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Abstract: We show that spherical Whittaker functions on an n-fold cover of the general
linear group arise naturally from the quantum Fock space representation of U, (sl(n))
introduced by Kashiwara, Miwa and Stern (KMS). We arrive at this connection by recon-
sidering the solvable lattice models known as “metaplectic ice” whose partition functions
are metaplectic Whittaker functions. First, we show that a certain Hecke action on meta-
plectic Whittaker coinvariants agrees (up to twisting) with a Hecke action of Ginzburg,
Reshetikhin, and Vasserot arising in quantum affine Schur-Wey1 duality. This allows us
to expand the framework of KMS by Drinfeld twisting to introduce Gauss sums into the
quantum wedge, which are necessary for connections to metaplectic forms. Our main
theorem interprets the row transfer matrices of this ice model as “half” vertex operators
on quantum Fock space that intertwine with the action of Uy, (5I(n)) In the process, we
introduce new symmetric functions termed metaplectic symmetric functions and explain
how they are related to Whittaker functions on an n-fold metaplectic cover of GL,.
These resemble LLT polynomials or ribbon symmetric functions introduced by Lascoux,
Leclerc and Thibon, and in fact the metaplectic symmetric functions are (up to twisting)
specializations of supersymmetric LLT polynomials defined by Lam. Indeed Lam con-
structed families of symmetric functions from Heisenberg algebra actions on the Fock
space commuting with the U, (5[(11)) action. The Heisenberg algebra is independent of
Drinfeld twisting of the quantum group. We explain that half vertex operators agree with
Lam’s construction and this interpretation allows for many new identities for metaplectic
symmetric and Whittaker functions, including Cauchy identities. While both metaplec-
tic symmetric functions and LLT polynomials can be related to vertex operators on the
quantum Fock space, only metaplectic symmetric functions are connected to solvable
lattice models.
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1. Introduction

This paper concerns two mechanisms by which the quantum groups U, (g), for g a sim-
ple Lie algebra or superalgebra, produce families of special functions with a suite of
interesting properties including functional equations, branching rules and unexpected
algebraic relations. The first mechanism uses solvable lattice models associated to finite-
dimensional modules of U,(g). The second mechanism uses actions of Heisenberg
and Clifford algebras on a fermionic Fock space, as in the boson-fermion correspon-
dence [27,31,45] with connections to soliton theory. We will use these two points of
view to provide new insight into the theory of metaplectic Whittaker functions for the
general linear group and relate them to LLT polynomials. To begin, we explain these
two approaches to special functions from quantum affine groups in more detail.

If V is a finite-dimensional module of g, then since U, (g) is the quantization of a
central extension of g ® Clz, t’l], we obtain a family of evaluation modules V, (z €
C*) in which ¢ is specialized to the value z. Using quasitriangularity, we have U, (g)-
homomorphisms (almost always isomorphisms) V;, ® V., — V,, ® V,, dictated by
an R-matrix R(z1, z2) satisfying

R12(z1, 22) R13(21, 23) R23(22, 23) = R23(22, 23) R13(21, 23) R12(21, 22),A (L.1)

in End(V;, ® V,, ® V). This identity is called the parametrized (quantum) Yang-Baxter
equation with parameter group C*. These are endomorphisms of V;, ® V., ® V., and
the subscripts R;; mean that the matrix R is applied to the i-th and j-th component of
the threefold tensor product.

Given any such matrix R, we may ask for a matrix 7 (z) satisfying the “RTT” relation:

R(z1,22)T(21)T (z22) = T(z2)T (21 R(z1, 22)- (1.2)

Typically, the matrix 7 (z) arises as an endomorphism of V, ® W where W is a fixed
object in the category of U, (g)-modules. If W = V_, and T'(z) = R(z, z3) then (1.2)
is equivalent to (1.1). For arbitrary W, the existence of a T(z) € End(V,, W) making
(1.2) true follows from quasitriangularity.

Solutions 7T'(z) to (1.2) may also arise as a “row transfer matrix” in a solvable lattice
model. For example in the case of the field-free six-vertex model, Baxter [2] demonstrates
that the resulting partition function is a symmetric function in the z; when its Boltzmann
weights satisfy the Yang-Baxter equation (1.1). The underlying algebra was explained by
Kulish and Reshetikhin [36], Sklyanin [47], Drinfeld [13] and Jimbo [25] and the relevant
quantum group associated to the R-matrix is Uy (sl2). To connect to the presentation of
the Yang-Baxter equation in the previous paragraph, each edge in the planar lattice
model is associated to a two-dimensional evaluation module V, and the local Boltzmann
weights encode endomorphisms among them.

In [5], the first three authors considered examples of solvable square lattice mod-
els connected to R-matrices of evaluation modules for U, (g[(n| 1)). In these examples
(Theorem 1 in [5]), the matrices T (z) in (1.2) do not qulte fit the standard paradigm.
Each vertex in the square lattice receives a Boltzmann weight reflecting the action of
T (z) on basis elements determined by adjacent edges; while the horizontal edges may be
identified with evaluation modules for U, (g[(n [1)), the vertical edges represent a two-
dimensional vector space with no known algebraic connection to this quantum group.
The problem is that we are not aware of any candidate for a two dimensional module M
of Uy, (g[(n| 1)) that would explain the matrix 7 (z). In other words, we would like there
to ex1st an M such that the R-matrix for V, ® M is the matrix for a set of Boltzmann
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weights used in this paper. See Table 1 in Section 3. If no such two-dimensional module
exists, then we have an example of a parametrized Yang-Baxter equation that is not
explained by quasitriangularity. This is an important unresolved question.

Nevertheless in [5] the partition function of the model is shown to be solvable and
equal the spherical Whittaker function on an n-fold metaplectic cover of the general
linear group; this will be our primary example of the sort of special functions mentioned
at the outset.

As we will explain in the present paper, an alternate algebraic interpretation is possible
if we take T (z) to be the row transfer matrix of an infinite grid; then a module explaining
T (z) does appear, and it is the quantum fermionic Fock space defined by Kashiwara,
Miwa and Stern [32]. Thus instead of trying to interpret the vertically oriented edges
(which can have only two states +) as 2-dimensional modules in the category, there
is an alternative approach — one that takes us from the solvable lattice model point of
view to the Heisenberg algebra point of view, our second mechanism for producing
special functions. In this approach, an infinite sequence of vertical edges in a fixed row
of our square lattice model parametrizes a vector in the fermionic Fock space §. The row
transfer matrix for the model then becomes an operator 7'(z) : § —> F withz € C* a
fixed parameter. The Yang-Baxter equation implies that the operators 7' (z;) and T'(z;)
commute for any i and j.

In these examples, the space § is not the usual fermionic Fock space described (for
example) in [31]. Instead it is the quantum Fock space § = S;") of [32], which is a
module for U, (?[n). It will be a consequence of our main theorem that the operators 7 (z)
are U, (;[,,)-module homomorphisms. It also gives a proof, independent of the Yang-
Baxter equation, that the operators 7 (z) commute. Thus our method here succeeds in
providing a quantum group interpretations to these problematic vertical edges in the
metaplectic ice model.

We may picture the Fock space § as follows. Similar to the way Dirac described the
electron sea, consider a quantum particle with an infinite number of states, one for each
energy level, and a system of such particles obeying the Pauli exclusion principle where
the lowest energy levels are all occupied and the highest levels are unoccupied. Thus if
u; represents the particle in a state with energy i, then a basis of § consists of vectors

Ui 7= Wi, NUj, | N+ (1.3)
where i = (i, im—1, - - - ) is a strictly decreasing sequence such that iy = k for k < 0.
Here i, i1, - - - are the energy levels of occupied states; we may arrange that i,, >

im—1 > ---.The condition that iy = k for k < 0 ensures that all sufficiently low energy
levels are occupied. The totality of such states for fixed m is the level m space §,, and
§= @m Sm-

If m is given, we may parametrize the semi-infinite monomials (1.3) by partitions: if
A = (A1, A2, - - -) is a partition, then we may take i, = m + Ay, i;;—1 = m — 1+ X, etc.
This gives a bijection between partitions and basis vectors of §,,. Thus we write

[A) = 1A m) i= tmary AUm—142p A . (1.4)

In Section 2 we review and generalize the construction of the quantum Fock space of
[32]. In Theorem 2.5 we relate the Hecke action that underlies this construction (due to
Ginzburg, Reshetikhin and Vasserot [20]) to another Hecke action, which was motivated
by the action in [6] on Whittaker coinvariants. Because of this we are able to easily build
an action of the Hecke algebra modified by a Drinfeld twist. This generalization allows
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us to introduce Gauss sums to the anticommutation rule for vectors in the Fock space.
This twisting is needed for the application to metaplectic Whittaker functions, but is
more general than what is needed for this application and so may be of importance for
other purposes.

To connect the quantum Fock space to solvable lattice models, we introduce a grid,
infinite in width, whose boundary edges encode vectors in the Fock space. The column
edges of the solvable lattice model in [5] are likewise indexed by partitions, so may be
viewed as semi-infinite wedge products according to the above correspondence. This
point of view will be detailed further in Section 3.

Let us now explain our main theorem which considers two solvable lattice mod-
els connected to U, (gl(n]|1)) R-matrices called Gamma ice and Delta ice detailed in
Section 4, and their row transfer matrices 71 (z) and Ta (2).

In addition to being a U, (sl,)-module, § is a module for a Heisenberg Lie algebra,
spanned by “current” operators Ji, and by a central vector 1. The operator J; (denoted
By in [32], and defined in (2.25)) shifts one fermion to a different level by changing its
energy from i to i — kn. The operators J; with k > 0 are thus right-moving operators,
and those with k < 0 are left-moving. They satisfy [Ji, J;] = O unless k = —I.

Introduce the operators H,(z) and H_(z) defined by

Hi(z) =) %(1 — o) Ty (1.5)
k=1

Our main theorem, which will be proved in Section 4, is:

Theorem A. The operators e+ @ and e"-? equal the row transfer matrices of Gamma
and Delta ice:
MO =TaG), TP =Tr(). (1.6)

Operators such as these occur in conformal field theory, and also other areas of
mathematics such as soliton theory, “monstrous moonshine” and the abstract boson-
fermion correspondence. Generally, we will call an operator of the form

exp(Hilal(z)),  Hilal(z) = Zakaz (1.7

or

exp(H-[0](2)),  H-[b@) = b_gdyz* (1.8)

a half-vertex operator. We must be careful with H_[b], since H_[b](z)|A) is an infinite
sum and not in §,,. Nevertheless the sum (u|H_[b](z)|)\) is finite and therefore such
expressions make sense; in fact just (i| H_[b](z) is a finite sum. (Here we use the usual
Dirac notation for operators on §,,. If H : §,,, —> T 1S an operator, we will denote by
(| H|A) the inner product of H|A) with |u).)

Operators of the form exp(H_[b](z))-exp(H[a](z)) appear in mathematical physics.
See for example [18,33] Part Il in Volume I or [27] (1.15). Subject to a locality assump-
tion ([16,30]), they are called vertex operators. In this paper we will deal mainly with
half-vertex operators. Yet there are representation theory contexts in which Gamma ice
and Delta ice occur together ([7,8,10,21,24]) leading to vertex operators as above. In
Section 7 we show that the locality properties of such operators fit into the algebraic
framework of Frenkel and Reshetikhin [17].
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As mentioned above, the method of Baxter [2] based on the Yang-Baxter equa-
tion produces families of commuting row-transfer matrices. That is, Ta(z1)Ta(z2) =
Ta(z2)Ta(z1), and similarly for 7T (z). On the other hand, the commutativity also fol-
lows from the identity (1.6), because J; and J; commute if k and [ have the same sign.
Note however that T does not commute with 7. In Theorem 7.3 we compute precisely
a scalar C(z, w) such that Ta (z)Tr(w) = C(z, w)Tr (w)Ta(z), and this calculation is
essential to our discussion of locality.

In the paragraphs above we have described relationships between quantum groups,
solvable lattice models, and Heisenberg algebras acting on a Fock space §. Using these
we will make two connections to existing literature. First, it is shown in [5,7] that
the Boltzmann weights that we use in this paper can be used in finite systems whose
partition functions are Whittaker functions on the n-fold metaplectic covers of GL, over
a local field. It is striking that for these, the relevant quantum group is U, (g[ ) or its
relatives U, (g[(n| D) or Uy (5[ ). The relationship between the degree n of the cover and
the rank of the quantum group was very unexpected. For the application to metaplectic
Whittaker functions, the quantum group must be modified by Drinfeld twisting in order
to introduce Gauss sums into the comultiplication of U, (sl,), and consequently into the
R-matrix and quantum wedge relations in §.

Although the metaplectic Whittaker functions are not symmetric in the Langlands
parameters z = (z1, - - - , zr), when we switch to the infinite grids and the Fock space
3§, we find expressions such as

M @) = (ulTa(z1) - Talzr)|A) = <M

1
exp <Z - vk)pnk(Z)Jk) ‘)»>
k=1

(1.9)
where pur(z) = Zi zl’.‘k is the power-sum symmetric function. (We use the notation
M if o is the empty partition.) By Theorem A, M7 /. can be interpreted as a parti-
tion function very similar to the metaplectic Whittaker functions. But unlike Whittaker
functions, these polynomials are symmetric. We will call them metaplectic symmetric
functions. In Theorem 6.3 we will show how metaplectic Whittaker functions (which are
not symmetric) can be expressed in terms of the new metaplectic symmetric functions.

