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Abstract: We show that sphericalWhittaker functions on an n-fold cover of the general
linear group arise naturally from the quantum Fock space representation of Uq(̂sl(n))

introduced byKashiwara,Miwa and Stern (KMS).We arrive at this connection by recon-
sidering the solvable latticemodels known as “metaplectic ice”whose partition functions
are metaplectic Whittaker functions. First, we show that a certain Hecke action on meta-
plectic Whittaker coinvariants agrees (up to twisting) with a Hecke action of Ginzburg,
Reshetikhin, and Vasserot arising in quantum affine Schur-Weyl duality. This allows us
to expand the framework of KMS by Drinfeld twisting to introduce Gauss sums into the
quantum wedge, which are necessary for connections to metaplectic forms. Our main
theorem interprets the row transfer matrices of this ice model as “half” vertex operators
on quantum Fock space that intertwine with the action of Uq(̂sl(n)). In the process, we
introduce new symmetric functions termedmetaplectic symmetric functions and explain
how they are related to Whittaker functions on an n-fold metaplectic cover of GLr .
These resemble LLT polynomials or ribbon symmetric functions introduced by Lascoux,
Leclerc and Thibon, and in fact the metaplectic symmetric functions are (up to twisting)
specializations of supersymmetric LLT polynomials defined by Lam. Indeed Lam con-
structed families of symmetric functions from Heisenberg algebra actions on the Fock
space commuting with the Uq(̂sl(n))-action. The Heisenberg algebra is independent of
Drinfeld twisting of the quantum group.We explain that half vertex operators agree with
Lam’s construction and this interpretation allows for many new identities for metaplectic
symmetric and Whittaker functions, including Cauchy identities. While both metaplec-
tic symmetric functions and LLT polynomials can be related to vertex operators on the
quantum Fock space, only metaplectic symmetric functions are connected to solvable
lattice models.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-020-03842-w&domain=pdf
http://orcid.org/0000-0002-5871-9259


536 B. Brubaker, V. Buciumas, D. Bump, H. P. A. Gustafsson

1. Introduction

This paper concerns two mechanisms by which the quantum groupsUq(ĝ), for g a sim-
ple Lie algebra or superalgebra, produce families of special functions with a suite of
interesting properties including functional equations, branching rules and unexpected
algebraic relations. The first mechanism uses solvable lattice models associated to finite-
dimensional modules of Uq(ĝ). The second mechanism uses actions of Heisenberg
and Clifford algebras on a fermionic Fock space, as in the boson-fermion correspon-
dence [27,31,45] with connections to soliton theory. We will use these two points of
view to provide new insight into the theory of metaplectic Whittaker functions for the
general linear group and relate them to LLT polynomials. To begin, we explain these
two approaches to special functions from quantum affine groups in more detail.

If V is a finite-dimensional module of g, then since Uq(ĝ) is the quantization of a
central extension of g ⊗ C[t, t−1], we obtain a family of evaluation modules Vz (z ∈
C

×) in which t is specialized to the value z. Using quasitriangularity, we have Uq(ĝ)-
homomorphisms (almost always isomorphisms) Vz1 ⊗ Vz2 −→ Vz2 ⊗ Vz1 dictated by
an R-matrix R(z1, z2) satisfying

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2), (1.1)

in End(Vz1 ⊗Vz2 ⊗Vz3). This identity is called the parametrized (quantum) Yang-Baxter
equation with parameter group C

×. These are endomorphisms of Vz1 ⊗ Vz2 ⊗ Vz3 and
the subscripts Ri j mean that the matrix R is applied to the i-th and j-th component of
the threefold tensor product.

Given any suchmatrix R, wemay ask for amatrix T (z) satisfying the “RTT” relation:

R(z1, z2)T (z1)T (z2) = T (z2)T (z1)R(z1, z2). (1.2)

Typically, the matrix T (z) arises as an endomorphism of Vz ⊗ W where W is a fixed
object in the category of Uq(ĝ)-modules. If W = Vz3 and T (z) = R(z, z3) then (1.2)
is equivalent to (1.1). For arbitrary W , the existence of a T (z) ∈ End(Vz,W ) making
(1.2) true follows from quasitriangularity.

Solutions T (z) to (1.2) may also arise as a “row transfer matrix” in a solvable lattice
model. For example in the case of the field-free six-vertexmodel, Baxter [2] demonstrates
that the resulting partition function is a symmetric function in the zi when its Boltzmann
weights satisfy theYang-Baxter equation (1.1). The underlying algebrawas explained by
Kulish andReshetikhin [36], Sklyanin [47],Drinfeld [13] and Jimbo [25] and the relevant
quantum group associated to the R-matrix is Uq(̂sl2). To connect to the presentation of
the Yang-Baxter equation in the previous paragraph, each edge in the planar lattice
model is associated to a two-dimensional evaluation module Vz and the local Boltzmann
weights encode endomorphisms among them.

In [5], the first three authors considered examples of solvable square lattice mod-
els connected to R-matrices of evaluation modules for Uq(̂gl(n|1)). In these examples
(Theorem 1 in [5]), the matrices T (z) in (1.2) do not quite fit the standard paradigm.
Each vertex in the square lattice receives a Boltzmann weight reflecting the action of
T (z) on basis elements determined by adjacent edges; while the horizontal edges may be
identified with evaluation modules for Uq(̂gl(n|1)), the vertical edges represent a two-
dimensional vector space with no known algebraic connection to this quantum group.
The problem is that we are not aware of any candidate for a two dimensional module M
of Uq(̂gl(n|1)) that would explain the matrix T (z). In other words, we would like there
to exist an M such that the R-matrix for Vz ⊗ M is the matrix for a set of Boltzmann
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weights used in this paper. See Table 1 in Section 3. If no such two-dimensional module
exists, then we have an example of a parametrized Yang-Baxter equation that is not
explained by quasitriangularity. This is an important unresolved question.

Nevertheless in [5] the partition function of the model is shown to be solvable and
equal the spherical Whittaker function on an n-fold metaplectic cover of the general
linear group; this will be our primary example of the sort of special functions mentioned
at the outset.

Aswewill explain in the present paper, an alternate algebraic interpretation is possible
if we take T (z) to be the row transfer matrix of an infinite grid; then a module explaining
T (z) does appear, and it is the quantum fermionic Fock space defined by Kashiwara,
Miwa and Stern [32]. Thus instead of trying to interpret the vertically oriented edges
(which can have only two states ±) as 2-dimensional modules in the category, there
is an alternative approach – one that takes us from the solvable lattice model point of
view to the Heisenberg algebra point of view, our second mechanism for producing
special functions. In this approach, an infinite sequence of vertical edges in a fixed row
of our square lattice model parametrizes a vector in the fermionic Fock space F. The row
transfer matrix for the model then becomes an operator T (z) : F −→ F with z ∈ C

× a
fixed parameter. The Yang-Baxter equation implies that the operators T (zi ) and T (z j )
commute for any i and j .

In these examples, the space F is not the usual fermionic Fock space described (for
example) in [31]. Instead it is the quantum Fock space F = F

(n)
q of [32], which is a

module forUq(̂sln). It will be a consequence of our main theorem that the operators T (z)
are Uq(̂sln)-module homomorphisms. It also gives a proof, independent of the Yang-
Baxter equation, that the operators T (z) commute. Thus our method here succeeds in
providing a quantum group interpretations to these problematic vertical edges in the
metaplectic ice model.

We may picture the Fock space F as follows. Similar to the way Dirac described the
electron sea, consider a quantum particle with an infinite number of states, one for each
energy level, and a system of such particles obeying the Pauli exclusion principle where
the lowest energy levels are all occupied and the highest levels are unoccupied. Thus if
ui represents the particle in a state with energy i , then a basis of F consists of vectors

ui := uim ∧ uim−1 ∧ · · · (1.3)

where i = (im, im−1, · · · ) is a strictly decreasing sequence such that ik = k for k � 0.
Here im, im−1, · · · are the energy levels of occupied states; we may arrange that im >

im−1 > · · · . The condition that ik = k for k � 0 ensures that all sufficiently low energy
levels are occupied. The totality of such states for fixed m is the level m space Fm and
F = ⊕

m Fm .
If m is given, we may parametrize the semi-infinite monomials (1.3) by partitions: if

λ = (λ1, λ2, · · · ) is a partition, then we may take im = m + λ1, im−1 = m − 1 + λ2, etc.
This gives a bijection between partitions and basis vectors of Fm . Thus we write

|λ〉 = |λ;m〉 := um+λ1 ∧ um−1+λ2 ∧ · · · . (1.4)

In Section 2 we review and generalize the construction of the quantum Fock space of
[32]. In Theorem 2.5 we relate the Hecke action that underlies this construction (due to
Ginzburg, Reshetikhin and Vasserot [20]) to another Hecke action, which was motivated
by the action in [6] onWhittaker coinvariants. Because of this we are able to easily build
an action of the Hecke algebra modified by a Drinfeld twist. This generalization allows
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us to introduce Gauss sums to the anticommutation rule for vectors in the Fock space.
This twisting is needed for the application to metaplectic Whittaker functions, but is
more general than what is needed for this application and so may be of importance for
other purposes.

To connect the quantum Fock space to solvable lattice models, we introduce a grid,
infinite in width, whose boundary edges encode vectors in the Fock space. The column
edges of the solvable lattice model in [5] are likewise indexed by partitions, so may be
viewed as semi-infinite wedge products according to the above correspondence. This
point of view will be detailed further in Section 3.

Let us now explain our main theorem which considers two solvable lattice mod-
els connected to Uq(̂gl(n|1)) R-matrices called Gamma ice and Delta ice detailed in
Section 4, and their row transfer matrices T�(z) and T�(z).

In addition to being a Uq(̂sln)-module, F is a module for a Heisenberg Lie algebra,
spanned by “current” operators Jk , and by a central vector 1. The operator Jk (denoted
Bk in [32], and defined in (2.25)) shifts one fermion to a different level by changing its
energy from i to i − kn. The operators Jk with k > 0 are thus right-moving operators,
and those with k < 0 are left-moving. They satisfy [Jk, Jl ] = 0 unless k = −l.

Introduce the operators H+(z) and H−(z) defined by

H±(z) :=
∞
∑

k=1

1

k
(1 − vk)z±nk J±k . (1.5)

Our main theorem, which will be proved in Section 4, is:

Theorem A. The operators eH+(z) and eH−(z) equal the row transfer matrices of Gamma
and Delta ice:

eH+(z) = T�(z), eH−(z) = T�(z) . (1.6)

Operators such as these occur in conformal field theory, and also other areas of
mathematics such as soliton theory, “monstrous moonshine” and the abstract boson-
fermion correspondence. Generally, we will call an operator of the form

exp(H+[a](z)), H+[a](z) =
∞
∑

k=1

ak Jkz
k (1.7)

or

exp(H−[b](z)), H−[b](z) =
∞
∑

k=1

b−k J−k z
−k (1.8)

a half-vertex operator. We must be careful with H−[b], since H−[b](z)|λ〉 is an infinite
sum and not in Fm . Nevertheless the sum 〈μ|H−[b](z)|λ〉 is finite and therefore such
expressions make sense; in fact just 〈μ|H−[b](z) is a finite sum. (Here we use the usual
Dirac notation for operators on Fm . If H : Fm −→ Fm is an operator, we will denote by
〈μ|H |λ〉 the inner product of H |λ〉 with |μ〉.)

Operators of the form exp(H−[b](z))·exp(H+[a](z)) appear inmathematical physics.
See for example [18,33] Part II in Volume I or [27] (1.15). Subject to a locality assump-
tion ([16,30]), they are called vertex operators. In this paper we will deal mainly with
half-vertex operators. Yet there are representation theory contexts in which Gamma ice
and Delta ice occur together ([7,8,10,21,24]) leading to vertex operators as above. In
Section 7 we show that the locality properties of such operators fit into the algebraic
framework of Frenkel and Reshetikhin [17].
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As mentioned above, the method of Baxter [2] based on the Yang-Baxter equa-
tion produces families of commuting row-transfer matrices. That is, T�(z1)T�(z2) =
T�(z2)T�(z1), and similarly for T�(z). On the other hand, the commutativity also fol-
lows from the identity (1.6), because Jk and Jl commute if k and l have the same sign.
Note however that T� does not commute with T� . In Theorem 7.3 we compute precisely
a scalar C(z, w) such that T�(z)T�(w) = C(z, w)T�(w)T�(z), and this calculation is
essential to our discussion of locality.

In the paragraphs above we have described relationships between quantum groups,
solvable lattice models, and Heisenberg algebras acting on a Fock space F. Using these
we will make two connections to existing literature. First, it is shown in [5,7] that
the Boltzmann weights that we use in this paper can be used in finite systems whose
partition functions areWhittaker functions on the n-fold metaplectic covers of GLr over
a local field. It is striking that for these, the relevant quantum group is Uq(̂gln) or its
relativesUq(̂gl(n|1)) orUq(̂sln). The relationship between the degree n of the cover and
the rank of the quantum group was very unexpected. For the application to metaplectic
Whittaker functions, the quantum group must be modified by Drinfeld twisting in order
to introduce Gauss sums into the comultiplication ofUq(̂sln), and consequently into the
R-matrix and quantum wedge relations in F.

Although the metaplectic Whittaker functions are not symmetric in the Langlands
parameters z = (z1, · · · , zr ), when we switch to the infinite grids and the Fock space
F, we find expressions such as

Mn
λ/μ(z) = 〈μ|T�(z1) · · · T�(zr )|λ〉 =

〈

μ

∣

∣

∣

∣

exp

( ∞
∑

k=1

1

k
(1 − vk)pnk(z)Jk

)

∣

∣

∣

∣

λ

〉

,

(1.9)
where pnk(z) = ∑

i z
nk
i is the power-sum symmetric function. (We use the notation

Mn
λ if μ is the empty partition.) By Theorem A, Mn

λ/μ can be interpreted as a parti-
tion function very similar to the metaplectic Whittaker functions. But unlike Whittaker
functions, these polynomials are symmetric. We will call them metaplectic symmetric
functions. In Theorem 6.3 we will show howmetaplecticWhittaker functions (which are
not symmetric) can be expressed in terms of the new metaplectic symmetric functions.

Thus we will show that the solvable models of [5,7] admit an interpretation in terms
of a Heisenberg algebra commuting with a Uq(̂sln) action on Fock space. The case
when n = 1, which reduces to the Shintani-Casselman-Shalika formula for the general
linear group (or Tokuyama’s formula), was treated in Brubaker and Schultz [11]. In
that case, values of Whittaker functions are Schur polynomials, and so recovers a result
expressing Schur polynomials as partition functions of free-fermionic six-vertex models
[9,23,52,53].

This brings us to the second connection to existing literature. The quantum Fock
space has in prior results [37,38,42] been applied in the theory of LLT polynomials,
also known as ribbon symmetric functions. These are q-deformations of products of
n Schur functions. If n is large, they become Hall-Littlewood polynomials. They are
a reflection of the plethysm with power-sum symmetric functions (Adams operations)
and are connected with algorithms in the (modular) representation theory of symmetric
groups. They have reappeared in other contexts such as Schur positivity and affine
Schubert calculus.

