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ABSTRACT

Numerical modeling of radiative transfer in nongray reacting media is a challenging problem in computational science
and engineering. The choice of radiation models is important for accurate and efficient high-fidelity combustion simulations.
Different applications usually involve different degrees of complexity, so there is yet no consensus in the community. In
this paper, the performance of different radiative transfer equation (RTE) solvers and spectral models for a turbulent piloted
methane/air jet flame are studied. The flame is scaled from the Sandia Flame D with a Reynolds number of 22,400. Three
classes of RTE solvers, namely the discrete ordinates method, spherical harmonics method, and Monte Carlo method, are
examined. The spectral models include the Planck-mean model, the full-spectrum k-distribution (FSK) method, and the line-
by-line (LBL) calculation. The performances of different radiation models in terms of accuracy and computational cost are
benchmarked. The results have shown that both RTE solvers and spectral models are critical in the prediction of radiative heat
source terms for this jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty
are discussed in detail. The results can be used as a reference for radiation model selection in combustor simulations.
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INTRODUCTION

Modeling of radiative transfer is important for high-fidelity combustion simulations, flame diagnostics, and combustor designs.
Significant progresses have been achieved in the past decades in both spectral models and numerical solvers for the radiative transfer
equation (RTE) [1]. However, the choice of radiation models is still an open question due to different degrees of complexity in combus-
tion problems. The selection of radiation models is difficult for both theoretical and practical reasons. One reason is the strongly varying
spectral property of the gases. The major gaseous products (CO;, H,O and CO) from the combustion of hydrocarbons have millions of
broadened spectral lines. Although the spectral knowledge is now available through the high-resolution spectroscopic databases [2—-4],
a line-by-line (LBL) calculation is still impractical for most deterministic solution methods except for Monte Carlo-based solvers with
sufficient sampling points. Therefore, efficient spectral models are required to keep the computational cost within a reasonable range.
Another difficulty is that both the accuracy and speed of the RTE solvers are case-dependent. Combustion involves emitting and ab-
sorbing gases with strong spectral dependency, so there is no simple way to characterize the radiative transfer and to pick the proper
RTE solver accordingly. One dimensionless number that is often used to characterize a radiation problem is the optical thickness. When
the optical thickness is large, the radiative intensity tends to be more isotropic. For an optically intermediate case, the radiative inten-
sity is expected to be more anisotropic. For an optically thin case, one can even safely skip the solution of the RTE directly, which is
called the Optically Thin model. One should be able to identify the optimal RTE solver based on the optical thickness for relatively
simple problems. However, the concept of optical thickness is a rough estimation, which is not defined well for nongray problems and
multidimensional nonhomogeneous media as found in most flame simulations.

The RTE is an integro-differential equation in five dimensions (three in space, and two in direction). The angular dependency of
the RTE makes it exceedingly difficult to solve for realistic radiative transfer problems. Except for very simple cases where analytical
solutions are available, the solution method needs to approximate the angular distributions of the radiative intensity. A detailed descrip-
tion of different RTE solvers and spectral models can be found in the recent review by Liu et al. [5], and a series of challenging radiative
transfer problems in combustion are described by Howell and Mengiic [6].

In this study, we focus on three main categories of RTE solvers, including the Monte Carlo method (MC), the spherical harmonics
method, and the discrete ordinates method (DOM), and the performance of the full spectrum correlated k-distribution (FSK) spectral
model. The two MC-based stochastic methods tested are the traditional Photon Monte Carlo (PMC) method and the quasi-Monte
Carlo (QMC) method. The PMC is so far the most effective method, first formulated by Fleck [7], and Howell and Perlmutter [8].
Modest [9] improved the PMC to treat spectral properties. The QMC method is a modified version of the MC method which uses
low-discrepancy sequences instead of random numbers [10]. The spherical harmonics method is a spectral method that approximates the
angular distribution by a truncated series of spherical harmonics series [11-13]. Both the Py method and the simplified Py (SPy) method
with different orders are demonstrated in this study. The DOM discretizes the entire solid angle into discrete directions with assigned
quadrature weights [14]. The accuracy and computational cost increase with the total number of discrete ordinates. The performances
of selected numbers of discrete polar and azimuthal ordinates are benchmarked. Lastly, the FSK is a spectral model based on reordering
the oscillatory absorption coefficients across the entire spectrum into corresponding k-distributions. The FSK is exact for homogeneous
media, and the assumption of a correlated absorption coefficient is made for the nonhomogeneous media [15]. Employing the FSK
reduces the number of evaluations of RTE from 1 million times to as low as eight times with high accuracy for regular combustion
conditions.

