢,
in keeping with notational conventions of [4]. Before introducing the colored models, we
begin with a model that is not new, but rather a special case of models due to Hamel
and King [27] and Brubaker, Bump and Friedberg [12].

Our five-vertex models will occur on square grids inside a finite rectangle of fixed size.
Then to describe the ensemble of admissible states of the model, it suffices to specify
the size of the rectangle and the spins associated to edges along the boundary of this
rectangle. Indeed, then the admissible states will consist of all possible assignments of
spins to the remaining edges of the grid so that every vertex has adjacent edges in one
of the five allowable configurations of Fig. 2 (those not of form by).
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Fig. 1. A state of a five-vertex model system with N =4, r =3 and XA = (2,1,0).

ay ap by

G100 [0 00

OO~ -OfE-+-OO--O[O-1-B|E--O

ST ST ST T o 6

Zi Zi

Fig. 2. Boltzmann weights wt(v) for a vertex v in the i-th row of the uncolored system.

Given an integer partition A = (A1,..., A,) with r parts, our grid will have r rows and
N + 1 columns, where N is a fixed integer at least A\; +7 — 1. In order to enumerate the
vertices, the columns are labeled 0 to IV from right to left, and the rows are labeled 1 to r
from top to bottom. Vertices occur at every crossing of rows and columns and boundary
edges are those edges in the grid connected to only one vertex. The spins {4, —} of the
edges on the boundary are fixed according to the choice of A by the following rules. For
the top boundary edges, we put — in the columns labeled \; + r — i for ¢ € {1,...,r}
and + in the remaining columns. Then, we put 4+ on all the left and bottom boundary
edges and — on the right boundary edges. As noted above, an (admissible) state s of
the resulting system assigns spins to the interior edges so that each vertex is one of the
five configurations in Fig. 2 excluding patterns of type by, which are not allowed (or



B. Brubaker et al. / Journal of Combinatorial Theory, Series A 178 (2021) 105354 15

equivalently, are assigned weight 0). An example of an admissible state for A = (2,1,0)
and N = 4 is given in Fig. 1.

Next we describe the Boltzmann weight 3(s) of a state s. It will depend on a choice
of r complex numbers z = (z1,...,2,) in (C*)". We set

b= [ wiw),

v: vertex in s

where the function wt(v) is defined in Fig. 2; the display of the variable z; in the middle
of a configuration is a reminder that the weight of a configuration is a function of the
row in which it appears. For example, one may quickly check that the state in Fig. 1 has
Boltzmann weight 2323 23.

Let &, denote the ensemble of all admissible states with boundary conditions
dictated by A and weights depending on parameters z = (z1,...,2.). Further define
the partition function Z(S,. ) to be the sum of the Boltzmann weights over all states
in the ensemble. Our notation suppresses the choice of number of columns N; indeed,
the partition function is independent of any such (large enough) choice, since adding
columns to the left of the \; +r — 1 column adds only a; patterns, which have weight 1.

We will next describe bijections between states of this system and two other sets of
combinatorial objects: Gelfand-Tsetlin patterns with top row A and semistandard Young
tableaux of shape A with entries in {1,2,...,r}. These will allow us to conclude that
Z(6,,) is, up to a simple factor, the Schur polynomial s, (z).

Our boundary conditions imply via a combinatorial argument ([4] Section 8.3 or
Proposition 19.1 in [13]) that in any given state s of the system, the number of — spins
on the N + 1 vertical edges between row i« — 1 and row ¢ will be exactly r + 1 — 7. Let
(¢,7) with > j > ¢ enumerate these spins and let A; ; be their corresponding column
numbers, in descending order. Then

Aia A2 e Ay

) ) )

A22 A2r

) )

GTP(s) :=
Ar,r
is a left-strict Gelfand-Tsetlin pattern, meaning that A;; > A;4q j41 = A;j41. This
follows from Proposition 19.1 of [13], taking into account the omission of by patterns in
Fig. 2, which implies that the inequality A; ; > Aj4q j41 is strict.

Remark 3.1. If we allowed patterns of type by we would have A; ; > Ai11 41 = A j+1
and Ai,j > Ai7j+1.

Since GTP(s) is left-strict, we may subtract p,4+1—; := (r—i,r—i—1,---,0) from the
i-th row of GTP(s) to obtain another Gelfand-Tsetlin pattern. We denote this reduced
pattern by
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a1 ai,2 te ay r
az 2 ag. r

GTP(s) := : (3.1)

Ay

whose entries are a; j; = A; j —r+j. The top row of GTP(s) is A. The map s — GTP°(s)
is easily seen to be a bijection between the states of &, y and the set of Gelfand-Tsetlin
patterns with top row .

There is also associated with a state s a semistandard Young tableau, which may be
described as follows. Let By be the set of semi-standard Young tableaux of shape A with
entries in {1,2,3,...,r}. We first associate a tableau T € By with any Gelfand-Tsetlin
pattern. The top row of the pattern is the shape A of ¥. Removing the cells labeled
r from the tableau results in the shape that is the second row of the Gelfand-Tsetlin
pattern, etc. This procedure is reversible and so there is another bijection between B
and Gelfand-Tsetlin patterns with top row A\. We may compose this with our previous
bijection between &, ) and Gelfand-Tsetlin patterns. Given an admissible state s, we
will denote the associated tableau by T(s).

For example with the state s in Fig. 1, we have

4 2 0 2 1 0 T3]
GTP(s):{ 2 1 1 } GTPO(s):{ 1 1 1 } T(s) = .

The set By has the structure of a Kashiwara-Nakashima crystal of tableaux (see
[34,18]). As such it comes with a weight map wt : By — A, where A ~ Z" denotes
the weight lattice for G = GL(r). If T € B, then identifying A with Z", we define
wt(%) = (g1, -+, ) where p; is the number of entries in ¥ equal to i.

Proposition 3.2. Let A € A be a dominant weight and s € &,  be an admissible state of
the uncolored five-vertex model defined above.

(i) The Boltzmann weight B(s) and the weight map of the associated tableau X(s) are
related by

B(s) = zPtwowt(T(s))
(if) The partition function of an ensemble &4y is related to Schur functions by
Z(6y5) =2z s:1(2).
To illustrate (i), in the example of Fig. 1, we have

wo Wt (T (

6(5) = Zfzgz& 2’ = Z%ZQa and z s)) = 212223.
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Proof of Proposition 3.2. To prove (i), note that from the weights in Fig. 2 a vertex in
the i-th row contributes a factor of z; if and only if the spin to the left of the vertex is —.
Hence the power of z; equals the number of — spins on the horizontal edges in the i-th
row, not counting the — on the right boundary edge. Now such — occur on the horizontal
edges between the A; ; and A;y1 j+1 columns, or to the right of the A;, column. Hence
the power of z; in &,y is

r r—1 T T
Y A= A= (Y aig— Y aey | +r—i
j=i j=i j=i

j=it1

The term in parentheses is the number of 7 + 1 — ¢ entries in the tableau ¥(s). Taking
the product over all i gives (i).
Using (i) and the combinatorial formula

sx(z) = ZthT

T

for the Schur function we have Z(&, ) = z” sy(woz). Part (ii) now follows from the
symmetry of the Schur function. O

Alternatively, we can evaluate the partition function using a local symmetry known as
the Yang-Baxter equation, which is Theorem 3.3 below. To state this we need to introduce
a new type of vertices that we will call rotated vertices. These vertices are rotated by 45
degrees counterclockwise and there are two parameters z;, z; associated to each vertex.
We denote such rotated vertices by R., ., (here we use R as their Boltzmann weights
may be alternately viewed as entries of an R-matrix that “solves” a lattice model). These
vertices can be attached to the grid systems we defined before, like the one in Fig. 1 to
obtain new systems. It is by working with these new systems that we can use the Yang-
Baxter equation and derive functional equations for the partition function of our initial
system (the one without any rotated vertices).

The Boltzmann weights of the rotated vertices are different from the Boltzmann
weights of the regular vertices and are given in Fig. 3.

RV Ve Ve oV Ve
®/zj O/zi e Q/zi ®/zj

Fig. 3. The R-matrix for the uncolored system. From [10] we know that we may regard this combinatorial
R-matrix as the “crystal limit” of the Uy (gl(1]1)) R-matrix when ¢ — 0.
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Now consider the following two miniature systems that contain both regular and

°  ©
N SR SN0

Rzl-,z]' Rzi,z]- (3.2)

@/\@g)@ @g)@/

Here, as with the system defined before, we fix the spins of the exterior edges

rotated vertices:

(a,b,c,d, e, f). An assignment of spins to the interior edges is again called a state. Both
systems have a partition function defined by summing the weights of the admissible
states made from all possible assignments of spins to the interior edges (g, h, ¢ in the left
system, or j, k, [ on the right). The weight of the entire state is computed just as above:
we take a product of the weights of each vertex using the weights of the regular vertices
that are given in Fig. 2 and the weights of the rotated vertices that are given in Fig. 3.

