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ABSTRACT

Numerical modeling of radiative transfer in nongray reacting media is a challenging problem in computational science

and engineering. The choice of radiation models is important for accurate and efficient high-fidelity combustion simulations.

Different applications usually involve different degrees of complexity, so there is yet no consensus in the community. In

this paper, the performance of different radiative transfer equation (RTE) solvers and spectral models for a turbulent piloted

methane/air jet flame are studied. The flame is scaled from the Sandia Flame D with a Reynolds number of 22,400. Three

classes of RTE solvers, namely the discrete ordinates method, spherical harmonics method, and Monte Carlo method, are

examined. The spectral models include the Planck-mean model, the full-spectrum k-distribution (FSK) method, and the line-

by-line (LBL) calculation. The performances of different radiation models in terms of accuracy and computational cost are

benchmarked. The results have shown that both RTE solvers and spectral models are critical in the prediction of radiative heat

source terms for this jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty

are discussed in detail. The results can be used as a reference for radiation model selection in combustor simulations.
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INTRODUCTION

Modeling of radiative transfer is important for high-fidelity combustion simulations, flame diagnostics, and combustor designs.

Significant progresses have been achieved in the past decades in both spectral models and numerical solvers for the radiative transfer

equation (RTE) [1]. However, the choice of radiation models is still an open question due to different degrees of complexity in combus-

tion problems. The selection of radiation models is difficult for both theoretical and practical reasons. One reason is the strongly varying

spectral property of the gases. The major gaseous products (CO2, H2O and CO) from the combustion of hydrocarbons have millions of

broadened spectral lines. Although the spectral knowledge is now available through the high-resolution spectroscopic databases [2–4],

a line-by-line (LBL) calculation is still impractical for most deterministic solution methods except for Monte Carlo-based solvers with

sufficient sampling points. Therefore, efficient spectral models are required to keep the computational cost within a reasonable range.

Another difficulty is that both the accuracy and speed of the RTE solvers are case-dependent. Combustion involves emitting and ab-

sorbing gases with strong spectral dependency, so there is no simple way to characterize the radiative transfer and to pick the proper

RTE solver accordingly. One dimensionless number that is often used to characterize a radiation problem is the optical thickness. When

the optical thickness is large, the radiative intensity tends to be more isotropic. For an optically intermediate case, the radiative inten-

sity is expected to be more anisotropic. For an optically thin case, one can even safely skip the solution of the RTE directly, which is

called the Optically Thin model. One should be able to identify the optimal RTE solver based on the optical thickness for relatively

simple problems. However, the concept of optical thickness is a rough estimation, which is not defined well for nongray problems and

multidimensional nonhomogeneous media as found in most flame simulations.

The RTE is an integro-differential equation in five dimensions (three in space, and two in direction). The angular dependency of

the RTE makes it exceedingly difficult to solve for realistic radiative transfer problems. Except for very simple cases where analytical

solutions are available, the solution method needs to approximate the angular distributions of the radiative intensity. A detailed descrip-

tion of different RTE solvers and spectral models can be found in the recent review by Liu et al. [5], and a series of challenging radiative

transfer problems in combustion are described by Howell and Mengüç [6].

In this study, we focus on three main categories of RTE solvers, including the Monte Carlo method (MC), the spherical harmonics

method, and the discrete ordinates method (DOM), and the performance of the full spectrum correlated k-distribution (FSK) spectral

model. The two MC-based stochastic methods tested are the traditional Photon Monte Carlo (PMC) method and the quasi-Monte

Carlo (QMC) method. The PMC is so far the most effective method, first formulated by Fleck [7], and Howell and Perlmutter [8].