Thus we will show that the solvable models of [5,7] admit an interpretation in terms
of a Heisenberg algebra commuting with a U, (sl,) action on Fock space. The case
when n = 1, which reduces to the Shintani-Casselman-Shalika formula for the general
linear group (or Tokuyama’s formula), was treated in Brubaker and Schultz [11]. In
that case, values of Whittaker functions are Schur polynomials, and so recovers a result
expressing Schur polynomials as partition functions of free-fermionic six-vertex models
[9,23,52,53].

This brings us to the second connection to existing literature. The quantum Fock
space has in prior results [37,38,42] been applied in the theory of LLT polynomials,
also known as ribbon symmetric functions. These are g-deformations of products of
n Schur functions. If n is large, they become Hall-Littlewood polynomials. They are
a reflection of the plethysm with power-sum symmetric functions (Adams operations)
and are connected with algorithms in the (modular) representation theory of symmetric
groups. They have reappeared in other contexts such as Schur positivity and affine
Schubert calculus.

Lam [38] formalized a generalized boson-fermion correspondence that includes
these examples and others such as the LLT polynomials. The bosonic Fock space ‘B may
be identified with the ring A of symmetric polynomials and (over Q) the power-sum
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symmetric functions pj generate. They give rise to a representation of the Heisenberg
Lie algebra on ‘B in which multiplication by, or differentiation with respect to, the py
correspond to the operators J; on the fermionic Fock space. (See also [27,31,45].)
Lam explained how to construct symmetric functions from any such Heisenberg algebra
action and reinterpreted results of [42] to put LLT polynomials into this framework.
As we demonstrate in Section 5, Lam’s symmetric function construction is equivalent
to action by half-vertex operators. Thus LLT polynomials may be expressed in the form

1
exp (Z %Pnk(@«’k) ‘A> (1.10)

k=1

g;f/u ") = <M

This is very similar to the metaplectic symmetric functions, and indeed we will show
that the metaplectic symmetric functions are specializations of super LLT polynomials,
presented in Definition 29 of [37]. One might suspect from this that LLT polynomials
might likewise be expressible as partition functions of the solvable lattice models from
[5] with boundary conditions determined by the pair of partitions A and w; in fact this is
not possible. It is only this very particular specialization of the super LLT polynomial
that results in an appropriate cancellation of terms and permits the resulting function to
be expressed using our solvable models.

Moreover in [38], Lam shows that these families of symmetric functions constructed
from Heisenberg algebras satisfy a large collection of interesting identities, including
Cauchy and Pieri identities. Thus, as a consequence of the main theorem, we are now
able to use these same tools to prove analogous identities for metaplectic symmetric
functions. As proof of concept, we prove a Cauchy identity for the new metaplectic
symmetric functions. (See Theorem 5.10.) In the non-metaplectic setting, such Cauchy
identities for Schur functions found application in the Rankin-Selberg method.

It seems an important question to find other theories that connect the two mechanisms
of solvable lattice models and vertex operators. The well-known relationship between
the Heisenberg spin-chain Hamiltonians and the field-free six and eight vertex mod-
els may be one example. (See Baxter [1].) Another place to look for an analog of our
Main Theorem is in the theory of Hall-Littlewood polynomials. Thus in Jing [28,29]
a quantum boson-fermion correspondence is described, where the commuting actions
of a Heisenberg Lie algebra with a quantum group is used to study Hall-Littlewood
polynomials in the context of vertex operators. But on the other hand Korff [35], taking
a point of view surprisingly close to ours, develops a theory of Hall-Littlewood polyno-
mials using lattice models based on Boltzmann weights that connect with a g-deformed
bosonic Fock space. Borodin and Wheeler [4] and Wheeler and Zinn-Justin [51] contain
further developments of this viewpoint.

As noted above, the results described above concern mainly half-vertex operators,
which have expansions in terms of the positive or negative Heisenberg generators Jg.
However, it is also interesting to consider operators that involve both the positive and
negative generators. Because Gamma ice and Delta ice occur together in several different
contexts, it is natural to consider “fields” such as V (z) = Tr(z)Ta (z). We will look at
these in Section 7, in particular investigating locality properties of the field V (z). It is
outside the scope of this paper to fully realize our operators in the language of vertex
algebras, but it seems likely that this can be done using the framework of quantum vertex
algebras [3,15,17] and we intend to revisit this in a subsequent paper. Additional future
directions may include generalizations of our construction of solvable lattice models to
other Cartan types, perhaps using the abstract Fock space built in the work of Lanini,
Ram and Sobaje [40,41].
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2. The Fermionic Fock Space

This section reviews the definition of the fermionic Fock space following Kashiwara,
Miwa and Stern [32]. As they showed, this is a module for the affine quantum group
U, (sl,). However we will require greater generality by giving the Fock space the struc-
ture of a module over a Drinfeld twist of this quantum group. Thus while we follow
[32] very closely, sometimes we add some details to make clear the differences between
working with Uy (sl,) or its Drinfeld twist. Theorem 2.5 appears to be new and it is a
key ingredient that allows us to deduce the action of the affine Hecke algebra on the
Drinfeld twist of the Fock space.

2.1. The quantum group. Let n be a positive integer, and let g be either a formal pa-
rameter or a generic complex number (i.e., not a root of unity). All the indices in the
relations in this paper involving elements of the quantum group should be read modulo
n.

We introduce the quantum group U, (s:\[n) which acts on the fermionic Fock space,
focusing on the quasitriangular bialgebra structure (it is also a Hopf algebra, but we will
not be using the antipode anywhere). Let [m], be the quantum integer associated to the
integer m defined by

Let A = (a;j)o<i, j<n—1 be the Cartan matrix of affine type Kn,l. Its non-zero entries
are a;; = 2and @;; = —1 wheni = j &= 1 for n > 3 (where we recall that the indices
should be read modulo ). For n = 2 the second equality in the definition of the Cartan
matrix is replaced by a;; = —2.

The quantum group Uy, (5’1\[,,) is the unital algebra generated by elements E;, F;, K li
for 0 < i < n — 1, subject to the following relations (whenn > 3 orn = 1):

KiKj=K;K;, K,Ej=q"E;K;, K;Fj=q “VF;K;,
EEj = EE;, FFj=FF ifi#j+l,
EiFj—FjE,-=5i,jKi_—I§7ll
q9—d9
E?Eiil —(q+q YEEi+ E; + EiilEiz =0,
FlFis1 —(q+q DFFiaF + Fig FF = 0.

: @2.1)

In the case n = 2, the last two relations are replaced by the following relations:

E}Eis1 — [314E?Eix1 Ei + 314 EiEjs1 E} — Ein  E} =0,

3 2 2 3 (2'2)

FPFix1 — By Fy i Fi + By FiFim F= Fix1 F7= 0.

The subalgebra of U, (;[,1) generated by E;, F;, K l.i for 1 <i < n — 1 is the finite
quantum group Uy (s[,,).

Remark 2.1. Inthe case n = 1, U, (?[1) is the algebra generated by Koil. We will show
that our method produces interesting six-vertex models even starting from this “trivial”
quantum group.
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Remark 2.2. The quantum group we denote by U, (?[n) is denoted by U (; (s:\[n) in [32].
Our quantum group does not contain a derivation d.

The comultiplication A on Uy (;[,,) is defined as follows:
A(Ki) = K; ® Ki,
AE)=1Q®E +E QK;, (2.3)
AF)=F®1+K '®F.

Let V;, be an n-dimensional vector space with basis {v1, ..., v, }. The natural module
of Uq (s[ ), Wthh we denote by V,,(z), is the vector space Vn ® C[z, z~!] with basis

{(z¥v;} for 1 < i < n,k € Z. Another useful basis is {u;} with j € Z satisfying the
relations

Uj—tn = 2*0j, (2.4)
for 1 < j < n, k € Z. The action of U, (;I,,) on V,(z) is as follows:
_6i+l’jzkvj,
oy, 2.5)

K,'Zkvj = q8i~f
E,‘Zkvj =6i,j-12

Fivj = 81,22 0v 1.

There is a natural ordering on the basis {zXv RE

- > zk_lvz > zk_lvl > zkvn > zkv,,,l > (2.6)
Note that in the {u ;}-basis, the ordering is just u j+1 > u;.

There is an action of Uy, (5[ ) on tensor powers of the natural module V,, (z)®" given
by iterations of the comultlphcatlon An affine version of Schur-Weyl duality was studied
in [20,50], where it 1s shown that the centrahzer of the action of Uy (sl,) on V, (2)®N

is the Hecke algebra Hy (v), for v = ¢>. In [22], the affine quantum Schur algebra is
introduced and a double centralizer property is proved (though note that the definition
of the affine quantum group in [22] is slightly different from our definition).

2.2. The affine Hecke algebra. The (type A) affine Hecke algebra HN (g% = HN is
the associative algebra with generators 7; for 1 <i < N — 1 and y forl<j <N
subject to the following relations:

= (¢* - DT + 4%,

TiTi+1Ti =Ti+1TiTi+L
T,T; =T;T;, ifli—jl>1,

2.7)
YiyYj = YjYi,
yili=Ty; ifi#j j+1,
TiyiTi = q*yist.

The first relation in the definition of the Hecke algebra can be rewritten as (7; + 1)(7; —
g%) = 0, which allows one to decompose any space on which 7} acts into eigenspaces
corresponding to its two eigenvalues: g2 and —1.
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We denote by Sy the symmetric group on N strands. Foro € Sy, leto =, -+ -5,
be a minimal length expression, where s; € Sy are the simple permutations. It is then
well known that the definition

TG = Sip T.

s (2.8)
is independent of which minimal length expression of o we choose and that the set
{Ty, 0 € Sy} is a basis for the the finite Hecke algebra Hy C Hpy, which by definition
is the algebra generated by 77, - -- , Tn_1.

We denote (V,(z)®Y = V,(z1) ® Vu(22) ® --- ® V,(zw) to distinguish between
the indeterminates corresponding to different copies of V,(z). The space V,,(z)®" has
a basis

vj®z:=vjl®---®vjN®z]f1--~zl;\§V (2.9)

where j = (ji, - -+, jy) and z is shorthand for zll<1 e z’;\?’, k; € Z. The symmetric group

Sn acts on all elements of the form vj by permutation; it also acts on all elements of the
Lo ki _kis1 ki _kiw1

form z as follows: s; : ---z;'z;\% -~ = -z, .

Remark 2.3. The notation z has a different meaning in this section than in the introduc-

tion. In this section (following [32]) z is defined by (2.9).

There is a right action of the Hecke algebra Hy on the tensor product V,, (z)®" which
was first written down in [20]:

(1 _ 2)1) ® Zi+12' —7iZ — qUs(j) ® 7% lf]l < ji+lv

2 z,a Z’;; 5 eos
(1I-g9H® — Vs, (j) @ 2" if ji = jiv1,

Zi —Zi+l

(1= ® LE2 — gy @27 if ji > jiur,
(j®2) -y = (Vj®z-7; ).

(vj®2z) - T;

(2.10)

A crucial fact in defining the quantum Fock space is the property that the right action of
Hy and the left action of U, (sl,) on V, (2)®N commute.

Let Vi, x € C* be the evaluation module of U, (5 [,). It is the quotient of the natural
module by the submodule spanned by elements v; z*! — xv; z¥. It is called the evaluation
module because we “evaluate” the indeterminate z at x € C*. In [6, Section 3], the first
three authors and Friedberg give examples of representations of the affine Hecke algebra
on evaluation modules of quantum groups with applications to the study of metaplectic
Whittaker functions. There is a “natural” lifting of the action in [6] to an action of Hy
on V,(z)®" which involves s the affine R-matrix.

The quantum group Uy (s[,,) is quasitriangular; this means there is an element living
in (a completion of) U, (5’1\[,,) ® Uy (? [) called the universal R-matrix, which we denote
by R, satisfying certain well-known properties. See Proposition 4.1 in [19] for a formula
of the universal R-matrix of U, (sl,). The action of R on V,(2)®2 = V,,(zi) ® Vyy(zis1)
is given by the affine R- matrlx R(z;, zi+1) € End(V, ® V,,) ® Clz;, zi+1] defined as:

TR(zi, zis1) = Z(qzl' —q ' zir)ei @ eii + Z(Zi —zi+1)eji Q ejj
i i#]
+Z(q — g Nziej; @eii + (g — g Dzisiei ®ejj,

i>j

@2.11)

where ¢;; € End(V, ® V,,) are the maps ¢;; : vj > &;jv; and T € End(V,, ® V,,) is the
flipmap 7 : v; ® vj; = v; ® v;. See the unnumbered equation between equations 30
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and 31 in [19] and the preceding discussion for an explanation of the fact that the action
of R on V,,(z1) ® Vu(z2) is R(z1, z2). Denote by R(z) := R(1, z).

Remark 2.4. If we replace the indeterminates z; and z;4+ in R(z;, zj+1) by complex
numbers x; and x;.1, we obtain the affine (type A) R-matrix for evaluation modules
discovered by Jimbo [26] before the work of Frenkel and Reshetikhin [19].