Lam [38] formalized a generalized boson-fermion correspondence that includes
these examples and others such as the LLT polynomials. The bosonic Fock spaceBmay
be identified with the ring � of symmetric polynomials and (over Q) the power-sum
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symmetric functions pk generate. They give rise to a representation of the Heisenberg
Lie algebra on B in which multiplication by, or differentiation with respect to, the pk
correspond to the operators Jk on the fermionic Fock space. (See also [27,31,45].)
Lam explained how to construct symmetric functions from any such Heisenberg algebra
action and reinterpreted results of [42] to put LLT polynomials into this framework.

Aswe demonstrate in Section 5, Lam’s symmetric function construction is equivalent
to action by half-vertex operators. Thus LLT polynomials may be expressed in the form

Gn
λ/μ(zn) =

〈

μ

∣

∣

∣

∣

exp

( ∞
∑

k=1

1

k
pnk(z)Jk

)

∣

∣

∣

∣

λ

〉

. (1.10)

This is very similar to the metaplectic symmetric functions, and indeed we will show
that the metaplectic symmetric functions are specializations of super LLT polynomials,
presented in Definition 29 of [37]. One might suspect from this that LLT polynomials
might likewise be expressible as partition functions of the solvable lattice models from
[5] with boundary conditions determined by the pair of partitions λ and μ; in fact this is
not possible. It is only this very particular specialization of the super LLT polynomial
that results in an appropriate cancellation of terms and permits the resulting function to
be expressed using our solvable models.

Moreover in [38], Lam shows that these families of symmetric functions constructed
from Heisenberg algebras satisfy a large collection of interesting identities, including
Cauchy and Pieri identities. Thus, as a consequence of the main theorem, we are now
able to use these same tools to prove analogous identities for metaplectic symmetric
functions. As proof of concept, we prove a Cauchy identity for the new metaplectic
symmetric functions. (See Theorem 5.10.) In the non-metaplectic setting, such Cauchy
identities for Schur functions found application in the Rankin-Selberg method.

It seems an important question to find other theories that connect the twomechanisms
of solvable lattice models and vertex operators. The well-known relationship between
the Heisenberg spin-chain Hamiltonians and the field-free six and eight vertex mod-
els may be one example. (See Baxter [1].) Another place to look for an analog of our
Main Theorem is in the theory of Hall-Littlewood polynomials. Thus in Jing [28,29]
a quantum boson-fermion correspondence is described, where the commuting actions
of a Heisenberg Lie algebra with a quantum group is used to study Hall-Littlewood
polynomials in the context of vertex operators. But on the other hand Korff [35], taking
a point of view surprisingly close to ours, develops a theory of Hall-Littlewood polyno-
mials using lattice models based on Boltzmann weights that connect with a q-deformed
bosonic Fock space. Borodin andWheeler [4] andWheeler and Zinn-Justin [51] contain
further developments of this viewpoint.

As noted above, the results described above concern mainly half-vertex operators,
which have expansions in terms of the positive or negative Heisenberg generators Jk .
However, it is also interesting to consider operators that involve both the positive and
negative generators. BecauseGamma ice andDelta ice occur together in several different
contexts, it is natural to consider “fields” such as V (z) = T�(z)T�(z). We will look at
these in Section 7, in particular investigating locality properties of the field V (z). It is
outside the scope of this paper to fully realize our operators in the language of vertex
algebras, but it seems likely that this can be done using the framework of quantum vertex
algebras [3,15,17] and we intend to revisit this in a subsequent paper. Additional future
directions may include generalizations of our construction of solvable lattice models to
other Cartan types, perhaps using the abstract Fock space built in the work of Lanini,
Ram and Sobaje [40,41].
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2. The Fermionic Fock Space

This section reviews the definition of the fermionic Fock space following Kashiwara,
Miwa and Stern [32]. As they showed, this is a module for the affine quantum group
Uq(̂sln). However we will require greater generality by giving the Fock space the struc-
ture of a module over a Drinfeld twist of this quantum group. Thus while we follow
[32] very closely, sometimes we add some details to make clear the differences between
working with Uq(̂sln) or its Drinfeld twist. Theorem 2.5 appears to be new and it is a
key ingredient that allows us to deduce the action of the affine Hecke algebra on the
Drinfeld twist of the Fock space.

2.1. The quantum group. Let n be a positive integer, and let q be either a formal pa-
rameter or a generic complex number (i.e., not a root of unity). All the indices in the
relations in this paper involving elements of the quantum group should be read modulo
n.

We introduce the quantum group Uq(̂sln) which acts on the fermionic Fock space,
focusing on the quasitriangular bialgebra structure (it is also a Hopf algebra, but we will
not be using the antipode anywhere). Let [m]q be the quantum integer associated to the
integer m defined by

[m]q := qm − q−m

q − q−1 .

Let A = (ai j )0�i, j�n−1 be the Cartan matrix of affine type ̂An−1. Its non-zero entries
are aii = 2 and ai j = −1 when i = j ± 1 for n � 3 (where we recall that the indices
should be read modulo n). For n = 2 the second equality in the definition of the Cartan
matrix is replaced by ai j = −2.

The quantum group Uq(̂sln) is the unital algebra generated by elements Ei , Fi , K
±
i

for 0 � i � n − 1, subject to the following relations (when n � 3 or n = 1):

Ki K j = K j Ki , Ki E j = qai j E j Ki , Ki Fj = q−ai j Fj Ki ,

Ei E j = E j Ei , Fi Fj = Fj Fi if i 
= j ± 1,

Ei Fj − Fj Ei = δi, j
Ki − K−1

i

q − q−1 ,

E2
i Ei±1 − (q + q−1)Ei Ei±1Ei + Ei±1E

2
i = 0,

F2
i Fi±1 − (q + q−1)Fi Fi±1Fi + Fi±1F

2
i = 0.

(2.1)

In the case n = 2, the last two relations are replaced by the following relations:

E3
i Ei±1 − [3]q E2

i Ei±1Ei + [3]q Ei Ei±1E
2
i − Ei±1E

3
i = 0,

F3
i Fi±1 − [3]q F2

i Fi±1Fi + [3]q Fi Fi±1F
2
i− Fi±1F

3
i = 0.

(2.2)

The subalgebra of Uq(̂sln) generated by Ei , Fi , K
±
i for 1 � i � n − 1 is the finite

quantum group Uq(sln).

Remark 2.1. In the case n = 1, Uq(̂sl1) is the algebra generated by K±1
0 . We will show

that our method produces interesting six-vertex models even starting from this “trivial”
quantum group.
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Remark 2.2. The quantum group we denote by Uq(̂sln) is denoted by U ′
q(

̂sln) in [32].
Our quantum group does not contain a derivation d.

The comultiplication � on Uq(̂sln) is defined as follows:

�(Ki ) = Ki ⊗ Ki ,

�(Ei ) = 1 ⊗ Ei + Ei ⊗ Ki ,

�(Fi ) = Fi ⊗ 1 + K−1
i ⊗ Fi .

(2.3)

Let Vn be an n-dimensional vector space with basis {v1, . . . , vn}. The natural module
of Uq(̂sln), which we denote by Vn(z), is the vector space Vn ⊗ C[z, z−1] with basis
{zkvi } for 1 � i � n, k ∈ Z. Another useful basis is {u j } with j ∈ Z satisfying the
relations

u j−kn = zkv j , (2.4)

for 1 � j � n, k ∈ Z. The action of Uq(̂sln) on Vn(z) is as follows:

Ki z
kv j = qδi, j−δi+1, j zkv j ,

Ei z
kv j = δi, j−1z

k−δi,0v j−1,

Fi z
kv j = δi, j z

k−δi,0v j+1.

(2.5)

There is a natural ordering on the basis {zkv j }:
· · · > zk−1v2 > zk−1v1 > zkvn > zkvn−1 > · · · . (2.6)

Note that in the {u j }-basis, the ordering is just u j+1 > u j .
There is an action ofUq(̂sln) on tensor powers of the natural module Vn(z)⊗N given

by iterations of the comultiplication. An affine version of Schur-Weyl dualitywas studied
in [20,50], where it is shown that the centralizer of the action of Uq(̂sln) on Vn(z)⊗N

is the Hecke algebra ̂HN (v), for v = q2. In [22], the affine quantum Schur algebra is
introduced and a double centralizer property is proved (though note that the definition
of the affine quantum group in [22] is slightly different from our definition).

2.2. The affine Hecke algebra. The (type A) affine Hecke algebra ̂HN (q2) =: ̂HN is
the associative algebra with generators Ti for 1 � i � N − 1 and y±

j for 1 � j � N
subject to the following relations:

T 2
i = (q2 − 1)Ti + q2,

Ti Ti+1Ti = Ti+1Ti Ti+1,

Ti Tj = Tj Ti if |i − j | > 1,

yi y j = y j yi ,

y j Ti = Ti y j if i 
= j, j + 1,

Ti yi Ti = q2yi+1.

(2.7)

The first relation in the definition of the Hecke algebra can be rewritten as (Ti + 1)(Ti −
q2) = 0, which allows one to decompose any space on which Ti acts into eigenspaces
corresponding to its two eigenvalues: q2 and −1.
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We denote by SN the symmetric group on N strands. For σ ∈ SN , let σ = si1 · · · sil
be a minimal length expression, where si ∈ SN are the simple permutations. It is then
well known that the definition

Tσ := Tsi1 · · · Tsil (2.8)

is independent of which minimal length expression of σ we choose and that the set
{Tσ , σ ∈ SN } is a basis for the the finite Hecke algebra HN ⊂ ̂HN , which by definition
is the algebra generated by T1, · · · , TN−1.

We denote (Vn(z))⊗N = Vn(z1) ⊗ Vn(z2) ⊗ · · · ⊗ Vn(zN ) to distinguish between
the indeterminates corresponding to different copies of Vn(z). The space Vn(z)⊗N has
a basis

vj ⊗ z := v j1 ⊗ · · · ⊗ v jN ⊗ zk11 · · · zkNN (2.9)

where j = ( j1, · · · , jN ) and z is shorthand for zk11 · · · zkNN , ki ∈ Z. The symmetric group
SN acts on all elements of the form vj by permutation; it also acts on all elements of the

form z as follows: si : · · · zkii zki+1i+1 · · · 
→ · · · zkii+1zki+1i · · · .
Remark 2.3. The notation z has a different meaning in this section than in the introduc-
tion. In this section (following [32]) z is defined by (2.9).

There is a right action of the Hecke algebra ̂HN on the tensor product Vn(z)⊗N which
was first written down in [20]:

(vj ⊗ z) · Ti =

⎧

⎪

⎨

⎪

⎩

(1 − q2)vj ⊗ zi+1zsi −zi z
zi−zi+1

− qvsi (j) ⊗ zsi if ji < ji+1,

(1 − q2)vj ⊗ zi (zsi −z)
zi−zi+1

− vsi (j) ⊗ zsi if ji = ji+1,

(1 − q2)vj ⊗ zi (zsi −z)
zi−zi+1

− qvsi (j) ⊗ zsi if ji > ji+1,

(vj ⊗ z) · yi = (vj ⊗ z · z−1
i ).

(2.10)

A crucial fact in defining the quantum Fock space is the property that the right action of
̂HN and the left action of Uq(̂sln) on Vn(z)⊗N commute.

Let Vx , x ∈ C
× be the evaluation module ofUq(̂sln). It is the quotient of the natural

module by the submodule spanned by elements vi zk+1−xvi zk . It is called the evaluation
module because we “evaluate” the indeterminate z at x ∈ C

×. In [6, Section 3], the first
three authors and Friedberg give examples of representations of the affine Hecke algebra
on evaluation modules of quantum groups with applications to the study of metaplectic
Whittaker functions. There is a “natural” lifting of the action in [6] to an action of ̂HN
on Vn(z)⊗N which involves the affine R-matrix.

The quantum group Uq(̂sln) is quasitriangular; this means there is an element living
in (a completion of) Uq(̂sln) ⊗Uq(̂sln) called the universal R-matrix, which we denote
byR, satisfying certain well-known properties. See Proposition 4.1 in [19] for a formula
of the universal R-matrix of Uq(̂sln). The action ofR on Vn(z)⊗2 = Vn(zi ) ⊗ Vn(zi+1)
is given by the affine R-matrix R(zi , zi+1) ∈ End(Vn ⊗ Vn) ⊗ C[zi , zi+1] defined as:

τ R(zi , zi+1) =
∑

i

(qzi − q−1zi+1)eii ⊗ eii +
∑

i 
= j

(zi − zi+1)e ji ⊗ ei j

+
∑

i> j

(q − q−1)zi e j j ⊗ eii + (q − q−1)zi+1eii ⊗ e j j ,
(2.11)

where ei j ∈ End(Vn ⊗ Vn) are the maps ei j : v j 
→ δi jvi and τ ∈ End(Vn ⊗ Vn) is the
flip map τ : vi ⊗ v j 
→ v j ⊗ vi . See the unnumbered equation between equations 30
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and 31 in [19] and the preceding discussion for an explanation of the fact that the action
ofR on Vn(z1) ⊗ Vn(z2) is R(z1, z2). Denote by R(z) := R(1, z).

Remark 2.4. If we replace the indeterminates zi and zi+1 in R(zi , zi+1) by complex
numbers xi and xi+1, we obtain the affine (type A) R-matrix for evaluation modules
discovered by Jimbo [26] before the work of Frenkel and Reshetikhin [19].

The natural version of the evaluation action of the affine Hecke algebra given in [6],
Theorem 3.3 reads as follows:

(vj ⊗ z) · Ti = (q2 − 1)
zi

zi − zi+1
vj ⊗ z − q

zi − zi+1
(τ Rq)i,i+1(zi , zi+1)vj ⊗ zsi ,

(vj ⊗ z) · yi = (vj ⊗ z · z−1
i ).

(2.12)

Theorem 2.5. The actions of the affine Hecke algebra in equations (2.10) and (2.12)
agree.

Proof. This follows by the following computation:

((vj ⊗ z) · Ti )eq. (2.10) =

⎧

⎪

⎨

⎪

⎩

(1 − q2)vj ⊗ zi+1zsi −zi z
zi−zi+1

− qvsi (j) ⊗ zsi if ji < ji+1
(1 − q2)vj ⊗ zi (zsi −z)

zi−zi+1
− vsi (j) ⊗ zsi if ji = ji+1

(1 − q2)vj ⊗ zi (zsi −z)
zi−zi+1

− qvsi (j) ⊗ zsi if ji > ji+1

= (q2 − 1)
zi

zi − zi+1
vj

⊗ z − 1

zi − zi+1

⎧

⎪

⎨

⎪

⎩

((q2 − 1)vjzi+1 + q(zi − zi+1)vsi (j)) ⊗ zsi if ji < ji+1
((q2 − 1)vjzi + (zi − zi+1)vsi (j)) ⊗ zsi if ji = ji+1
((q2 − 1)vjzi + q(zi − zi+1)vsi (j)) ⊗ zsi if ji > ji+1

= (q2 − 1)
zi

zi − zi+1
vj

⊗ z − 1

zi − zi+1

⎧

⎪

⎨

⎪

⎩

((q2 − 1)vjzi+1 + q(zi − zi+1)vsi (j)) ⊗ zsi if ji < ji+1
((q2zi − zi+1)vj) ⊗ zsi if ji = ji+1
((q2 − 1)vjzi + q(zi − zi+1)vsi (j)) ⊗ zsi if ji > ji+1

= (q2 − 1)
zi

zi − zi+1
vj

⊗ z − q

zi − zi+1
(τ Rq)i,i+1(zi , zi+1)vj ⊗ zsi = ((vj ⊗ z) · Ti )eq. (2.12).