For example if (a,b,¢,d,e, f) = (+,—,+, —, +,+) there is only one choice (g, h,i) =
(—,+,+) that gives a nonzero contribution to the first system, and the partition function
is the Boltzmann weight z;z; of this state. For the second system, there are two states
with nonzero contribution, namely (j,k,l) = (—,+,+), with weight z]2 and (+,—,—)
with weight z;(2; — z;). The partition function again equals z;z;.

Theorem 3.3. Let a,b,c,d, e, f € {+,—}. Then the partition functions of the two systems
in (3.2) are equal.

Proof. This is a special case of a Yang-Baxter equation found in [12]. Referring to the
arXiv version of the paper, the Boltzmann weights are in Table 1 of that paper with
t;,=0. O

The symmetry of the Schur function may be easily deduced from this via a procedure
called the “train argument” that amounts to repeated use of Theorem 3.3 on a larger
grid system with an attached rotated vertex as later illustrated in Fig. 8 for the colored
five-vertex model. See also [12, Lemma 4], leading to an alternate proof of the evaluation
of the partition function.

The models of this section may be described as the “uncolored” (or equivalently “one-
colored”) version of our five-vertex models. They were known before the writing of this
paper. In the next section, we present a generalization known as colored models, which
are new. We will prove a Yang-Baxter equation in the colored setting (Theorem 4.2) that
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will then be used to relate the partition function of the lattice models to the Demazure
atoms.

4. Colored ice models for GL(r)

There are multiple ways to depict admissible states of the six-vertex model. Many of
these are described in Chapter 8 of Baxter’s inspiring book [4]. In particular, rather than
using spins or arrows to decorate edges, one can instead use the presence or absence of a
line (or “path”) along an edge. These are the “line configurations” in [4], Figure 8.2. Our
convention will be that the presence of a line corresponds to a — spin, so that admissible
states may be viewed as a collection of paths moving downward and rightward through
the lattice. Inspired by ideas of Borodin and Wheeler [9] in the context of certain other
solvable lattice models, we may assign colors to each such path to refine the partition
function of the prior section to produce polynomial Demazure atoms.

First we describe the relevant solvable colored lattice model. Just as before, upon
fixing a dominant weight A = (A1, ..., ), we begin with a rectangular lattice of N + 1
columns (N > A\ + 7 — 1) and r rows whose edges are to be assigned spins + according
to a five-vertex model. Moreover, to each edge with — spin, we assign a “color,” an
additional attribute from a finite set {c1,---,¢.} of size equal to the number of rows
in the model. We will order these colors by ¢; > ¢co > -+ > ¢,. By a colored spin we
mean either +, or a color ¢;. For the purpose of comparing with the uncolored system,
we regard a colored spin ¢; as a spin — with an extra piece of data, namely a color.

To each dominant weight A, we now define r! distinct partition functions. Given w €
W = S, and a vector of colors ¢ = (¢1, -+, ¢;), let we be the permuted vector of colors,
that is (wc); = c¢,-1;,. We will call such vectors of colors flags. Now assign boundary
conditions to the colored lattice model as follows. To the vertical top boundary edges,
we assign spins — in the columns labeled A; + r — ¢ as before (1 < ¢ < r). Now however
we also need to assign colors to these edges, and we assign the color ¢; to the \; +r — 4
column. Each edge along the right boundary is also assigned a — spin, but here we assign
the colors wc in order from top to bottom. Just as before, all remaining boundary spins
along the bottom, left, and top are +.

Admissible states are then assignments of colored spins to the interior edges such
that every vertex has adjacent spins as in Fig. 4 with the understanding that the colors
red > blue may be replaced by any colors ¢; and ¢; with ¢; > ¢;. Boltzmann weights for
each vertex are listed in the figure as well. We denote the resulting system of admissible
states as &, x . The configurations in Fig. 4 ensure that each color will determine a
path, moving downward and rightward through the lattice. The choice of w € W then
specifies the row where each colored path exits the right-hand boundary. As before, we
denote by Z (S, x,4,) the partition function of the colored lattice model.

For example, let r = 3. We will denote the three colors 1, ¢2 and c3 as R (red), B (blue)
and G (green) in the figures. Take w = s182. Then ¢ = (R, B,G) and wec = (G, R, B).
With A = (2,1,0) the system &, ., has two states, which are illustrated in Fig. 5.



20 B. Brubaker et al. / Journal of Combinatorial Theory, Series A 178 (2021) 10535/

(&) (®) &)
ol @?@ OO @?@ , @E?@

Ol e | 0 o 0| 0

by c1

@z@@é @l@@@

1

Zg z.

Fig. 4. Colored Boltzmann weights for two colors ¢; and c¢;, portrayed as red (R) and blue (B). We assume
that red > blue. If the configuration is not in the table, the weight is zero. The weights are not quite
symmetric in the colors, since in the a, patterns, the smaller of the two involved colors (blue) is not allowed
on the right edge and the larger color is not allowed on the bottom edge. With our boundary conditions,
the patterns with four edges all red or blue could be omitted, but this would change the R-matrix in Fig. 6;
see Remark 4.3. This would not affect the results of this paper, but we prefer these weights for consistency
with the uncolored case. (For colored versions of this and subsequent figures, the reader is referred to the
web version of this article.)

Proposition 4.1. For any dominant weight N\, Sz x = | lyew Czaw (disjoint union)
where a colored spin c; is mapped to spin —, and hence

Z(Gz,)\) = Z Z(Gz,x,w)'

weWw

Proof. We may begin with a state of the uncolored system and assign colors to the edges
with — spins. Along the top row, assign color ¢; to the — spin in column A\; +r — i as
directed for colored ice states. We will argue that there is a unique way of coloring the
remaining — spins that is consistent with the configurations in Fig. 4.

The boundary spins on the left edge are all +, so they do not need colors assigned.
After this, we proceed inductively, rightwards and downwards row by row, adding color
to the — spins of the state using the weights from Fig. 4. The key observation is that at

%

@-+-©

@

a vertex labeled as follows:
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Fig. 5. The two states of the system & (2,1,0),s,s, Where ¢ = (R, B, G) (red, blue, green) and wc = s1s2¢ =
(G, R, B). The dashed lines ¢;, and the intermediate flags ¢; will be used in the proof of Theorem 6.1.
Each intermediate flag c; is the sequence of colors through the line ¢;, and is obtained from the previous
c;_1 by interchanging some colors on the vertical edges that intersect it. Because £,_; only intersects one
vertical edge, no interchanges are possible at the last step, meaning that ¢,,.—; = c,.. Note that, while the
flag we = s1s2¢ = (G, R, B) denoting the right boundary condition is read from the top down, the last line
£3 intersects the same edges from the bottom up. Thus, c3 = wosis2c = (B, R, G).

the colored spins a and b and the spins + of ¢ and d determine a unique color at ¢
and d with non-zero weight according to Fig. 4. Indeed, colored spin is conserved at
a vertex, meaning that the total incoming (top and left) colored spins counted with
multiplicity equals the total outgoing (bottom and right) colored spins. Moreover for the
ap configurations if a and b are of different colors, then d will be the smaller of the two
colors. We see that the assignment of colors is completely deterministic, and the colored
state falls into a unique one of the ensembles &, » ..
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Fig. 6. The colored R-matrix.

Now mapping colored spins ¢; to spin —, the colored Boltzmann weights of Fig. 4 map

to the uncolored Boltzmann weights of Figs. 2, thus proving both statements. 0O

There is again a Yang-Baxter equation.

Theorem 4.2. Using the Boltzmann weights in Fig. j for the regular vertices and the
R-matriz in Fig. 6 for the rotated vertices, let a,b,c,d,e, f be colored spins. Then the
partition functions of the (now colored) systems depicted in (3.2) are equal.

Proof. In order for either side of (3.2) to be nonzero, each color that appears on a
boundary edge a, b, ¢, d, e, f must appear an even number of times (and therefore at least
twice), since otherwise according to Figs. 4 and 6, the Boltzmann weight of the state is
zero. Therefore at most 3 colors can appear among a, b, c,d, e, f and the interior edges
cannot involve any further colors. Thus there are only a fixed finite number (45 = 4096)
of cases to be considered (independent of the number of colors r), and this can easily be

checked using a computer. (To check this we used the Sage mathematical software.) O

Remark 4.3. It may be checked that the colored R-matrix (with r colors) in Fig. 6 is the
limit as ¢ — oo of the R-matrix of a Drinfeld twist of U, (;[(r\l)) It is also possible to
vary the Boltzmann weights as follows: in Fig. 4, omit the a; patterns in which all four
edges have the same color; and in Fig. 6, change the Boltzmann weights of the patterns
in which all four edges have the same color from z; to z;. These changes do not affect
any of the arguments in this paper since the changed patterns do not appear in any of
the states of the systems we consider, but they change the underlying quantum group
to a Drinfeld twist of U, (;[r+l)~

Our next result shows that the colored partition function with r colors and r rows is
a polynomial Demazure atom for GL(r) up to a factor of z*.
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Fig. 7. The ground state. In this unique state with maximal number of crossings of colored lines, we have
5) =12z , wt 5)) =z° . Note that since we reas e ag” of colors on the right edge from top
Ate T wo(A+P) | Note that si d the “flag” of col he right edge fi

to bottom, it is this ground state corresponding to w = 1 that has the maximum number of crossings.