The radiation models (i.e., RTE solvers and spectral models) are applied to evaluate the nongray radiative transfer in a turbulent
piloted methane/air jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty are dis-
cussed in detail. All the deterministic solvers employed in this study are implemented using OpenFOAM programming framework [16]
through its data structures and linear PDE solvers, while all the stochastic solvers and the spectral models used in this study are from
an in-house Fortran library. The implementation details of the specific models can be found as follows: DOM [17], Py [18], SPy [19],
PMC [20], QMC [10], LBL [21], and FSK [22]. All the solvers support distributed memory parallelism through MPI, but only the serial
runs on a single core are benchmarked in this study.

RADIATION MODELS
The quasi-steady spectral radiative transfer equation (RTE) [20] is an integro-differential equation in five dimensions: three spatial
coordinates and two directional coordinates, given by Eq. (1):

dr, Oy [ A
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The dependent variable in this equation is radiative intensity I (r,8). Here the subscript 1 denotes the spectral nature of the equation.
Ipy is the blackbody radiative intensity; &, is the absorption coefficient of the medium; oy is the scattering coefficient; ®(8;,8) is the
scattering phase function between ray directions §; and §; ; represents the solid angle. In most combustion problems radiation enters as
a source term (aka divergence of radiative heat flux or V - q) in the energy equation which can be evaluated once the radiative intensity
is known. Approximation for the angular distribution of the radiative intensity is required to solve the RTE for deterministic methods.

Discrete Ordinates Method

In the discrete ordinates method, the RTE, Eq. (1), is transformed into a system of first-order PDEs. This is accomplished by
discretizing the directional variable § into a set of N directions §; where i = 1,2,... N, called ordinates. Each of these ordinates has
a corresponding quadrature weight w;. Solving the system of PDEs yields a set of partial intensities I ; which, combined with the
quadrature weights, can be used to approximate the radiative intensity via numerical quadrature.

The order of accuracy of the DOM depends on the number of ordinates N and corresponding quadrature weights. This directly
determines the number of PDEs that must be solved. Therefore, with an increasing order, it is expected that the computational cost
would also increase. In this paper, the ordinates are discretized uniformly along the polar and azimuthal angles. For example, for
the case of N = 2 x 4, two quadrature points are chosen in the polar direction and four quadrature points are chosen in the azimuthal
direction, yielding a total of 2 x 4 ordinates.

Spherical Harmonics Method
The spherical harmonics method transforms the RTE into a set of simultaneous first-order or second-order PDEs. The general
formulation of the method is to replace I, by a truncated series of spherical harmonics of order N. This is given by

N n

I(rs) =Y Y L@y Qs), )
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where I, (r) are the intensity coefficients which are functions of space only, and Y;"*(8) are the spherical harmonics satisfying Laplace’s
equation in spherical coordinates. We use an axisymmetric formulation of Py method and the corresponding Marshak’s boundary
condition [18] here with (N + 1)? /4 second-order elliptic PDEs.

The lowest order approximation of the Py approximation, which is the Py method, is very popular and can be found in most
commercial and academic software for radiative transfer. On the contrary, the high-order Py method is rarely used in practice because
of its cumbersome mathematics and implementation. The other option is the simplified Py (SPy) method [19,23]. The SPy method
approximates the one-dimensional Py formulation for a slab to a full three-dimensional configuration, which was originally proposed by
Gelbard [24].

Monte Carlo Method

In the Monte Carlo method, a large number of photon bundles or rays are traced from their point of emission till their depletion or
exit from the computational domain. This has led to the name photon Monte Carlo (PMC) method. Each photon bundle or ray is defined
by its location, wavenumber, and direction of propagation. The total energy of the photon bundles emitted from a location is equal to
the radiative emission from that location. As these bundles or rays travel through participating media, the media absorbs energy from
the rays based on the wavenumber of the ray and the local spectral absorption coefficient. The net radiative heat flux is calculated by
tracking the energy exchange between rays and the local media. The emission location, wavenumber, and direction of propagation for
each ray are determined by sampling six independent random numbers — three for emission location (Ry, Ry, R;), two for propagation
direction (Rg,Ry), and one for wavenumber (Ry). The details of the random number relations can be found in [20].

Recently several researchers have proposed a quasi-Monte Carlo (QMC) method as a computationally efficient alternative for PMC
[10,25]. In QMC, the six random numbers are replaced by suitably chosen numbers from low-discrepancy sequences [26,27]. This
leads to a considerably lower statistical error even with a lower number of rays than conventional PMC. In this work, we use the Sobol
sequence [28]. The details of the method and validation cases can be found in [10].