��
The importance of Theorem 2.5 is twofold. First it clarifies the relation between the

two actions of the affine Hecke algebra which were discovered in different contexts.
Secondly, it gives us a way to rewrite the action in [32], which is instrumental in the
construction of the Fock space representation, in terms of the affine R-matrix. In the
next sections we use a Drinfeld twist of the R-matrix to write down a different action
of the affine Hecke algebra on Vn(z)⊗N (which commutes with the action of a Drinfeld
twist of the quantum group Uq(̂sln)). This allows us to define the Drinfeld twist of the
quantum Fock space.
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2.3. Drinfeld twisting. The Drinfeld twist [14] is a deformation of the Hopf algebra
structure of a quantum group that changes the comultiplication, antipode and the uni-
versal R-matrix, but leaves the multiplication, unit and counit intact. Drinfeld twisting
produces new solutions of the Yang-Baxter equation.

Reshetikhin [46] proved that given a quantum group H and an element F ∈ H ⊗ H
of the form F = ∑

i f
i ⊗ fi satisfying certain properties ( [46, Section 1]), one can

define a Drinfeld twist of H , denoted HF , with a new comultiplication and universal
R-matrix given by

�F (a) = F�(a)F−1

RF = F21RF−1
(2.13)

where F21 = ∑

i fi ⊗ f i . He then shows, in [46] Section 2, that

F = exp

⎛

⎝

∑

1�i< j�n

ai j (Hi ⊗ Hj − Hj ⊗ Hi )

⎞

⎠ (2.14)

satisfies the relations needed to produce a Drinfeld twist of Uq(sln), where Ki = qHi

and ai j ∈ C.
LetUF

q (̂sln) be the quantum group obtained by applying a Drinfeld twist onUq(̂sln)

using the element F ∈ Uq(sln) ⊗ Uq(sln) ⊂ Uq(̂sln) ⊗ Uq(̂sln) defined in equation
(2.14). Its comultiplication and universal R-matrix will be given by equation (2.13).
The twisted quantum group UF

q (̂sln) is the same as Uq(̂sln) as algebras, however the
coproduct, universal R-matrix and antipode are different. The twisted quantum group
UF
q (̂sln) also has a natural module Vn(z). (We will abuse notation, but it should be clear

throughout the paper when Vn(z) is the natural module of the twisted or untwisted quan-
tum group.) Since the twisted and untwisted quantum groups are the same as algebras,
the actionUF

q (̂sln) on Vn(z) is the same as the action given in (2.5). However, since the
comultiplication is different, the action of the twisted and untwisted quantum groups on
Vn(z)⊗N for N > 1 will be different.

Remark 2.6. The quantum group in [46] is defined over C[[h]] as opposed to being
defined over C(q) as in our case. It follows that F defined in (2.14) does not live in
Uq(̂sln) ⊗ Uq(̂sln), but in a certain completion of the tensor product. Similarly, the
universal R-matrixR also lives in a completion of Uq(̂sln) ⊗Uq(̂sln). These facts will
not be problematic for our purposes.

Recall the definition of ui from equation (2.4) and denote the tensor product ui ⊗ u j
by ui j .

Lemma 2.7. The elements F (defined in equation (2.14)) and F21 act on Vn(z)⊗2 as
follows:

F : ui ⊗ u j 
→ √
αi j ui ⊗ u j ,

F21 : ui ⊗ u j 
→ √
α j i ui ⊗ u j ,

(2.15)

where αi i = 1 and αi j when i 
= j is given by

αi j = exp(2ai, j − 2ai−1, j − 2ai, j−1 + 2ai−1, j−1) (2.16)

Proof. This follows from noting that Hi : u j 
→ (δi, j − δi, j−1)u j . ��
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Proposition 2.8. The affine R-matrix RF (zi , zi+1) corresponding to U F
q (̂sln) is

τ RF (zi , zi+1) =
∑

i

(qzi − q−1zi+1)eii ⊗ eii +
∑

i 
= j

αi j (zi − zi+1)e ji ⊗ ei j

+
∑

i> j

(q − q−1)zi e j j ⊗ eii + (q − q−1)zi+1eii ⊗ e j j .
(2.17)

Proof. Note that RF (zi , zi+1) is the action of the universal R-matrix RF on the repre-
sentation Vn(z)⊗2. The result follows immediately after using the action of F−1 and F21
on Vn(z)⊗2 from Lemma 2.7. ��

Given UF
q (̂sln) with R-matrix RF (zi , zi+1) as in Proposition 2.8 which depends on

complex numbers ai j , denote byα the set of numbersαi j , 1 � i, j � n obtained from ai j
using equation (2.16). Fromnowonwewillwrite the dependence of theDrinfeld twisting
in terms of α instead of F (so we write Uα

q (̂sln) instead of UF
q (̂sln) and Rα(zi , zi+1)

instead of RF (zi , zi+1)). Even though there are different choices of F that produce the
same set α, we will not distinguish between such quantum groups. For our purposes,
Drinfeld twists by different F’s with the same α’s will correspond to the same six-vertex
models in future sections.

One should keep inmind that for αi j = 1,Uα
q (̂sln) is the non-twisted quantum groups

Uq(̂sln) and that αi jα j i = 1 = αi i for any α. A standard, though tedious, computation
shows:

Proposition 2.9. There is an action of the Hecke algebra ̂HN on Vn(z)⊗N where yi acts
by multiplication with z−1

i and

(vj ⊗ z) · Ti = (q2 −1)
zi

zi − zi+1
vj ⊗ z− q

zi − zi+1
(τ Rα

q )i,i+1(zi , zi+1)vj ⊗ zsi . (2.18)

Equation (2.18) can be rewritten, via the same process as in the proof of
Theorem 2.5, as

(vj ⊗ z) · Ti =

⎧

⎪

⎨

⎪

⎩

(1 − q2)vj ⊗ zi+1zsi −zi z
zi−zi+1

− qα ji ji+1vsi (j) ⊗ zsi if ji < ji+1
(1 − q2)vj ⊗ zi (zsi −z)

zi−zi+1
− vsi (j) ⊗ zsi if ji = ji+1

(1 − q2)vj ⊗ zi (zsi −z)
zi−zi+1

− qα ji ji+1vsi (j) ⊗ zsi if ji > ji+1

. (2.19)

Proposition 2.10. The action of Ti in equation (2.19) is an Uα
q (̂sln)-module homomor-

phism.

Proof. Note that a ∈ Uα
q (̂sln) acts on Vn(z)⊗2 via �F (a) = F�(z)F−1 and using the

action of F and F−1 on Vn(z)⊗2 from equation (2.15), the proof becomes a routine
calculation.

A non-computational proof goes as follows: by equation (2.18), the action of Ti on
Vn(z)⊗N is a linear combination of the identity map and (τ R)i,i+1(zi , zi+1), both of
which are Uα

q (̂sln)-module homomorphisms. ��
It follows that the right action of ̂HN from equation (2.19) (which depends on α) and

the left action of Uα
q (̂sln) on Vn(z)⊗N commute.
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2.4. The quantum wedge. We now define the exterior product of Vn(z) following [32].
Define the q-antisymmetrizing operator A(N ) acting on Vn(z)⊗N to be

A(N ) =
∑

σ∈SN
Tσ

where Tσ was defined in (2.8).

Proposition 2.11. The Uα
q (̂sln)-module Vn(z)⊗N decomposes as

Vn(z)
⊗N = Im A(N ) ⊕ Ker A(N )

and the spaceKer A(N ) is the sum of the kernels of the operators Ti +1 for 1 � i � N−1.

Proof. See Propositions 1.1 and 1.2 in [32]. Their proof goes through unchanged even
for the new action of ̂HN on Vn(z)⊗N from equation (2.19). ��

In order to understand the spaces Ker(Ti +1)which determineKer(A(N )), take N = 2
and T := T1.

Given integers m and l, let k1, k2 ∈ Z and 1 � j1, j2 � n be such that l = j1 − k1n
and m = j2 − k2n so that ul = v j1 z

k1 and um = v j2 z
k2 . For such integers m and l,

define αlm := αi j . Then the following elements in Vn(z) ⊗ Vn(z) are in Ker(T + 1):

ul ⊗ um + um ⊗ ul if l ≡ m mod n

ul ⊗ um + qαl,mum ⊗ ul +

+ um−i ⊗ ul+i + qαm−i,l+i ul+i ⊗ um−i if m − l ≡ i mod n and 0 < i < n.
(2.20)

Note that αl,m = αm−i,l+i when m − l ≡ i mod n and 0 < i < n.
Define the quantum wedge�2Vn(z) to be the quotient Vn(z)⊗2/Ker A(2) and denote

by ul ∧ um the image of ul ⊗ um in �2Vn(z). It is easy to see from equation (2.20) that
the following relation holds in �2Vn(z) when m = l mod n:

ul ∧ um = −um ∧ ul . (2.21)

Ifm, l are integers such thatm > l andm− l ≡ i mod n, then consider the following
sequence of ordered elements taken out of equation (2.6):

· · · > um > um−i > um−n > um−n−i > · · · > ul+n+i > ul+n > ul+i > ul · · · (2.22)

We say a wedge ul ∧ um is normal-ordered if l > m, so that ul > um in the order
given by equation (2.6). For um > ul , the following relation holds in �2Vn(z):

ul ∧ um = −qαl,mum ∧ ul + (q2 − 1)(um−i ∧ ul+i − qαl,mum−n ∧ ul+n +

q2um−n−i ∧ ul+n+i − q3αm,lum−2n ∧ ul+2n · · · ) (2.23)

where the sum on the right uses entries in the sequence (2.22) and continues as long as
we get normal-ordered wedges. Here i is the unique value with 0 < i < n andm− i ≡ l
modulo n. This fact follows by applying the second line in equation (2.20) repeatedly
until we obtain a formula for ul ∧ um in terms of normal-ordered wedges only.

In the special case when αi j = 1we get back equation (45) in [32]. The specialization
we need may be described as follows. Let g be a function of integers modulo n that
satisfies the following Assumption.
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Assumption 2.12. Let v denote q2. The function g satisfies g(0) = −v, and if a is not
congruent to 0 modulo n, then g(a)g(−a) = v.

Now let us take αi j = −q−1g(i − j) when i 
= j (we always want αi i = 1.) We
obtain the formula, valid if m > l:

ul ∧ um =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− um ∧ ul if l ≡ m mod n,

g(l − m)um ∧ ul + (q2 − 1)(um−i ∧ ul+i + g(l − m)um−n ∧ ul+n

+ q2um−n−i ∧ ul+n+i + q2 g(l − m)um−2n ∧ ul+2n + · · · ) otherwise.
(2.24)

As with (2.23), i is the unique value with 0 < i < n and m − i ≡ l modulo n. And as
with (2.23) the summation continues as long as the terms are of the form ua ∧ ub with
a > b; this is a finite sum.

Let �NVn(z) be the quotient Vn(z)⊗N/Ker(A(N )). The definition of a normal-
ordered wedge extends to �NVn(z). By identical arguments to the one in Proposition
1.3 of [32], one can show:

Proposition 2.13. �NVn(z) is the quotient of Vn(z)⊗N by the relations (2.21) and (2.23)
in each pair of adjacent factors; the elements

um1 ∧ · · · ∧ umN

where m1 > m2 > · · · > mN , form a basis for �NVn(z).

Remark 2.14. Note that for n = 1, m − l is always congruent to 0 mod n. Therefore the
quantum wedge is defined only using relation (2.21). In this case the definition of the
quantum wedge is the same as the definition of the classical (q = 1) wedge for ̂slm for
all m.

2.5. The fermionic Fock space. Let S∞ be the infinite symmetric group generated by
simple reflections si , i ∈ N. Let ̂H∞ be the infinite affine Hecke algebra, with generators
Ti , y

±
i , i = 1, 2, 3, . . . subject to the relations (2.7). It acts on Vn(z)⊗Vn(z)⊗Vn(z) · · ·

via (2.19); the action is well-defined because each Ti acts only on a pair of adjacent
factors.

Let Um be the linear span of vectors of the form

uim ⊗ uim−1 ⊗ uim−2 ⊗ · · ·
such that ik = k for k � 0. The Fock space of levelm is denoted by Fm ; it is the quotient
of Um by the space

∑

i Ker(Ti + 1), or equivalently, by the relations (2.21) and (2.23) in
each pair of adjacent factors.

There is a “formal” action of the quantum group Uα
q (̂sln) on the space Um via the

coproduct (2.3) which descends to genuine action on Fm . A basis of Fm is given by
elements of the form

uim ∧ uim−1 ∧ uim−2 ∧ · · ·
where im > im−1 > · · · and ik = k for k � 0. Define

|m〉 := um ∧ um−1 ∧ um−3 ∧ · · · ∈ Fm,
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which we call the vacuum in Fm . The Fock space F is defined as

F =
⊕

m∈Z

Fm .

Remark 2.15. We caution the reader that due to the “correction terms” in (2.24) there
may be unexpected terms in many calculations. For example, if n = 2, (2.24) shows
that

u1 ∧ u4 ∧ u1 ∧ u0 ∧ · · · = g(−3)u3 ∧ u2 ∧ u1 ∧ u0 ∧ · · · .

In the usual wedge, the left-hand side would be zero due to the repeated factor u1;
however we see that this is not true in the quantum Fock space.

Now let us introduce operators Jk on F. These operators are Uq(̂sln)-module endo-
morphisms that are denoted Bk in [32]. Let uim ∧ uim−1 ∧ uim−2 ∧ · · · ∈ Fm and for a
non-zero k ∈ Z define the displacement operator Jk : Fm → Fm by

Jk(uim ∧ uim−1 ∧ uim−2 ∧ · · · ) = (uim−nk ∧ uim−1 ∧ uim−2 ∧ · · · )
+(uim ∧ uim−2−nk ∧ uim−2 ∧ · · · ) + · · · . (2.25)

That this is indeed an action on the quantum Fock space consistent with the quantum
wedge resulting in a finite sum of wedges is shown in [32, Lemma 2.1]. For ui ∧η ∈ Fm
we note that

Jk(ui ∧ η) = ui−nk ∧ η + ui ∧ Jk(η). (2.26)

The following commutation relation holds:

[Jk, Jl ] = k
1 − vn|k|

1 − v|k| δk,−l . (2.27)

This is Proposition 2.6 in [32]. This commutator is not affected by the Drinfeld twisting.

3. The Main Theorem

We recall two types of solvable lattice models called Gamma and Delta ice. These first
appeared in [5] in the context of metaplectic Whittaker functions, but as we will exhibit
later, they have surprising connections to symmetric functions beyond this particular
application.