Modest [9] improved the PMC to treat spectral properties. The QMC method is a modified version of the MC method which uses

low-discrepancy sequences instead of random numbers [10]. The spherical harmonics method is a spectral method that approximates the

angular distribution by a truncated series of spherical harmonics series [11–13]. Both the PN method and the simplified PN (SPN) method

with different orders are demonstrated in this study. The DOM discretizes the entire solid angle into discrete directions with assigned

quadrature weights [14]. The accuracy and computational cost increase with the total number of discrete ordinates. The performances

of selected numbers of discrete polar and azimuthal ordinates are benchmarked. Lastly, the FSK is a spectral model based on reordering

the oscillatory absorption coefficients across the entire spectrum into corresponding k-distributions. The FSK is exact for homogeneous

media, and the assumption of a correlated absorption coefficient is made for the nonhomogeneous media [15]. Employing the FSK

reduces the number of evaluations of RTE from 1 million times to as low as eight times with high accuracy for regular combustion

conditions.

The radiation models (i.e., RTE solvers and spectral models) are applied to evaluate the nongray radiative transfer in a turbulent

piloted methane/air jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty are dis-

cussed in detail. All the deterministic solvers employed in this study are implemented using OpenFOAM programming framework [16]

through its data structures and linear PDE solvers, while all the stochastic solvers and the spectral models used in this study are from

an in-house Fortran library. The implementation details of the specific models can be found as follows: DOM [17], PN [18], SPN [19],

PMC [20], QMC [10], LBL [21], and FSK [22]. All the solvers support distributed memory parallelism through MPI, but only the serial

runs on a single core are benchmarked in this study.

RADIATION MODELS

The quasi-steady spectral radiative transfer equation (RTE) [20] is an integro-differential equation in five dimensions: three spatial

coordinates and two directional coordinates, given by Eq. (1):

dIη

ds
= κη Ibη −κη Iη −ση Iη +

ση

4π

∫
4π

Iη Φη(ŝi, ŝ)dΩi. (1)
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The dependent variable in this equation is radiative intensity Iη(r, ŝ). Here the subscript η denotes the spectral nature of the equation.

Ibη is the blackbody radiative intensity; κη is the absorption coefficient of the medium; σs is the scattering coefficient; Φ(ŝi, ŝ) is the

scattering phase function between ray directions ŝi and ŝ; Ωi represents the solid angle. In most combustion problems radiation enters as

a source term (aka divergence of radiative heat flux or ∇ ·q) in the energy equation which can be evaluated once the radiative intensity

is known. Approximation for the angular distribution of the radiative intensity is required to solve the RTE for deterministic methods.

Discrete Ordinates Method

In the discrete ordinates method, the RTE, Eq. (1), is transformed into a system of first-order PDEs. This is accomplished by

discretizing the directional variable ŝ into a set of N directions ŝi where i = 1,2, . . . ,N, called ordinates. Each of these ordinates has

a corresponding quadrature weight wi. Solving the system of PDEs yields a set of partial intensities Iη ,i which, combined with the

quadrature weights, can be used to approximate the radiative intensity via numerical quadrature.

The order of accuracy of the DOM depends on the number of ordinates N and corresponding quadrature weights. This directly

determines the number of PDEs that must be solved. Therefore, with an increasing order, it is expected that the computational cost

would also increase. In this paper, the ordinates are discretized uniformly along the polar and azimuthal angles. For example, for

the case of N = 2× 4, two quadrature points are chosen in the polar direction and four quadrature points are chosen in the azimuthal

direction, yielding a total of 2×4 ordinates.

Spherical Harmonics Method

The spherical harmonics method transforms the RTE into a set of simultaneous first-order or second-order PDEs. The general

formulation of the method is to replace Iη by a truncated series of spherical harmonics of order N. This is given by

Iη(r, ŝ) =
N

∑
n=0

n

∑
m=−n

Im
n,η(r)Y

m
n (ŝ), (2)

where Im
n,η(r) are the intensity coefficients which are functions of space only, and Y m

n (ŝ) are the spherical harmonics satisfying Laplace’s

equation in spherical coordinates. We use an axisymmetric formulation of PN method and the corresponding Marshak’s boundary

condition [18] here with (N +1)2/4 second-order elliptic PDEs.