Theorem 4.4. For every w € W we have
Z(Sa) = 2052

Proof. The proof is by induction with respect to Bruhat order. If w = 1y, it is easy to
see that there is a unique state in &, ) 1,, and its Boltzmann weight is z°** (see Fig. 7).
Thus it suffices to show that for each s; and w with s;w > w,

2 P Z(6y 5 5,w) = 05 (Z’PZ(GL,\,w)). (4.1)

Let we =d = (dy,- - ,d,). Since s;w > w, we have d; > d;11. Consider the partition
function of the system in Fig. 8 (top). This is a system like the one portrayed in Fig. 5
but with an attached rotated vertex z;1, z; on the left. We only exhibit two of the rows
of the system because this is where the interesting changes occur. Also note that the
parameters of the two rows are flipped, so now the top row has parameter z;;1 and the
bottom row has parameter z;.

Consulting Fig. 6, the rotated vertex (or the R-matrix) has only one possible
admissible configuration (with all 4+ spins). This means the partition function of the
top system in Fig. 8 will be equal to the Boltzmann weight of
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Fig. 8. Top: the system &, x,» With the R-matrix attached. Bottom: after using the Yang-Baxter equation.

®, @

R2i+1,zq‘,

times the partition function of the system with the rotated vertex removed. This is then
2iZ(8g,z2w)- Note that z; and z; in Fig. 6 become here 2,11 and z;, respectively. We
are using red and blue for the colors d; and d;11, respectively.

After repeated use of the Yang-Baxter equation (Fig. (3.2)), we move the rotated
vertex to the right, switch the parameters of the two rows and obtain a system with the
same partition function by Theorem 4.2. This is the system on the bottom of Fig. 8.
This method of Baxter is sometimes called the “train argument.”

Now looking at the possible weights from Fig. 6, the R-matrix has two admissible
configurations (third and fifth on the second row) and so the equality of partition
functions from Fig. 8 becomes the identity

ZiZ(Gsiz,/\,w) = zi+lz(6z,)\,w) + (ZiJrl - Zi) Z(Gz,)\,siw)-
Since z% = z;/z;+1, the above identity may be rewritten as
Z(Ggn5w) = —(1 — Zai>_1(2<6z,>\,w) — 2% Z (G50 w))- (4.2)

The right-hand side can be interpreted as the operator —(1 —z%)~1(1 — z%s;) applied
to Z(S4,a,w). Note that
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00 =—(1—-2)"1(1—-s;), andhence 2’97z " = —(1 —2z%) (1 —2z%s;).
Using this, (4.1) follows from (4.2). O

Remark 4.5. It was recently found by Brubaker, Bump and Friedberg that a variation
of the Boltzmann weights produces the Demazure character z°0,,z" instead of the
Demazure atom z”92z* in Theorem 4.4. The modification is to interchange red and
blue in the third case of Fig. 4. This will be discussed in a subsequent paper.

5. Demazure crystals and atoms

A refined Demazure character formula in the context of crystals was obtained by
Littelmann [44] and Kashiwara [32] for any symmetrizable Kac-Moody Cartan type.
We begin this section by reviewing this refinement for finite Cartan types. Then, after
introducing string data on a crystal, we specialize to Cartan Type A and describe an
important map o from the crystal to the Weyl group which allows us to identify Demazure
atoms with subsets of the highest weight crystal and characterize the vertices belonging
to this crystal. This result (Theorem 5.5) is one of the main results in this paper and its
proof is ultimately completed in Section 8.

Let us fix a finite Cartan type with weight lattice A. Let A be a dominant weight,
which we assume to be a partition. Then there is a unique irreducible representation
of highest weight A, and a corresponding normal crystal B) whose character is the same
as that of my.

Recall that crystals come equipped with Kashiwara maps e;, f; : Bx — By U {0} and
i i : By = Z (see [34]). For a crystal B an element v is called a highest weight element
if e;(v) = 0 for all ¢; similarly it is lowest weight if all f;(v) = 0. The crystal B has unique
highest and lowest weight elements vy and vy, respectively; with weights wt(vy) = A
and wt(vyn) = Wo.

With B = By let Z[B] be the free abelian group on B. We define a map 9; : B — Z[B]
in terms of the Kashiwara operators e; and f; by

v+ fivt ..o+ fRu if k>0,
81"0 = 0 if k= —1,
—(eiv+ ...+ ) if k< -1,
where k = (wt(v), ). This lifts the Demazure operator 9; to the crystal; indeed,
composing with the familiar weight map on the crystal (described in Section 3) produces
the Demazure operators of (2.1), and so we will use the same notation for the operator
in both contexts.
By an i-root string we mean an equivalence class of elements of B under the equivalence
relation that ¢ = y if ¢ = €]y or = fl'y for some r. An i-root string S has a unique
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highest weight element ug characterized by e;(ug) = 0. We may now state the refined
Demazure character formula of Littelmann and Kashiwara.

Theorem 5.1 (Littelmann, Kashiwara). Let B = By.

(i) There exist subsets B(w) of B indexed by w € W such that B(1) = {vx}, Blwg) = B
and if s;w > w then

B(s,w) ={z € B| e[z € B(w) for some r} .

(ii) If S is an i-root string then B(w) NS is one of the three possibilities: &, S or {ug}.
(iii) We have

Z 2V = 9,z |

zeB(w)

See [32] or [18] Chapter 13 for proof.

Demazure characters and atoms were defined in Section 2 as functions on the complex
torus T'. The preceding theorem allows us to lift Demazure characters to the crystal
B = Bj; as in the theorem, we will denote these (lifted) Demazure characters by B(w)
for w € W. Let B°(w) (w € W) be a family of disjoint subsets of B. We call these a
family of crystal Demazure atoms if

B(w) = | B(y). (5.1)

y<w
Lemma 5.2. If a family of disjoint subsets B°(w) satisfying (5.1) exists it is unique.

Proof. Let us identify a subset S of B with the element ) | _¢ v of the free abelian group
Z[B]. Then we may rewrite (5.1) as

Blw) =) B°(y).

y<w

By Mobius inversion with respect to the Bruhat order ([54,52]) this is equivalent to

Bo(w) = ) (~1)" I WB(y).

y<w
This characterization of B°(w) as an element of Z[B] proves the uniqueness. O

For the remainder of the section, we specialize to Cartan Type A. As explained in the
Introduction, in a decomposition of the set of tableaux in a GL(r) crystal By is given by
the theory of Lascoux-Schiitzenberger keys. We will give another algorithm to compute,
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for any v € B, the element w € W such that v € B°(w) and show that the resulting
subsets satisfy (5.1), making them a family of crystal Demazure atoms. This algorithm
makes use of the string or BZL patterns for vertices in a crystal, which we now describe.
These patterns were introduced in [5] for Type A, and more generally in [45]. See also [18]
Chapter 11 and [13] Chapters 2 and 5.

Let i = (i1, -+ ,in) be a reduced word for wg = s;, -+ 8. Given any v € By, let
by := b1(v) be the largest nonnegative integer such that fibllv # 0. Then let by be the
largest integer such that ff; ff’llv = 0. Continuing, we obtain fffvv e ff; ffllv = Uy S
explained in [45]. We will denote the resulting vector of lengths in root strings by

string”) (v) == (by, -+, by). (5.2)

Dually, let ci,---,cny be the maximum values such that ef* ---eef'v # 0 for k =
1,2,---,N. Then e ---ei?ef'v = vy and we define
ine'® (v) :=

string;”’ (v) := (c1,--- ,¢N). (5.3)

The map a — —wpa permutes the positive roots, and in particular the simple roots.
Thus there is a bijection 7 — i’ of the set I of indices such that oy = —wpa; and
wos;wy * = sy, In the GL(r) case I = {1,---,7 — 1} and i’ = r — . The crystal also has
a map v — v’, the Schiitzenberger or Lusztig involution, such that if v € B then

fi) = (ex(v)),  e(v') = (fir(v)). (5-4)
It follows from (5.4) that if i’ = (¢}, - ,4%y) then

string\’ (v) = string!” (/). (5.5)

Littelmann [45] observed that for certain “good” choices of long word i the set of
possible string patterns can be easily characterized. Although Littelmann gives good
word choices for the classical Cartan types, our results are mainly for Type A and we
will specialize to the GL(r) case for the remainder of this section, indeed for the rest of

the paper. For GL(r), one such Littelmann good word is

i=(1,2,1,3,2,1,4,3,2,1,- - ,r,r —1,--+ ,3,2,1). (5.6)

Thus

i'=@r—-1r—-2r—1,r—3,r—2,r—1,---,r—=3,r—2,r—1). (5.7)
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(e)

Following [45] we arrange the string pattern string;,”’ (v) = (b1, b2, --) in an array

string\” (v) = ba 25 26 (5.8)
2 b3
by

in which the b; satisfy the Littelmann cone inequalities
by >0, by > b3 = 0, by > b5 >2bs >0, (5.9)

Following [13] we decorate the string pattern (5.8) by circling certain b; according to
these cone inequalities.