The natural version of the evaluation action of the affine Hecke algebra given in [6],
Theorem 3.3 reads as follows:
2 Zi q 5
Wj®z) - Ti=(@q@ —1)——v®2— ———(TRy)i,i+1 (@i, 2i+ DY ® 27,
Zi — Zi+l Zi — Zi+l
W ®2) - yi=j®z 7 ).
(2.12)

Theorem 2.5. The actions of the affine Hecke algebra in equations (2.10) and (2.12)
agree.

Proof. This follows by the following computation:

(1-¢*v® L%z —qug) @2 if ji < jix

Zi 7%+l

(j ®2) - Tieq. 2.10) = 3 (1 — gHvj ® alzgiog) _ Vs, (j) ® 2% if ji = jiv1

i —Zi+l

a1- Z)v ® zi(z'i—2z) qVs, i) ® 2% lle - ji+l

Zi—Zi+l
= (@* - H—"——1
Zi — Zi+l
(g = Dvjzin +q(@i — zis) Vs, ) @ 2% if ji < jivl
®z-— P (g% = Dvjzi + (zi — 2is1)Vs;(j)) ® 2° if ji = jiv1
(@2 = Dvjzi +q(zi — zis) V) ® 2% if ji > jixl
= (@* - h———
Zi — Zi+l
((¢% = Dvjzist +q(zi — zis)Vs,) ® 2% if ji < jini
®z— P (q%zi — zis1)Vj) ® 2° if ji = jin
((¢> = Dvjzi +q(zi — zis)Vgy ) ® 2% if ji > jivl

2 Zi
= (> = h——y
Zi —Zi+l

q )
®z— 7(TRq)i,i+l(Zi, 2ie DV @ 2V = ((vj ® 2) - Ti)eq. (2.12)-
i — Zisl

]

The importance of Theorem 2.5 is twofold. First it clarifies the relation between the
two actions of the affine Hecke algebra which were discovered in different contexts.
Secondly, it gives us a way to rewrite the action in [32], which is instrumental in the
construction of the Fock space representation, in terms of the affine R-matrix. In the
next sections we use a Drinfeld twist of the R-matrix to write down a different action
of the affine Hecke algebra on V&(z)®N (which commutes with the action of a Drinfeld
twist of the quantum group Uy (s1,)). This allows us to define the Drinfeld twist of the
quantum Fock space.
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2.3. Drinfeld twisting. The Drinfeld twist [14] is a deformation of the Hopf algebra
structure of a quantum group that changes the comultiplication, antipode and the uni-
versal R-matrix, but leaves the multiplication, unit and counit intact. Drinfeld twisting
produces new solutions of the Yang-Baxter equation.

Reshetikhin [46] proved that given a quantum group H and anelement ' € H @ H
of the form F = ), f " ® f; satisfying certain properties ( [46, Section 1]), one can
define a Drinfeld twist of H, denoted H¥, with a new comultiplication and universal
R-matrix given by

Af(a) = FA(@)F!

(2.13)
RF = leRF_l
where Fo1 =), /i ® f'. He then shows, in [46] Section 2, that
F=exp| Y a;(H ®H;—H;® H) (2.14)

1<i<j<n

satisfies the relations needed to produce a Drinfeld twist of U, (sl,), where K; = gt
and ajj € C.
Let U qF (sl,,) be the quantum group obtained by applying a Drinfeld twist on U, (sl;)

using the element F' € U, (sl,) ® Uy(sly) C Uy (? ) ® Uy (? [,) defined in equation
(2.14). Its comultiplication and universal R-matrix will be given by equation (2.13).
The twisted quantum group U, r (5[ ) is the same as U, (5[ ) as algebras, however the
coproduct, universal R-matrix and antipode are dlfferent The twisted quantum group
U (f (sl,) also has a natural module V,,(z). (We will abuse notation, but it should be clear
throughout the paper when V), (z) is the natural module of the twisted or untwisted quan-
tum group.) Since the twisted and untwisted quantum groups are the same as algebras,
the action U F (5 n) on V,(z) is the same as the action given in (2.5). However, since the
comultlphcatlon is different, the action of the twisted and untwisted quantum groups on
Vi (2)®N for N > 1 will be different.

Remark 2.6. The quantum group in [46] is defined over C[[A]] as opposed to being
defined over C(g) as in our case. It follows that F' defined in (2.14) does not live in
Uy (5[ ) ® Uy, (sly), but in a certain completion of the tensor product Similarly, the
universal R-matrix R also lives in a completion of U, (5[,,) ® Uy (5[ ). These facts will
not be problematic for our purposes.

Recall the definition of u; from equation (2.4) and denote the tensor product u; ® u ;
by Uijj.

Lemma 2.7. The elements F (defined in equation (2.14)) and F»1 act on V,(z)®? as
follows:
F:iuQujr— Jajju Quj,

2.15
FoiuiQuj— Jajiu Quj, ( )

where a;j = 1 and a;j when i # j is given by
Qjj = exp(2a,~,j - 261,'_1,/' — 2a,-,j_1 + 261,'_1’./'_1) (2.16)

Proof. This follows from noting that H; : uj — (8; ; — 6; j—uj. O
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Proposition 2.8. The affine R-matrix RF (z;, zi41) corresponding to U f (5’1\[,1) is

tRF (zi, ziv1) = Z(qzl —q Zl+1)ell deji + Zal] (zi — Zl+1)ejl R eij
i i#]
+ Z(q —q Dziej; @eii+(q — g Dzinei ®ejj.

i>j

(2.17)

Proof. Note that RF (z;, zi41) is the action of the universal R-matrix R on the repre-
sentation V,, (z)®2. The result follows immediately after using the action of “land Fy,
on V,(z)®? from Lemma 2.7. O

Given U : (sl,) with R-matrix R (z;, zi+1) as in Proposition 2.8 which depends on
complex numbers a;;, denote by a the set of numbers ¢;;, 1 < i, j < n obtained from a;;
using equation (2.16). From now on we will write the dependence of the Drinfeld twisting
in terms of & instead of F' (so we write U "‘(5[ ) instead of U (s ») and R*(z;, zi+1)
instead of RF (z;, zi+1)). Even though there are different ch01ces of F that produce the
same set &, we will not distinguish between such quantum groups. For our purposes,
Drinfeld twists by different F’s with the same o’s will correspond to the same six-vertex
models in future sections.

One should keep in mind that foroj; = 1, U @ (5 ) is the non-twisted quantum groups
U, (5[ ) and that ojjj; = 1 = a; for any a. A standard, though tedious, computation
shows

Proposition 2.9. There is an action of the Hecke algebra H, N on V,(2)®N where y; acts
by multiplication with zl._l and

Zi .
Wj®2)-Ti = (4> — D — @2 — — (TR} 11 (2, 210y @2 (2.18)
Zi — Zi+l Zi — Zi+1

Equation (2.18) can be rewritten, via the same process as in the proof of
Theorem 2.5, as

(1 — g% @ L2242 — g i vy @ 2% i ji < jisl

Zi —Zi+l]
Wj®2) T ={ (1 —g? @ L& —y ;) @ 2" if j; = jiv1 . (2.19)
(1= g?vy® LE2 —ga; ;. v, @2 if ji > jiu

Proposition 2.10. The action of T; in equation (2.19) is an U (‘;‘ (;In)-module homomor-
phism.

Proof. Note thata € U“I" (;[,,) acts on V,,(2)®? via A¥(a) = FA(x)F~! and using the
action of F and F~! on V,(2)®? from equation (2.15), the proof becomes a routine
calculation.

A non-computational proof goes as follows: by equation (2.18), the action of 7; on
V,(2)® is a l’ipear combination of the identity map and (v R); ;+1(zi, zi+1), both of
which are U % (sl,)-module homomorphisms. O

It follows that the right action of H n from equation (2.19) (which depends on &) and
the left action of U “(5[ ) on V,(2)®" commute.
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2.4. The quantum wedge. We now define the exterior product of V,(z) following [32].
Define the ¢-antisymmetrizing operator A™) acting on V,,(2)®" to be

AW = Y7,
O’ESN

where T, was defined in (2.8).

Proposition 2.11. The U, ;‘ (?[n)-module Vo (2)®N decomposes as

V(@)Y =Im AN @ Ker AN
and the space Ker AN) is the sum of the kernels of the operators Ty +1 for 1 <i < N—1.

Proof. See Propositions 1.1 and 1.2 in [32]. Their proof goes through unchanged even
for the new action of Hy on V,(z)®" from equation (2.19). O

In order to understand the spaces Ker(7; + 1) which determine Ker(A™M), take N = 2
and T :=Ti.

Given integers m and [, let k1, ko € Z and 1 < ji, jo < nbesuchthat! = j; —kin
and m = jp — kon so that u; = vjlzkl and u,, = vjzsz. For such integers m and [,
define o, := a;j. Then the following elements in V,,(z) ® Vj,(z) are in Ker(T + 1):

U Q Uy +Um Q Uy if | =m mod n
U Q Uy +qoy mity, @ up +
+Um—i @ Ui + qOUm—i j+illi+i QUm—; fm—I=imodrnand0 <i < n.
(2.20)

Note that o ;, = i+ Whenm —l =imodrnand 0 < i < n.

Define the quantum wedge A2V, (z) to be the quotient V,,(z)®?/ Ker A® and denote
by u; A uy, the image of u; ® u,, in A%V, (z). It is easy to see from equation (2.20) that
the following relation holds in A2V, (z) when m = [ mod n:

Up AN Uy = —Upy A UJ. 2.21)

If m, [ are integers such that m > [ and m — [ = i mod n, then consider the following
sequence of ordered elements taken out of equation (2.6):

C> U > Up—i > Up—p > Um—p—i >+ > Ui > U > Uy > Up -+ (2.22)

We say a wedge u; A uy, is normal-ordered if | > m, so that u; > u,, in the order
given by equation (2.6). For u,, > u;, the following relation holds in A2V, (z):

2
ANy = —qoy it Aup+(q° — D)(m—i AN Ujyi — G mity—pn N Ujn +
2 3
q " Un—n—i N Wltn+i — 4 O [Um—2n N\ U425 * * -) (223)

where the sum on the right uses entries in the sequence (2.22) and continues as long as
we get normal-ordered wedges. Here i is the unique value with0 < i < nandm —i =1
modulo n. This fact follows by applying the second line in equation (2.20) repeatedly
until we obtain a formula for u; A u,, in terms of normal-ordered wedges only.

In the special case when «;; = 1 we get back equation (45) in [32]. The specialization
we need may be described as follows. Let g be a function of integers modulo n that
satisfies the following Assumption.
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Assumption 2.12. Let v denote ¢2. The function g satisfies g(0) = —v, and if a is not
congruent to 0 modulo n, then g(a)g(—a) = v.

Now let us take a;; = —q~'g(i — j) wheni # j (we always want o;; = 1.) We
obtain the formula, valid if m > [:

— U A Uj if I = m mod n,
Uy ANty = g — m)um Aup+ (42 = D(um—i AN ugri + U — m)upm—p A tjsn
+ qzum—n—i A Ul+p+i + 612 gl —m)um—2n Nttgon +---) otherwise.
(2.24)

As with (2.23), i is the unique value with 0 < i < n and m — i = [ modulo n. And as
with (2.23) the summation continues as long as the terms are of the form u, A up with
a > b; this is a finite sum.

Let ANV, (z) be the quotient V,(2)®V/Ker(A™)). The definition of a normal-
ordered wedge extends to ANV, (z). By identical arguments to the one in Proposition
1.3 of [32], one can show:

Proposition 2.13. AN V,,(2) is the quotient of V,,(z)®" by the relations (2.21) and (2.23)
in each pair of adjacent factors; the elements

Umy A Ay

where my > my > --- > my, form a basis for ANV, (2).

Remark 2.14. Note that for n = 1, m — [ is always congruent to 0 mod n. Therefore the
quantum wedge is defined only using relation (2.21). In this case the definition of the
quantum wedge is the same as the definition of the classical (¢ = 1) wedge for sl,, for
all m.

2.5. The fermionic Fock space. Let Soo be the infinite symmetric group generated by
simple reflections s;, i € N. Let Hy, be the infinite affine Hecke algebra, with generators
T:, yl.i, i =1,2,3,...subject to the relations (2.7). Itactson V,(z2) ® V,,(2) ® V,, (z) - - -
via (2.19); the action is well-defined because each 7; acts only on a pair of adjacent
factors.

Let 41, be the linear span of vectors of the form

Uiy, & Ui,y O Uiy, _, @ -

such that iy = k for k < 0. The Fock space of level m is denoted by §,; it is the quotient
of l,,, by the space ) ; Ker(7; + 1), or equivalently, by the relations (2.21) and (2.23) in
each pair of adjacent factors. N

There is a “formal” action of the quantum group U%(sl,) on the space i, via the
coproduct (2.3) which descends to genuine action on §,,. A basis of §,, is given by
elements of the form

Uiy NUjy  NUjpy oy Nt
where i, > i,;—1 > --- and iy = k for k < 0. Define

|m) =t AN th—1 Nttiy—3 A -+ € §,
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which we call the vacuum in §,,. The Fock space § is defined as

5= 3.

mez

Remark 2.15. We caution the reader that due to the “correction terms” in (2.24) there
may be unexpected terms in many calculations. For example, if n = 2, (2.24) shows
that

Uy ANUs AUy ANug A -+ =g(=3us Aup Auy Aug A--- .