The lowest order approximation of the PN approximation, which is the P1 method, is very popular and can be found in most

commercial and academic software for radiative transfer. On the contrary, the high-order PN method is rarely used in practice because

of its cumbersome mathematics and implementation. The other option is the simplified PN (SPN) method [19, 23]. The SPN method

approximates the one-dimensional PN formulation for a slab to a full three-dimensional configuration, which was originally proposed by

Gelbard [24].

Monte Carlo Method

In the Monte Carlo method, a large number of photon bundles or rays are traced from their point of emission till their depletion or

exit from the computational domain. This has led to the name photon Monte Carlo (PMC) method. Each photon bundle or ray is defined

by its location, wavenumber, and direction of propagation. The total energy of the photon bundles emitted from a location is equal to

the radiative emission from that location. As these bundles or rays travel through participating media, the media absorbs energy from

the rays based on the wavenumber of the ray and the local spectral absorption coefficient. The net radiative heat flux is calculated by

tracking the energy exchange between rays and the local media. The emission location, wavenumber, and direction of propagation for

each ray are determined by sampling six independent random numbers – three for emission location (Rx,Ry,Rz), two for propagation

direction (Rθ ,Rφ ), and one for wavenumber (Rη ). The details of the random number relations can be found in [20].

Recently several researchers have proposed a quasi-Monte Carlo (QMC) method as a computationally efficient alternative for PMC

[10, 25]. In QMC, the six random numbers are replaced by suitably chosen numbers from low-discrepancy sequences [26, 27]. This

leads to a considerably lower statistical error even with a lower number of rays than conventional PMC. In this work, we use the Sobol

sequence [28]. The details of the method and validation cases can be found in [10].

The PMC method is the most robust and most accurate method for RTE solver. In this work, the solution from PMC is treated as

the benchmark reference solution.
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Spectral Models

While the RTE solvers deal with the solution of the spectral RTE, spectral models deal with the evaluation of spectral properties

(e.g., κη , ση , Φη ). In this work we mainly use two spectral models - line-by-line (LBL) [2–4] and full spectrum k-distribution (FSK) [15,

22,29] method. The LBL method, which is the most accurate spectral model, captures the spectral variation at the level of spectral lines.

In the relevant range of wavenumbers, there are more than a million spectral lines required for appropriate accuracy. This means one

would need to solve the RTE more than a million times (once for each line). This makes the use of LBL with a deterministic RTE solver

such as DOM or PN impractical. Stochastic Monte Carlo-based methods do not suffer from this limitation. Hence in this work we use

LBL mostly with PMC and QMC. The details of the LBL database used can be found in [21].

The second spectral model used in this work is a full spectrum k-distribution lookup table [22] created using the full-spectrum

correlated k-distribution (FSK) method [15, 29]. In FSK, the spectral properties are mapped from wavenumber space to g-space, which

can be resolved by numerical quadrature. Therefore the complete evaluation of radiation requires only the solution of RTE at a small

number of quadrature points. Several versions of lookup tables have been developed [22,30,31] – referred to as FSKTable. In this work

we use the version in [22]. The FSKTable is used with DOM and PN solvers in this work.

Finally, to establish a point of reference, we have also run a series of simulations with P1 solver, using a Planck-mean based gray

approximation and LBL, and using an optically thin model.

RESULTS

Target flame

Sandia Flame D is a turbulent piloted jet flame [32] with a Reynolds number of ReD=22,400. The fuel from the main jet is a mixture

of methane and air with a ratio of 1:3 by volume. The main jet with a diameter of d j = 7.2 mm at the center is surrounded by an annular

pilot with a diameter of 2.62d j to stabilize the main jet. The pilot is a lean mixture of C2H2, H2, air, CO2 and N2 with the fuel-air

equivalence ratio φ being 0.77. The precise and careful measurement of Sandia Flame D provides a series of high quality experimental

data [32] that makes it a standard benchmark of a turbulent jet flame to validate combustion models.