Circling Rule 5.3. Let b = (by,bo, -+ ,by) where N = r(r — 1)/2 be a sequence of
nonnegative integers satisfying (5.9). We arrange the sequence in an array (5.8) and
decorate it by circling an entry b; if it is minimal in the cone. Explicitly, if i is a triangular
number, so that b; is at the right end of its row, the condition for circling it is that b; = 0;
otherwise, the condition for circling is that b; = b;11.

Let (i1, 12,13, %4, 15,16, - - - ) be the sequence (1,2,1,3,2,1,---) of (5.6). We transfer the
circles from the string pattern to the following array made with the simple reflections:

io  Sis  Sia | = s51 S22 83| . (5.10)
iz Sig 81 S2
Siq S1

Remark 5.4. Note that the horizontal orders of the entries in (5.8) and (5.10) are different.

If v € By, let (sj,,-- -, s;,) be the subsequence of (s;,, $i,, Sig, -+ ) = (81, 52, 51, $3, 52,
s1,---) consisting of the circled reflections in (5.10) derived from the string pattern

stringi(,e )(v). Here i’ is the specific sequence in (5.7). With the nondescending product

IT,q defined in (1.2), define o : By — W by
o(v) :==Tha(s;,, -, Sjp)- (5.11)
For example, suppose that the string pattern is:
® 1

The circling rule tells us to circle b; and by since by = 0 and by, = b3. Thus we circle

(5.12)

these entries:
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GO s
Go

and o(v) = Ilua(s1,s1) = {S7} = s1 in this case, using the notation of Remark 1.1.

We may now state one of our main results. Let W, be the stabilizer of A in W. Note
that if w,w’ € W lie in the same coset of W/Wy then By (w) = By (w'). We will say that
w € W is A-maximal if it is the longest element of its coset.

Theorem 5.5. Let B = By be the GL(r) crystal of tableaux with highest weight A. There
exist a family of subsets B°(w) of B indexed by w € W such that B°(w) = B°(w’) if and
only if w,w' lie in the same coset of W/Wy; otherwise they are disjoint, and such that
the decomposition (5.1) is satisfied. If w is the longest element of this coset, then

B°(w) ={v e B|wyo(v) =w}. (5.13)
If w is not the longest element of its coset then the equation woo(v) = w has no solutions.

This is a refinement of results of Lascoux and Schiitzenberger [42], and is one
of the main points of the paper. Equation (5.13), together with the definition and
properties of o, leads to the algorithmic characterization of the crystal Demazure atom
in Subsection 1.1. The proof of Theorem 5.5 will be given later, in Section 8. One may
check that the definition of ¢ in (5.11) agrees with the one derived from reduced pipe
dreams in Section 1.4 of [36] (and originally in [24]) under a natural bijection between
such pipe dreams and states of our lattice models.

6. A bijection between colored states and Demazure atoms

We return now to colored ice models and their relation to crystals for GL(r). Recall
from Proposition 4.1 that the admissible states of colored ice &, » ., with w € W partition
the set of admissible states of uncolored ice in the system &, x. The map from any &, y
to S, is simply given by ignoring the colors (i.e., replacing each colored edge by a —
spin). In Section 3 we defined a map s — %(s) from S, » to By. In this section, we
characterize the image of &, ), under this map. This will be a key ingredient in the
proof of Theorem 5.5 in Section 8.

Let v — v’ be the Schiitzenberger (Lusztig) involution of B).

Theorem 6.1. If w € W and s € S, then s € &, 5., if and only if woo (T(s)') = w.

Thus once Theorem 5.5 is proved, we may compare Theorem 6.1 with (5.13) to see
that the map s — %(s)’ sends the ensemble &, » ., to the Demazure atom B3 (w).

Before we prove Theorem 6.1 we give an example. In Fig. 9, we have labeled the
elements of the GL(3) crystal By (A = (2,1,0)) by a flag indicating the colors along the
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right edge of the corresponding state. These colors are read off from top to bottom
on the horizontal edges at the right boundary of the grid. In the decomposition of
Proposition 4.1, the flag is a permutation wc of the colors of the standard flag, which
we are taking to be ¢ = (R, B, G). For example, to compute the flags for the elements

13\and 112
2 2

(6.1)

we construct the corresponding states as in Fig. 5 and then read off the colors from the
right edge, which are (G, R, B) for both states. In Fig. 9 these colors are represented
as a flag. The flag allows us to read off the unique y € W such that the corresponding
state s is in &, 5 . For example in the two states in (6.1), we have the flag (G, R, B) =
s182(R, B,G) and so y = $183.

Now let us also verify Theorem 5.5 and Theorem 6.1 for the patterns in Fig. 5. Both
are in the system &, (21,0),s,s,- Lheir string patterns stringi(,e) %) = stringi(f)(‘l) are
shown in Table 1.

SN

(]

w;m\

[l

[
=
= w
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—
—
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—
—

[
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[

(<]
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— —
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Fig. 9. Left: The GL(3) crystal of highest weight A = (2,1, 0), showing the “flags” that are the colors of the
right edges of the corresponding states, read from top to bottom. The highest weight element is at the top.
Right: the same crystal, showing the pattern string§f) that controls both the crossings of colored lines in
the state, and which also carry information about the Demazure crystals.
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Table 1
String patterns for the examples shown in Fig. 5 with
tableau ¥ and its Schiitzenberger involution T’.

T T stringg))zyl) (%) = stringgg?l,g)(‘f’)

.
e

=

We have o(%') = s1 in both cases; indeed for the first row in Table 1, o(%') =
IMha(s1) = s1 and in the second row o(%') = I,u4(s1,81) = s1, and in both cases
woo (T') = s182. Moreover the two patterns T’ comprise the Demazure atom B°(s152)
since they are the two patterns in B(s1s2) that are not already in B(s2). Thus we have
confirmed both Theorem 5.5 and Theorem 6.1 for one particular Demazure atom.

Proof of Theorem 6.1. First we will show that the circled locations in GTP®(s) corre-
spond to ay vertices in the state s (by the labeling in Fig. 4), which are places where the
colored lines may cross.

Let s be a state of &, ) ,. Let GTP°(s) and T € By be the corresponding Gelfand-
Tsetlin pattern and tableau as described in Section 3 (using the embedding of &,y , into
i(f )(T) represented as
a vector (by, by, - -+ ). Let us consider how the circles may be read off from the Gelfand-

Tsetlin pattern with entries a; ; as in (3.1). According to Proposition 2.2 of [13],

GS2,x). We take v = ¥’ in (5.8) so we are using stringi(,e) (%) = string

b1 = aryp — Ar-1,r

by = (ar—1,-1+ Gr_1,r) — (Ar—2,r—1 + Gr_2.),

bs = ar_1, — Qr_2,,

by = (ar—2,—2 4+ Gr_2p—1+ ar_2,) — (Gr_3,r—2 + Ar_3 -1 + Qr_34), (6.2)
bs = (ar—2,—1 + Gr—2,) — (Ar—3,r—1 + Gr_3.+),

b6 = Qr—2,y — Qr_3,r,

These imply that the circled locations depend on equalities between entries in GTP(s) or,
equivalently, GTP°(s). For example by is circled if and only if a,—1 -1 = ap_2,—1. With
A; ; the entries in GTP(s), so that A; ; = a; ; + r — j, this is equivalent to A,_1 ,_1 =
A,_2 r—1, and similarly if any by, is circled then we have A, ; = A;_; ; for the appropriate
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i,7. Now recall that in the bijection T <+ s, A;; is the number of a column where a
vertical edge has a colored spin. Therefore from the admissible colored ice configurations
of Fig. 4, the circled entries in (5.8) correspond to vertices of type a, in the state of ice
5. These are locations where two colored lines may cross. From Fig. 4 the lines will cross
if and only if the left edge color is greater than the top edge color at the vertex, which
is equivalent to the assumption that they have not crossed previously.