In the usual wedge, the left-hand side would be zero due to the repeated factor uy;
however we see that this is not true in the quantum Fock space.

Now let us introduce operators J; on §. These operators are U, (;[n)-module endo-
morphisms that are denoted By in [32]. Let u;, Au;, , Auj, , A--- € §p, and for a
non-zero k € Z define the displacement operator Ji : §,, — $m by

‘Ik(uim A Uiy A Wiy A ) = (uim_nk A Wiy A Wiy A )
+(I,t,'m N Uiy y—nk N Uiy 5 N Y+ (2.25)

That this is indeed an action on the quantum Fock space consistent with the quantum
wedge resulting in a finite sum of wedges is shown in [32, Lemma 2.1]. Foru; An € §,
we note that

i AM) = wi—pke A1 +ui A Jk(n). (2.26)
The following commutation relation holds:
— ikl
Wi, S = k———78k 1. (2.27)
1—v

This is Proposition 2.6 in [32]. This commutator is not affected by the Drinfeld twisting.

3. The Main Theorem

We recall two types of solvable lattice models called Gamma and Delta ice. These first
appeared in [5] in the context of metaplectic Whittaker functions, but as we will exhibit
later, they have surprising connections to symmetric functions beyond this particular
application.

Let us begin with a planar grid having a finite number r of rows. The grid may either
have finitely many or infinitely many columns. We will number the rows 1, - - - , r; for
Delta ice, the row numbers increase from the bottom up, and for Gamma ice, they
increase from the top down. We will also number the columns by integers, in decreasing
order. The column numbers may be all integers in the case of infinitely many columns
or a finite interval, say 0, 1,2, --- , N, in the case of finitely many columns. We will
fix nonzero complex numbers z1, - - - , z, and associate z; to the row numbered i. There
are vertices at every intersection of a row and column, and four edges adjacent to each
vertex as in Table 1. A boundary edge is an edge that is adjacent to a single vertex.

A state of Gamma or Delta ice is given by the assignment of a spin % to each edge
of the grid with certain restrictions. To each horizontally oriented edge, we will also
associate a charge which will be an integer ¢ modulo n. The combination of the spin



550 B. Brubaker, V. Buciumas, D. Bump, H. P. A. Gustafsson

Table 1. The Boltzmann weights for I' and A vertices associated to a row parameter z € C*. The charge a
above an edge indicates any choice of charge mod n and gives the indicated weight. The weights depend on
a parameter v and any function g with g(0) = —v and g(n — a)g(a) = v if a # 0 mod n. If a configuration
does not appear in this table, its weight is zero. We take z = z; in the i-th row (from the top for Gamma ice,
or from the bottom for Delta ice). For Gamma ice, the Boltzmann weights used in [5] and [7] are multiplied

by z. This change from those papers only multiplies the partition function by a constant power of z1 - - - z
ai as b1 by c1 c2
a+l e a 0 ’ 0 a+l 6 a 0 ° 0 0 ° 0 1 ’ 0
rice 10O O04+0 O+ O0+0O0 O+ O30
® © S ® © ®
71 1 g 1 1—v 77!
0 c 0 a ’ a+l 0 ’ 0 a ° a+l 0 e 0 0 ’ 1
rice OO O14+0 O+ O0+0 O+ O1+0
® © © ® © ®
1 g(a)z 1 z (1 —v)z 1

and charge will be called a decorated spin and will be denoted +“. For Delta ice, we
only allow the spin +* when a is 0 modulo #; for Gamma ice, we only allow —¢ when
a is 0 modulo n. Thus in either cases, there are n + 1 allowed decorated spins.

For the boundary edges, the spins and (for horizontal edges, the charges) will be fixed.
Their specification, together with a set of Boltzmann weights associated to each vertex
according to 1, will define what we call the system. In this section, we will consider
systems of infinite width, whose columns are labeled by all integers. In Section 6 we
will consider finite systems.

Thus let us describe the boundary conditions when the grid is infinite. The boundary
edges are all therefore vertically oriented. Let us fix an integer m and consider two
strictly decreasing sequences of integers,

i=(im,im_1,-~-), jz(jmvjm—ls“') (31)

such that iy = jix = k if 0 > k. The associated boundary spins along the top edge are
— for the edges in columns i, i1, - - - and + for the edges in columns i, i —1, - - .
We similarly fix the spins along the bottom boundary to be — in columns j,, jy—1, - -
and + in the others. With these data we may associate the following vectors in §,:

§=ui=uim/\uim—l/\.-' nZMjZMjm/\ujm—l/\.."

A state of this infinite system thus requires assigning spins to the internal vertical
edges and decorated spins for the horizontal internal ones. For Delta ice (resp. Gamma
ice), we require that all but finitely many horizontal edges have spins +° (resp. —°).
Regardless of whether the grid is finite or infinite, a state s of the system will be called
admissible if the configuration of spins at the adjacent edges of every vertex is one of the
configurations in a fixed row of Table 1. Let & denote the set of all admissible states s of
the system, determined by the boundary conditions and Boltzmann weights. When no
confusion may arise, we sometimes use the same notation & to denote either the system

or its set of admissible states. The two systems we consider will thus be denoted 6?5 nr

or 6’; Enr according to the weights in row one and row two of Table 1, respectively.
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Lemma 3.1. Let r = 1 and let § = uj, n = uj € §y. For either ST or G2, there exists
at most one admissible state for the system G, ¢ n 1, so (n|T(2)|§) is the Boltzmann
weight of this state (or zero if no admissible state exists). If such a state exists, then, for
A
Sueani A .
im 2 Jm 2 im—1 2 jm—1 2"+ . (3.2)

r . . .
For Gz,é,n,l’ we have instead jp, = iym = - -.

Proof. Let us consider the case of Delta ice. To see that the state (if it exists) is unique,
observe that every vertex must have an even number of — signs on its adjoining edges. We
have required all but finitely many horizontal edges to have configuration +°. Suppose
that j,, > i,. In that case, this observation shows that the spin to the left of the j,
column is +7; so at the vertex in the j,, column the configuration would be

which is an illegal pattern. Thus i, > j,,, and continuing this way gives (3.2). The case
of Gamma ice is similar. Compare [10] Proposition 19.1 or [2] Section 8.2. O

The Boltzmann weight of the state is the product of the Boltzmann weights at the
vertices. The partition function Z(S) is the sum of the Boltzmann weights over all states.
These definitions make sense by the following result.

Proposition 3.2. In the case where the grid is infinite, there are only a finite number
of states for GZA’S’n’r or GZF’S’W. For each state, all but finitely many vertices have
Boltzmann weight 1, so the Boltzmann weight of the state is a finite product.

Proof. The fact that there are only finitely many states is a consequence of Lemma 3.1.
With our assumption that all but finitely many horizontal edges have decorated spin +°
for Delta ice or —° for Gamma ice, it is not hard to see that for any state s all but finitely
many vertices are in configuration a; or b4 for Delta ice, or a5 or b, for Gamma ice.
Since those vertices have Boltzmann weight 1, the Boltzmann weight of a state is a finite
product. 0O

We will sometimes use the Dirac notation & = |&) for elements of §. Let us define
an inner product on § in which the normal-ordered monomials

E=uj, Nj,, (N, Im > Iy > -

is an orthonormal basis. There is a unique involution on § which is conjugate-antilinear
and which is the identity on the real vector space spanned by the normal-ordered mono-
mials. If £ = |£) is an element of § we will denote by (£ its image under the involution.
Then (n]&€) will denote the inner product of £ and 5. This inner product is linear in £ and
conjugate-linear in 7.

Now let us specialize to Delta ice. We may define an operator T'a (z) on §,, by

Ta)E =Ta@) ) = Y Z(Spy , I, (3.3)
n

Itis a consequence of Lemma 3.1 that there are only finitely many terms in the right-hand

side. (This would fail for &,  ..)



552 B. Brubaker, V. Buciumas, D. Bump, H. P. A. Gustafsson

In the same notation we may write

Z(&p: ) = (MTa@E). (3.4)

In the special case where r = 1, we will use the notation Ta (z) with z = (z). We call
the operator the row transfer matrix. We have Ta(z) = Ta(z1) - - - Ta(zr).

Remark 3.3. In (3.4) we have specialized to the case of Delta ice. For 6% nr the sum
(3.3) would fail to be finite. Nevertheless we could similarly define 7t (z) for Gamma
ice as an operator on “bras” (n| instead of “kets” |£) by the formula

(1| Tr(2) = ZZ(GZW

which is a finite sum. Then (3.4) would still be correct.

We specialize now to the case r = 1 and denote z = z7. As in (1.5), we define
operators H,(z) and H_(z) on §,, by

o 1
Hi(e) =) (1 =092 L (3.5)

If &€ € Fthen H (2)é = H,(z)|&) is a finite sum. For H_(z), this fails, but as with Tt (z),
we may interpret H_(z) as an operator by the formula

(nlH-_(2) = Z(nIH—(Z)Ié)(SI,
§

and this is a finite sum.
Our main theorem (Theorem A), states that

@ = Tr(z), 9 =Tr(z). (3.6)

We will prove this in the next section. As an immediate consequence, the row transfer
matrices Ta(z) and Tr(z) are Uy (s1,)-module homomorphisms, because the operators
Jy are.

4. Proof of the Main Theorem

The proof is structured as follows. We will first prove the statement for Delta ice using
induction to reduce the proof to an identity for two finite subsystems where we get a
finite number of cases that are checked in Tables 2 and 3. One reason for starting with
Delta ice is because of Remark 3.3 together with normal-ordering issues. The transfer
matrix for Gamma ice is then related to the adjoint of the Delta ice transfer matrix in
Subsection 4.2. Therefore, until Subsection 4.2 we will consider Delta ice. We will fix z,
and let T = T (z) be the transfer matrix (3.3) of the one-rowed system, and H = H.(z).

We pause to refine the criterion in Lemma 3.1 for an admissible state to exist in the
one-row system &, ¢ , 1. For even if (3.2) is satisfied, there may not be an admissible
state s. Let us describe a further condition that must be satisfied.

We may write § = u;, Auj,  A---andn =uj, Auj,_ A---.By (3.2)ip =
jm = im—1 = ---, and if r is sufficiently negative, then i, = r and j, = r. The
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substance of the lemma that we will now state is that there is a bijection between the two
sequencesi = (i, im—1, - -)andj = (Jm, jm—1, - - - ), and that corresponding elements
are congruent modulo 7.

Since the elements of j are distinct, each i, can be equal to a unique jp, which must be
either j, or j,+1. In this case we say that i, and jj, are paired. It remains for the bijection
to be defined on those elements of i (resp. j) that are not equal to any element of the other
sequence. Thus we say that the index i, is isolated for the pair &, n if j,+1 > iy > ja,
and similarly we say that the index jj, is isolated if i, > jp > ip—1. The isolated indices
i and jp are paired if

Jar1 > ia > ja =la—1 > ja—1 =1g—2 > - jps1 = Ip > jp > ip_1. 4.1)

(We omit the condition j,4+1 > i, if a = m.) The condition (4.1) means there are
no isolated indices between i, and jj, though there may be many indices that are not
isolated. If i, is not isolated, then either i, = j, or i, = j,+1. In this case, we consider
iq to be paired with j, or ji41.

Lemma 4.1. For any admissible state s, every isolated i, is paired with a unique isolated
Jb- The pairing relationship is a bijection between the i, and the jy,, and if i, and jj, are
paired, then i, = j, modulo n.

Proof. 1t is obvious that if i, (resp. jp) is not isolated, then it is paired with a unique jj,
(resp. iy). Since these are equal, they are = 0 mod n. Therefore we have to consider the
isolated vertices. Here we make use of the hypothesis (n|7T|&) # 0. Consider the state
of the model, with the columns labeled:

iq ja jb

+ + o —_ + o e f—

The charges at the two horizontal edges labeled + must both be = 0 modulo n. This
implies that i, = j, modulon. O

Let w,j : §m — Sm+1 denote the creation operator defined by
w;‘(u,-m Aljy | ANUjy 5 Nvee) = Uj AU AUy | AUy 5 A 4.2)
and introduce the generating function
Yo =Y yixd, (4.3)
JeZ
as well as the operator o/ (z) : §m — Sm+1
P (@) =Y — 2V, (4.4)

We will use the following consequences of the Baker-Campbell-Hausdorff formula.
If A and B are elements of a Lie algebra such that [A, B] commutes with both A and B,
then
oAeB — o[ABl,BA
If [A, B] = ¢B where c is a constant, then

eABe™4 = ¢°B. 4.5)
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Proposition 4.2. With H = H.(z) = Y oo, (1 — v¥)z""Jy and y*(x) as defined
above, we have that

_ 1 —x"vz"
eyt e = Tt (4.6)
or equivalently that
e o @) = pf w")e™. (4.7)

Proof. Foranyé¢ € §,, wehave from (2.26) that [ Ji, w;‘](é) = Jk(w;‘(é))—w;‘(Jk(é)) =
Wi nNE)—uj A (E) =) NE=uj_nx NE = w;‘_nk(S) which implies

i W31 = 7. (4.8)
Then,
nk _ k. nk
[H Ay 1= %xw;‘_nkm
k>1 jeZ
7 1
Z xnkw (x) log <l)C—UZ> w ()C)
k>1

from which we obtain (4.6) using the Baker-Campbell-Hausdorff formula. The equiva-
lence of (4.6) and (4.7) follows by comparing coefficients for different powers
ofx. O

We will work now with finite-dimensional wedge spaces §(k, n — k, r) spanned by
vectors
é:uil/\~-~/\u,~r 4.9)

wherek > iy > --- > i, 2 if_n. Let§k,n — k) = @r Sk, n — k, r). We will define
operators ¥ and ¥, : §(k,n —k,r) — F(k,n —k,r +1) by

Ve ®) =ue A&, Y, (§) = uk—n NE.