The effects of radiative transfer for the simulation of Sandia Flame D have been studied by Li [33], Wang [34], and Pal [35].

The importance of radiation and its interaction with turbulence (TRI) has been established by comparing the simulation results and the

experimental measurements. Pal [35] also found that different spectral models and RTE solvers yield similar results because of the

relatively small size of Sandia Flame D (though the small differences in predicted temperature resulted in large differences in predictions

of NO). Since the size of turbulent jet flames in real applications tends to be much larger, Sandia Flame D was scaled four times (Sandia

Flame D×4) to study the effects of radiation for optically thicker turbulent jet flames [33–35]. Sandia Flame D is scaled up in such a

way that the diameter of the main jet and the outer diameter of the pilot are quadrupled while decreasing the exit velocity of the mixture

out of the jet and pilot to keep the Reynolds number ReD unchanged. The geometric sizes of the main jet and the pilot and the inlet

velocities of the original Sandia Flame D and Sandia Flame D×4 are shown in Table 1. The co-flow represents the environmental air

entering the wind tunnel.

TABLE 1. SIZES AND THE INLET VELOCITIES OF THE MAIN JET, THE PILOT, AND THE CO-FLOW [36]

Sandia Flame D Sandia Flame D×4

d (mm) u (m/s) d (mm) u (m/s)

main jet 7.2 49.89 28.8 12.4725

pilot 18.864 10.57 75.456 2.6425

co-flow 258.2 0.90 1032.8 0.2250

Comparison of accuracy and cost

Different RTE solvers and spectral models are compared for a frozen-field snapshot of the quasi-stationary Sandia D×4 flame. The

frozen-field snapshot is obtained on an axisymmetric mesh with 3325 finite volume cells with 35 cells along the radial direction, and

95 cells along the axial direction. The full size of the computational domain is 0.516 m × 2.88 m, and the mesh is refined to have a
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high-resolution region close to the jet. The contours of relevant scalars of the snapshot are shown in Fig. 1. The negative radiative heat

source (∇ · q) is computed on the finite volume mesh and sampled along three lines (z/d = 14.93,29.79,44.65 as marked in Fig. 1).

The distribution of temperature and Planck-mean absorption coefficients along two of these lines are shown in Fig. 2 for reference. For

the discrete ordinate method, 2×4, 4×4, 4×8, 4×16, 8×8, 8×16, and 16×32 ordinates are used. For the spherical harmonics (PN)

method, P1, P3, P5, and P7 are used as well as the simplified SP3 and SP5. For QMC, 100,000 rays are used, and for PMC, 1,000,000

rays are used. For PMC results, the standard deviation are plotted as error bars. In all cases, the PMC and QMC RTEs are used with a

line-by-line (LBL) spectral model and DOM and PN / SPN solvers are coupled to the FSKTable using an eight-quadrature scheme. The

open boundaries are treated as cold and black. Each combination of RTE and spectral model is benchmarked on a single Intel Xeon

E5-2687Wv4 CPU. All the comparisons in this work are based on the divergence of radiative heat flux (∇ ·q) or the negative radiative

heat source term; and the PMC–LBL results are treated as benchmark reference.

FIGURE 1. CONTOUR PLOT OF THE SCALAR FIELDS FOR THE SNAPSHOT OF THE SANDIA D×4 FLAME.

To evaluate the accuracy of the FSKTable, first we present a comparison of FSKTable with LBL using the same RTE solver. In

this case, we use the P1 solver. The representative results along two lines (z/d = 14.93,44.65) are shown in Fig. 3. We also show the

results from P1–Gray and Optically Thin models in this figure for references. Clearly, both the optically thin approximation and the gray

approximation lead to gross overestimation of ∇ ·q. The results from FSK and LBL using the same RTE solver (P1) match very well.

This establishes the accuracy of the FSKTable in the current configuration and the validity of the correlated-k assumption. Hence, in

subsequent comparisons, the differences in accuracy can be assumed to be stemming from the inaccuracy of the RTE solver and not due

to inaccuracy of the spectral model.