Let us begin with a planar grid having a finite number r of rows. The grid may either
have finitely many or infinitely many columns. We will number the rows 1, · · · , r ; for
Delta ice, the row numbers increase from the bottom up, and for Gamma ice, they
increase from the top down. We will also number the columns by integers, in decreasing
order. The column numbers may be all integers in the case of infinitely many columns
or a finite interval, say 0, 1, 2, · · · , N , in the case of finitely many columns. We will
fix nonzero complex numbers z1, · · · , zr and associate zi to the row numbered i . There
are vertices at every intersection of a row and column, and four edges adjacent to each
vertex as in Table 1. A boundary edge is an edge that is adjacent to a single vertex.

A state of Gamma or Delta ice is given by the assignment of a spin ± to each edge
of the grid with certain restrictions. To each horizontally oriented edge, we will also
associate a charge which will be an integer a modulo n. The combination of the spin
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Table 1. The Boltzmann weights for � and � vertices associated to a row parameter z ∈ C
×. The charge a

above an edge indicates any choice of charge mod n and gives the indicated weight. The weights depend on
a parameter v and any function g with g(0) = −v and g(n − a)g(a) = v if a 
≡ 0 mod n. If a configuration
does not appear in this table, its weight is zero. We take z = zi in the i-th row (from the top for Gamma ice,
or from the bottom for Delta ice). For Gamma ice, the Boltzmann weights used in [5] and [7] are multiplied
by z. This change from those papers only multiplies the partition function by a constant power of z1 · · · zr

a1 a2 b1 b2 c1 c2

�-ice
+

+

+

+

a + 1 a

z−1

−

−

−

−

0 0

1

+

−

+

−

a + 1 a

z−1 g(a)

−

+

−

+

0 0

1

−

+

+

−

0 0

1 − v

+

−

−

+

1 0

z−1

�-ice
+

+

+

+

0 0

1

−

−

−

−

a a + 1

g(a)z

+

−

+

−

0 0

1

−

+

−

+

a a + 1

z

−

+

+

−

0 0

(1 − v)z

+

−

−

+

0 1

1

and charge will be called a decorated spin and will be denoted ±a . For Delta ice, we
only allow the spin +a when a is 0 modulo n; for Gamma ice, we only allow −a when
a is 0 modulo n. Thus in either cases, there are n + 1 allowed decorated spins.

For the boundary edges, the spins and (for horizontal edges, the charges) will be fixed.
Their specification, together with a set of Boltzmann weights associated to each vertex
according to 1, will define what we call the system. In this section, we will consider
systems of infinite width, whose columns are labeled by all integers. In Section 6 we
will consider finite systems.

Thus let us describe the boundary conditions when the grid is infinite. The boundary
edges are all therefore vertically oriented. Let us fix an integer m and consider two
strictly decreasing sequences of integers,

i = (im, im−1, · · · ) , j = ( jm, jm−1, · · · ) (3.1)

such that ik = jk = k if 0 � k. The associated boundary spins along the top edge are
− for the edges in columns im, im−1, · · · and + for the edges in columns im, im−1, · · · .
We similarly fix the spins along the bottom boundary to be − in columns jm, jm−1, · · ·
and + in the others. With these data we may associate the following vectors in Fm :

ξ = ui = uim ∧ uim−1 ∧ · · · η = uj = u jm ∧ u jm−1 ∧ · · · .

A state of this infinite system thus requires assigning spins to the internal vertical
edges and decorated spins for the horizontal internal ones. For Delta ice (resp. Gamma
ice), we require that all but finitely many horizontal edges have spins +0 (resp. −0).
Regardless of whether the grid is finite or infinite, a state s of the system will be called
admissible if the configuration of spins at the adjacent edges of every vertex is one of the
configurations in a fixed row of Table 1. LetS denote the set of all admissible states s of
the system, determined by the boundary conditions and Boltzmann weights. When no
confusion may arise, we sometimes use the same notationS to denote either the system
or its set of admissible states. The two systems we consider will thus be denotedS�

z,ξ,η,r

or S�
z,ξ,η,r according to the weights in row one and row two of Table 1, respectively.
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Lemma 3.1. Let r = 1 and let ξ = ui, η = uj ∈ Fm. For eitherS� orS�, there exists
at most one admissible state for the system Sz,ξ,η,1, so 〈η|T (z)|ξ 〉 is the Boltzmann
weight of this state (or zero if no admissible state exists). If such a state exists, then, for
S�

z,ξ,η,1
im � jm � im−1 � jm−1 � · · · . (3.2)

For S�
z,ξ,η,1, we have instead jm � im � · · · .

Proof. Let us consider the case of Delta ice. To see that the state (if it exists) is unique,
observe that every vertexmust have an even number of− signs on its adjoining edges.We
have required all but finitely many horizontal edges to have configuration +0. Suppose
that jm > im . In that case, this observation shows that the spin to the left of the jm
column is +0; so at the vertex in the jm column the configuration would be

+

+

−
−

which is an illegal pattern. Thus im � jm , and continuing this way gives (3.2). The case
of Gamma ice is similar. Compare [10] Proposition 19.1 or [2] Section 8.2. ��

The Boltzmann weight of the state is the product of the Boltzmann weights at the
vertices. The partition function Z(S) is the sum of the Boltzmannweights over all states.
These definitions make sense by the following result.

Proposition 3.2. In the case where the grid is infinite, there are only a finite number
of states for S�

z,ξ,η,r or S�
z,ξ,η,r . For each state, all but finitely many vertices have

Boltzmann weight 1, so the Boltzmann weight of the state is a finite product.

Proof. The fact that there are only finitely many states is a consequence of Lemma 3.1.
With our assumption that all but finitely many horizontal edges have decorated spin +0

for Delta ice or −0 for Gamma ice, it is not hard to see that for any state s all but finitely
many vertices are in configuration a1 or b1 for Delta ice, or a2 or b2 for Gamma ice.
Since those vertices have Boltzmann weight 1, the Boltzmann weight of a state is a finite
product. ��

We will sometimes use the Dirac notation ξ = |ξ 〉 for elements of F. Let us define
an inner product on F in which the normal-ordered monomials

ξ = uim ∧ uim−1 ∧ · · · , im > im−1 > · · ·
is an orthonormal basis. There is a unique involution on F which is conjugate-antilinear
and which is the identity on the real vector space spanned by the normal-ordered mono-
mials. If ξ = |ξ 〉 is an element of Fwe will denote by 〈ξ | its image under the involution.
Then 〈η|ξ 〉 will denote the inner product of ξ and η. This inner product is linear in ξ and
conjugate-linear in η.

Now let us specialize to Delta ice. We may define an operator T�(z) on Fm by

T�(z) ξ = T�(z) |ξ 〉 =
∑

η

Z(S�
z,ξ,η,r )|η〉. (3.3)

It is a consequence of Lemma 3.1 that there are only finitelymany terms in the right-hand
side. (This would fail for S�

z,ξ,η,r .)
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In the same notation we may write

Z(S�
z,ξ,η,r ) = 〈η|T�(z)|ξ 〉. (3.4)

In the special case where r = 1, we will use the notation T�(z) with z = (z). We call
the operator the row transfer matrix. We have T�(z) = T�(z1) · · · T�(zr ).

Remark 3.3. In (3.4) we have specialized to the case of Delta ice. For S�
z,ξ,η,r the sum

(3.3) would fail to be finite. Nevertheless we could similarly define T�(z) for Gamma
ice as an operator on “bras” 〈η| instead of “kets” |ξ 〉 by the formula

〈η|T�(z) =
∑

ξ

Z(S�
z,ξ,η,r )〈ξ |,

which is a finite sum. Then (3.4) would still be correct.

We specialize now to the case r = 1 and denote z = z1. As in (1.5), we define
operators H+(z) and H−(z) on Fm by

H±(z) :=
∞
∑

k=1

1

k
(1 − vk)z±nk J±k . (3.5)

If ξ ∈ F then H+(z)ξ = H+(z)|ξ 〉 is a finite sum. For H−(z), this fails, but as with T�(z),
we may interpret H−(z) as an operator by the formula

〈η|H−(z) =
∑

ξ

〈η|H−(z)|ξ 〉〈ξ |,

and this is a finite sum.
Our main theorem (Theorem A), states that

eH+(z) = T�(z), eH−(z) = T�(z) . (3.6)

Wewill prove this in the next section. As an immediate consequence, the row transfer
matrices T�(z) and T�(z) are Uq(̂sln)-module homomorphisms, because the operators
Jk are.

4. Proof of the Main Theorem

The proof is structured as follows. We will first prove the statement for Delta ice using
induction to reduce the proof to an identity for two finite subsystems where we get a
finite number of cases that are checked in Tables 2 and 3. One reason for starting with
Delta ice is because of Remark 3.3 together with normal-ordering issues. The transfer
matrix for Gamma ice is then related to the adjoint of the Delta ice transfer matrix in
Subsection 4.2. Therefore, until Subsection 4.2 we will consider Delta ice. We will fix z,
and let T = T (z) be the transfer matrix (3.3) of the one-rowed system, and H = H+(z).

We pause to refine the criterion in Lemma 3.1 for an admissible state to exist in the
one-row system Sz,ξ,η,1. For even if (3.2) is satisfied, there may not be an admissible
state s. Let us describe a further condition that must be satisfied.

We may write ξ = uim ∧ uim−1 ∧ · · · and η = u jm ∧ u jm−1 ∧ · · · . By (3.2) im �
jm � im−1 � · · · , and if r is sufficiently negative, then ir = r and jr = r . The
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substance of the lemma that we will now state is that there is a bijection between the two
sequences i = (im, im−1, · · · ) and j = ( jm, jm−1, · · · ), and that corresponding elements
are congruent modulo n.

Since the elements of j are distinct, each ia can be equal to a unique jb, which must be
either ja or ja+1. In this case we say that ia and jb are paired. It remains for the bijection
to be defined on those elements of i (resp. j) that are not equal to any element of the other
sequence. Thus we say that the index ia is isolated for the pair ξ, η if ja+1 > ia > ja ,
and similarly we say that the index jb is isolated if ib > jb > ib−1. The isolated indices
ia and jb are paired if

ja+1 > ia > ja = ia−1 > ja−1 = ia−2 > · · · jb+1 = ib > jb > ib−1. (4.1)

(We omit the condition ja+1 > ia if a = m.) The condition (4.1) means there are
no isolated indices between ia and jb, though there may be many indices that are not
isolated. If ia is not isolated, then either ia = ja or ia = ja+1. In this case, we consider
ia to be paired with ja or ja+1.

Lemma 4.1. For any admissible state s, every isolated ia is paired with a unique isolated
jb. The pairing relationship is a bijection between the ia and the jb, and if ia and jb are
paired, then ia ≡ jb modulo n.

Proof. It is obvious that if ia (resp. jb) is not isolated, then it is paired with a unique jb
(resp. ia). Since these are equal, they are ≡ 0 mod n. Therefore we have to consider the
isolated vertices. Here we make use of the hypothesis 〈η|T |ξ 〉 
= 0. Consider the state
of the model, with the columns labeled:

ia ja jb
− + · · · − + · · · +

+ − − − − − − +
+ + · · · − + · · · −

The charges at the two horizontal edges labeled + must both be ≡ 0 modulo n. This
implies that ia ≡ jb modulo n. ��

Let ψ∗
k : Fm → Fm+1 denote the creation operator defined by

ψ∗
j (uim ∧ uim−1 ∧ uim−2 ∧ · · · ) = u j ∧ uim ∧ uim−1 ∧ uim−2 ∧ · · · (4.2)

and introduce the generating function

ψ∗(x) =
∑

j∈Z

ψ∗
j x

j , (4.3)

as well as the operator ρ∗
k (z) : Fm → Fm+1

ρ∗
k (z) = ψ∗

k − zψ∗
k−n . (4.4)

We will use the following consequences of the Baker-Campbell-Hausdorff formula.
If A and B are elements of a Lie algebra such that [A, B] commutes with both A and B,
then

eAeB = e[A,B]eBeA.

If [A, B] = cB where c is a constant, then

eABe−A = ecB . (4.5)
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Proposition 4.2. With H = H+(z) = ∑∞
k=1

1
k (1 − vk)znk Jk and ψ∗(x) as defined

above, we have that

eHψ∗(x)e−H = 1 − xnvzn

1 − xnzn
ψ∗(x) (4.6)

or equivalently that
eHρ∗

k (z
n) = ρ∗

k (vz
n)eH . (4.7)

Proof. For any ξ ∈ Fm wehave from (2.26) that [Jk, ψ∗
j ](ξ) = Jk(ψ∗

j (ξ))−ψ∗
j (Jk(ξ)) =

Jk(u j ∧ ξ) − u j ∧ Jk(ξ) = Jk(u j ) ∧ ξ = u j−nk ∧ ξ = ψ∗
j−nk(ξ) which implies

[Jk, ψ∗
j ] = ψ∗

j−nk . (4.8)

Then,

[H, ψ∗(x)] =
∑

k�1

∑

j∈Z

znk − vk znk

k
x jψ∗

j−nk(x)

=
∑

k�1

znk − vk znk

k
xnkψ∗(x) = log

(

1 − xnvzn

1 − xnzn

)

ψ∗(x)

from which we obtain (4.6) using the Baker-Campbell-Hausdorff formula. The equiva-
lence of (4.6) and (4.7) follows by comparing coefficients for different powers
of x . ��

We will work now with finite-dimensional wedge spaces F(k, n − k, r) spanned by
vectors

ξ = ui1 ∧ · · · ∧ uir (4.9)

where k � i1 > · · · > ir � ik−n . Let F(k, n − k) = ⊕

r F(k, n − k, r). We will define
operators ψ∗

k and ψ∗
k−n : F(k, n − k, r) −→ F(k, n − k, r + 1) by

ψ∗
k (ξ) = uk ∧ ξ, ψ∗

k−n(ξ) = uk−n ∧ ξ.

These operators are analogous to the operators ψ∗
k , ψ∗

k−n : Fm −→ Fm+1 already
defined, and indeed if ζ = u jm−r ∧ u jm−r−1 ∧ · · · ∈ Fm−r is such that k − n > jm−r >

jm−r−1 > · · · then ξ ∧ ζ is naturally in Fm and ψ∗
k (ξ ∧ ζ ) = ψ∗

k (ξ) ∧ ζ and similarly
for ψ∗

k−n . We also define ρ∗
k (z) = ψ∗

k − zψ∗
k−n as before.

Finally,wedefine anoperator T̂ onF(k, n−k). It is enough to define constants 〈η|T̂ |ξ 〉
where ξ ∈ F(k, n−k, r) and η ∈ F(k, n−k, r ′). Let uswrite ε = ε(ξ) = (εk, · · · , εk−n)

where the spins εi = ± and i = i1, · · · , ir in (4.9) are precisely the valueswhere εi = −.
Similarly let δ = δ(η) = (δk, · · · , δk−n) be spins corresponding to η. Let

η = u j1 ∧ u j2 ∧ · · · ∧ u jr ′ .

We require i1 � j1 � i2 � · · · and for this reason either r ′ = r or r ′ = r − 1.
Now we define a finite system as follows. We make a grid with n +1 columns labeled

k, k − 1, · · · , k − n in decreasing order.