These operators are analogous to the operators w,f, w/in : Sm —> Sm+1 already
defined, and indeed if ¢ = uj,_, A Uy A+ € Fm—rissuchthatk —n > j,_, >
Jm—r—1 > --- then & A ¢ is naturally in §, and Y AN =€) A¢ and similarly
for ¥ _,. We also define p; (z) = ¥ — zy;_, as before.

Finally, we define an operator T on $(k, n—k).Itis enough to define constants (7] T &)
where & € §(k,n—k,r)andn € F(k,n—k,r'). Letuswrites = (&) = (&, -+ , &k—n)
where the spins¢; = £ andi =iy, - - - , i, in (4.9) are precisely the values where g; = —
Similarly let § = §(n) = (6, - - - , Sk—n) be spins corresponding to 1. Let

N=Uj Nuj, N+ NUj,.

We require iy > ji > ip > - -- and for this reason either ' = r orr’ =r — 1.
Now we define a finite system as follows. We make a grid with n + 1 columns labeled
k,k—1,---,k — nin decreasing order.

&k Ek—1 ' Ek—n
40 +4 (4.10)
S Ok—1 -+ Ok—n
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The boundary conditions at the left and right edge are as follows. At the left boundary,
we always put +. At the right boundary, there will, for each row, be a unique decorated
spin £¢ such that the partition function of this system can have nonzero value. The sign
+ or — is determined by the condition that the total number of — spins around the whole
boundary is even. Thus itis +if ' = r and — if ¥’ = r — 1. The charge is also determined
by the requirement that there be a (uniquely determined) state s with the given boundary
conditions. Then we define (n|f“|§ ) to be the Boltzmann weight of this state, using the
weights in Table 1.

Now the operator T: Sk,n—k,r)y — Fk,n—k,r)®Fk,n—k,r—1)is defined
by

TE) =Y mTIE)n

n

Proposition 4.3. Let & and n be basis vectors of §(k,n — k) as above. Then

T g (Z1E) = (nlpf (2"~ T ). (4.11)

Moreover, the spins a that appear on the left- and right-hand sides of this calculation
are the same (with a determined modulo n).

We will prove this in Section 4.1. The meaning of the second assertion is as follows.
Suppose we compute

T pi ("))

This equals (n|f"|1p,2‘$) — 7" (n| flw,:‘_nf) and in this computation two right edge spins
+a and +b will appear. (See (4.10).) Similarly on the other side of the computation, two
right edge spins ¢ and £d will appear. The assertion is that these four spins are equal
in sign, and a = b = ¢ = d modulo n.

Proposition 4.4. Let§ = u;, Auj, N+ € Fy With iy, > ip_1 > ...andletk > iy,
Then,
Tp;(2")E) = pf (wz")T|E). (4.12)

Proof. Letn € §p. We write n = uj, Auj, , A--- with j, > j—1 > .... Unless

k > jm itis easy to deduce that (n|T¥’1§), (nIT ¥y _,15), Y T1E) and (nlyy_, T1§)
are all zero from Lemma 3.1, and from the fact that if &’ does not involve any u,, with
m > k then neither does /¢’ or ¥_, &’. Therefore it is enough to prove that

(I Tpg(ZMIE) = (nlpg (wZ")T|E)

under the assumption that k > j,.
Let us find  such thati, > k —n > i,_| and write £ = &| A & with

El=ujp, N ANy, S =uj_ ANUj,_, N
Similarly we write n = 1 A 12 where
ML= Wjy N AU, 2= Uy NUGy ) N

and r’ is such that j» >k —n > j_;.
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Now let s be the unique state associated with (n|T'|/&). We will cut the partition
function to the right of the k — n column. Thus we partition the Boltzmann weights
into those from columns numbered > k — n, and those from columns < k — n. Since
k > iy, jm the spin in the horizontal edge to the left of the k-th column must be +0,
Depending on & and 7, let ¢ be the decorated spin attached to the horizontal edge to
the right of the (k — n)-th column. We obtain

WITYEIE) = (mITyfE) - C
where C is the Boltzmann weight of the following state of an (infinite) truncated system:

Ek—n—1 Ek—n-2 *°°
:I:Ll
Sk—n—1 Sk—n—2 -+
where ¢; = — if i is among the indices i,_1, i,_3, - -+ in & and §; is similarly derived
from n;.
Now we similarly have

MITYE 18 = mITYi 080 - Co i TIE) = (mIviTIE) - C,

and

Vi, TIE) = mlvi_,T1&) - C,

with the same constant C in every case. The fact that the constant C is the same in
every case follows from the last assertion in Proposition 4.3. Hence we can pull out the
constant and the identity needed follows from (4.11). O

For an element § = u;, Au;, , A--- € §p wWith iy, > i1 > --- we define the
degree deg(£€) of £ as follows

deg(®) = > (ir—1) (4.13)

r<m

which we note is positive since i, > r for all r, and finite since i, = r for r < 0. If
deg(&) = 0, then £ is the vacuum |m) in §,.

Using the following lemma we can similarly define the degree of any & = u;, A
Ui, ; N--- € §p even if it is not normal-ordered.

Lemma 4.5. The degree defined above has the following properties:

(1) Suppose & = u;, Nu;, | A--- € §p is not normal-ordered, that is i, < i,_1 for
some r < m. Then writing & in terms of the basis of §n of normal-ordered wedges,
each term has the same degree, which equals ngm @i —r).

(2) Let &' = uj, | Nuj,, 5 A+ € Fm—1 With iy—1 > im—2 > ---. For any k, let
& = ux AN E' € Fp which is not necessarily normal-ordered. If & # 0, then,
deg(é) = (k —m) + deg(&)). 4.14)

Note that, even for the quantum wedge, if i, = i,_ for some r, then £ = 0. However,
because of the extra terms in (2.24) compared to the classical (¢ = 1) wedge, ifi, = i,_»
for example, then £ is not necessarily zero.
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Proof. For the first statement we notice that in the right-hand side of the quantum wedge
(2.23) foruj Au; with j < i, each term is of the form u, A up witha +b =i + j. Since
& can be normal-ordered by repeated use of (2.23) this proves the first assertion.

The second statement follows from the first by letting i,,, = k:

deg(®) = Y (i —r) = (im —m)+ Y (i —r) = (k — m) +deg(¢").

r<m r<m-—1
O

Proof of Theorem A (Delta ice). We will show, for an arbitrary & = u;,, Au;, N+ €
Sm with iy, > i,,_1 > --- that eHE = T& using induction over the degree of &.

The base case, deg(&) = 0, is when |€) is the vacuum |m), for which we have that
Jilm) = 0. Thus e’ |m) = |m). It is easy to check that T'|m) = |m) also, as required.

From now on, assume that £ is not a vacuum, which means that i, > m. Let & =
Wi,  ANUjy oy N+ € Fm—y and " = u;,_y NE € Fp. Then & = u;, A& =
o} (2" "+ 7"¢”. Note that u;,_, A & is not necessarily normal-ordered or nonzero.
Using Lemma 4.5 we have that deg(¢’) = deg(§) — (i,, —m) < deg(&) and, if &7 # 0,

deg(¢”) = deg(§) —n < deg(é).
We assume, for n € § with deg(n) < deg(&), that "5 = Ty (which also holds for
n = &” = 0). Then, for the induction step we have that

TE =Tp} (2 +"TE" = Tp} (ZME +7"e"E".
Using Proposition 4.4 together with the induction hypothesis, we have that
Tp}, (ZME = p}, (v TE = p}, (v2"eE" = e pF (M,
where, in the last step we have also used (4.7) of Proposition 4.2. Thus,
TE = e (pf (E +2'E") = "
The statement for Gamma ice is proved in Subsection 4.2. O

4.1. Proof of Proposition 4.3. Let § = ujy A--- Auj, andn = uj A--- Auj, be
elements of §(k,n — k) with iy > iy > --- > i, and j; > --- > j,». We must show

i TYEIE) — 2 Ty, 18) = i T1E) — vz (nly, T1%). (4.15)

Let &; and §; with k > i > k — n be the spins associated with £ and 7, so that &; = — if
i =i for some j, and ¢; = + otherwise, and similarly for &;.

Proposition 4.6. Suppose that any one of the four terms in (4.15) is nonzero. Then either:

(i) We have ¢; = §; fork > i >k —n; or
(ii) There is a unique value s with k > s > k — n such that e, = — and §; = +, and
g =0difork>i>k—n,i#s.
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Proof. Note that applying ¥ or ¥/ _, to & cannot affect &; with k > i > k —n.In
particular, w,;in () = ug—n ANuj; N -+ Auj, is not normal-ordered. However when we
use (2.24) to put it in normal order, we get

wen Aty Ao A, =% | [ sk—i) fu Ao Au Aw—, (416
gi=—
k>i>k—n

where the sign is + if &y = + and — if ¢ = —. For this, there are no correction terms
because the interchanged vectors are of the form u, A up, with |[a — b| < n.

Therefore each of the four terms in (4.15) is (possibly up to a constant such as the
one in (4.16)) of the form (n|T'|€’) where £ and 5’ correspond to sequences e/ and &,
of spins and (for the two terms on the left-hand side) 8; =¢§; forallk >i > k —n and
also &/ = ¢; except for one of the two cases i = k or i = k — n. Similarly for the two
terms on the right-hand side, ¢; = ¢; forall k > i > k —n and §; = §; except when
i =kork —n.Since g; = alf and §; = 8; for k > i > k —n, we may replace ¢; and §;
by &/ and 8] in the statement of the proposition.

Fixing one of these four cases, let & = Uit ANy A - and n’ = Ujr ANtbjy Ace-

Under the assumption that (77’|7A“|E’) # 0, analogs of Lemmas 3.1 and 4.1 are true. The
analog of Lemma 3.1 means that i > j{ > i, > j; > ---

Moreover, the proof of Lemma 4.1 will show that there is at most one isolated index
in the interval k > i > k — n. We recall that an index s is isolated if 5 # §;. If
k > s > k — n, this is clearly equivalent to € # &;. As in Lemma 4.1 isolated indices
come in pairs separated by a multiple of n. Thus if there are isolated indices, we must
have i{ = ji, i} = jj, up to the first isolated index, i;, > j,,. Then the next isolated
index would have tobe < i ; —n, but this is outside of the considered interval. Lets = i ,’n
Then g, = 8_; = —, while §; = 8; = +, and there are no other isolated indices. 0O

So there are two types of cases we have to consider, depending on whether we are in
Case (i) or Case (ii) of Proposition 4.6. With each of these cases we have 16 subcases
depending on the values of ei, &k, ek—, and 8x—,.

Remark 4.7. 1t is possible to argue more efficiently and only check half these 32 cases,
namely those in which ¢; = +. This is because in Proposition 4.4 we have k > i,
and i, denotes the first minus sign of £. For completeness we included all 32 cases in
Tables 2 and 3.

For Case (i), let us denote

G= [] gtk-i.

k>i>k—n

Case (i), subcase: (g, 8k, €k—n, Sk—n) = (+, +, +, +). We observe that (nlp,’;(vz")ﬂé) =
0 since there is no way a component 1 of p,f(vz”)f"lé) can have both §; = §;_, = +.
So we must show that (n|f"p,f (ZM|€) = 0. This has two terms, which will cancel. First
(n] f"w,j‘ |&) is the Boltzmann weight of the state

- &k—1 st Ek—n+l +
+ - — — -0 _
+  &k—1 - Ek—n+l +
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Table 2. Case (i) subcases, confirming (4.15)

(&> €k—n> Oks Sk—n) (I Tyg18) =" Tyg_,18) (nlygT1E) —vz" (nlyf_, TIE)
(++++) G -7"G 0 0
(+++-) GZ"(1 —v)z -7"G 0 —vz"™G
++—+) 1 0 1 0
+—+-) —Gz"! 0 0 -Gz"!
++—4) 1 0 1 0
++-——) 0 0 0 0
+——4) 1 0 1 0
(+——-) 1 0 1 0
(—+++) 0 0 0 0
(—++-) 0 —vz?G? 0 —vz2G?
(——++) 0 0 0 0
(——+-) 0 0 0 0
(—+—+) 0 "G "G 0
(—+——) 0 G (1-v)"G vZ"G
(———+) 0 0 0 0
(———-) 0 0 —v7"G "G

that is, Gz", where the product is over r patterns of type a, and n — r of type b,. The

second term is —z"( nlftﬂ,’{[n |€). This equals —z" G times the Boltzmann weight of the
state

+  &k—1 - Ek—n+l -
+ o+ + o+ +0 -
+ k-1 o Ek—n+l +

Here the factor of G comes from (4.16). The Boltzmann weight of the last state is 1, so
the two terms cancel and the proposition is true in this case.