We consider a sequence of lines ¢; through the grid, i = 0,...,r to be described as
follows. The line ¢; begins to the left of the grid between the i-th and (i + 1)-th row,
or above the first row if ¢ = 0, or below the r-th row if ¢ = r. It traverses the grid,
then moves up to the northeast corner. See Fig. 5 where these lines are drawn in two
examples.

Each ¢; intersects exactly r colored lines, and we can read off the colors sequentially;
let ¢’ be the corresponding sequence of colors. Thus ¢? = ¢, while ¢” = wyyc, where y
is the Weyl group element we wish to compute. The wq in this last identity is included
because the line ¢, visits the horizontal edges on the right edge from bottom to top,
whereas in describing the flag yc, the reading is from top to bottom. (See Fig. 5.)

As we have already noted, the circled entries in (5.8) correspond to a, patterns in
the state. These are places where two colored lines may cross. The crossings interchange
colors and each corresponds to a simple reflection that is circled in (5.10). So if i > 0 we
may try to compute c¢; from c;_; by applying the circled reflections in the i-th row of
(5.10). Remembering from the proof of Proposition 4.1 that the colors in the i-th row are
assigned from right to left, this means (subject to a caveat that we will explain below)
that

Ci = (Sr—i)i - (s3)i(s2)i(s1)iCi1,

where (s;); denotes s; if s; is circled in the i-th row of (5.10), and (s;); = 1 if s; is not
circled.

If 4 = r, there is no i-th row to (5.10), and correspondingly ¢, = ¢,_1. This is as it
should be since at this stage there is only a single colored vertical edge that intersects
the line £,._1, and no interchanges are possible. (See Fig. 5.)

We mentioned that there is a caveat in the above explanation. This is because from
Fig. 4 we see that in an a, vertex, if the color ¢ is left of the vertex and d is above,
the colored lines will cross if ¢ > d but not otherwise. In particular, two colored lines
can only cross once. More precisely, if two colored lines meet more than once (at as
vertices) they will cross the first time they meet, and never again. For this reason,

the permutation that turns ¢® = c into ¢” = wgyc is the nondescending product
Mha(siy, -+, 8i,) where (s;,,---,s;,) is the subsequence of circled simple reflections in
(5.10). Note that according to the definition of ITnq(si,,- - , S, ) in equation (1.2), the

circled simple reflections corresponding to the a, patterns where there is a crossing
play a role in recursively defining II,q(s;,, - ,S:,), while the circled simple reflections
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corresponding to the a, patterns where there is no crossing do not affect the product.
Therefore y = wo Mna(siy, -, 8i,) = weo ().

This shows that s € &, 5, implies y = woo(%(s)’). By Proposition 4.1, if s ¢ &, 5 ,
then s € 6, ), with y # v € W, which we have shown implies that y # y =
weo(T). O

Proposition 6.2. Suppose that a part of A is repeated, so that \i = X\iy1 = ... = Aj = c.
Then each pair of colored lines through the top boundary edges in columns c+r—i,--- ,c+
7 —j must cross. Thus if G, » ,, is nonempty, then w is the shortest Weyl group element
in its coset in W/Wy.

Proof. We are only considering states in which there are no b; patterns since these have
weight 0 in Fig. 4. We leave it to the reader to convince themselves that because of this,
colored lines that start in adjacent columns, or more generally in columns not separated
by a + spin on the top boundary edge must cross. Because we read the colors on the top
boundary vertical edges from left to right and on the right horizontal boundary edges
from top to bottom, this means that the colors are in the same order. Hence if &, » .
is nonempty, w does not change the order of colors corresponding to equal parts in the
partition A. This is the same as saying that it is the shortest element of its coset in
W/W)\. |

Corollary 6.3. If v € By then o(v) is the longest element of its coset in W/W.

Proof. Let s be the state such that T(s)’ = v. Then s € &, 5, with w = weo(v) by
Proposition 4.1 and Theorem 6.1. Thus, according to Proposition 6.2, woo(v) is the
shortest element in its coset and therefore o(v) is the longest element of its coset. O

7. Demazure atoms in B

The results in this and the subsequent sections are for Cartan type A. Before we can
prove Theorem 5.5 in the next section, we will need to introduce two tools: a lift to an
infinite crystal Bo, and an involution on this crystal. Both will be defined later in this
section and they will be used to show the inclusion By(w) C {v € By | woo(v) < w}, by
first showing its Byo-analogue in Lemma 7.6. In Section 8 we will then show that this is
actually an equality, proving Theorem 5.5, using input from the lattice model results in
the previous sections. A summary of how we will prove these statements is illustrated in
Fig. 10 and will be detailed further below.

Although Littelmann [44] proved the refined Demazure character formula Theorem 5.1
for many semisimple Lie algebras using tableaux methods, Kashiwara [32] introduced
the two tools mentioned above to prove it completely for symmetrizable Kac-Moody Lie
algebras.

The first innovation in [32] is to prove the formula indirectly by working not with B
but with the infinite crystal B, that is the crystal base of a Verma module. That is,
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Lemma 7.6 Theorem 8.1
*-involution
Bog === Boo(w) C {v € Boo | woo(v) < w} Boo(w) = {v € Boo | woo(v) < w}
}ift J 1\
lattice model
B Bx(w) C {v € Bx | woo(v) L w} =—= Bx(w) = {v € Bx | woo(v) < w}
Equation (8.1) Theorem 5.5

Fig. 10. Summary of arguments used in Sections 7 and 8 to prove Theorem 5.5, one of the main results of
this paper, and its analog for B, Theorem 8.1.

Theorem 5.1 is true for B, as well as By meaning that we also have Demazure crystals
Boo(w) for By,. One may embed B) into B, and the preimage of the Demazure crystal
Boo(w) in Bo is the Demazure crystal B (w). In [32,18,31] proofs of the refined Demazure
character formula proceed by proving a version on By, first.

The second innovation in [32] is to make use of an involution x which, as we will
explain, interchanges two natural parametrizations of the crystal by elements of a convex
cone in Z.

In proving Theorem 5.5 we will use both of these ideas from [32], namely to lift
the problem to B, crystal and to exploit the properties of the x-involution. Two
references adopting a point of view similar to Kashiwara’s are Bump and Schilling [18]
and Joseph [31]. Both these references treat the Demazure character formula in the
context of By, and the x-involution.

The notion of crystal Demazure atoms can be adapted to B.,; we define these to
be subsets B°(w) that are disjoint and satisfy (5.1). By Lemma 5.2 these conditions
determine the atoms.

For Type A the existence of a family of crystal Demazure atoms for B, will be proved
in Corollary 8.2 in the next section. In fact, the characterizations of B(w) and B°(w) for
Type A in terms of the function o translate readily to Bs. The x-involution of B, is
not a crystal graph automorphism, but it has other important properties. In particular,
it maps the Demazure crystal B(w) into B(w™!). So using the x-involution we are able
to reformulate Theorem 5.5, or more precisely the corresponding identity for By (w), as
the identity

Boo(w™) = {v € B|lwyo(v*) < w}. (7.1)

The definition of o for By was given in terms of Gelfand-Tsetlin patterns, but it may
be restated in terms of string data (5.8). As we will explain later in this section, the *-
involution transforms the string data into other natural data. (See (7.3).) In Lemma 7.4
below we have an explicit formula for o(v*) in terms of this data. Thus (7.1) becomes
amenable to proof. The main details are in the proof of Lemma 7.5, which contains
partial information about how o(v*) changes when f is applied to v. The proof of this
lemma is technical, but the starting point is the formula (7.11) for fi(v) in terms of
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data that we have in hand due to Lemma 7.3. Once Lemma 7.5 is proved, we conclude
this section with Lemma 7.6 which makes progress towards showing (7.1) by proving the
inclusion of the left-hand side in the right-hand side.

Then, using the information that we have obtained from the Yang-Baxter equation
in Theorem 4.4, we can leverage this inclusion to prove Theorem 5.5 in Section 8. Note
that this is a statement about Bj, not B.. Equation (7.1) is equivalent to Theorem 8.1,
which is proved after Theorem 5.5 by going back to By,. Theorem 8.1 would of course
imply Theorem 5.5, but we prove Theorem 5.5 first where we can apply Theorem 4.4.
Thus we go back and forth between B, and B) in order to prove everything. Finally in
Corollary 8.2 we obtain a characterization of crystal Demazure atoms in B.

In [32,18], the construction of Bu, for any Cartan type depends on the choice of a
reduced decomposition of the long Weyl group element wg = s;, - - - $i,, - A main feature
of the theory is that the crystal is independent of this choice of decomposition; to change
to another reduced decomposition one may apply piecewise linear maps to all data.
On the other hand, Littelmann [45] showed that one particular choice of reduced word
is especially nice, and it is this Littelmann word that is important for us. Given this
choice, elements of the crystal are parametrized by data from which we can read off the
Demazure atoms.

