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Abstract— Motion planning methods for autonomous systems
based on nonlinear programming offer great flexibility in
incorporating various dynamics, objectives, and constraints.
One limitation of such tools is the difficulty of efficiently repre-
senting obstacle avoidance conditions for non-trivial shapes. For
example, it is possible to define collision avoidance constraints
suitable for nonlinear programming solvers in the canonical set-
ting of a circular robot navigating around M convex polytopes
over N time steps. However, it requires introducing (2+L)MN

additional constraints and LMN additional variables, with L

being the number of halfplanes per polytope, leading to larger
nonlinear programs with slower and less reliable solving time.
In this paper, we overcome this issue by building closed-form
representations of the collision avoidance conditions by outer-
approximating the Minkowski sum conditions for collision.
Our solution requires only MN constraints (and no additional
variables), leading to a smaller nonlinear program. On motion
planning problems for an autonomous car and quadcopter in
cluttered environments, we achieve speedups of 4.0x and 10x
respectively with significantly less variance in solve times and
negligible impact on performance arising from the use of outer
approximations.

I. INTRODUCTION

Motion planning is a central task of most autonomous

systems, including robots, drones, and autonomous vehicles.

Of the many approaches to motion planning, techniques

based on nonlinear programming (NLP) such as direct

multiple shooting [1] and direct collocation [2] generally

offer the most flexibility in regards to choice of objectives

and constraints imposed. As high-quality NLP solvers and

supporting automatic differentiation tools have become avail-

able, it has become feasible to utilize these optimization-

based approaches for real-time motion planning or trajectory

generation [3], [4].

Despite the flexibility that NLP solvers provide, it can

be difficult to efficiently represent obstacle avoidance con-

straints. Due to their reliance on gradient and Hessian

information, most NLP solvers require the objective and con-

straints to be twice continuously differentiable expressions.

This presents a challenge for collision avoidance constraints

which often cannot be represented in smooth closed-forms.

We briefly review two viable approaches and discuss their

advantages and limitations.

Distance Formulation: Collision avoidance can be viewed

as ensuring the minimum distance between an obstacle O
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Fig. 1. Obstacle Avoidance in Workspace and Configuration Space

and a vehicle V is greater than zero. In robotics this would

be classified as performing collision checking directly in

the workspace [5] as shown in the upper plot of Figure 1.

When the obstacle and the vehicle have convex shapes, the

distance between these sets can be computed through convex

optimization [6]. Using this formulation as a constraint leads

to a bi-level nonlinear planning problem for which we lack

reliable solvers. However, by leveraging strong duality, it is

possible to reformulate the minimum-distance conditions into

expressions amenable to a NLP solver [7], [8]. This method

is advantageous in that it is simple to implement and provides

an exact representation of the collision avoidance constraints.

However, this is done at the expense of introducing new

variables and constraints. In practice the method can be

highly sensitive to the quality of the initial guess [9] and

be unacceptably slow for real-time motion planning [4].

Minkowski Sum Formulation: Collision avoidance can

alternatively be viewed through the lens of computational

geometry as shown in the lower plot of Figure 1. Given

the vehicle position t ∈ R
n, and shapes B,O ⊂ R

n of

vehicle and obstacle, respectively, collision avoidance can

be posed as ensuring t 6∈ M where M = O ⊕ (−B),
with ⊕ being the Minkowski sum operation [5]. In robotics

this often referred to as the configuration-space (C-space)

approach. Incorporating this as a constraint in an NLP

solver would require a closed-form, smooth representation

of the indicator function of this set. In general, this does



not exist as the sets are semi-algebraic, involving multiple

polynomial (in)equalities. A notable exception is the case of

bodies whose boundary surface are smooth and admit both

implicit and parametric representations [10], which includes

spheres, ellipsoids [11], and more generally superquadrics

[12]. However, many implicit surfaces do not admit a para-

metric representation and for others obtaining one is an open

problem [13]. Additionally, this approach cannot address

the practical case of non-smooth boundaries such as convex

polytopes.

A. Contributions

In this work we propose efficient collision avoidance

conditions based on closed-form, outer approximations M̃ ⊇
M of the Minkowski sum. We focus on the important case

in which the obstacle is a bounded, convex polytope and the

vehicle is represented by Euclidean balls (possibly multiple).

Building upon recent successes of sum-of-squares optimiza-

tion for outer approximating semi-algebraic sets [14]–[17],

we develop SOS programs for finding M̃. Figure 1 shows

an example of the resulting outer approximations. We then

use M̃ to perform optimization-based motion planning of an

autonomous car and quadcopter navigating cluttered environ-

ments. Compared to the exact method [7], our approximate

method solves 4x (car) and 10x (quadcopter) faster while

introducing negligible conservatism arising from the use of

outer approximations.