The PMC method is the most robust and most accurate method for RTE solver. In this work, the solution from PMC is treated as
the benchmark reference solution.



Spectral Models

While the RTE solvers deal with the solution of the spectral RTE, spectral models deal with the evaluation of spectral properties
(e.g., Ky, Oy, Py). In this work we mainly use two spectral models - line-by-line (LBL) [2—4] and full spectrum k-distribution (FSK) [15,
22,29] method. The LBL method, which is the most accurate spectral model, captures the spectral variation at the level of spectral lines.
In the relevant range of wavenumbers, there are more than a million spectral lines required for appropriate accuracy. This means one
would need to solve the RTE more than a million times (once for each line). This makes the use of LBL with a deterministic RTE solver
such as DOM or Py impractical. Stochastic Monte Carlo-based methods do not suffer from this limitation. Hence in this work we use
LBL mostly with PMC and QMC. The details of the LBL database used can be found in [21].

The second spectral model used in this work is a full spectrum k-distribution lookup table [22] created using the full-spectrum
correlated k-distribution (FSK) method [15,29]. In FSK, the spectral properties are mapped from wavenumber space to g-space, which
can be resolved by numerical quadrature. Therefore the complete evaluation of radiation requires only the solution of RTE at a small
number of quadrature points. Several versions of lookup tables have been developed [22,30,31] — referred to as FSKTable. In this work
we use the version in [22]. The FSKTable is used with DOM and Py solvers in this work.

Finally, to establish a point of reference, we have also run a series of simulations with P; solver, using a Planck-mean based gray
approximation and LBL, and using an optically thin model.

RESULTS
Target flame

Sandia Flame D is a turbulent piloted jet flame [32] with a Reynolds number of Rep=22,400. The fuel from the main jet is a mixture
of methane and air with a ratio of 1:3 by volume. The main jet with a diameter of d; = 7.2 mm at the center is surrounded by an annular
pilot with a diameter of 2.62d; to stabilize the main jet. The pilot is a lean mixture of CoH», Hp, air, CO, and N> with the fuel-air
equivalence ratio ¢ being 0.77. The precise and careful measurement of Sandia Flame D provides a series of high quality experimental
data [32] that makes it a standard benchmark of a turbulent jet flame to validate combustion models.

The effects of radiative transfer for the simulation of Sandia Flame D have been studied by Li [33], Wang [34], and Pal [35].
The importance of radiation and its interaction with turbulence (TRI) has been established by comparing the simulation results and the
experimental measurements. Pal [35] also found that different spectral models and RTE solvers yield similar results because of the
relatively small size of Sandia Flame D (though the small differences in predicted temperature resulted in large differences in predictions
of NO). Since the size of turbulent jet flames in real applications tends to be much larger, Sandia Flame D was scaled four times (Sandia
Flame D x4) to study the effects of radiation for optically thicker turbulent jet flames [33-35]. Sandia Flame D is scaled up in such a
way that the diameter of the main jet and the outer diameter of the pilot are quadrupled while decreasing the exit velocity of the mixture
out of the jet and pilot to keep the Reynolds number Rep unchanged. The geometric sizes of the main jet and the pilot and the inlet
velocities of the original Sandia Flame D and Sandia Flame D x4 are shown in Table 1. The co-flow represents the environmental air
entering the wind tunnel.

TABLE 1. SIZES AND THE INLET VELOCITIES OF THE MAIN JET, THE PILOT, AND THE CO-FLOW [36]
Sandia Flame D  Sandia Flame D x4

d(mm) wu(m/s) d(mm) u(m/s)

main jet 7.2 49.89 28.8 12.4725
pilot 18.864  10.57 75456 = 2.6425
co-flow  258.2 0.90 1032.8  0.2250