We recall Kashiwara’s definition of B, for an arbitrary Cartan type before specializing
to the GL(r) (Cartan Type A,_1) crystal. (For further details and proofs see [32] and
Chapter 12 of [18].)

If ¢ € I, the index set for the simple reflections, let B; be the elementary crystal defined
in [32] Example 1.2.6 or [18] Section 12.1. This crystal has one element u;(a) of weight
acy; for every a € Z on which the crystal operators e; and f; act as e;(u;(a)) = u;(a+1)
and f;(u;(a)) = u;(a —1). Let i = (i1,---,in) be a sequence of indices such that
wo = S, -+ Si; 15 a reduced expression of the long Weyl group element and let

Bi=8B;, ® - ®B;, .

Remark 7.1. We recall that there is a difference between notation for tensor product of
crystals between [32] and [18]. We will follow the second reference, so to read Kashiwara
or Joseph, reverse the order of tensor products, interpreting x ® y as y ® x.

Let ug = u;, (0) ® - ® u;, (0) € Bi, and let €; be the subset of ZV consisting of all
elements a = (ay,- - ,an) such that

uij(a) = u(a) = u;, (—a1) @ - - @ uiy (—an) (7.2)

can be obtained from wug by applying some succession of crystal operators f;. Then €;
is the set of integer points in a convex polyhedral cone in RY. We regard ¢;, embedded
via the map a — wu(a) to be a subcrystal of Bi; this requires redefining e;(v) = 0 if
g;(v) = 0. With this exception, the Kashiwara operators e;, f;, €; and ¢; are the same
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as for the ambient crystal B;. If j is another reduced expression for wg then there is a
piecewise-linear bijection ¢; — €; that is an isomorphism of crystals; in this sense the
crystal @; is independent of the choice of word i. The crystal B, is defined to be this
crystal.

In By the element u is the unique highest weight element, and the unique element of
weight 0. If € B, then, as with the finite crystals By, the integer £;(x) is nonnegative
and equals the number of times e; may be applied to z, i.e. &;(x) = max{k|eF(z) # 0}.
On the other hand f;(x) is never 0, so g;(x) has no such interpretation. It still has
meaning and the identity ¢;(z) — &;(z) = (wt(x), ) holds.

Because f;(x) is never 0, the string patterns stringif ) (v) cannot be defined for Boo
since the sequence fFv never terminates. However stringi(e) (v) can be defined by (5.3).
Interestingly, for each reduced word i representing wy, the set {stringge)(v) | v € Boo}
coincides with the cone €;. However the data a such that (7.2) holds is not the string
data. Rather, there is a weight-preserving bijection % : Bo, — B, of order two such that

a= stringi(e)(v*), v=u;(a) . (7.3)
This is true for any reduced word i, and  is independent of i. This is Kashiwara’s -
involution. See [32], [18] and [31]. Equation (7.3) is Theorem 14.16 in [18], or see the
proof of Proposition 3.2.3 in [31].

Let A be a dominant weight. There is a crystal 7, with a single element ¢ of weight A;
then T, ® By, is a crystal identical to B, except that the weights of its elements are all
shifted by A. Thus its highest weight element is ¢\ ® ug with weight A. If B, is the crystal
with highest weight A, then B) may be embedded in 7) ® By, by mapping the highest
weight vector vy to £y ® ug. Let ¥y : By — B be the map such that v — ¢y ® ¥y (v) is
this embedding of crystals.

Demazure crystals are defined for B = B, as follows. If w = 1 then B(w) = {ug}.
Then recursively: if s; is a simple reflection such that s;w > w we define B(s;w) to be
the set of all v € B such that e¥v € B(w) for some k > 0. Theorem 5.1 (i) remains valid
for B.,. The theory of Demazure crystals for B, is related to the theory for By by the
fact that By (w) is the preimage of the corresponding B, Demazure crystal under the
embedding of By into Ty ® Boo. See [32] and [18] Chapters 12 and 13.

Now we specialize to GL(r) crystals; the Cartan type is A,_1. If we use either the
Littelmann word (5.6) or i’ in (5.7) then the cone €; is characterized by the inequalities
(5.9). See [45] Theorem 5.1 or [13], Proposition 2.2. Now 4, is a crystal morphism, so if
v € By then

stringi(,e) (WA(v)) = stringi(,e) (v).
Thus we may define 0 : Boc — W by (5.11) and if v € By then o(¢5(v)) = o(v). Then
we may define B°(w) by (5.13) also for B = Be, and BS(w) is the preimage of B3, (w)
under the map .
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Let i be as in (5.7) so that i’ =(1,2,1,3,2,1,---). Let
v=D1® --QD,_1 € By CBj, D, eB_i® --QB,_1. (74)

Specifically we may write

D, =D;(v) = Up—i(—dir—i) @ Q@ Up_1(—di r—1)

Il
S
<
\
S
&

(7.5)

Remembering (7.3), for v to be in Bo, the entries d;; = d;;(v) must lie in the Littelmann
cone (5.9), which in our present notation is determined by the inequalities

dij = dijt1, (r—i<j<i).
Let Cij = Ci,j(’U) = di7j — d17j+1 = 0.

Remark 7.2. Initially d; ; is defined if 7 —¢ < j < 7 — 1 but we extend this to j = r with
the convention that d; , = 0. Hence by this convention ¢;,_1 = d; ,—1. This convention
will prevent certain cases having to be treated separately.

By [18] Lemma 2.33 the function ¢ (part of the data defining a crystal) is given by
¢r(v) = max(®; . (v)) (7.6)
where

Qi =P (v) = or(Di) + Z<Wt(Dz), ay) .
<i

Lemma 7.3. Assume thatr — k <i<r—1. Then

Cik—1 Zf]{l >r—1;
or(D;) = : ' (7.7)
—dip fk=r—i,

and
Qi — Piv1k = Cik — Cit1,k—1- (7.8)

Proof. First assume that r — k 4+ 1 <4 < r — 1. Then using Lemma 2.33 of [18] again,
vr(D;) is the maximum over r —i < j <r —1 of

@k(u.j(—di7j))+< > —disar, az>'

r—i<e<j
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By the definition of the elementary crystal ([18] Section 12.1) we have g (u;(—d; ;)) =
—oo unless j = k, so

or(D;) = pr(ur(—di k) + < Z —d; e, aZ> = —dir +dir—1 = Cir—1
r—igt<k

proving (7.7). Here we have used the fact that oy (ug(—a)) = —a, as well as (ap, ) = —1
ifl=k+1and2ifl =k, and 0 otherwise. Now

D, — Pit1k = or(Di) — pr(Diy1) — (wt(D;), )
and with r —k 4+ 1 <4 <r — 1 we have (using Remark 7.2 if k =r — 1)
(Wt(D;), o) = di g—1 — 2d; jp + di g1 = Cik—1 — Ci k-

Combining this with (7.7) we obtain (7.8). The case k = r — i is similar, except that
d; -1 is replaced by zero where it appears. O

We now wish to use some nondescending products. We will use the notation of
Remark 1.1. Let

QD)= I s (7.9)

Define o : By, — W by
O'T(U) = {QT—I(DT—I) s Ql(Dl)} . (710)

From Remark 1.1 the brackets {-} here mean that the product is taken in the degenerate
Hecke algebra, then the resulting basis vector is replaced by the corresponding Weyl
group element.

Lemma 7.4. We have

(e)

Proof. By (7.3), the string pattern string;,’ (v*) is the sequence (b, bo, .. .) such that

v = U (=b1) @ ui (=bo) ®--- .

Put these into an array as in (5.8) and circle entries as in Circling Rule 5.3. Thus the by,
are the d; ; in the order determined by (7.4) and (7.5). Since ¢; ; = d; j — d; j4+1 (with
the caveat in Remark 7.2) we see that if by, equals d; ;, it is circled if and only if ¢; ; = 0.
Recall that
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J(v*) = Hnd(st' o 7Sjk) = {Sj S]k}

where sj,,5;,, -+ are the circled elements. Now Sj,,Sj,, - are exactly the entries
that appear in the product (7.10), but they appear in reverse order; so what we get
iso(v)™t. O

Lemma 7.5. We have either ot (v) = of(fyv) or of(v) = spol (frv).