To summarize, there are two ways that a factor of G can appear. One is through
(4.16), and the other is through the Boltzmann weight of a state. There are 16 subcases
for Case (i) and these are summarized in Table 2. It is easy to see that in all these cases the
last assertion of Proposition 4.3 (about the identity of the decorated spins appearing at
the right edges of the states contributing to the nonzero terms in any subcase) is satisfied.

We now turn to Case (ii). Let us again do one subcase completely, then summarize all
cases in a table. Let us consider the subcase where (gg, €x—n, 8k, Sk—n) = (+, +, +, —).
We do not need to consider the contributions of ¥ to either the left- or the right-hand
side since these would involve an illegal pattern in the s column. On the other hand

Ty 08 = [ ek-i|z

k—n+1<i<k—1

ei=—1
where Z is the Boltzmann weight of the state
+  &k—p - — e —
+ o+ + (S) _ _ _s+l—k+n .
+  &k—q - + e —
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The product in brackets comes from (4.16). We have

Z= 1_[ g(s —i) | Z27"g(s — k).

k—n+1<i<s—1
gi=—1

We may combine two factors using the identity g(k — s)g(s — k) = v and so

—Z"<77|T¢]Zln|§> = — 1_[ gk —i) 1_[ g(s — 1) Uzs7k+2n.
k—n+1<i<k—1 k—n+l1<i<s—1
ei=—1 gi=—1
i#s

On the other side of the equation,

"y, TIE) = (—vz | [ ek-D|Z
k—n+1<i<k—1
gi=—1

i#s

where Z’ is the Boltzmann weight of the state

+ &g - — . +
+ o+ + (S) _ _ _s+l—k+n )
+ &g - + .. +
That is,
7 = l_[ g(s _ l) Zs—k+n‘

k—n+1<i<s—1
gi=—1

We see that in this case:

T pf (2NE) = =" (T, 1€) = —v"(lwi_, T1€) = (nlpf (" TE).

Now let us define

G'= l—[ gk—1i), G"= l_[ gls —i).
k—n+1<i<k—1 k—n+1<i<s—1
ei=—1 ei=—1
i#s
We summarize the Case (ii) subcases in Table 3. As in Case (i) it is easy to verify the last
assertion of Proposition 4.3 regarding the decorated spins at the right edge, and the first
assertion is verified in every subcase by Table 3. Thus Proposition 4.3 is now proved.
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Table 3. Case (ii) subcases, confirming (4.15)

(8ks 8k—n> ks Sk—n) (T YL IE) =Ty 18)  (nlypTIE) —vz" (Y, T1&)
(++++) 0 0 0 0

+++—) 0 _G/G//vzs—k+2n 0 _G/G//vzs—k+2n
(++—+) G//Zx—k+n 0 G//Z‘Y_]H—n 0

+—+-) 0 0 0 0

(++—+) G/ 75 —k+n 0 G/ 75— k+n 0

(++—-) G'(1—v)zskn o G'(1—vf=kn o

+——+) 0 0 0 0

(+ _ __) G/,ZX7k+ng(S _ k) 0 G//Z_y—k+ng(s _ k) 0

(—+++) 0 0 0 0

(—++-) 0 0 0 0

(——++) 0 0 0 0

(——+-) 0 0 0 0

(—+—+) 0 0 0 0

(—+——) 0 G/G/lvzs—k+2n 0 G/G/lvzs—k+2n
(———4) 0 0 0 0

(=——) 0 0 0 0

4.2. Gamma ice. We will deduce the second identity in (1.6) for Gamma ice from the
first, which is already proved. If T is an operator on § we define its adjoint 77 by the
formula

(TTnlg) = (nITE).

In the following proof, we will assume that the parameter v is real, and moreover
we will assume that the conjugate of g(a) is g(—a). In our applications to Whittaker
functions, g is a Gauss sum, |g(a)| = +/v, the reciprocal of the square root of the residue
cardinality. (See Remarks 1 and 2 in [5].) Then g(a) and g(—a) are complex conjugates
since g(a)g(—a) = v.

Since our result is essentially an algebraic identity, if we prove it under the restric-
tion that v is real and g(a), g(—a) are complex conjugates, it will follow in general.
Alternatively, we could take the g(a) to be indeterminates in an algebra over C, with an
involution that maps g(a) to g(—a).

Proposition 4.8. The adjoint of Ta(z) is Tr (1/7).
Proof. We must check the identity

(Tr (1/2) nl§) = (nlTa(2)E).
We will write this

EITr (1/2)n) = (| Ta(2)§).
‘We may check this for normal-ordered &, n € §,,. Let

E =iy Nlljpy | N-or s D= ANUj, | A-ee
Both sides vanish unless
im Z Jm 2 im—1 2 Jm—1 2",

which we assume. Now (1|Ta(z)£) is the partition function of a system with a unique
state, with — in the top (resp. bottom) vertical edges in the columns i,, (resp. j,) and
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+ elsewhere. Similarly (£|7r(z~")n) is the partition function of a system with the top
and bottom vertical edges reversed. We may obtain its unique state by taking the state
of the (n|Ta(z)€) system, and replacing each horizontal decorated spin +° by —9, or
— by +~%. Now an examination of Table 1 shows that this operation interchanges a;
patterns with by patterns, and similarly ay < bi, ¢1 < c3. Remembering that the c;
and c; patterns occur in pairs, we see that (£|Tr(z~")n) is obtained from (5|7 (z)&)
by replacing g(a) by g(—a). If we further replace z by its complex conjugate, we see
that (¢|7t (1/2) n) and (n|Ta(z)€) are complex conjugates, as required. O

Proposition 4.9. The adjoint of Ji is J— ifk # 0.

Proof. See [42], remark after (21) on page 1055. This point is explained in more detail in
[39], Section 3.3 (where the inner product is introduced) and Section 4.1.1, making use of
results of both [32] and [42] in the context of a general Boson-Fermion correspondence.
O

Proof of Theorem A (Gamma ice). We will prove that Tt (z) = e~ Because J; and
J_ are adjoints, by (3.5)

H_(z)=H,(1/2)".

Exponentiating then gives

exp(H_(2))=exp(H, (1/2))" = Ta(172)" = Tr (2).

5. LLT and Metaplectic Symmetric Functions

The quantum Fock space of Kashiwara, Miwa and Stern, which underlies our results,
is also fundamental in the theory of LLT [42] or ribbon symmetric functions. In this
section, inspired by ideas from Lam [38], we will show how the LLT polynomials can
be written in the form

Gy (@) = (ule™ @), (5.1)
where z = (z1, - - - , zr) and
> 1
Li(z) = ]; L PE@) . (5.2)

(We are using the notation (1.4) for basis vectors of §,,, and we may fix m = 0 in this
section.)

Remark 5.1. As we will prove, the polynomials (5.1) coincide with the LLT or ribbon
symmetric polynomials provided we take

—v ifa = 0 mod n;
gla) = { —J/v  otherwise. (5.3)

If g is a more general function satisfying Assumption 2.12, then the results of this section
will remain valid, but Gy /, will be a generalization of the LLT polynomials that are in
the literature.
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The operator L. (z) is similar to the operator H, defined in (3.5), that appears in
our main theorem. Indeed, in Definition 29 of [37], Lam defined a super generalization
gy /(W) of the LLT polynomials, and we will prove that

(ule™ @) =61, @ "),

where H,(z) = Y ._, Hi(z;). For this statement we are omitting the Drinfeld twist-
ing which introduces the “Gauss sums” g(a) into the definition of the Fock space. If
we include the Drinfeld twisting, then we would obtain a generalization of the LLT
polynomials, and a similar statement would be true.

Remark 5.2. We do not know a statement generalizing our Theorem A that would express
the half-vertex operator e/+ that appears in (5.1) as a row transfer matrix. This is available
only in the special case of the supersymmetric LLT polynomials with w = vz.

Let Ji, Ja, - - - be independent commuting variables. (Eventually we will specialize
them to operators on Fo as before, but for our first result this is not needed.) Following
the definitions in Section 3 of [38], let

we=Yy z'J.

Ak

whereif A = (1"122...)isapartitionof kthenz, = [[;(("m;)and Jy = S5, Jy, - - -
Also, if A is a partition define &), = (—1)*7t® and define

;Ik = ZZIIS)\JA.

A=k

Proposition 5.3. We have

oL@ _ Z Z 2wy, -y, (5.4

v1=0 V=
and
R W Z g T, iy, (5.5)
v1=0 V=
Proof. Let A = A(z) be the ring of symmetric functions in variables z1, z2, - - - over
Q. Let A(w) be another copy of A, in variables wy, wa, - - - . We will use the notation of

[44] for symmetric functions: pi(z), hi(z), ex(z) will denote the power sum, complete
and elementary symmetric functions, with p, (z) = [] px, (@), hx(z) = [ hy, (z), and
m; will be the monomial symmetric functions.

Remembering that the u#; commute, we may rearrange the factors u,,, - - - , u,, so
that v, > v,_1 > --- > v; and rewrite the right-hand side of (5.4) as

> my@uy, - uy, (5.6)

where now the sum is over partitions (of length < r).
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Fig. 1. A 3-ribbon tableau with spin 5 and weight (1, 3, 2)

In the ring A(z) ® A(w), we have the identity

S g m@paw) =[] —zwp™ =D my@h,(w).
A i,j v

This is proved in Macdonald [44] Section 1.4. Now

21
exp (Z %Pk(Z)Pk(W)) =[]0 -zwp™ =" m@huw. 67
i,J A

k=1

Indeed,

e¢]

~log(l —ziw)) =)

k=1

(zi w; )k
—k .

Summing over i, j and exponentiating gives (5.7). Now we specialize py(w) — Jk.
Then hy +— uy since by Macdonald [44] (1.2.14)

hie ="z pa. (5.8)
Ak

Thus specializing (5.7) gives (5.4). The identity (5.5) follows similarly from the identity

1
exp <_ 2 gm(z)pk(—W)) =[[0+zwp =3 m@ew

k=1 ij )

which follows from (5.7) on applying the involution in A(w). See [44] Section 1.2.
Under the specialization pr (W) — J; we get ex — Uy because

—1
=5 "em.

M-k
This follows from (5.8) by applying the involution using [44] equation (1.2.13). O

We recall from [37,38,42] that an n-ribbon is a skew partition A/u of size n that
is connected and does not contain any 2 x 2 block. (Here we are identifying the skew
partition with its Young diagram.) The spin of an n-ribbon is its height in columns,
minus 1. A horizontal n-ribbon strip is a skew shape 1 /u that can be decomposed into
disjoint n-ribbons, each of which has its top-right most box adjacent to u, or else its
top-right most box lies in the first line. The spin s(A/u) of A/u is then the sum of the
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spins of its constituent n-ribbons. Thus we are following [37] in our definition of spin,
not [42] who define the spin to be half s(1/u). See Figure 1 for an example illustrating
the concepts of n-ribbon and horizontal n-ribbon strip.

An n-ribbon skew tableau T of shape A/ is a sequence of partitions

pn=a’ca'c---ca" =2, (5.9)

where /! /&' is a horizontal n-ribbon strip. We may associate with such data a tableau in
which the strip o'*! /o is filled with i’s. The weight v = wt(T') will thenbe (vy, - - - , v,)
where v; is o'*! /o! divided by n.

Now we define the LLT or ribbon symmetric function

@ =G5,z q) = ZCIS(T)ZWt(T)7
T

where the sum is over n-ribbon skew tableaux of shape A/u. (Here v = ¢2.) This is
consistent with the notation in [37] but differs from the notation in [42].

Let us regard Ji as in prior sections to be an operator on the quantum Fock space
So. If A is a partition, let [A) denote the element u), A uy,—1 A --- of Fo. If A is the
empty partition, we will instead use |0) to denote the vacuum. Consistent with our earlier
notation, we will denote by (u|eZ+®|1) the coefficient of |u) in eL+®|1), where we
now regard e%+® as an operator on Fo.

Following [37,42] we define an operator Uy on §o by

Upr) = > g* ' ),

A/ ahorizontal n—ribbon strip
A/ u|=nk

where the sum is over © C A such that A /u is a horizontal n-ribbon strip of size nk.
Similarly let

Uil2) = > g* M |w).

A/ a vertical n-ribbon strip
|A/ul=nk
(Vertical n-ribbon strips are defined similarly to horizontal ones.)

‘We note that the notation in [42] differs from that in [37] (and also [32]) by the
transformation g q_ Our notation is consistent with [37].

There is a homomorphism ¢/ from the ring A of symmetric functions to the ring of
Uy (5[ )-module endomorphisms of 30 ThlS is the map that sends a symmetric polyno-
mial f to the endomorphism f (y1 , y2 , -+ ) where the y; are as in Section 2.2. If s;,
is a Schur polynomial, the endomorphisms Iﬂ(S)L) were used in [43] in an analog of the
Steinberg tensor product theorem for §. See also [40].

By Theorems 3 and 5 of [37] (following Leclerc and Thibon [43])

V) =Ue, Yl =U,  Y(pr) = Ji.

Thus uy is an element of the abstract polynomial ring generated by Ji, Jz, - - -, while U
is an endomorphism of §y that corresponds to u; under the action of the Ji on §p.