Comparison of accuracy and cost

Different RTE solvers and spectral models are compared for a frozen-field snapshot of the quasi-stationary Sandia D x4 flame. The
frozen-field snapshot is obtained on an axisymmetric mesh with 3325 finite volume cells with 35 cells along the radial direction, and
95 cells along the axial direction. The full size of the computational domain is 0.516 m x 2.88 m, and the mesh is refined to have a
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high-resolution region close to the jet. The contours of relevant scalars of the snapshot are shown in Fig. 1. The negative radiative heat
source (V - q) is computed on the finite volume mesh and sampled along three lines (z/d = 14.93,29.79,44.65 as marked in Fig. 1).
The distribution of temperature and Planck-mean absorption coefficients along two of these lines are shown in Fig. 2 for reference. For
the discrete ordinate method, 2x4, 4x4, 4x8, 4x16, 8x8, 8x16, and 16x32 ordinates are used. For the spherical harmonics (Py)
method, Py, P3, Ps5, and P are used as well as the simplified SP; and SPs. For QMC, 100,000 rays are used, and for PMC, 1,000,000
rays are used. For PMC results, the standard deviation are plotted as error bars. In all cases, the PMC and QMC RTEs are used with a
line-by-line (LBL) spectral model and DOM and Py / SPy solvers are coupled to the FSKTable using an eight-quadrature scheme. The
open boundaries are treated as cold and black. Each combination of RTE and spectral model is benchmarked on a single Intel Xeon
E5-2687Wv4 CPU. All the comparisons in this work are based on the divergence of radiative heat flux (V - q) or the negative radiative
heat source term; and the PMC-LBL results are treated as benchmark reference.
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FIGURE 1. CONTOUR PLOT OF THE SCALAR FIELDS FOR THE SNAPSHOT OF THE SANDIA D x4 FLAME.

To evaluate the accuracy of the FSKTable, first we present a comparison of FSKTable with LBL using the same RTE solver. In
this case, we use the Py solver. The representative results along two lines (z/d = 14.93,44.65) are shown in Fig. 3. We also show the
results from P;—Gray and Optically Thin models in this figure for references. Clearly, both the optically thin approximation and the gray
approximation lead to gross overestimation of V - q. The results from FSK and LBL using the same RTE solver (P;) match very well.
This establishes the accuracy of the FSKTable in the current configuration and the validity of the correlated-k assumption. Hence, in
subsequent comparisons, the differences in accuracy can be assumed to be stemming from the inaccuracy of the RTE solver and not due
to inaccuracy of the spectral model.

The profile of V- q along the three lines for DOM and Py / SPy solvers are presented in Figs. 4 and 5, respectively. Their
computational costs are shown in Table 2. Results from QMC are compared with PMC in Fig. 6 with their computational costs shown in
Table 3. The DOM results show a reasonably accurate result at all axial locations lying within the error bars of the PMC. Interestingly, the
higher orders DOM leads to slight overprediction than the lower orders due to the axisymmetric mesh and rotational invariant formulation
as was previously reported [17]. In general, the error from DOM seems to be larger near the axis of the flame. The computational cost
for DOM-FSK increases with the number of ordinates as expected.

As expected, for the Py method, increasing the order of accuracy achieved results closer to PMC-LBL. However, the advantage of
accuracy gained seems to get lower with the increase in order (i.e., the accuracy gained from moving to P; and Ps from Pj3 is less than
that by moving to P; from P;). Furthermore, P; performs rather poorly at all three axial locations. Both SP; and SP5 perform well.
Except for the z/d = 44.65 location, the SPy solvers yield a solution within the error bars of the PMC-LBL results. It might be due to
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LOCATIONS.
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FIGURE 3. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (V - q) FROM DIFFERENT SPECTRAL MODELS WITH THE P,
SOLVER AT TWO AXIAL LOCATIONS.

certain level of compensation of errors. Computational cost of Py increased with increasing order of accuracy nonlinearly. The QMC
results are almost always within the error bars of the PMC-LBL at an order of magnitude lower cost than PMC (see Fig. 6 and Table 3).
This is similar to the results obtained in [10].

Finally, we present a comparison of DOM 4 x4 and P3 in Figure 7 for two representative lines at z/d =14.93 and 44.65. We chose
these two solvers for direct comparison as their computational costs are similar in this study. The comparison shows that P3 overpredicts
the divergence of heat flux whereas DOM almost always produces results within the error bar of the PMC.

The DOM results show the same trends as Py results (see Fig. 4). If the number of ordinates used increases, the results more closely
match PMC LBL accuracy. In general, most of the DOM results fall within the standard error of the PMC LBL results except for 2 x4
and 4 x4 ordinates. Similarly to the Py results, the computational cost also increases significantly with an increased number of ordinates
(see Table 2). In fact, the computational cost is directly proportional to the total number of ordinates. For example, in the case of 4x 8
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FIGURE 4. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (V - ) FROM THE DOM-FSK METHODS AND THE PMC-LBL
METHOD AT THREE AXIAL LOCATIONS.

ordinates, there are half as many ordinates as the case of 4x 16 and approximately half of the computational cost. Since the DOM results
fall within PMC-LBL standard error if enough ordinates are used (at minimum 4 X 8), it may not be worth the extra computational cost
to use a higher number of ordinates given the significant increase in computational cost.

In general, the QMC results achieve PMC LBL accuracy and at a fraction of the computational cost of the PMC runs. This is due to
the fact that QMC shows a faster rate of decrease in statistical error with the increase in sample size seen than in PMC [10].