εk εk−1 · · · εk−n

+0 ±a

δk δk−1 · · · δk−n

. (4.10)
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The boundary conditions at the left and right edge are as follows. At the left boundary,
we always put +0. At the right boundary, there will, for each row, be a unique decorated
spin ±a such that the partition function of this system can have nonzero value. The sign
+ or − is determined by the condition that the total number of − spins around the whole
boundary is even. Thus it is + if r ′ = r and− if r ′ = r−1. The charge is also determined
by the requirement that there be a (uniquely determined) state swith the given boundary
conditions. Then we define 〈η|T̂ |ξ 〉 to be the Boltzmann weight of this state, using the
weights in Table 1.

Now the operator T̂ : F(k, n−k, r) −→ F(k, n−k, r)⊕F(k, n−k, r−1) is defined
by

T̂ (ξ) =
∑

η

〈η|T̂ |ξ 〉η.

Proposition 4.3. Let ξ and η be basis vectors of F(k, n − k) as above. Then

〈η|T̂ρ∗
k (z

n)|ξ 〉 = 〈η|ρ∗
k (vz

n−1)T̂ |ξ 〉. (4.11)

Moreover, the spins ±a that appear on the left- and right-hand sides of this calculation
are the same (with a determined modulo n).

We will prove this in Section 4.1. The meaning of the second assertion is as follows.
Suppose we compute

〈η|T̂ρ∗
k (z

n)|ξ 〉.
This equals 〈η|T̂ |ψ∗

k ξ 〉 − zn〈η|T̂ |ψ∗
k−nξ 〉 and in this computation two right edge spins

±a and±b will appear. (See (4.10).) Similarly on the other side of the computation, two
right edge spins ±c and ±d will appear. The assertion is that these four spins are equal
in sign, and a ≡ b ≡ c ≡ d modulo n.

Proposition 4.4. Let ξ = uim ∧ uim−1 ∧ · · · ∈ Fm with im > im−1 > . . . and let k > im.
Then,

Tρ∗
k (z

n)|ξ 〉 = ρ∗
k (vz

n)T |ξ 〉. (4.12)

Proof. Let η ∈ Fm . We write η = u jm ∧ u jm−1 ∧ · · · with jm > jm−1 > . . .. Unless
k � jm it is easy to deduce that 〈η|Tψ∗

k |ξ 〉, 〈η|Tψ∗
k−n|ξ 〉, 〈η|ψ∗

k T |ξ 〉 and 〈η|ψ∗
k−nT |ξ 〉

are all zero from Lemma 3.1, and from the fact that if ξ ′ does not involve any um with
m > k then neither does ψ∗

k ξ ′ or ψ∗
k−nξ

′. Therefore it is enough to prove that

〈η|Tρ∗
k (z

n)|ξ 〉 = 〈η|ρ∗
k (vz

n)T |ξ 〉
under the assumption that k � jm .

Let us find r such that ir � k − n > ir−1 and write ξ = ξ1 ∧ ξ2 with

ξ1 = uim ∧ · · · ∧ uir , ξ2 = uir−1 ∧ uir−2 ∧ · · · .

Similarly we write η = η1 ∧ η2 where

η1 = u jm ∧ · · · ∧ u j ′r , η2 = u jr ′−1
∧ u jr ′−2

∧ · · ·
and r ′ is such that jr ′ � k − n > jr ′−1.
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Now let s be the unique state associated with 〈η|T |ψ∗
k ξ 〉. We will cut the partition

function to the right of the k − n column. Thus we partition the Boltzmann weights
into those from columns numbered � k − n, and those from columns < k − n. Since
k � im, jm the spin in the horizontal edge to the left of the k-th column must be +0.
Depending on ξ and η, let ±a be the decorated spin attached to the horizontal edge to
the right of the (k − n)-th column. We obtain

〈η|Tψ∗
k |ξ 〉 = 〈η1|T̂ψ∗

k |ξ1〉 · C
whereC is the Boltzmannweight of the following state of an (infinite) truncated system:

εk−n−1 εk−n−2 · · ·
±a

δk−n−1 δk−n−2 · · ·
where εi = − if i is among the indices ir−1, ir−2, · · · in ξ2 and δi is similarly derived
from η2.

Now we similarly have

〈η|Tψ∗
k−n|ξ 〉 = 〈η1|T̂ψ∗

k−n|ξ1〉 · C, 〈η|ψ∗
k T |ξ 〉 = 〈η1|ψ∗

k T̂ |ξ1〉 · C,

and

〈η|ψ∗
k−nT |ξ 〉 = 〈η1|ψ∗

k−n T̂ |ξ1〉 · C,

with the same constant C in every case. The fact that the constant C is the same in
every case follows from the last assertion in Proposition 4.3. Hence we can pull out the
constant and the identity needed follows from (4.11). ��

For an element ξ = uim ∧ uim−1 ∧ · · · ∈ Fm with im > im−1 > · · · we define the
degree deg(ξ) of ξ as follows

deg(ξ) =
∑

r�m

(ir − r) (4.13)

which we note is positive since ir � r for all r , and finite since ir = r for r � 0. If
deg(ξ) = 0, then ξ is the vacuum |m〉 in Fm .

Using the following lemma we can similarly define the degree of any ξ = uim ∧
uim−1 ∧ · · · ∈ Fm even if it is not normal-ordered.

Lemma 4.5. The degree defined above has the following properties:

(1) Suppose ξ = uim ∧ uim−1 ∧ · · · ∈ Fm is not normal-ordered, that is ir < ir−1 for
some r � m. Then writing ξ in terms of the basis of Fm of normal-ordered wedges,
each term has the same degree, which equals

∑

r�m(ir − r).
(2) Let ξ ′ = uim−1 ∧ uim−2 ∧ · · · ∈ Fm−1 with im−1 > im−2 > · · · . For any k, let

ξ = uk ∧ ξ ′ ∈ Fm which is not necessarily normal-ordered. If ξ 
= 0, then,

deg(ξ) = (k − m) + deg(ξ ′). (4.14)

Note that, even for the quantumwedge, if ir = ir−1 for some r , then ξ = 0. However,
because of the extra terms in (2.24) compared to the classical (q = 1) wedge, if ir = ir−2
for example, then ξ is not necessarily zero.
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Proof. For the first statement we notice that in the right-hand side of the quantumwedge
(2.23) for u j ∧ ui with j < i , each term is of the form ua ∧ ub with a + b = i + j . Since
ξ can be normal-ordered by repeated use of (2.23) this proves the first assertion.

The second statement follows from the first by letting im = k:

deg(ξ) =
∑

r�m

(ir − r) = (im − m) +
∑

r�m−1

(ir − r) = (k − m) + deg(ξ ′).

��
Proof of Theorem A (Delta ice). We will show, for an arbitrary ξ = uim ∧ uim−1 ∧ · · · ∈
Fm with im > im−1 > · · · that eH ξ = T ξ using induction over the degree of ξ .

The base case, deg(ξ) = 0, is when |ξ 〉 is the vacuum |m〉, for which we have that
Jk |m〉 = 0. Thus eH |m〉 = |m〉. It is easy to check that T |m〉 = |m〉 also, as required.

From now on, assume that ξ is not a vacuum, which means that im > m. Let ξ ′ =
uim−1 ∧ uim−2 ∧ · · · ∈ Fm−1 and ξ ′′ = uim−n ∧ ξ ′ ∈ Fm . Then ξ = uim ∧ ξ ′ =
ρ∗
im

(zn)ξ ′ + znξ ′′. Note that uim−n ∧ ξ ′ is not necessarily normal-ordered or nonzero.
Using Lemma 4.5 we have that deg(ξ ′) = deg(ξ) − (im −m) < deg(ξ) and, if ξ ′′ 
= 0,
deg(ξ ′′) = deg(ξ) − n < deg(ξ).

We assume, for η ∈ F with deg(η) < deg(ξ), that eHη = Tη (which also holds for
η = ξ ′′ = 0). Then, for the induction step we have that

T ξ = Tρ∗
im (zn)ξ ′ + znT ξ ′′ = Tρ∗

im (zn)ξ ′ + zneH ξ ′′.

Using Proposition 4.4 together with the induction hypothesis, we have that

Tρ∗
im (zn)ξ ′ = ρ∗

im (vzn)T ξ ′ = ρ∗
im (vzn)eH ξ ′ = eHρ∗

im (zn)ξ ′,

where, in the last step we have also used (4.7) of Proposition 4.2. Thus,

T ξ = eH (ρ∗
im (zn)ξ ′ + znξ ′′) = eH ξ.

The statement for Gamma ice is proved in Subsection 4.2. ��

4.1. Proof of Proposition 4.3. Let ξ = ui1 ∧ · · · ∧ uir and η = u j1 ∧ · · · ∧ u jr ′ be
elements of F(k, n − k) with i1 > i2 > · · · > ir and j1 > · · · > jr ′ . We must show

〈η|T̂ψ∗
k |ξ 〉 − zn〈η|T̂ψ∗

k−n|ξ 〉 = 〈η|ψ∗
k T̂ |ξ 〉 − vzn〈η|ψ∗

k−n T̂ |ξ 〉. (4.15)

Let εi and δi with k � i � k − n be the spins associated with ξ and η, so that εi = − if
i = i j for some j , and εi = + otherwise, and similarly for δi .

Proposition 4.6. Suppose that any one of the four terms in (4.15) is nonzero. Then either:

(i) We have εi = δi for k > i > k − n; or
(ii) There is a unique value s with k > s > k − n such that εs = − and δs = +, and

εi = δi for k > i > k − n, i 
= s.
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Proof. Note that applying ψ∗
k or ψ∗

k−n to ξ cannot affect εi with k > i > k − n. In
particular, ψ∗

k−n(ξ) = uk−n ∧ ui1 ∧ · · · ∧ uir is not normal-ordered. However when we
use (2.24) to put it in normal order, we get

uk−n ∧ ui1 ∧ · · · ∧ uir = ±

⎛

⎜

⎜

⎝

∏

εi=−
k>i>k−n

g(k − i)

⎞

⎟

⎟

⎠

ui1 ∧ · · · ∧ uir ∧ uk−n (4.16)

where the sign is + if εk = + and − if εk = −. For this, there are no correction terms
because the interchanged vectors are of the form ua ∧ ub with |a − b| � n.

Therefore each of the four terms in (4.15) is (possibly up to a constant such as the
one in (4.16)) of the form 〈η′|T̂ |ξ ′〉 where ξ ′ and η′ correspond to sequences ε′

i and δ′
i

of spins and (for the two terms on the left-hand side) δ′
i = δi for all k � i � k − n and

also ε′
i = εi except for one of the two cases i = k or i = k − n. Similarly for the two

terms on the right-hand side, ε′
i = εi for all k � i � k − n and δ′

i = δi except when
i = k or k − n. Since εi = ε′

i and δi = δ′
i for k > i > k − n, we may replace εi and δi

by ε′
i and δ′

i in the statement of the proposition.
Fixing one of these four cases, let ξ ′ = ui ′1 ∧ ui ′2 ∧ · · · and η′ = u j ′1 ∧ u j ′2 ∧ · · · .

Under the assumption that 〈η′|T̂ |ξ ′〉 
= 0, analogs of Lemmas 3.1 and 4.1 are true. The
analog of Lemma 3.1 means that i ′1 � j ′1 � i ′2 � j ′2 � · · · .

Moreover, the proof of Lemma 4.1 will show that there is at most one isolated index
in the interval k > i > k − n. We recall that an index s is isolated if εs 
= δs . If
k > s > k − n, this is clearly equivalent to ε′

s 
= δ′
s . As in Lemma 4.1 isolated indices

come in pairs separated by a multiple of n. Thus if there are isolated indices, we must
have i ′1 = j ′1, i ′2 = j ′2, up to the first isolated index, i ′m > j ′m . Then the next isolated
index would have to be� i ′s−n, but this is outside of the considered interval. Let s = i ′m .
Then εs = ε′

s = −, while δs = δ′
s = +, and there are no other isolated indices. ��

So there are two types of cases we have to consider, depending on whether we are in
Case (i) or Case (ii) of Proposition 4.6. With each of these cases we have 16 subcases
depending on the values of εk, δk, εk−n and δk−n .

Remark 4.7. It is possible to argue more efficiently and only check half these 32 cases,
namely those in which εk = +. This is because in Proposition 4.4 we have k > im ,
and im denotes the first minus sign of ξ . For completeness we included all 32 cases in
Tables 2 and 3.

For Case (i), let us denote

G =
∏

εi=−
k>i>k−n

g(k − i).

Case (i), subcase: (εk, δk, εk−n, δk−n) = (+,+,+,+).Weobserve that 〈η|ρ∗
k (vzn)T̂ |ξ 〉 =

0 since there is no way a component η of ρ∗
k (vz

n)T̂ |ξ 〉 can have both δk = δk−n = +.

So we must show that 〈η|T̂ρ∗
k (z

n)|ξ 〉 = 0. This has two terms, which will cancel. First

〈η|T̂ψ∗
k |ξ 〉 is the Boltzmann weight of the state

− εk−1 · · · εk−n+1 +
+ − − − −0 −1

+ εk−1 · · · εk−n+1 +
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Table 2. Case (i) subcases, confirming (4.15)

(εk , εk−n , δk , δk−n) 〈η|T̂ψ∗
k |ξ〉 −zn〈η|T̂ψ∗

k−n |ξ〉 〈η|ψ∗
k T̂ |ξ〉 −vzn〈η|ψ∗

k−n T̂ |ξ〉
(+ + ++) znG −znG 0 0
(+ + +−) Gzn(1 − v)z −znG 0 −vzn+1G
(+ + −+) 1 0 1 0
(+ − +−) −Gzn−1 0 0 −Gzn−1

(+ + −+) 1 0 1 0
(+ + −−) 0 0 0 0
(+ − −+) 1 0 1 0
(+ − −−) 1 0 1 0
(− + ++) 0 0 0 0
(− + +−) 0 −vz2nG2 0 −vz2nG2

(− − ++) 0 0 0 0
(− − +−) 0 0 0 0
(− + −+) 0 znG znG 0
(− + −−) 0 znG (1 − v)znG vznG
(− − −+) 0 0 0 0
(− − −−) 0 0 −vznG vznG

that is, Gzn , where the product is over r patterns of type a2 and n − r of type b2. The
second term is −zn〈η|T̂ψ∗

k−n|ξ 〉. This equals −znG times the Boltzmann weight of the
state

+ εk−1 · · · εk−n+1 −
+ + + + +0 −1

+ εk−1 · · · εk−n+1 +
.

Here the factor of G comes from (4.16). The Boltzmann weight of the last state is 1, so
the two terms cancel and the proposition is true in this case.

To summarize, there are two ways that a factor of G can appear. One is through
(4.16), and the other is through the Boltzmann weight of a state. There are 16 subcases
for Case (i) and these are summarized in Table 2. It is easy to see that in all these cases the
last assertion of Proposition 4.3 (about the identity of the decorated spins appearing at
the right edges of the states contributing to the nonzero terms in any subcase) is satisfied.