Theorem 5.4. The polynomial G In is symmetric and

G @ q) = (nle @), (5.10)
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Proof. By Proposition 5.3 the right-hand side equals

Z Zz co 2 (U, Uy 3.

v1=0 V=

Now the right-hand side enumerates n-ribbon tableaux in the definition (5.9) and so we
obtain (5.10). The symmetry of Q;f I is due to Lascoux, Leclerc and Thibon. It follows
from the fact that the operators Uy commute. O

A similar result for Hall-Littlewood polynomials was found by Jing [28]. Another
vertex operator realization of Hall-Littlewood polynomials may be found in Tsilevich
[48]. Hall-Littlewood polynomials are limits of LLT polynomials by [42], Theorem VI.6.

As an application of Theorem 5.4 we will deduce the Cauchy identity for LLT poly-
nomials, a result that is due to Lam [37-39], proved also by van Leeuwen [49]. We will

work with two sets of variables, z1, --- , z» and wy, - - - , w,. Let
o
. _ Z Pk (2)
L+(Z) == pr k J_k.

If the z; are real, then L. (z) and L, (z)* are adjoints by Proposition 4.9.
We will denote G, = G} /@ where @ is the empty partition. We have

(AIL+(@)*]0) = Gy.(2). (.11

Indeed, since this is a purely algebraic identity, it is sufficient to prove this if z; are real.
Then since L.(z) and L.(z)* are adjoints, this follows by taking the the conjugate of
(5.10).

Lam [37] proved a version of the Cauchy identity for LLT polynomials. We will show
how this can be deduced from Theorem 5.4.

Proposition 5.5. We have
exp(L+(2)) exp(Ls(W)*) = Q(z, W) exp(L+(W)*) exp(L+(2))

where

n—1
Q(z,w) = H H(l —v'zw;)7!

=0 i,j
Proof. Using (2.27) we have
1 (vk—1
[Li(z), La(w)"] = ;;E <ﬁ) 2wk =log Qz w).

The statement then follows from the Baker-Campbell-Hausdorff formula. 0O

We recall that if XA is a partition, there is a unique smallest partition & that can be
obtained by removing ribbon n-strips from A. The partition § is called the n-core of A.
If 5 = A then A is called an n-core partition. See [44], Example 1.1.8.

Lemma 5.6. If § is an n-core then Ji|8) = 0 for all k > 0.
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Proof. Clearly Uy|8) = 0 for k > 0, and so by Proposition 5.3 e£+®|8) = |8). This
means Ji|6) =0. O

Theorem 5.7 (Lam). Let § be an n-core. Then

Y G s@Gis(W) = Q(z, W), (5.12)
A

where the sum is over all partitions with n-core §.

Proof. We will prove this under the assumption that w is real. Since this is a purely
algebraic identity, that is sufficient. We evaluate

(8] exp(L+(2)) exp(L3(W))|8) (5.13)
in two different ways. First, by Proposition 5.5, it equals
2(z, w) (8| exp(Li(W)) exp(L+(2))]8) = Q(z, W),

since if K > 0 we have J|§) = (§|J_x = 0, so exp(L+(z))|§) = |§), etc. On the other
hand, using Theorem 5.4 and (5.11) the coefficient (5.13) equals

> (81 exp(Le@)IA) (] exp(Le(W)*18) = Y Gs(2)Gass(W).
A A

]

Now we recall the definition of the super ribbon function G /i (z|w; q) defined

in [37], Definition 29. For this we require a double alphabet 1 < 1’ < 2 < 2/ <
oo < r < r'. A super ribbon tableau T is a sequence of partitions

U=Xry1 Chpr CAr C -+ CAy CAL=A.
It is assumed that A; /A;s is a horizontal n-ribbon strip, and that X;//X;41 is a vertical
n-ribbon strip. We can label the tableaux by labeling the boxes in A; /A;; with i, and the
boxes in A;/Aj+ with i’. Let wt(T) = (vy, - - - , v,) where v; is the number of i in the

tableau, and wt'(T') = (v{, --- , vj) where v; is the number of i". Then we define the
super ribbon function

G @lw; @) =y "Dz (—wyn D)
T

where the sum is over super ribbon tableaux.

Theorem 5.8. For any pair of partitions u C A,
(let+@e™ M0y = G @w: q) . (5.14)

gy Ju vanishes unless ) and p have the same n-core.
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Proof. Since the operators U, and ZZ/ commute, we may apply Proposition 5.3 and
rearrange to obtain

(/L|6L+(z)€_L+(w)|)\) — Zzwt(V)(_W)wt(v’) <M|Z7v;uvr .. 'z’]v{u\)l [A).

v,/

Each operator on the right-hand side subtracts either a vertical or horizontal n-ribbon
strip, and (5.14) follows. The second statement is clear since removing a vertical or
horizontal n-ribbon strip from a partition does not change its n-core. 0O

Corollary 5.9. In the notation of (1.9),
M3, (2) == (uITa@)2) = G}, (" [v2").
M u vanishes unless ) and u have the same n-core.

Proof. This follows from Theorems A and 5.8 because H;(z) = L+(z*) — L+(vz"). O

We may prove a similar Cauchy identity for the metaplectic symmetric functions.
The following Theorem holds for any values of g(a) satisfying Assumption 2.12.

Theorem 5.10. Let § be an n-core partition. Then
(1— vz?w?)(l - v"z?w?)
(1 —zwH( — v"“z;'w;?)'

(5.15)

ZMK/S(Z)MK/S(W) =0(,w), O(w):= l_[
x

iJj

Proof. This is similar to Theorem 5.7. We must first generalize the calculation in Propo-
sition 5.5. Now we work with

Hw =Y P00 by, me =Y 0k
k=0 k=0

We see that

ad 1
[Hi(z), Hy(W)*] = gpnm)pnk(w);(l — 5 (1 =)

o0
1
= w1 = ok = vy — log Oz, .
i,j k=0

Therefore we have
exp(H,(z)) exp(H+(W)*) = O(z, W) exp(H,(W)*) exp(H,(2)).

The remainder of the calculation is similar to the proof of Theorem 5.7. O



Vertex Operators, Solvable Lattice Models and Metaplectic Whittaker Functions 569

6. Metaplectic Whittaker Functions

This work originated in the theory of Whittaker functions for the metaplectic n-fold
cover of GL,. These were represented by Gamma and Delta ice partition functions for
finite systems in [5,7]. In this section we will show that metaplectic Whittaker functions
can also be expressed as partition functions for our infinite-dimensional systems. More
precisely, in (1.9) we defined what we are calling metaplectic symmetric functions. Like
metaplectic Whittaker functions, they are partition functions of metaplectic ice, but
unlike metaplectic Whittaker functions, the M3} =~ are symmetric functions. What we
will now show is a way of expressing metaplectic Whittaker functions in terms of the
M5 w

Let us review the relationship between the metaplectic ice partition functions and
metaplectic Whittaker functions, relying on [5-7] for details. Let F' be a nonarchimedean
local field. Assume that the group s, of 2n-th roots of unity in F has cardinality 2n,
and that the residue cardinality v=! is prime to 1. Let z be a prime element in the ring
o of integers and let ¢ be a fixed additive character of F that is trivial on the ring of
integers but no larger fractional ideal. Let

1 t
ga=— 3 r)%(;) :
te(o/(@))*
where ( , ) is the n-th order Hilbert symbol. (We are calling the residue cardinality v~!
instead of v or g since it is the reciprocal of the residue cardinality that will appear in
our formulas. We will use g to denote a square root of v.) This function g(a) satisfies
Assumption 2.12.
There is a central extension

1 —> psy —> GL,.(F) — GL,(F) —> 1

that is essentially an n-fold cover, described in [5]. We will refer to this as the metaplectic
group.

If z € (C*)" then there is a principal series representation i, defined in [5]. Associ-
ated with 1, there are n” linearly independent spherical Whittaker functions on GE(F ).
Let W, denote the space of functions spanned by these. If W € W,, we are interested
in the values of W evaluated at

where s : GL,(F) — C’}er(F ) is a standard section (see [5]) and A is a partition of
length < r. These are combinatorially interesting sums of products of Gauss sums and
polynomials in v whose study goes back to Kazhdan and Patterson [34]. In [5,7] we
showed how to represent such Whittaker functions in terms of finite systems of Gamma
and Delta ice. In this section we will show that metaplectic Whittaker functions can also
be described as partition functions of infinite systems, and thereby relate them to the
metaplectic symmetric functions, and to vertex operators.

Let . = (A, -+, A,) be a partition of length < r,letz = (z1,---,z,) € (C*),
and let 0 = (01, ,0,) € (Z/nZ)". We will now describe the finite systems GE’J
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Fig. 2. A state of Delta ice. In this example n = 2. The charges (written above the horizontal edges) are
integers modulo n that change at the — spins in accordance with Table 1. The charges at + edges must be = 0
modulo n. For Gamma ice, the system is similar, but the rows are numbered increasing from top to bottom,
and the left edges have variable charge, while the right edges all have charge 0, since in Gamma ice —¢ is only
allowed with a equal to 0 modulo n

and GAAﬂ depending on these data. These were considered previously in [5] (Gamma
ice only) and in [7] (both systems).
Letp=@r—-1,r —2,---,0) so that

Atp=@A1+r—1A+r—=2,---, i)

is a strict partition. We consider a grid with r rows and N columns, where N is any
positive integer such that N > A +r — 1. The columns are labeled N, N — 1,...,01n
decreasing order from left to right and the rows are labeled 1, ..., r from the top down
for Delta ice and from the bottom up for Gamma ice.

On the vertical edges along the top boundary, we put — in the k-th column if & is
an entry in A + p; otherwise we put +. On the vertical edges at the bottom, we put + in
every column. On the horizontal edges along the left boundary we put the decorated spin
+0 (Delta ice) or +% in the i-th row (Gamma ice). On the horizontal edges on the right
boundary we put the decorated spin —° in the i-th column (Delta ice) or —° (Gamma
ice). We use the Gamma Boltzmann weights in the i-th row for Gamma ice and Delta
Boltzmann weights for Delta ice. See Figure 2 for an example of the system G)ﬁ o

Let § denote the modular quasicharacter of the Borel subgroup on GL,; (F), lifted to
a function on GL, (F).

Proposition 6.1. Let o € (Z/nZ)" and z € (C*)". Then there exists a spherical Whit-
taker function WGA € W, such that for A a partition of length < r, we have

2(&7,) =" (@MW @) . (6.1)
Proof. By Theorem 6.3 of [5], there exists a spherical Whittaker function W) such that

Z8) ) =8P (@MW (@?h). 6.2)
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Here we have absorbed the factor z*°°*” that appears in that theorem into the Whittaker
function. It is proved in Theorem 2.3 of [7] that

Yooz =@V D Ze] ).

oe(Z/nZ)" te(Z/nZ)"

The constant (z; - - - z,) does not appear in [7], but this is because in this paper we
have changed the Boltzmann weights for Gamma ice, in order that the partition function
be convergent for infinite grids. The arguments there are easily refined to show that, for
suitable constants S, ;(z) independent of A, we have

ZGP) = > Se:(@Z(S] ).
re(Z/nZ)"

Substituting (6.2) into this identity gives us (6.1) with W2 =S, . WI'. O

Now we wish to relate the partition functions of these finite systems to the infinite
systems defined in Section 3. Let us choose a partition £ whose first part §; < r — 1.
Now if A is a partition of length < r let A » £ denote the partition A" = (A}, A}, ---)
where
r_ Aj+r—1if j<r,

J };: j—r if ] >r.
Note that since we have assumed that & < r — 1 these entries are weakly decreasing,
80 A x £ is a partition. In Frobenius notation,

_( A A A3 e Ay
“5—<g;+1g§+1§§+1---g;+1)’

where &’ is the conjugate partition of &.

A

Proposition 6.2. Let & be a partition such that &y < r — 1 and let o € (Z/nZ)". Then

there exist constants c(&, o; ) depending on & and o such that if . = (A1, --- ,Ar) isa
partition of length < r, then
OIT A &) = Y c 052 Z(S],). (6.3)
oe(Z/nZ)"

Here in the notation (1.4) both vectors |0) = |0; 0) and |. x &) = |A x &; 0) are in Tp.

Proof. Let us define an invariant N : o — N. Suppose & = uj, where i is as in (3.1),
withm = 0.1f0 > iy then we define N (§) = 0; otherwise, N (§) = ¢ where 7 is such that
i—; 2 0>i_,1.If & is interpreted as an assignment of spins to a sequence of vertical
edges, then N (£) is the number of — spins to the left of the O-th column (inclusively)
or equivalently (since & € §p), the number of + spins strictly to the right of the 0-th
column.

Consider a state of the infinite system GZA’IMSMO)J of Section 3. For 0 < r let i%®)
be the decreasing sequence such that in the notation (1.3), u;w is the element of o
corresponding to the configuration of spins below the k-th row, and u;«-1) is the element
corresponding to the configuration above it. Thus u;0) = |A x &) and u;0) = |0).

We will show that the spins of the horizontal edges connecting vertices of the 0-th
column to those of the —1-st column are all —. Indeed, it follows from Lemma 3.1 that
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either N (u;u+1) = N (ujw) or N(uju+y) = N (uj0) — 1. But since N (u;0») = 0 and
N(uj0) = N(IA % &)) = r, we must have N (u;00) = k for all k. Now the fact that
N (4;4) and N (u;-1)) have opposite parity implies that the spin in the k-th row on the
horizontal edge to the right of the 0-th column is —, as required.