DISCUSSION

The target flame considered in this work is an artificial flame based on a laboratory-scale turbulent jet flame. While the comparisons
of computational cost and accuracy shown here are specific to a large, nonsooting jet flame similar to the target flame, the results provide
some insights into applicability of various radiation models in different configurations. The jet flame provides a significantly non-
homogeneous distribution of participating media, leading to locally optically thick regions within rather optically thin medium (Fig. 1).
This type of nonhomogenous distribution of absorption coefficient is characteristic of most turbulent combustion devices. One of the
reasons behind artificially scaling up the original laboratory flame, as discussed in [33-35], is to specifically study large combustion
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METHODS AND THE PMC-LBL METHOD AT THREE AXIAL LOCATIONS.

systems. Radiation is a volumetric phenomenon, and therefore, the importance of radiation is expected to be greater in large devices
than in small laboratory-scaled flames. The size of the scaled flame is also somewhat representative of real combustion devices such as
furnaces and gas turbines.

A second point of note is that the computational cost presented here includes the cost for evaluating both the spectral model and
solving RTE. However, since all RTE solvers except PMC and QMC use FSKTable, the comparison of computational cost between
Py and DOM solvers will still be somewhat representative in any other configurations without scattering or reflecting walls as is the
case for the current target. If scattering or reflecting walls are present in the configuration, the computational cost of PMC, QMC,
and Py is expected to be affected only marginally as their formulations or solution algorithms are not affected. But for the DOM, the
resultant PDEs can be treated as a set of uncoupled PDE:s if there are no scattering or reflecting walls leading to a lower cost in these
scenarios. Furthermore, the computational cost of RTE solvers can be optimized on a case-by-case basis by tuning the number and
order of iterations performed in the solver in the actual implementation of the RTE solver. Such optimizations have not been done in the
current work. Hence, in this work we present Table 2 as a qualitative comparison of the relative cost of different RTE solvers.
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FIGURE 6. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (V - q) FROM PMC-LBL AND QMC-LBL METHODS.

TABLE 2. CPU TIMES FOR Py AND DOM SOLVERS WITH FSK SPECTRAL MODEL

Py and SPy | CPU Time (s) | DOM CPU Time (s)

Py 1.66 DOM 2 x4 1.75

Ps3 2.60 DOM 4 x4 2.47

Ps 5.05 DOM 4x8 3.45

P; 10.47 DOM 4x 16 6.84

SP; 1.98 DOM 8x8 6.05

SPs 3.49 DOM 8x16 12.54
DOM 16x32 60.95

TABLE 3. CPU TIMES FOR PMC/QMC SOLVERS WITH LBL SPECTRAL MODEL
RTE PMC | QMC

CPU Times (s) | 33.84 | 4.32

CONCLUSION

In this work different orders of DOM and Py solvers with an FSK spectral model are compared with the benchmark reference
solution from PMC with LBL for a scaled turbulent jet flame. First, to illustrate the difference in results due to the spectral model, we
show the radiative source terms (V - q) calculated using P; with both LBL and FSK in Fig. 3. This comparison shows that the FSK
lookup table provides a reliable estimation of spectral properties as the results of P;-LBL and P;-FSK overlap completely. Then, we
present the results from a series of DOM and Py solvers of different orders in Figs. 4 and 5. In the current configuration DOM provides
a reasonably accurate estimate of the radiative source term even with low resolution such as 2x4 where the results almost always lie
within the error bars of the PMC solution (except near the axis at z/D = 44.65 location). The solutions of the Py solvers show a clear
trend of increasing accuracy with the order. In general, P; performs rather poorly in this case. However, the simplified Py versions —
SP3 and SP5 — provide an accurate estimation of the radiative source term at a very low cost. Yet, since SPy is a simple extrapolation
of the one-dimensional configuration to three-dimensional configuration, this level of accuracy may not always be achievable for SPy
for all combustion configurations, particularly cases with complex geometry and strong nonhomogeneity. The comparison of P3 with
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FIGURE 7. COMPARISON OF THE DIVERGENCE OF RADIATIVE HEAT FLUX (V - q) FROM P3-FSK, DOM 4 x4-FSK AND PMC-LBL METHODS.

DOM 4 x 4 (Fig. 7) shows that in this case DOM performs better than spherical harmonics method at roughly the same computational

cost.

However, as discussed earlier, the relative computational cost of DOM and Py may be affected if scattering or reflecting walls are

included in the configuration. Additionally, we also show that the quasi-Monte Carlo method, an alternative to PMC, provides results as
accurate as PMC using a smaller number of rays.
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