We now turn to Case (ii). Let us again do one subcase completely, then summarize all
cases in a table. Let us consider the subcase where (εk, εk−n, δk, δk−n) = (+,+,+,−).
We do not need to consider the contributions of ψ∗

k to either the left- or the right-hand
side since these would involve an illegal pattern in the s column. On the other hand

−zn〈η|T̂ψ∗
k−n|ξ 〉 = (−zn)

⎡

⎢

⎢

⎣

∏

k−n+1�i�k−1
εi=−1

g(k − i)

⎤

⎥

⎥

⎦

Z

where Z is the Boltzmann weight of the state

+ εk−1 · · · − · · · −
+ + + (s) − − −s+1−k+n

+ εk−1 · · · + · · · −
.
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The product in brackets comes from (4.16). We have

Z =

⎡

⎢

⎢

⎣

∏

k−n+1�i�s−1
εi=−1

g(s − i)

⎤

⎥

⎥

⎦

zs−k+ng(s − k).

We may combine two factors using the identity g(k − s)g(s − k) = v and so

−zn〈η|T̂ψ∗
k−n|ξ 〉 = −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∏

k−n+1�i�k−1
εi=−1
i 
=s

g(k − i)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∏

k−n+1�i�s−1
εi=−1

g(s − i)

⎤

⎥

⎥

⎦

vzs−k+2n .

On the other side of the equation,

−vzn〈η|ψ∗
k−n T̂ |ξ 〉 = (−vzn)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∏

k−n+1�i�k−1
εi=−1
i 
=s

g(k − i)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Z ′

where Z ′ is the Boltzmann weight of the state

+ εk−1 · · · − · · · +
+ + + (s) − − −s+1−k+n

+ εk−1 · · · + · · · +
.

That is,

Z ′ =

⎡

⎢

⎢

⎣

∏

k−n+1�i�s−1
εi=−1

g(s − i)

⎤

⎥

⎥

⎦

zs−k+n .

We see that in this case:

〈η|T̂ρ∗
k (z

n)|ξ 〉 = −zn〈η|T̂ψ∗
k−n|ξ 〉 = −vzn〈η|ψ∗

k−n T̂ |ξ 〉 = 〈η|ρ∗
k (vz

n)T̂ |ξ 〉.
Now let us define

G ′ =
∏

k−n+1�i�k−1
εi=−1
i 
=s

g(k − i), G ′′ =
∏

k−n+1�i�s−1
εi=−1

g(s − i) .

We summarize the Case (ii) subcases in Table 3. As in Case (i) it is easy to verify the last
assertion of Proposition 4.3 regarding the decorated spins at the right edge, and the first
assertion is verified in every subcase by Table 3. Thus Proposition 4.3 is now proved.
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Table 3. Case (ii) subcases, confirming (4.15)

(εk , εk−n , δk , δk−n) 〈η|T̂ψ∗
k |ξ〉 −zn〈η|T̂ψ∗

k−n |ξ〉 〈η|ψ∗
k T̂ |ξ〉 −vzn〈η|ψ∗

k−n T̂ |ξ〉
(+ + ++) 0 0 0 0
(+ + +−) 0 −G′G′′vzs−k+2n 0 −G′G′′vzs−k+2n

(+ + −+) G′′zs−k+n 0 G′′zs−k+n 0
(+ − +−) 0 0 0 0
(+ + −+) G′′zs−k+n 0 G′′zs−k+n 0
(+ + −−) G′′(1 − v)zs−k+n 0 G′′(1 − v)zs−k+n 0
(+ − −+) 0 0 0 0
(+ − −−) G′′zs−k+ng(s − k) 0 G′′zs−k+ng(s − k) 0
(− + ++) 0 0 0 0
(− + +−) 0 0 0 0
(− − ++) 0 0 0 0
(− − +−) 0 0 0 0
(− + −+) 0 0 0 0
(− + −−) 0 G′G′′vzs−k+2n 0 G′G′′vzs−k+2n

(− − −+) 0 0 0 0
(− − −−) 0 0 0 0

4.2. Gamma ice. We will deduce the second identity in (1.6) for Gamma ice from the
first, which is already proved. If T is an operator on F we define its adjoint T † by the
formula

〈T †η|ξ 〉 = 〈η|T ξ 〉.
In the following proof, we will assume that the parameter v is real, and moreover

we will assume that the conjugate of g(a) is g(−a). In our applications to Whittaker
functions, g is a Gauss sum, |g(a)| = √

v, the reciprocal of the square root of the residue
cardinality. (See Remarks 1 and 2 in [5].) Then g(a) and g(−a) are complex conjugates
since g(a)g(−a) = v.

Since our result is essentially an algebraic identity, if we prove it under the restric-
tion that v is real and g(a), g(−a) are complex conjugates, it will follow in general.
Alternatively, we could take the g(a) to be indeterminates in an algebra over C, with an
involution that maps g(a) to g(−a).

Proposition 4.8. The adjoint of T�(z) is T� (1/z).

Proof. We must check the identity

〈T� (1/z) η|ξ 〉 = 〈η|T�(z)ξ 〉.
We will write this

〈ξ |T� (1/z) η〉 = 〈η|T�(z)ξ 〉.
We may check this for normal-ordered ξ, η ∈ Fm . Let

ξ = uim ∧ uim−1 ∧ · · · , η = u jm ∧ u jm−1 ∧ · · · .

Both sides vanish unless

im � jm � im−1 � jm−1 � · · · ,

which we assume. Now 〈η|T�(z)ξ 〉 is the partition function of a system with a unique
state, with − in the top (resp. bottom) vertical edges in the columns im (resp. jm) and
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+ elsewhere. Similarly 〈ξ |T�(z−1)η〉 is the partition function of a system with the top
and bottom vertical edges reversed. We may obtain its unique state by taking the state
of the 〈η|T�(z)ξ 〉 system, and replacing each horizontal decorated spin +0 by −0, or
−a by +−a . Now an examination of Table 1 shows that this operation interchanges a1
patterns with b2 patterns, and similarly a2 ⇔ b1, c1 ⇔ c2. Remembering that the c1
and c2 patterns occur in pairs, we see that 〈ξ |T�(z−1)η〉 is obtained from 〈η|T�(z)ξ 〉
by replacing g(a) by g(−a). If we further replace z by its complex conjugate, we see
that 〈ξ |T� (1/z) η〉 and 〈η|T�(z)ξ 〉 are complex conjugates, as required. ��
Proposition 4.9. The adjoint of Jk is J−k if k 
= 0.

Proof. See [42], remark after (21) on page 1055. This point is explained inmore detail in
[39], Section 3.3 (where the inner product is introduced) and Section 4.1.1,making use of
results of both [32] and [42] in the context of a general Boson-Fermion correspondence.
��
Proof of Theorem A (Gamma ice). We will prove that T�(z) = eH−(z). Because Jk and
J−k are adjoints, by (3.5)

H−(z) = H+ (1/z)† .

Exponentiating then gives

exp
(

H−(z)
)= exp

(

H+
(

1/z
))† = T�

(

1/z
)† = T�(z).

��

5. LLT and Metaplectic Symmetric Functions

The quantum Fock space of Kashiwara, Miwa and Stern, which underlies our results,
is also fundamental in the theory of LLT [42] or ribbon symmetric functions. In this
section, inspired by ideas from Lam [38], we will show how the LLT polynomials can
be written in the form

Gn
λ/μ(z) = 〈μ|eL+(z)|λ〉, (5.1)

where z = (z1, · · · , zr ) and

L+(z) =
∞
∑

k=1

1

k
pk(z)Jk . (5.2)

(We are using the notation (1.4) for basis vectors of Fm , and we may fix m = 0 in this
section.)

Remark 5.1. As we will prove, the polynomials (5.1) coincide with the LLT or ribbon
symmetric polynomials provided we take

g(a) =
{ −v if a ≡ 0 mod n;

−√
v otherwise. (5.3)

If g is a more general function satisfyingAssumption 2.12, then the results of this section
will remain valid, but Gλ/μ will be a generalization of the LLT polynomials that are in
the literature.
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The operator L+(z) is similar to the operator H+ defined in (3.5), that appears in
our main theorem. Indeed, in Definition 29 of [37], Lam defined a super generalization
Gn

λ/μ(z|w) of the LLT polynomials, and we will prove that

〈μ|eH+(z)|λ〉 = Gn
λ/μ(zn|v zn),

where H+(z) = ∑r
i=1 H+(zi ). For this statement we are omitting the Drinfeld twist-

ing which introduces the “Gauss sums” g(a) into the definition of the Fock space. If
we include the Drinfeld twisting, then we would obtain a generalization of the LLT
polynomials, and a similar statement would be true.

Remark 5.2. Wedo not know a statement generalizing our TheoremA thatwould express
the half-vertex operator eL+ that appears in (5.1) as a row transfermatrix. This is available
only in the special case of the supersymmetric LLT polynomials with w = vz.

Let J1, J2, · · · be independent commuting variables. (Eventually we will specialize
them to operators on F0 as before, but for our first result this is not needed.) Following
the definitions in Section 3 of [38], let

uk =
∑

λ�k
z−1
λ Jλ,

where if λ = (1m12m2 · · · ) is a partition of k then zλ = ∏

i (i
mi mi !) and Jλ = Jλ1 Jλ2 · · · .

Also, if λ is a partition define ελ = (−1)|λ|−�(λ) and define

ũk =
∑

λ�k
z−1
λ ελ Jλ.

Proposition 5.3. We have

eL+(z) =
∞
∑

ν1=0

· · ·
∞
∑

νr=0

zν11 · · · zνrr uνr · · · uν1 (5.4)

and

e−L+(−z) =
∞
∑

ν1=0

· · ·
∞
∑

νr=0

zν11 · · · zνrr ũνr · · · ũν1 . (5.5)

Proof. Let � = �(z) be the ring of symmetric functions in variables z1, z2, · · · over
Q. Let �(w) be another copy of �, in variables w1, w2, · · · . We will use the notation of
[44] for symmetric functions: pk(z), hk(z), ek(z) will denote the power sum, complete
and elementary symmetric functions, with pλ(z) = ∏

pλi (z), hλ(z) = ∏

hλi (z), and
mλ will be the monomial symmetric functions.

Remembering that the uk commute, we may rearrange the factors uνr , · · · , uν1 so
that νr � νr−1 � · · · � ν1 and rewrite the right-hand side of (5.4) as

∑

ν

mν(z)uνr · · · uν1 (5.6)

where now the sum is over partitions (of length � r ).
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3
3
3

2
2

2
1 1 1

2 2
2 2 2

2

3 3 3

Fig. 1. A 3-ribbon tableau with spin 5 and weight (1, 3, 2)

In the ring �(z) ⊗ �(w), we have the identity
∑

λ

z−1
λ pλ(z)pλ(w) =

∏

i, j

(1 − ziw j )
−1 =

∑

ν

mν(z)hν(w).

This is proved in Macdonald [44] Section I.4. Now

exp

( ∞
∑

k=1

1

k
pk(z)pk(w)

)

=
∏

i, j

(1 − ziw j )
−1 =

∑

λ

mλ(z)hλ(w). (5.7)

Indeed,

− log(1 − ziw j ) =
∞
∑

k=1

(ziw j )
k

k
.

Summing over i, j and exponentiating gives (5.7). Now we specialize pk(w) 
→ Jk .
Then hk 
→ uk since by Macdonald [44] (I.2.14)

hk =
∑

λ�k
z−1
λ pλ. (5.8)

Thus specializing (5.7) gives (5.4). The identity (5.5) follows similarly from the identity

exp

(

−
∞
∑

k=1

1

k
pk(z)pk(−w)

)

=
∏

i, j

(1 + ziw j ) =
∑

λ

mλ(z)eλ(w)

which follows from (5.7) on applying the involution in �(w). See [44] Section I.2.
Under the specialization pk(w) 
→ Jk we get ek 
→ ũk because

ek =
∑

λ�k
z−1
λ ελ pλ.

This follows from (5.8) by applying the involution using [44] equation (I.2.13). ��
We recall from [37,38,42] that an n-ribbon is a skew partition λ/μ of size n that

is connected and does not contain any 2 × 2 block. (Here we are identifying the skew
partition with its Young diagram.) The spin of an n-ribbon is its height in columns,
minus 1. A horizontal n-ribbon strip is a skew shape λ/μ that can be decomposed into
disjoint n-ribbons, each of which has its top-right most box adjacent to μ, or else its
top-right most box lies in the first line. The spin s(λ/μ) of λ/μ is then the sum of the
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spins of its constituent n-ribbons. Thus we are following [37] in our definition of spin,
not [42] who define the spin to be half s(λ/μ). See Figure 1 for an example illustrating
the concepts of n-ribbon and horizontal n-ribbon strip.

An n-ribbon skew tableau T of shape λ/μ is a sequence of partitions

μ = α0 ⊂ α1 ⊂ · · · ⊂ αr = λ, (5.9)

whereαi+1/αi is a horizontal n-ribbon strip.Wemay associatewith such data a tableau in
which the strip αi+1/αi is filledwith i’s. Theweight ν = wt(T )will then be (ν1, · · · , νr )

where νi is αi+1/αi divided by n.
Now we define the LLT or ribbon symmetric function

Gn
λ/μ(z) = Gn

λ/μ(z; q) =
∑

T

qs(T )zwt(T ),

where the sum is over n-ribbon skew tableaux of shape λ/μ. (Here v = q2.) This is
consistent with the notation in [37] but differs from the notation in [42].

Let us regard Jk as in prior sections to be an operator on the quantum Fock space
F0. If λ is a partition, let |λ〉 denote the element uλ1 ∧ uλ2−1 ∧ · · · of F0. If λ is the
empty partition, we will instead use |0〉 to denote the vacuum. Consistent with our earlier
notation, we will denote by 〈μ|eL+(z)|λ〉 the coefficient of |μ〉 in eL+(z)|λ〉, where we
now regard eL+(z) as an operator on F0.

Following [37,42] we define an operator Uk on F0 by

Uk |λ〉 =
∑

λ/μ a horizontal n−ribbon strip
|λ/μ|=nk

qs(λ/μ) |μ〉,

where the sum is over μ ⊂ λ such that λ/μ is a horizontal n-ribbon strip of size nk.
Similarly let

˜Uk |λ〉 =
∑

λ/μ a vertical n-ribbon strip
|λ/μ|=nk

qs(λ/μ)|μ〉.

(Vertical n-ribbon strips are defined similarly to horizontal ones.)
We note that the notation in [42] differs from that in [37] (and also [32]) by the

transformation q 
→ −q−1. Our notation is consistent with [37].
There is a homomorphism ψ from the ring � of symmetric functions to the ring of

Uq(̂sln)-module endomorphisms of F0. This is the map that sends a symmetric polyno-
mial f to the endomorphism f (y−1

1 , y−1
2 , · · · ) where the yi are as in Section 2.2. If sλ

is a Schur polynomial, the endomorphisms ψ(sλ) were used in [43] in an analog of the
Steinberg tensor product theorem for F. See also [40].

By Theorems 3 and 5 of [37] (following Leclerc and Thibon [43])

ψ(hk) = Uk, ψ(ek) = ˜Uk, ψ(pk) = Jk .

Thus uk is an element of the abstract polynomial ring generated by J1, J2, · · · , while Uk
is an endomorphism of F0 that corresponds to uk under the action of the Jk on F0.

Theorem 5.4. The polynomial Gn
λ/μ is symmetric and

Gn
λ/μ(z; q) = 〈μ|eL+(z)|λ〉. (5.10)
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Proof. By Proposition 5.3 the right-hand side equals

∞
∑

ν1=0

· · ·
∞
∑

νr=0

zν11 · · · zνrr 〈μ|Uνr · · ·Uν1 |λ〉.