The rest of the paper is organized as follows. Section II

reviews relevant aspects of convex sets, Minkowski sums,

and SOS optimization. Section III defines the motion plan-

ning problem. Section IV poses the obstacle avoidance

constraints using Minkowski sums and provides methods for

outer approximating the set. Section V applies our approach

to motion planning for an autonomous car and quadcopter.

Section VI concludes the paper with a discussion of future

directions.

II. PRELIMINARIES

We briefly review some basic properties of convex sets,

Minkowski sums, and sum-of-squares polynomials. This is

mostly done to setup our notation. The reader is referred to

[6], [18], [19] for proofs and further details.

A. Set Definitions

Definition 1 (Convex Hull). The convex hull of a set B is

defined as: conv B = {θ1x1 + . . . + θkxk |xi ∈ B, θi ≥
0, i = 1, . . . , k,

∑k

i=1 θi = 1} The convex hull has the

property that it is the smallest convex set that contains B. Let

C be any convex set that contains B. The following relation

holds:

B ⊆ C ⇔ conv B ⊆ C (1)

Definition 2 (α-sublevel Set). The α-sublevel set of a

function f : Rn → R is: Bα = {x|f(x) ≤ α}. We denote

the boundary of the set as ∂Bα = {x|f(x) = α}.

Lemma 1. Let Bα be a convex set that is the α-sublevel set

of a function f : Rn → R. Then Bα = conv ∂Bα.

We use the notation −B = {−b|b ∈ B} to represent the

set B reflected about the origin. Note that −B is convex if

and only B is convex.

Definition 3 (Polytope). A polytope is defined as the solution

set of j linear inequalities in R
n. This set is convex by

construction. We impose the additional requirement that the

set is bounded. The linear inequalities give the halfspace

representation

P = {x|Ax ≤ b} (2)

where A ∈ R
j×n, b ∈ R

j . Alternatively, the polytope can be

represented by the convex hull of its k vertices

P = conv {v1, v2, . . . , vk} (3)

where vi ∈ R
n, i ∈ [k] := {1, . . . , k}.

B. Minkowski Sum Properties

Definition 4 (Minkowski Sum). Given two sets A,B, their

Minkowski sum is defined as follows:

A⊕ B = {a+ b|a ∈ A, b ∈ B} (4)

Lemma 2. If A and B are convex sets then A⊕B is convex.

Lemma 3. For any sets A,B the following equality holds:

conv (A⊕B) = conv (A)⊕ conv (B) (5)

C. Sum-of-Squares Optimization

For x ∈ R
n, let R[x] denote the set of polynomials in x

with real coefficients.

Definition 5 (Sum-of-Squares Polynomial). A polynomial

p(x) ∈ R[x] is a sum-of-squares (SOS) polynomial if there

exists polynomials qi(x) ∈ R[x], i = 1, . . . , j such that

p(x) = q21(x)+. . .+q
2
j (x). We use

∑
[x] to denote the set of

SOS polynomials in x. A polynomial of degree 2d is a SOS

polynomial if and only if there exists a positive semi-definite

matrix P (the Gram matrix) such that p(x) = z(x)TPz(x)
where z(x) is the vector of all monomials of x up to degree

d [19].

Note that a polynomial being SOS is a sufficient condition

for the polynomial to be non-negative (i.e. p(x) ≥ 0 ∀x).

Definition 6 (SOS-Convex). A polynomial p(x) is SOS-

convex if the following holds

uT∇2p(x)u ∈
∑

[x, u] (6)

where u, x ∈ R
n. SOS-convexity is a sufficient condition for

the Hessian of p(x) to be positive semi-definite and therefore

p(x) to be convex.

In the development that follows, we will be interested in

solving slight variations of the following problem.

min
P

− log detP (7a)

s.t.

P � 0, p(x) = z(x)TPz(x), (7b)

1− p(x) ≥ 0 ∀x ∈ X , (7c)



Here X is a semi-algebraic set defined by ni polynomial

inequalities and nj polynomial equalities.

X = {x | gi(x) ≥ 0, i ∈ [ni], hj(x) = 0, j ∈ [nj ]} (8)

Equation (7b) constrains p(x) to be a SOS polynomial.

Equation (7c) is a set-containment condition. The generalized

S-procedure provides a sufficient condition for the set-

containment to hold [19]. For each polynomial equality gi(x)
or inequality hj(x) describing the set X , we introduce a non-

negative polynomial λi(x) or polynomial µj(x) respectively.

The generalized S-procedure involves replacing (7c) with the

following:

1− p(x)−
∑

i

λi(x)gi(x)−
∑

j

µj(x)hj(x) ≥ 0, (9)

λi(x) ≥ 0 i ∈ [ni] (10)

By replacing the non-negativity constraints in (9), (10) with

the more restrictive condition that the expressions be SOS

polynomials, we obtain a semidefinite program which is

readily solved.

min
P, λ[1:ni](x), µ[1:nj ](x)

− log detP

s.t.