Now to complete the proof, we fix spins o = (o7, - - - , o) and collect together the
states whose decorated spin on the edge in the k-th row to the right of the 0-th column
is —%. The product of the Boltzmann weights to the left of the 0-th column is the
Boltzmann weight of a state of & ﬁ » and so clearly the sum of such Boltzmann weights

equals Z (GAA’ ) times a factor that is independent of A. O

Let us reformulate this result as expressing a metaplectic Whittaker function in terms
of the metaplectic symmetric functions.

Theorem 6.3. Let & be a partition (of any length) such that &, < r — 1. Then

Yo et o W) =8P (@H M, ().
oe(Z/nZ)"

Proof. This follows from combining Proposition 6.2 with Proposition 6.1 and the defi-
nition (1.9) of the metaplectic symmetric function MY. O

Remark 6.4. By Corollary 5.9, this particular Whittaker function vanishes at z* unless
A x & has empty n-core. Although Mﬁ*g is a symmetric function, this does not imply
that the Whittaker function is symmetric in z because of the factor c(&, o; z). These
coefficients may be of interest for their own sake.

Remark 6.5. It seems probable that the Whittaker functions on the left-hand side (varying
&) span the space of Whittaker functions. Such a result would give a two-way connection
between metaplectic Whittaker functions and metaplectic symmetric functions.

7. Vertex Operators
So far we have put a lot of focus on operators of the form either:
Vi(2) = exp(Hilal(z))  or  V_(2) =exp(H_[a](2)), (7.1)

which we call half-vertex operators, where H,[a](z) and H_[a](z) are formal power
series in z and z ! respectively defined by (1.7) and (1.8). Recall that H, involves the
right-moving operators J; and H_ involves the left-moving operators J_; with k > 0.
We have proved that the operators T (z) and Tr(z) are of this type.

In this section we will consider their products V_(z)V4(z), such as the operator
Tr(z2)Ta(z), and investigate if they satisfy the properties of a vertex operator. There is
one reason to believe that T (z) Ta (z) is a natural entity: in symplectic ice ( [8,21,24])
one represents the Whittaker function on the n-fold cover of Sp(2r) with Langlands
parameters 71, zl_l ,---,2r, 2, | by the partition function of a system having alternating
layers of Gamma and Delta ice. The two adjacent layers are joined by a “cap” vertex
which does not have an obvious analog in our current setup.

Gamma and Delta ice occur together in another context, namely the equality of
the partition functions for Gamma and Delta ice. In [7] this result (established earlier
with greater difficulty in [10]) is proved using Yang-Baxter equations. In that context
Tr(z)Ta(w) only appear there with z and w distinct. For this, our Theorem 7.3 below
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is relevant, taking the place of the Yang-Baxter equations in our current setup. Still, in
this section we are mainly interested in V (z) = Tr(z) Ta (z) with the parameters equal.

Vertex operators exhibit a property called locality. This is a generalization of com-
mutativity that was emphasized in [12,16,30]. It is explained in Chapter 1 of [30] that
for the vertex operators arising in conformal field theory, locality is a reflection of the
locality in the Wightman axioms for a quantum field theory: two fields with disjoint
support having spacelike separation commute as operators.

If F is a field, let F[[z]] be the ring of formal power series ano a,z" witha, € F,

and let F'((z)) be the fraction field of F[[z]], consisting of Laurent series Zf;o:_ N an"
with only finitely many negative coefficients. Let 77 H ((z)) denote C((z)) ® S H, the
space of Laurent series with coefficients in S H.

In vertex algebras a field is represented by a formal power series

AR = ) A

k=—00

where Ay is an operator on a Hilbert space ¢ such that for any vector |v) € JZ,
Aglv) = 0 for k > 0. A field gives rise to a map ¢ — J((z)).

Let B(w) = Y oo Brw %! similarly be a field. Locality is a generalization of
commutativity in the sense that two fields A(z) and B(w) are called mutually local if
[A(z), B(w)] = A(z)B(w) — B(w)A(z) is a formal distribution concentrated on the
diagonal z = w. We will explain more precisely what this means.

Note that the matrix elements of A(z)B(w) are elements in C((z))((w)), that is,
in F((w)) where F = C((z)). Similarly the matrix elements of B(w)A(z) are el-
ements in C((w))((z)). The difference between C((z))((w)) and C((w))((z)) is il-
lustrated by image of the rational function 1/(z — w) embedded into the two spaces
as 271 30 o(w/2)F and —w=! Y72 (z/w)* respectively. Requiring that the matrix
elements of [A(z), B(w)] should vanish identically would restrict us to elements in
the intersection of C((z))((w)) and C((w))((z)) in C[[z*, w*]] which is the space
Cllz, wllz~!, w1 giving a too strong condition [16]. Instead, we use the more re-
laxed condition that

z—w)V[A®), Bw)] =0 (7.2)

as a formal power series for some positive integer N. In this case we say the fields A(z)
and B(w) are mutually local.

Let us give another explanation of this notion. We assume that Ay and B; commute
if k and [ are either both positive or both negative, that Ag and By commute with all Ay
and B;. Moreover let us assume that the normal-ordered product

o]

A@QBw):= Y Y T A

k=—00l=—00
is a bounded operator on .7, where

BiAp ifk > 0,

ArBr: = { Ay B; otherwise.

Our assumptions imply that :A(z) B(w): = :B(w)A(z):. Now consider:

A2)B(w) —:A(z) B(w):.
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Very often this operator will be given by a power series that is convergent when |w| < |z].
Let us denote this as ¢ (z, w). Furthermore it may be that B(w)A(z) — :A(z) B(w): is
also given by a power series, convergent when |z| < |w|, and that this represents the
same rational function ¢ (z, w). In this case the fields A(z) and B(w) are mutually local.

To clarify this with an example, let us work with a Heisenberg Lie algebra having
generators J (k € Z) with Jy central having the commutator relations

[Ji, 1] = 8k, ik - ¢

where c is another central element. This is the special case n = 1 of (2.27). The Hilbert
space .77 is to be generated by a vacuum |0) such that J;|0) = 0 if k > 0 and ¢ acts by
the identity. Now consider the field

J(2) = Z sz*le.

k=—o00

‘We have

C’

00 I 1
J)J(w) —:J()J(w): = ];[Jk, J_xlz™! k= o = m .

the series being convergent when |w| < |z|. Since J(w)J(z) — :J(w)J (z): gives the
same expression in the complementary domain |z| < |w]|, the fields J(z) and J(w) are
mutually local.

Thus the locality is a generalization of the condition that A(z) B(w) = B(w)A(z).
Dong and Lepowsky [12] considered a similar generalization of the condition that

A(2)B(w) = ™" B(w)A(2), (7.3)

for a phase shift ¢/ . Our Proposition 7.5 below shows that we need such a generalization
of locality. Frenkel and Reshetikhin [17] considered even more generally the case where
the phase shift is replaced by an operator S(w/z) that depends analytically only on z
and w. For consistency it is necessary that S(w/z) satisfies a parametrized Yang-Baxter
equation. This is automatic if S(w/z) is a scalar, in which case this identity is similar to
(7.3).

There is another respect in which the framework of [17] is more general than the
usual locality, and this is that they allow S(w/z) to have poles not only on the diagonal
z = w but on shifted diagonals z = yw where y lies in a discrete subgroup of C*. This
concept of locality in [17] is what we see in our examples with the set of lines z = v/ w
and S(w/z) being a scalar.

We require that S is a meromorphic function, with poles only along the lines w = v/z
for a finite number of integer values of j, such that

A()B(w) = S(w/z) B(w)A(z). (7.4)

Let us first consider the meaning of this when A(z) = B(z) = V(z) = V_(2)V4(2)
where Vi (z) are defined in (7.1). Suppose that we can find a rational function ¢ (x) such
that (formally)

Vi@V-(w) = ¢ (=) Vo) V2 ().

Z
w
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Then since V_(z) commutes with V_(w) and V,(z) commutes with V,(w) we have

V@YW =¢ (=) VEV@w):

z
w
where the normal-ordered product is
V@QVw): = Vo@V_(w)Vi(2) Vi(w). (1.5)

Then
VVWw) = Sw/aVw)V(), S&) =¢xH/¢x). (7.6)

Remark 7.1. Strictly speaking V_(z) V4 (z) is not an operator on §, since V_(z)|A) pro-
duces an infinite number of terms. However (| V_(z) V. (z)|A) is a finite sum. Moreover,
the normal-ordered product :V (z) V (w): defined by (7.5) is such that (| :V (2) V (w): |A)
is a finite sum. The normal-ordered product has the advantage of being unchanged if z
and w are switched.

We now take the Heisenberg generators Jj to satisfy the commutator relation (2.27),
and H = §, for some fixed m. We supplement the Ji (k 7# 0) by Jo which acts on §,
by the scalar m. Define the shift operator Q : §,, —> Sm+n by

O Wi, NUjp,_y N-++) = Ujan NUijy_14n N+

We will use the notation |L) = |A; m) introduced in (1.4) for basis vectors.

We may regard V_(z)V4(z) as a map from § into a suitable completion. Depending
on the coefficients a it may be useful to supplement V_(z)V.(z) by a factor such as
Qr Zao Jo .

Example 1. The first case we wish to consider is V,(z) = Ta(z), V_(2) = Tr(z). The
operators T (z) and Th (w) commute as follows from our main theorem (or by a Yang-
Baxter equation argument). Similarly the 7t (z) mutually commute for varying z. But
Ta(z) does not commute with 7T (w). Moreover, we must be cautious about composing
these. Consider

MTa@Tr)IE) =Y (ITa@IENEITr (w)[E). (1.7)
¢

There are an infinite number of terms on the right-hand, side. The sum converges provided
lz| < c1|w| where ¢; = min(1, |v|~1=V/7).

Remark 7.2. There are no such convergence issues if we compose in the other (normal-
ordered) way: because Tt (w)T (z) does the right-moving modes first, the sum corre-
sponding to (7.7) is a finite sum.

Theorem 7.3. Suppose that |z| < c1|w|. Then

(1 —vZ"w™™)(1 —v"Z"w™")
(1 _ an—n)(l _ Un+lznw—n)

TA()Tr(w) = Tr(w)Ta(2). (7.8)

This, together with Remark 7.2 allows us to analytically continue the conditionally
convergent composition T (z) Tt (w), except to the poles of the denominator in (7.8).
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Proof of Theorem 7.3. By a computation very similar to the proof of Theorem 5.10, we
have

eH+(z)er(w)e—H+(z)e—Hf(w) _ 1= v"w ™) (1 = V" Z"w™) ’ 79)
(1 _ z”w—")(l _ U""'lZ”w_”)

and (7.8) follows from our Main Theorem (Theorem A). 0O

In view of our previous discussion, this means that if we define V (z) = Tr(z)Ta(2),
then the operators V (z), V(w) are mutually local in the generalized sense of (7.6) with
¢ (z/w) being the right hand side of (7.9).

Example 2. For our next example, we work with the operators
_ N\ 1k N Lk
Li(z) = kE—l e Ji, L_(2)= kE_l - J_k.

The operator L., (z) appeared in Section 5, and the operator L _(z) resembles the operator
L. (2)* that we used there, except that z is replaced by z~'. Now we will make use of
the shift operator, and Jy. Define

Us() =exp(L+(2)), U%@ =U-@U.(x), U =0z"U%72). (7.10)
Now let us define the normal-ordered product
U (U (w): = U_(QU_(w)U+(2)Us(w).

This is meaningful for all z and w in the sense thatif 1, A are given, then (u| :U (z) U (w):
|A) is always a finite sum.

Proposition 7.4. If |z|/|w| is sufficiently small, then

n—1

1
< < —_ R IA% <& .
U¥ (U (w)—jlzol = viz/w UYQQUY (w): . (7.11)
Proof. We have
. L )_Oolkvnk_l Zk_ n—ll g ; )
[L+(z), L_(w)] _k:1 ek — (—w) ——jE_O og(l —v/z/w),

so by the Baker-Campbell-Hausdorff formula we have

n—1
1
U (U (w) = ]‘[ m:UO(z)UO(w):.
j=0

O

We may take (7.11) as giving meaning to U< (z) U (w) for all z, w except at the poles
of the denominator. Then naturally U (z)U (w) may be defined to be Uy (z) U (w) U< ()
U®(w) where Up(z) = 0z”0. (Note that Up(w) commutes with U (z).)
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Proposition 7.5. We have

n—1

z—viw
U()U(w) = ]_!)w_—vjz Uw)U(z).

Proof. By Proposition 7.4,

nl‘l*l _ ]
U (U (w) = <%> I1 %Uo(w)UQ(Z). (7.12)
! :

w —
=0

On the other hand Jy and Q commute with Ji if k # 0 while [Jy, Q] = n Q. We have

2% QZ—IO — (log@Jo Qe—log(Z)Jo -0,
SO
Z\"
Uo@Uo(w) =" Q*zw” = (=) Uo(w)Us(2).

The statement follows. O

‘We may now discuss the effect of the factor Uy(z) in this definition. If we had omitted
it we would have had locality relation, but the factor S(w/z) would have had to include
the (w/z)" that appears in (7.12). By including the factor Uy (z) in the definition of U (z),
we are able to eliminate the pole at z = 0. The resulting ¢ (z/w) in the locality property

(7.6) for U (z) is then n';;g(z —viw)/(w —viz).
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