Now the right-hand side enumerates n-ribbon tableaux in the definition (5.9) and so we
obtain (5.10). The symmetry of Gn

λ/μ is due to Lascoux, Leclerc and Thibon. It follows
from the fact that the operators Uk commute. ��

A similar result for Hall-Littlewood polynomials was found by Jing [28]. Another
vertex operator realization of Hall-Littlewood polynomials may be found in Tsilevich
[48]. Hall-Littlewood polynomials are limits of LLT polynomials by [42], TheoremVI.6.

As an application of Theorem 5.4 we will deduce the Cauchy identity for LLT poly-
nomials, a result that is due to Lam [37–39], proved also by van Leeuwen [49]. We will
work with two sets of variables, z1, · · · , zr and w1, · · · , wr . Let

L+(z)∗ =
∞
∑

k=1

pk(z)
k

J−k .

If the zi are real, then L+(z) and L+(z)∗ are adjoints by Proposition 4.9.
We will denote Gλ = Gn

λ/∅
where ∅ is the empty partition. We have

〈λ|L+(z)∗|0〉 = Gλ(z). (5.11)

Indeed, since this is a purely algebraic identity, it is sufficient to prove this if zi are real.
Then since L+(z) and L+(z)∗ are adjoints, this follows by taking the the conjugate of
(5.10).

Lam [37] proved a version of the Cauchy identity for LLT polynomials.Wewill show
how this can be deduced from Theorem 5.4.

Proposition 5.5. We have

exp(L+(z)) exp(L+(w)∗) = �(z,w) exp(L+(w)∗) exp(L+(z))

where

�(z,w) =
n−1
∏

t=0

∏

i, j

(1 − vt ziw j )
−1.

Proof. Using (2.27) we have

[L+(z), L+(w)∗] =
∞
∑

k=1

1

k

(

vnk − 1

vk − 1

)

zki w
k
j = log �(z,w).

The statement then follows from the Baker-Campbell-Hausdorff formula. ��
We recall that if λ is a partition, there is a unique smallest partition δ that can be

obtained by removing ribbon n-strips from λ. The partition δ is called the n-core of λ.
If δ = λ then λ is called an n-core partition. See [44], Example I.1.8.

Lemma 5.6. If δ is an n-core then Jk |δ〉 = 0 for all k > 0.
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Proof. Clearly Uk |δ〉 = 0 for k > 0, and so by Proposition 5.3 eL+(z)|δ〉 = |δ〉. This
means Jk |δ〉 = 0. ��
Theorem 5.7 (Lam). Let δ be an n-core. Then

∑

λ

Gλ/δ(z)Gλ/δ(w) = �(z,w), (5.12)

where the sum is over all partitions with n-core δ.

Proof. We will prove this under the assumption that w is real. Since this is a purely
algebraic identity, that is sufficient. We evaluate

〈δ| exp(L+(z)) exp(L∗
+(w))|δ〉 (5.13)

in two different ways. First, by Proposition 5.5, it equals

�(z,w)〈δ| exp(L∗
+(w)) exp(L+(z))|δ〉 = �(z,w),

since if k > 0 we have Jk |δ〉 = 〈δ|J−k = 0, so exp(L+(z))|δ〉 = |δ〉, etc. On the other
hand, using Theorem 5.4 and (5.11) the coefficient (5.13) equals

∑

λ

〈δ| exp(L+(z))|λ〉 〈λ| exp(L+(w))∗|δ〉 =
∑

λ

Gλ/δ(z)Gλ/δ(w).

��
Now we recall the definition of the super ribbon function Gn

λ/μ(z|w; q) defined
in [37], Definition 29. For this we require a double alphabet 1 ≺ 1′ ≺ 2 ≺ 2′ ≺
· · · ≺ r ≺ r ′. A super ribbon tableau T is a sequence of partitions

μ = λr+1 ⊂ λr ′ ⊂ λr ⊂ · · · ⊂ λ1′ ⊂ λ1 = λ.

It is assumed that λi/λi ′ is a horizontal n-ribbon strip, and that λi ′/λi+1 is a vertical
n-ribbon strip. We can label the tableaux by labeling the boxes in λi/λi ′ with i , and the
boxes in λi ′/λi+1 with i ′. Let wt(T ) = (ν1, · · · , νr ) where νi is the number of i in the
tableau, and wt′(T ) = (ν′

1, · · · , ν′
r ) where νi is the number of i ′. Then we define the

super ribbon function

Gn
λ/μ(z|w; q) =

∑

T

qs(T )zwt(T )(−w)wt
′(T )

where the sum is over super ribbon tableaux.

Theorem 5.8. For any pair of partitions μ ⊆ λ,

〈μ|eL+(z)e−L+(w)|λ〉 = Gn
λ/μ(z|w; q) . (5.14)

Gn
λ/μ vanishes unless λ and μ have the same n-core.
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Proof. Since the operators Uν and ˜Uν′ commute, we may apply Proposition 5.3 and
rearrange to obtain

〈μ|eL+(z)e−L+(w)|λ〉 =
∑

ν,ν′
zwt(ν)(−w)wt(ν

′)〈μ|˜Uν′
r
Uνr · · · ˜Uν′

1
Uν1 |λ〉.

Each operator on the right-hand side subtracts either a vertical or horizontal n-ribbon
strip, and (5.14) follows. The second statement is clear since removing a vertical or
horizontal n-ribbon strip from a partition does not change its n-core. ��
Corollary 5.9. In the notation of (1.9),

Mn
λ/μ(z) := 〈μ|T�(z)|λ〉 = Gn

λ,μ(zn|vzn).

Mn
λ/μ vanishes unless λ and μ have the same n-core.

Proof. This follows from Theorems A and 5.8 because H+(z) = L+(zn)− L+(vzn). ��
We may prove a similar Cauchy identity for the metaplectic symmetric functions.

The following Theorem holds for any values of g(a) satisfying Assumption 2.12.

Theorem 5.10. Let δ be an n-core partition. Then

∑

λ

Mn
λ/δ(z)Mn

λ/δ(w) = �(z,w), �(z,w) :=
∏

i, j

(1 − vzni w
n
j )(1 − vnzni w

n
j )

(1 − zni w
n
j )(1 − vn+1zni w

n
j )

.

(5.15)

Proof. This is similar to Theorem 5.7. We must first generalize the calculation in Propo-
sition 5.5. Now we work with

H+(z) =
∞
∑

k=0

pnk(z)
k

(1 − vk)Jk, H+(z)∗ =
∞
∑

k=0

pnk(z)
k

(1 − vk)J−k .

We see that

[H+(z), H+(w)∗] =
∞
∑

k=0

pnk(z)pnk(w)
1

k
(1 − vk)(1 − vnk)

=
∑

i, j

∞
∑

k=0

1

k
(ziw j )

nk(1 − vk − vnk + v(n+1)k) = log�(z,w).

Therefore we have

exp(H+(z)) exp(H+(w)∗) = �(z,w) exp(H+(w)∗) exp(H+(z)).

The remainder of the calculation is similar to the proof of Theorem 5.7. ��
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6. Metaplectic Whittaker Functions

This work originated in the theory of Whittaker functions for the metaplectic n-fold
cover of GLr . These were represented by Gamma and Delta ice partition functions for
finite systems in [5,7]. In this section we will show that metaplectic Whittaker functions
can also be expressed as partition functions for our infinite-dimensional systems. More
precisely, in (1.9) we defined what we are callingmetaplectic symmetric functions. Like
metaplectic Whittaker functions, they are partition functions of metaplectic ice, but
unlike metaplectic Whittaker functions, the Mn

λ,μ are symmetric functions. What we
will now show is a way of expressing metaplectic Whittaker functions in terms of the
Mn

λ,μ.
Let us review the relationship between the metaplectic ice partition functions and

metaplecticWhittaker functions, relying on [5–7] for details. Let F be a nonarchimedean
local field. Assume that the group μ2n of 2n-th roots of unity in F has cardinality 2n,
and that the residue cardinality v−1 is prime to n. Let � be a prime element in the ring
o of integers and let ψ be a fixed additive character of F that is trivial on the ring of
integers but no larger fractional ideal. Let

g(a) = 1

v−1

∑

t∈(o/(�))×
(�, t)aψ

(

t

�

)

,

where ( , ) is the n-th order Hilbert symbol. (We are calling the residue cardinality v−1

instead of v or q since it is the reciprocal of the residue cardinality that will appear in
our formulas. We will use q to denote a square root of v.) This function g(a) satisfies
Assumption 2.12.

There is a central extension

1 −→ μ2n −→ ˜GLr (F) −→ GLr (F) −→ 1

that is essentially an n-fold cover, described in [5].Wewill refer to this as themetaplectic
group.

If z ∈ (C×)r then there is a principal series representation πz defined in [5]. Associ-
ated with πz there are nr linearly independent spherical Whittaker functions on G̃Lr (F).
Let Wz denote the space of functions spanned by these. If W ∈ Wz, we are interested
in the values of W evaluated at

�λ := s

⎛

⎜

⎝

�λ1

. . .

�λr

⎞

⎟

⎠ ,

where s : GLr (F) → ˜GLr (F) is a standard section (see [5]) and λ is a partition of
length � r . These are combinatorially interesting sums of products of Gauss sums and
polynomials in v whose study goes back to Kazhdan and Patterson [34]. In [5,7] we
showed how to represent such Whittaker functions in terms of finite systems of Gamma
and Delta ice. In this section we will show that metaplectic Whittaker functions can also
be described as partition functions of infinite systems, and thereby relate them to the
metaplectic symmetric functions, and to vertex operators.

Let λ = (λ1, · · · , λr ) be a partition of length � r , let z = (z1, · · · , zr ) ∈ (C×)r ,
and let σ = (σ1, · · · , σr ) ∈ (Z/nZ)r . We will now describe the finite systems S�

λ,σ
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z1 z1 z1 z1 z1 z1

z2 z2 z2 z2 z2 z2

z3 z3 z3 z3 z3 z3

− − + + + −

+ + − − + + −

− + + − + +

+ − − − − − −

+ + + − + +

+ + + + − − −

+ + + + + +

012345

0 0 0 0 1 0 1

0 1 0 1 0 1 0

0 0 1 0 0 0 1

1

2

3

Fig. 2. A state of Delta ice. In this example n = 2. The charges (written above the horizontal edges) are
integers modulo n that change at the − spins in accordance with Table 1. The charges at + edges must be ≡ 0
modulo n. For Gamma ice, the system is similar, but the rows are numbered increasing from top to bottom,
and the left edges have variable charge, while the right edges all have charge 0, since in Gamma ice−a is only
allowed with a equal to 0 modulo n

and S�
λ,σ depending on these data. These were considered previously in [5] (Gamma

ice only) and in [7] (both systems).
Let ρ = (r − 1, r − 2, · · · , 0) so that

λ + ρ = (λ1 + r − 1, λ2 + r − 2, · · · , λr )

is a strict partition. We consider a grid with r rows and N columns, where N is any
positive integer such that N � λ1 + r − 1. The columns are labeled N , N − 1, . . . , 0 in
decreasing order from left to right and the rows are labeled 1, . . . , r from the top down
for Delta ice and from the bottom up for Gamma ice.

On the vertical edges along the top boundary, we put − in the k-th column if k is
an entry in λ + ρ; otherwise we put +. On the vertical edges at the bottom, we put + in
every column. On the horizontal edges along the left boundary we put the decorated spin
+0 (Delta ice) or +σi in the i-th row (Gamma ice). On the horizontal edges on the right
boundary we put the decorated spin −σi in the i-th column (Delta ice) or −0 (Gamma
ice). We use the Gamma Boltzmann weights in the i-th row for Gamma ice and Delta
Boltzmann weights for Delta ice. See Figure 2 for an example of the system S�

λ,σ .
Let δ denote the modular quasicharacter of the Borel subgroup on GLr (F), lifted to

a function on ˜GLr (F).

Proposition 6.1. Let σ ∈ (Z/nZ)r and z ∈ (C×)r . Then there exists a spherical Whit-
taker function W�

σ ∈ Wz such that for λ a partition of length � r , we have

Z(S�
λ,σ ) = δ−1/2(�λ)W�

σ (�λ) . (6.1)

Proof. By Theorem 6.3 of [5], there exists a spherical Whittaker functionW�
σ such that

Z(S�
λ,σ ) = δ−1/2(�λ)W�

σ (�λ). (6.2)
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Here we have absorbed the factor zw0ρ+γ that appears in that theorem into the Whittaker
function. It is proved in Theorem 2.3 of [7] that

∑

σ∈(Z/nZ)r

Z(S�
λ,σ ) = (z1 · · · zr )N

∑

τ∈(Z/nZ)r

Z(S�
λ,τ ).

The constant (z1 · · · zr )N does not appear in [7], but this is because in this paper we
have changed the Boltzmann weights for Gamma ice, in order that the partition function
be convergent for infinite grids. The arguments there are easily refined to show that, for
suitable constants Sσ,τ (z) independent of λ, we have

Z(S�
λ,σ ) =

∑

τ∈(Z/nZ)r

Sσ,τ (z)Z(S�
λ,τ ).

Substituting (6.2) into this identity gives us (6.1) with W�
σ = ∑

τ Sσ,τW�
τ . ��

Now we wish to relate the partition functions of these finite systems to the infinite
systems defined in Section 3. Let us choose a partition ξ whose first part ξ1 � r − 1.
Now if λ is a partition of length � r let λ � ξ denote the partition λ′ = (λ′

1, λ
′
2, · · · )

where

λ′
j =

{

λ j + r − 1 if j � r,
ξ j−r if j > r.

Note that since we have assumed that ξ1 � r − 1 these entries are weakly decreasing,
so λ � ξ is a partition. In Frobenius notation,

λ � ξ =
(

λ1 λ2 λ3 · · · λr
ξ ′
1 + 1 ξ ′

2 + 1 ξ ′
3 + 1 · · · ξ ′

r + 1

)

,

where ξ ′ is the conjugate partition of ξ .

Proposition 6.2. Let ξ be a partition such that ξ1 � r − 1 and let σ ∈ (Z/nZ)r . Then
there exist constants c(ξ, σ ; z) depending on ξ and σ such that if λ = (λ1, · · · , λr ) is a
partition of length � r , then

〈0|Tz|λ � ξ 〉 =
∑

σ∈(Z/nZ)r

c(ξ, σ ; z) Z(S�
λ,σ ). (6.3)

Here in the notation (1.4) both vectors |0〉 = |0; 0〉 and |λ � ξ 〉 = |λ � ξ ; 0〉 are in F0.

Proof. Let us define an invariant N : F0 → N. Suppose ξ = ui, where i is as in (3.1),
withm = 0. If 0 > i0 thenwe define N (ξ) = 0; otherwise, N (ξ) = t where t is such that
i−t � 0 > i−t−1. If ξ is interpreted as an assignment of spins to a sequence of vertical
edges, then N (ξ) is the number of − spins to the left of the 0-th column (inclusively)
or equivalently (since ξ ∈ F0), the number of + spins strictly to the right of the 0-th
column.