Proof. Let p be the first value of i where ®;;(v) attains its maximum. By [18]
Lemma 2.33

k) =D1® - ® fi(Dp) ® - ® Dy_q. (7.11)

Furthermore, by applying the same Lemma to fi(D,) and using the fact that
or(uj(—d; ;)) = —oo unless j = k we have

Te(Dp) = tr—p(=dpr—i) @ @ui(—dpr —1) @ @ up—1(=dpr—1)

meaning that f; acting on v has the effect that d, j is replaced by dp ; + 1.
We factor Q,(D,) = Q,(D,)2(D,) where

/ _ | I . " — I | .
Qp(Dp) - SJ? Qp(DP) - SJ :
1<j<k+p—r k+p—r+1<j<p
Cp,r—1+j—p=0 Cp,r—14j-p=0

We will prove that

Q,(Dp) (D) = (D) (Dp),  Q,(fDp)Qy (fr.Dp) = ) (f&Dp) 2 (fx Dp)-
(7.12)
Indeed, every S; above with 1 < j < k+p—r commutes with every S;» with k+p—r+1 <
j' < p with one possible exception: Sk+p—r does not commute with Siip—r41. These
factors are both present if both ¢y x—1 = cpx = 0. Now since ¢ = p is the first value that
maximizes ®; ;, we have

0<Ppr—Pp 1k =Cph-1—Cp1,k (7.13)

by (7.8). Now ¢,-1% = 0 and so ¢, -1 > 0. Hence (D)) does not involve Sy,
proving the first identity in (7.12). On the other hand d, (fxv) = dpr(v) + 1 while
dp i (fxv) = d, j(v) for all j # k. Therefore ¢, (frv) = ¢px(v) +1 > 0 and so Skyp—r_1
does not appear in Q(f D), proving the second identity in (7.12).

Now using (7.12) we may rearrange the products and write ot (v) = {o] (v)o (v)ok(v)}
where

UI(”) = 1(Dyp-q) - Qp-&-l(Dp-l-l)Qg(Dp(U)),
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o3 (v) = QU (Dp(v))-1(Dp1) - L (Dy—p),
o(v) = Q_-1(Dy_—1) -+ Qu(Dy),

and similarly for frv. Here all factors Q;(D;) with i # p are the same for v and fjv
so we omit the v from the notation except when ¢ = p. Then we trivially have that
O';(fk’l)) = J;(v) and will show that

ol(frv) = 0ol(v) or Spol(fiv) (7.14)

and

ol (frv) = ol(w). (7.15)

The lemma will follow upon demonstrating these two identities.

Let us prove (7.14). Since ¢, x(fxv) = ¢p.x(v) +1 > 0 as shown above, we have that
Q5 (Dy(frv)) = Q) (fxDp(v)) = 2, (Dp(v)) unless ¢, = 0. If this is true we are done, so
we assume that ¢, , = 0. Then

Q(Dp) = Skp—r19 (frDp).
Thus what we must show is that either

SkQr—1(Dy—1) -+ Qpi1(Dpy1)  or

(7.16)
Qr—l(Dr—l) e Qp-i-l(Dp-i-l)'

Qrfl(Drfl) e Qp+1(Dp+1)Sk+pfr+1 = {

We will prove this, obtaining a series of inequalities along the way. First consider
Qpt1(Dp+1)Sk+p—r+1- Let us argue that Q,11(Dpt1) involves Siip—ri1. Indeed, its
presence is conditioned on cp11,5—1 = 0. Now since the first value where ®; ; attains
its maximum is at ¢ = p, we have 0 < ®, 1 — Ppi1k = Cpr — Cpt1,k—1. Therefore
Cpt1 k-1 S Cpr = 0, 80 ¢pr1 k-1 = 0. Thus Qpy1(Dps1) involves Siip—rt1 and
Cpt+1,k—1 = Cpk = 0. Now unless c,41 % = 0, the product ©,41(D,11) does not involve
Skt+p—rt+2 and so Qp41(Dpt1) = -+ Skrp—rs1- -+, where the second ellipsis represents
factors that all commute with Sy p—r41. Therefore since Sl?+p—7’+1 = Sk4p—r+1 We have
Qpt1(Dp+1)Sktp—r+1 = Qp+1(Dp41), and (7.16) is proved. This means that we may
assume that ¢py1,x = 0 and s0 Qp1(Dpt1) = -+ Sktp—rt1Sktp—ri2 - - Where again the
second ellipsis represents factors that all commute with Si4,—r+1. Now we use the braid
relation and write

Qp11(Dpt1) Skp—rt1 = *** Sktp—r+1Sktp—r+2 * ** Shtp—r+1

= Sk+pfr+2sk+pfr+15k+pfr+2 .

The first ellipsis represents factors that commute with Sy ;12 and so we obtain
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Qp+1 (Dp+1)5k+pfr+1 = Sk+pfr+2Qp+1 (Dp+1 )

We wish to repeat the process so we consider now Q,42(Dpt2)Sk4p—r42. To continue, we
need to know that c,12 k-1 = 0. Because the first value where ®; j attains its maximum
isat ¢ =p, we have 0 < ®pp — Ppyok = Cpk — Cpt1,k—1 + Cpt1,k — Cp+2,k—1. Since we
already have ¢p 1, = cpt1,6—1 = Cpr1,k = 0 we have cpi2 -1 < cpr1,s =050 cpro -1 =0
as required. Now the same argument as before produces either Q,42(Dpt2)Sktp—ri2 =
Qp12(Dpy2), in which case we are done, or

Qp+2(Dp+2)Sk+pfr+2 = Sk+pfr+2Qp+1(Dp+1)

and the further equality cp421 = 0. Repeating this argument gives a succession of
identities which together imply (7.16) and (7.14).

Now let us prove (7.15). We recall that D,(fxv) = fiDp(v) differs from D,(v) in
replacing dp, . by dj, 1 + 1. This can change only the last factor in (D)), and this only
if dpx = dpr—1 — 1. Therefore we may assume that c, ;1 = 1 and Q,(D,(fxv)) =
' (Dp(v))Sk4p—r- Therefore what we must prove is that

Skﬂifrﬂpfl(Dpfl) e Qrfk(Drfk) = prl(Dpfl) T Qrfk(Drfk)' (7‘17)

Thus consider Skyp—rQp—1(Dp—1). We have ¢,_11 < ¢pr—1 = 1 by (7.13), and so
¢p—1,k = 0. This means that Q,_1(Dp_1) has Sky,—» as a factor, and unless it also
has Sk+p—r—1 as a factor, we obtain Siip—rQp_1(Dp_1) = Qp_1(Dp—1), which implies
(7.15). Therefore we may assume that €,_1(Dp_1) has Skyp—r_1 as a factor, which
means that ¢,—1 -1 = 0, which we now assume. Now we use Skyp—rQp_1(Dp_1) =
Sktp—r*** Sktp—r—1Sk4p—r - -+ where the first ellipsis represents factors that commute
with Skyp—r and the second ellipsis represents factors that commute with Si4p—r—1.
Using the braid relation we obtain

Sktp—rQp-1(Dp-1) = Qp1(Dp-1) Sktp—r-1-
We repeat the process. The next step is to prove that either
Sktp—r—18-2(Dp—2) = Qp2(Dp2) o Qp 2(Dp2)Sksp—r-2-

If Skyp—r—1Qp—2(Dp_2) = Qp_2(Dp_2) then (7.15) follows and we may stop; otherwise
we will prove the second identity together with the equation c,_a 1 = cp—2,x—1 = 0 that
will be needed for subsequent steps. Since ¢ = p is the first value to maximize ®; ) we
have, using (7.8)

0<Ppr—Pp2k =Ppk—Pp1,6+Pp1,6 —Pp—2k = Cph—1—Cp—1k +Cp—1,k—1—Cp—2,k-

We already have c, -1 = 1 while ¢,_11 = cp—1,56-1 = 0, 50 ¢p_2 = 0. This means
that Q,_2(Dp_2) has a factor Skyp—r—1. Unless it also has a factor Skip,—,—2 we
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have Siip—r—1Qp—2(Dp_2) = Qp_2(Dp_2) and we are done. If it does have the factor
Sk+p,7~,2 then we have Cp—2,k—1 = 0 and Sker,r,lQp,Q(Dp,Q) = Qp,Q(Dp,Q)Sker,r,Q
follows from the braid relation. Continuing this way, we obtain a sequence of identities
Cp—a,k = 0 and

Sk+p7r+1faﬂp7a(Dp7a) = pra(Dpfa) or pra(Dpfa)Serkfrfan

If first alternative is true we may stop, since then (7.17) is proved and we are done.
Otherwise if the second equality is true we have also ¢,—4,k—1 = 0, which is used to
prove ¢p—q—1,5 = 0 by an argument as above based on (7.8) and move to the next stage.
Finally, with ¢,_ ; = 0, the last identity to be proved is

Slgr—k(Dr—k) == Qr—k(Dr—k)a

and this time there is no second alternative. This is true since then the first factor of
Q_k(Dr_g) is S1, and S? = S1. Now (7.17) is proved, establishing (7.15). O

Lemma 7.6. Let w € W. Then
Boo(w™") € {v € Boo | woo (v*) < w} (7.18)
and
Boo(w) C {v € Boo | woo(v) < w}. (7.19)

We will improve the inclusions in this Lemma later in Theorem 8.1 to equalities, taking
into account the additional information we have from Theorem 4.4.