The profile of ∇ · q along the three lines for DOM and PN / SPN solvers are presented in Figs. 4 and 5, respectively. Their

computational costs are shown in Table 2. Results from QMC are compared with PMC in Fig. 6 with their computational costs shown in

Table 3. The DOM results show a reasonably accurate result at all axial locations lying within the error bars of the PMC. Interestingly, the

higher orders DOM leads to slight overprediction than the lower orders due to the axisymmetric mesh and rotational invariant formulation

as was previously reported [17]. In general, the error from DOM seems to be larger near the axis of the flame. The computational cost

for DOM–FSK increases with the number of ordinates as expected.

As expected, for the PN method, increasing the order of accuracy achieved results closer to PMC–LBL. However, the advantage of

accuracy gained seems to get lower with the increase in order (i.e., the accuracy gained from moving to P7 and P5 from P3 is less than

that by moving to P3 from P1). Furthermore, P1 performs rather poorly at all three axial locations. Both SP3 and SP5 perform well.

Except for the z/d = 44.65 location, the SPN solvers yield a solution within the error bars of the PMC-LBL results. It might be due to
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FIGURE 2. TEMPERATURE AND PLANCK-MEAN ABSORPTION COEFFICIENT FOR FROZEN FIELD OF SANDIA D×4 FLAME AT TWO AXIAL

LOCATIONS.

FIGURE 3. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (∇ · q) FROM DIFFERENT SPECTRAL MODELS WITH THE P1

SOLVER AT TWO AXIAL LOCATIONS.

certain level of compensation of errors. Computational cost of PN increased with increasing order of accuracy nonlinearly. The QMC

results are almost always within the error bars of the PMC–LBL at an order of magnitude lower cost than PMC (see Fig. 6 and Table 3).

This is similar to the results obtained in [10].

Finally, we present a comparison of DOM 4×4 and P3 in Figure 7 for two representative lines at z/d =14.93 and 44.65. We chose

these two solvers for direct comparison as their computational costs are similar in this study. The comparison shows that P3 overpredicts

the divergence of heat flux whereas DOM almost always produces results within the error bar of the PMC.

The DOM results show the same trends as PN results (see Fig. 4). If the number of ordinates used increases, the results more closely

match PMC LBL accuracy. In general, most of the DOM results fall within the standard error of the PMC LBL results except for 2×4

and 4×4 ordinates. Similarly to the PN results, the computational cost also increases significantly with an increased number of ordinates

(see Table 2). In fact, the computational cost is directly proportional to the total number of ordinates. For example, in the case of 4×8
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FIGURE 4. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (∇ · q) FROM THE DOM–FSK METHODS AND THE PMC–LBL

METHOD AT THREE AXIAL LOCATIONS.

ordinates, there are half as many ordinates as the case of 4×16 and approximately half of the computational cost. Since the DOM results

fall within PMC–LBL standard error if enough ordinates are used (at minimum 4×8), it may not be worth the extra computational cost

to use a higher number of ordinates given the significant increase in computational cost.

In general, the QMC results achieve PMC LBL accuracy and at a fraction of the computational cost of the PMC runs. This is due to

the fact that QMC shows a faster rate of decrease in statistical error with the increase in sample size seen than in PMC [10].

DISCUSSION

The target flame considered in this work is an artificial flame based on a laboratory-scale turbulent jet flame. While the comparisons

of computational cost and accuracy shown here are specific to a large, nonsooting jet flame similar to the target flame, the results provide

some insights into applicability of various radiation models in different configurations. The jet flame provides a significantly non-

homogeneous distribution of participating media, leading to locally optically thick regions within rather optically thin medium (Fig. 1).