Consider a state of the infinite system S�
z,|λ�ξ〉,|0〉,r of Section 3. For 0 � r let i(k)

be the decreasing sequence such that in the notation (1.3), ui(k) is the element of F0
corresponding to the configuration of spins below the k-th row, and ui(k−1) is the element
corresponding to the configuration above it. Thus ui(0) = |λ � ξ 〉 and ui(r) = |0〉.

We will show that the spins of the horizontal edges connecting vertices of the 0-th
column to those of the −1-st column are all −. Indeed, it follows from Lemma 3.1 that
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either N (ui(k+1) ) = N (ui(k) ) or N (ui(k+1) ) = N (ui(k) ) − 1. But since N (ui(r) ) = 0 and
N (ui(0) ) = N (|λ � ξ 〉) = r , we must have N (ui(k) ) = k for all k. Now the fact that
N (ui(k) ) and N (ui(k−1) ) have opposite parity implies that the spin in the k-th row on the
horizontal edge to the right of the 0-th column is −, as required.

Now to complete the proof, we fix spins σ = (σ1, · · · , σr ) and collect together the
states whose decorated spin on the edge in the k-th row to the right of the 0-th column
is −σk . The product of the Boltzmann weights to the left of the 0-th column is the
Boltzmann weight of a state ofS�

λ,σ , and so clearly the sum of such Boltzmann weights

equals Z(S�
λ,σ ) times a factor that is independent of λ. ��

Let us reformulate this result as expressing a metaplectic Whittaker function in terms
of the metaplectic symmetric functions.

Theorem 6.3. Let ξ be a partition (of any length) such that ξ1 � r − 1. Then
∑

σ∈(Z/nZ)r

c(ξ, σ ; z)W�
σ (�λ) = δ1/2(�λ)Mn

λ�ξ (z).

Proof. This follows from combining Proposition 6.2 with Proposition 6.1 and the defi-
nition (1.9) of the metaplectic symmetric function Mn

λ. ��
Remark 6.4. By Corollary 5.9, this particular Whittaker function vanishes at �λ unless
λ � ξ has empty n-core. Although Mn

λ�ξ is a symmetric function, this does not imply
that the Whittaker function is symmetric in z because of the factor c(ξ, σ ; z). These
coefficients may be of interest for their own sake.

Remark 6.5. It seems probable that theWhittaker functions on the left-hand side (varying
ξ ) span the space ofWhittaker functions. Such a result would give a two-way connection
between metaplectic Whittaker functions and metaplectic symmetric functions.

7. Vertex Operators

So far we have put a lot of focus on operators of the form either:

V+(z) = exp(H+[a](z)) or V−(z) = exp(H−[a](z)), (7.1)

which we call half-vertex operators, where H+[a](z) and H−[a](z) are formal power
series in z and z−1 respectively defined by (1.7) and (1.8). Recall that H+ involves the
right-moving operators Jk and H− involves the left-moving operators J−k with k > 0.
We have proved that the operators T�(z) and T�(z) are of this type.

In this section we will consider their products V−(z)V+(z), such as the operator
T�(z)T�(z), and investigate if they satisfy the properties of a vertex operator. There is
one reason to believe that T�(z)T�(z) is a natural entity: in symplectic ice ( [8,21,24])
one represents the Whittaker function on the n-fold cover of Sp(2r) with Langlands
parameters z1, z

−1
1 , · · · , zr , z−1

r by the partition function of a system having alternating
layers of Gamma and Delta ice. The two adjacent layers are joined by a “cap” vertex
which does not have an obvious analog in our current setup.

Gamma and Delta ice occur together in another context, namely the equality of
the partition functions for Gamma and Delta ice. In [7] this result (established earlier
with greater difficulty in [10]) is proved using Yang-Baxter equations. In that context
T�(z)T�(w) only appear there with z and w distinct. For this, our Theorem 7.3 below
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is relevant, taking the place of the Yang-Baxter equations in our current setup. Still, in
this section we are mainly interested in V (z) = T�(z)T�(z) with the parameters equal.

Vertex operators exhibit a property called locality. This is a generalization of com-
mutativity that was emphasized in [12,16,30]. It is explained in Chapter 1 of [30] that
for the vertex operators arising in conformal field theory, locality is a reflection of the
locality in the Wightman axioms for a quantum field theory: two fields with disjoint
support having spacelike separation commute as operators.

If F is a field, let F[[z]] be the ring of formal power series
∑

n�0 anz
n with an ∈ F ,

and let F((z)) be the fraction field of F[[z]], consisting of Laurent series ∑∞
n=−N anzn

with only finitely many negative coefficients. LetH H((z)) denote C((z)) ⊗H H , the
space of Laurent series with coefficients in H H .

In vertex algebras a field is represented by a formal power series

A(z) =
∞
∑

k=−∞
Akz

−k−1

where Ak is an operator on a Hilbert space H such that for any vector |v〉 ∈ H ,
Ak |v〉 = 0 for k � 0. A field gives rise to a map H → H ((z)).

Let B(w) = ∑∞
k=−∞ Bkw

−k−1 similarly be a field. Locality is a generalization of
commutativity in the sense that two fields A(z) and B(w) are called mutually local if
[A(z), B(w)] = A(z)B(w) − B(w)A(z) is a formal distribution concentrated on the
diagonal z = w. We will explain more precisely what this means.

Note that the matrix elements of A(z)B(w) are elements in C((z))((w)), that is,
in F((w)) where F = C((z)). Similarly the matrix elements of B(w)A(z) are el-
ements in C((w))((z)). The difference between C((z))((w)) and C((w))((z)) is il-
lustrated by image of the rational function 1/(z − w) embedded into the two spaces
as z−1 ∑∞

k=0(w/z)k and −w−1 ∑∞
k=0(z/w)k respectively. Requiring that the matrix

elements of [A(z), B(w)] should vanish identically would restrict us to elements in
the intersection of C((z))((w)) and C((w))((z)) in C[[z±, w±]] which is the space
C[[z, w]][z−1, w−1] giving a too strong condition [16]. Instead, we use the more re-
laxed condition that

(z − w)N [A(z), B(w)] = 0 (7.2)

as a formal power series for some positive integer N . In this case we say the fields A(z)
and B(w) are mutually local.

Let us give another explanation of this notion. We assume that Ak and Bl commute
if k and l are either both positive or both negative, that A0 and B0 commute with all Ak
and Bl . Moreover let us assume that the normal-ordered product

:A(z)B(w): =
∞
∑

k=−∞

∞
∑

l=−∞
z−k−1w−l−1:Ak Bl :

is a bounded operator on H , where

:Ak Bl : =
{

Bl Ak if k > 0,
Ak Bl otherwise.

Our assumptions imply that :A(z)B(w): = :B(w)A(z):. Now consider:

A(z)B(w) − :A(z)B(w):.
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Very often this operatorwill be given by a power series that is convergentwhen |w| < |z|.
Let us denote this as φ(z, w). Furthermore it may be that B(w)A(z) − :A(z)B(w): is
also given by a power series, convergent when |z| < |w|, and that this represents the
same rational function φ(z, w). In this case the fields A(z) and B(w) are mutually local.

To clarify this with an example, let us work with a Heisenberg Lie algebra having
generators Jk (k ∈ Z) with J0 central having the commutator relations

[Jk, Jl ] = δk,−l k · c
where c is another central element. This is the special case n = 1 of (2.27). The Hilbert
spaceH is to be generated by a vacuum |0〉 such that Jk |0〉 = 0 if k > 0 and c acts by
the identity. Now consider the field

J (z) =
∞
∑

k=−∞
z−k−1 Jk .

We have

J (z)J (w) − :J (z)J (w): =
∞
∑

k=1

[Jk, J−k]z−1−kw−1+l · c = 1

(z − w)2
· c,

the series being convergent when |w| < |z|. Since J (w)J (z) − :J (w)J (z): gives the
same expression in the complementary domain |z| < |w|, the fields J (z) and J (w) are
mutually local.

Thus the locality is a generalization of the condition that A(z)B(w) = B(w)A(z).
Dong and Lepowsky [12] considered a similar generalization of the condition that

A(z)B(w) = eiπτ B(w)A(z), (7.3)

for a phase shift eiπτ . Our Proposition 7.5 below shows thatweneed such a generalization
of locality. Frenkel and Reshetikhin [17] considered evenmore generally the case where
the phase shift is replaced by an operator S(w/z) that depends analytically only on z
and w. For consistency it is necessary that S(w/z) satisfies a parametrized Yang-Baxter
equation. This is automatic if S(w/z) is a scalar, in which case this identity is similar to
(7.3).

There is another respect in which the framework of [17] is more general than the
usual locality, and this is that they allow S(w/z) to have poles not only on the diagonal
z = w but on shifted diagonals z = γw where γ lies in a discrete subgroup of C

×. This
concept of locality in [17] is what we see in our examples with the set of lines z = v jw

and S(w/z) being a scalar.
We require that S is a meromorphic function, with poles only along the linesw = v j z

for a finite number of integer values of j , such that

A(z)B(w) = S(w/z)B(w)A(z). (7.4)

Let us first consider the meaning of this when A(z) = B(z) = V (z) = V−(z)V+(z)
where V±(z) are defined in (7.1). Suppose that we can find a rational function φ(x) such
that (formally)

V+(z)V−(w) = φ
( z

w

)

V−(w)V+(z).
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Then since V−(z) commutes with V−(w) and V+(z) commutes with V+(w) we have

V (z)V (w) = φ
( z

w

)

:V (z)V (w):

where the normal-ordered product is

:V (z)V (w): = V−(z)V−(w)V+(z)V+(w). (7.5)

Then
V (z)V (w) = S(w/z)V (w)V (z), S(x) = φ(x−1)/φ(x). (7.6)

Remark 7.1. Strictly speaking V−(z)V+(z) is not an operator on Fm since V−(z)|λ〉 pro-
duces an infinite number of terms. However 〈μ|V−(z)V+(z)|λ〉 is a finite sum.Moreover,
the normal-ordered product :V (z)V (w): defined by (7.5) is such that 〈μ| :V (z)V (w): |λ〉
is a finite sum. The normal-ordered product has the advantage of being unchanged if z
and w are switched.

We now take the Heisenberg generators Jk to satisfy the commutator relation (2.27),
and H = Fm for some fixed m. We supplement the Jk (k 
= 0) by J0 which acts on Fm
by the scalar m. Define the shift operator Q : Fm −→ Fm+n by

Q(uim ∧ uim−1 ∧ · · · ) = uim+n ∧ uim−1+n ∧ · · · .

We will use the notation |λ〉 = |λ;m〉 introduced in (1.4) for basis vectors.
We may regard V−(z)V+(z) as a map from F into a suitable completion. Depending

on the coefficients a it may be useful to supplement V−(z)V+(z) by a factor such as
Qr za0 J0 .

Example 1. The first case we wish to consider is V+(z) = T�(z), V−(z) = T�(z). The
operators T�(z) and T�(w) commute as follows from our main theorem (or by a Yang-
Baxter equation argument). Similarly the T�(z) mutually commute for varying z. But
T�(z) does not commute with T�(w). Moreover, we must be cautious about composing
these. Consider

〈η|T�(z)T�(w)|ξ 〉 =
∑

ζ

〈η|T�(z)|ζ 〉〈ζ |T�(w)|ξ 〉. (7.7)

There are an infinite number of termson the right-hand, side. The sumconverges provided
|z| < c1|w| where c1 = min(1, |v|−1−1/n).

Remark 7.2. There are no such convergence issues if we compose in the other (normal-
ordered) way: because T�(w)T�(z) does the right-moving modes first, the sum corre-
sponding to (7.7) is a finite sum.

Theorem 7.3. Suppose that |z| < c1|w|. Then

T�(z)T�(w) = (1 − vznw−n)(1 − vnznw−n)

(1 − znw−n)(1 − vn+1znw−n)
T�(w)T�(z). (7.8)

This, together with Remark 7.2 allows us to analytically continue the conditionally
convergent composition T�(z)T�(w), except to the poles of the denominator in (7.8).
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Proof of Theorem 7.3. By a computation very similar to the proof of Theorem 5.10, we
have

eH+(z)eH−(w)e−H+(z)e−H−(w) = (1 − vznw−n)(1 − vnznw−n)

(1 − znw−n)(1 − vn+1znw−n)
, (7.9)

and (7.8) follows from our Main Theorem (Theorem A). ��
In view of our previous discussion, this means that if we define V (z) = T�(z)T�(z),

then the operators V (z), V (w) are mutually local in the generalized sense of (7.6) with
φ(z/w) being the right hand side of (7.9).

Example 2. For our next example, we work with the operators

L+(z) =
∞
∑

k=1

1

k
zk Jk, L−(z) =

∞
∑

k=1

1

k
z−k J−k .

The operator L+(z) appeared in Section 5, and the operator L−(z) resembles the operator
L+(z)∗ that we used there, except that z is replaced by z−1. Now we will make use of
the shift operator, and J0. Define

U±(z) = exp(L±(z)), U♦(z) = U−(z)U+(z) , U (z) = QzJ0U♦(z). (7.10)

Now let us define the normal-ordered product

:U♦(z)U♦(w): = U−(z)U−(w)U+(z)U+(w).

This ismeaningful for all z andw in the sense that ifμ, λ are given, then 〈μ| :U♦(z)U♦(w):
|λ〉 is always a finite sum.

Proposition 7.4. If |z|/|w| is sufficiently small, then

U♦(z)U♦(w) =
n−1
∏

j=0

1

1 − v j z/w
:U♦(z)U♦(w): . (7.11)

Proof. We have

[L+(z), L−(w)] =
∞
∑

k=1

1

k2
k
vnk − 1

vk − 1

( z

w

)k = −
n−1
∑

j=0

log(1 − v j z/w),

so by the Baker-Campbell-Hausdorff formula we have

U♦(z)U♦(w) =
n−1
∏

j=0

1

1 − v j z/w
:U♦(z)U♦(w):.

��
Wemay take (7.11) as givingmeaning toU♦(z)U♦(w) for all z, w except at the poles

of the denominator. Then naturallyU (z)U (w) may be defined to beU0(z)U0(w)U♦(z)
U♦(w) where U0(z) = QzJ0 . (Note that U0(w) commutes with U♦(z).)
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Proposition 7.5. We have

U (z)U (w) =
⎛

⎝

n−1
∏

j=0

z − v jw

w − v j z

⎞

⎠U (w)U (z).

Proof. By Proposition 7.4,

U♦(z)U♦(w) =
(

w

z

)n n−1
∏

j=0

z − v jw

w − v j z
U♦(w)U♦(z). (7.12)

On the other hand J0 and Q commute with Jk if k 
= 0 while [J0, Q] = nQ. We have

z J0Qz−J0 = elog(z)J0Qe− log(z)J0 = znQ,

so

U0(z)U0(w) = znQ2z J0w J0 =
( z

w

)n
U0(w)U0(z).

The statement follows. ��
Wemay now discuss the effect of the factorU0(z) in this definition. If we had omitted

it we would have had locality relation, but the factor S(w/z) would have had to include
the (w/z)n that appears in (7.12). By including the factorU0(z) in the definition ofU (z),
we are able to eliminate the pole at z = 0. The resulting φ(z/w) in the locality property
(7.6) for U (z) is then

∏n−1
j=0(z − v jw)/(w − v j z).
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