Proof of Lemma 7.6. By [32] or [18] Theorem 14.17, the %-involution takes B (w™!) to
Boo(w). Thus (7.18) and (7.19) are equivalent. Using Lemma 7.4 and the fact that the
inverse map on W preserves the Bruhat order, (7.18) is also equivalent to

Boo(w) C {v € Boo | o' (v)wo < w}, (7.20)

which we will now prove by induction on ¢(w). If w = 1 then Boo(1) = {ug}, where ug is
the highest weight vector in Bu,. For v = ug all the conditions ¢; ,—14;-1 = 0 are satisfied
in (7.9) and it follows that o' (ug) = wo, so (7.20) is satisfied in this case. Now assume
that (7.20) is true for w; we show that if s; is a simple reflection and s;w > w then it is
also true for s;w. Now, by Theorem 5.1 (i) for B = B, if v € By (s;w) then there is a
v1 € Boo(w) such that v and vy lie in the same root string. Note that Lemma 7.5 implies
that if v,v; lie in the same i-string then either of(vy) = of(v) or of(v1) = s;0f(v).
Then o (v;)we < w by induction, and o' (v)wg = o' (v1)wp or s;01(vy)wp; in either case
ol (W)wy < s;w. O



B. Brubaker et al. / Journal of Combinatorial Theory, Series A 178 (2021) 105354 43

8. Proof of Theorem 5.5

In this section we will prove Theorem 5.5 and its B, analogue.

Proof of Theorem 5.5. We consider the preimage in By of both sides of the identity in
Lemma 7.6 under the map ¢y, : By — By, defined in Section 7 and we obtain the inclusion
of sets

B(w) C{v € By | wyo(v) < w} = U {v € By | woo(v) = y}. (8.1)

We claim that, in fact, these sets are equal, which would give us (5.1). We caution the
reader that the Kashiwara involution * (which is not a crystal isomorphism) does not
preserve By embedded in the crystal via ¢,. What is true is that it maps By (w) into
Boo(w™1), and the preimage of By, (w) in By is By(w). That is all that is needed for
(8.1).

Let X and Y be the two subsets of By on the left- and right-hand sides of (8.1). We
have just shown that X C Y. Now, on the one hand, we have from Theorem 5.1 (iii)
that

Z 2"t ) = 9,2 (8.2)

TexX

On the other hand, using the bijection between the crystal B) and the ensemble of
states &, ) together with Theorem 6.1, we have that

Z zwt(T) = Z Z zwt(v) _ Z Z zwt(‘l’(s)/) )

Tey y<w  vEB) YSw s€ES, x y
woo (v)=y

The Schiitzenberger involution satisfies the property that wt(%') = wo wt(¥). Using
this, then (i) of Proposition 3.2 and then Theorem 4.4 we get that

Z Zwt(‘z(s)/) _ Z ZWo wt(T(s)) — Z_pZ(6z A\ y) _ aOZA .

Y
SEGZ,)\,y SGGz‘k‘y

Finally by Theorem 2.1 and comparing with (8.2), it follows that

Z Zwt(qj) _ Z aZZA _ 8wz)\ _ Z ZWt(g). (83)

Tey y<w TeX

Setting z = 17 in the above equality shows that X and Y have the same cardinality.
Therefore X =Y.

The assertion that woo(v) = w implies that w is the longest element of its coset in
W/Wy is Corollary 6.3. O
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Now that Theorem 5.5 is proved, we have an analogous characterization of Demazure
crystals and Demazure atoms in B.

Theorem 8.1. For any w € W,
Boo(w) = {v € Boo | o (v)wo < w} = {v € Boo | woo(v) < w} . (8.4)
The map o satisfies
woo (v)wy = ol (v) = o(v*) 7L (8.5)
Proof. The identities
Ba(w) = {v e By | ol (v)wy < w} = {v € By | woo(v) < w}

have been proved for the finite crystal B, and since the images of ¥, exhaust Boo, (8.4)
follows. The identity (8.5) follows using Lemma 7.4. O

Now the Demazure atoms in B, may be defined as
B2 (w) = {v € Boo | o' (v)wo = w} = {v € Boo | woo(v) = w} . (8.6)
Corollary 8.2. The subsets B3, (w) are a family of crystal Demazure atoms for Beo.

Proof. These are obviously a family of disjoint subsets of B, and by Theorem 8.1 they
satisfy the characterizing identity (5.1). O

9. Proof of the algorithms for computing Lascoux-Schiitzenberger keys

We now prove the algorithms from Subsection 1.1. For the first algorithm, given any
tableau T' € By, we compute o(T”) by means of the definition (5.11). Thus we consider
stringi(,e)(T’) = string!”)(T") = (by, by, - - ), where the Gelfand-Tsetlin pattern of T is the

i
array (a;;) and the b; are given by the formula (6.2). Then
bl =0 <~ Qpp = Qr—1,r,
bp=b3 <= Gr-1r-1=0Gr-2,-1,

b3 =0 <~ Ar—1,0 = Gr—2,r,

and so forth. This means that the circled entries in (1.4) are the same as in (5.10).
Therefore the first algorithm follows from Theorem 5.5.
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We may now prove Algorithm 2. The idea is to deduce it from Algorithm 1 (which is
already proved) for the crystal B_,,x. Now —woA = (=, -+, —A1) is not a partition
(since its entries may be negative) but it is a dominant weight. Fortunately the facts
that we need, particularly the map to Gelfand-Tsetlin patterns and Algorithm 1, may be
extended to crystals By where A is a dominant weight by the following considerations.

If A = (A, -+, A) a dominant weight (that is, A\; > --- > A, but the entries may
be negative) then for sufficiently large N, A+ N" = (A + N,--- , A\, + N) is a partition
and By, (nyr) is a crystal of tableaux. To put this into context, By is the crystal of the
representation 7y of GL(r) with highest weight A, and By (nr) is the crystal of det™ @my.
The crystal graph of Byj(nr) is isomorphic to that of By and we may transfer results
such as Theorem 5.5 from By (nr) to By.

In particular let 3, be the space of Gelfand-Tsetlin patterns with top row A. Let
T': By — B, be the map defined in the introduction for A\ a partition. If X is a
dominant weight, then I' : By — B, may be similarly defined; for if v € By and T is
the corresponding element of By (yr), then I'(T) is defined and we define I'(v) to be
the Gelfand-Tsetlin pattern obtained from I'(T') by subtracting N from every element of
I(T). The map o : By — W is also defined and Algorithm 1 is valid.

Now there are maps aq, as : By — W corresponding to Algorithm 1 and Algorithm 2
of the introduction. Thus if a = (a;;) is a Gelfand-Tsetlin pattern, then for each (i, )
with a; ; = a;—1,; we circle the corresponding entry in (1.4) and «;(a) will be the
nondescending product of the circled reflection in order from bottom to top, right to
left; and similarly to compute as(a) we circle the entries of (1.5) when a; ; = a;—1 ;-1
and take the nondescending product in order from bottom to top, left to right.

There is an operation —rev on Gelfand-Tsetlin patterns that maps By to P_,,» that
negates the entries in a pattern a and mirror-reflects them from left to right, so if r =3

)\1 )\2 /\3 —)\3 _>\2 _)\1
—rev a b = —b —a .
C —C

As further discussed in [13], there is a map ¢y : By — B_y, that maps the highest
weight element to the highest weight element and has the effect that ¢y (e;v) = ey (v),
where we recall that i/ =r — 4.

Proposition 9.1. For all T € B),
a(6A(T)) = woo (T)wy . (9-1)

Proof. Note that w — woww, ! is the automorphism of W that sends the simple
reflection s; to si. So by the definition of the Demazure crystals it is clear that
PrBx(w) = B_yor(wowwg '). Hence ¢ (B3 (w)) = B, 5

may characterize o(T") as the shortest Weyl group element such that T' € BS (woo(T)).
Equation (9.1) follows. O

(wowwy ). By Theorem 5.5, we
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The map ¢, intertwines the Schiitzenberger-Lusztig involutions v — v’ on By and
B_wox- We will denote ¢\ (v) = ¢r(v") = ¢pa(v)’. Let 7 : W — W be conjugation by
wp. We have a commutative diagram

’

B)\ L) B_wo)\

Ir s

—rev

Pr —— Pwor

bk

wWw—" W

Indeed, the top square commutes by (2.12) of [13], which is proved there using the
description of the Schiitzenberger involution on Gelfand-Tsetlin patterns in [35]. The
commutativity of the bottom square is clear from the definitions of a; and «s, bearing
in mind that wos;wy * = si when circling (1.4) and (1.5).

We may now prove the second algorithm. If T' € B}, the commutative diagram shows
that

woaz (D(T))wy ' = ar(T(dA(T)')) = o(da(T)) = woo (T)wy

where the second step is by applying Algorithm 1 to ¢»(7T") € B_,,a and the last step
is by (9.1). Therefore o(T') = a(I'(T")), which is Algorithm 2.
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