This type of nonhomogenous distribution of absorption coefficient is characteristic of most turbulent combustion devices. One of the

reasons behind artificially scaling up the original laboratory flame, as discussed in [33–35], is to specifically study large combustion
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FIGURE 5. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (∇ ·q) FROM DIFFERENT ORDERS OF THE PN–FSK, SPN–FSK

METHODS AND THE PMC-LBL METHOD AT THREE AXIAL LOCATIONS.

systems. Radiation is a volumetric phenomenon, and therefore, the importance of radiation is expected to be greater in large devices

than in small laboratory-scaled flames. The size of the scaled flame is also somewhat representative of real combustion devices such as

furnaces and gas turbines.

A second point of note is that the computational cost presented here includes the cost for evaluating both the spectral model and

solving RTE. However, since all RTE solvers except PMC and QMC use FSKTable, the comparison of computational cost between

PN and DOM solvers will still be somewhat representative in any other configurations without scattering or reflecting walls as is the

case for the current target. If scattering or reflecting walls are present in the configuration, the computational cost of PMC, QMC,

and PN is expected to be affected only marginally as their formulations or solution algorithms are not affected. But for the DOM, the

resultant PDEs can be treated as a set of uncoupled PDEs if there are no scattering or reflecting walls leading to a lower cost in these

scenarios. Furthermore, the computational cost of RTE solvers can be optimized on a case-by-case basis by tuning the number and

order of iterations performed in the solver in the actual implementation of the RTE solver. Such optimizations have not been done in the

current work. Hence, in this work we present Table 2 as a qualitative comparison of the relative cost of different RTE solvers.
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FIGURE 6. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (∇ ·q) FROM PMC–LBL AND QMC–LBL METHODS.

TABLE 2. CPU TIMES FOR PN AND DOM SOLVERS WITH FSK SPECTRAL MODEL

PN and SPN CPU Time (s) DOM CPU Time (s)

P1 1.66 DOM 2×4 1.75

P3 2.60 DOM 4×4 2.47

P5 5.05 DOM 4×8 3.45

P7 10.47 DOM 4×16 6.84

SP3 1.98 DOM 8×8 6.05

SP5 3.49 DOM 8×16 12.54

DOM 16×32 60.95

TABLE 3. CPU TIMES FOR PMC/QMC SOLVERS WITH LBL SPECTRAL MODEL

RTE PMC QMC

CPU Times (s) 33.84 4.32

CONCLUSION

In this work different orders of DOM and PN solvers with an FSK spectral model are compared with the benchmark reference

solution from PMC with LBL for a scaled turbulent jet flame. First, to illustrate the difference in results due to the spectral model, we

show the radiative source terms (∇ · q) calculated using P1 with both LBL and FSK in Fig. 3. This comparison shows that the FSK

lookup table provides a reliable estimation of spectral properties as the results of P1-LBL and P1-FSK overlap completely. Then, we

present the results from a series of DOM and PN solvers of different orders in Figs. 4 and 5. In the current configuration DOM provides

a reasonably accurate estimate of the radiative source term even with low resolution such as 2×4 where the results almost always lie

within the error bars of the PMC solution (except near the axis at z/D = 44.65 location). The solutions of the PN solvers show a clear

trend of increasing accuracy with the order. In general, P1 performs rather poorly in this case. However, the simplified PN versions –

SP3 and SP5 – provide an accurate estimation of the radiative source term at a very low cost. Yet, since SPN is a simple extrapolation

of the one-dimensional configuration to three-dimensional configuration, this level of accuracy may not always be achievable for SPN

for all combustion configurations, particularly cases with complex geometry and strong nonhomogeneity. The comparison of P3 with
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FIGURE 7. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (∇ ·q) FROM P3-FSK, DOM 4×4-FSK AND PMC-LBL METHODS.

DOM 4×4 (Fig. 7) shows that in this case DOM performs better than spherical harmonics method at roughly the same computational

cost. However, as discussed earlier, the relative computational cost of DOM and PN may be affected if scattering or reflecting walls are

included in the configuration. Additionally, we also show that the quasi-Monte Carlo method, an alternative to PMC, provides results as

accurate as PMC using a smaller number of rays.
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