P � 0, p(x) = z(x)TPz(x),

1− p(x)−
∑

i

λi(x)gi(x)−
∑

j

µj(x)hj(x) ∈
∑

[x],

λi(x) ∈
∑

[x], i ∈ [ni] .
(11)

Note when a polynomial is listed as a decision variable, e.g.,

λ[1:ni](x) and µ[1:nj ](x) underneath the min, it is implied

that the monomial basis is specified and the coefficients are

decision variables.

Remark 1. Representing an equality constraint requires

introducing a polynomial µ(x). In contrast, representing an

inequality requires introducing a sum-of-squares polynomial

multiplier λ(x) which has a smaller feasible set and creates

an additional semidefinite constraint. As such, it is generally

advantageous to represent sets using equalities when apply-

ing the generalized S-procedure.

In the development that follows we focus on transforming

problems of interest into the form of (7). Once in this form,

the subsequent application of the generalized S-procedure is

mechanical.

III. PROBLEM STATEMENT

We now setup the problem of optimization-based motion

planning with collision avoidance constraints. For conve-

nience, our notation closely follows that of [9].

A. Vehicle and Obstacle Models

Consider a vehicle with states xk ∈ R
nx and inputs

uk ∈ R
nu at time step k. The dynamics evolve according to

xk+1 = f(xk, uk) where f : Rnx×R
nu → R

nx . The vehicle

occupies space in R
n. The vehicle’s shape is assumed to be

represented by nb Euclidean balls with radii r(i).

B(i) = {y ∈ R
n| ‖y‖2 ≤ r(i)}, i ∈ [nb]. (12)

The center of each ball is a function of the vehicle’s state as

given by t(i) : Rnx → R
n. Thus at time index k, the space

occupied by ball i is given by:

V(i)(xk) = B(i) ⊕ t(i)(xk) . (13)

The union
⋃
i

V(i)(xk) gives the total space occupied by the

vehicle at time index k. For ease of exposition, in what

follows we focus w.l.o.g. on the case when the vehicle is

represented by a single ball (nb = 1) and drop the superscript

(i).
We assume there are M obstacles present in the envi-

ronment indexed by m ∈ [M ]. Each obstacle O(m) is a

polytope (closed, convex) with k(m) vertices {v1, . . . , vk(m)}
defining the convex hull as in (3). Equivalently represented

in halfspace form (2), the obstacle m is defined by j(m)

constraints given by A(m) ∈ R
j(m)

×n, b(m) ∈ R
j(m)

.

B. Optimal Control Problem

We consider an optimal control problem of controlling the

vehicle over N steps. The vehicle begins at start state xS and

must end at final state xF . Let X,U denote the vector of all

states and controls respectively, X = [xT0 , . . . , x
T
N ]T , U =

[uT0 , . . . , uN−1]
T . We seek to minimize an objective l(X,U)

where l : X × U → R. Additionally, the vehicle is

subject to nh constraints given by h(X,U) ≤ 0 where

h : X ×U → R
nh and the inequality is interpreted element-

wise. We assume that l(X,U) and h(X,U) are continuously

differentiable and therefore suitable for nonlinear program-

ming solvers which utilize gradient and Hessian information.

Lastly, we enforce collision avoidance constraints between

each obstacle and the vehicle. The resulting optimization

problem takes the following form:

min
X,U

l(X,U) (14a)

s.t.

x0 = xS , xN = xF , (14b)

xk+1 = f(xk, uk), k = 0, . . . , N − 1 (14c)

h(X,U) ≤ 0, (14d)

V(xk) ∩ O(m) = ∅, k ∈ [N ], m ∈ [M ]. (14e)

Equation (14e) represents the collision avoidance constraints

which are non-convex and non-smooth in general. In [7],

the authors provide an exact, smooth reformulation of these

constraints. As the distance between two convex shapes can

be computed using convex optimization, the authors leverage

strong duality to develop necessary and sufficient conditions

for a Euclidean ball of radius r to not intersect a given convex

shape. This requires introducing dual variables associated

with the halfspace constraints representing each obstacle



λ
(m)
k ∈ R

j(m)

, k ∈ [N ], m ∈ [M ] and replacing (14e) with

the following constraints.

(A(m)t(xk)− b(m))Tλ
(m)
k > r,

‖A(m)T λ
(m)
k ‖22 ≤ 1,

λ
(m)
k ≥ 0,

k ∈ [N ], m ∈ [M ].

(15)

If each obstacle has L halfspace constraints, this method

introduces (2 + L)MN constraints and LMN dual vari-

ables which can result in a large nonlinear program that

is computationally intensive. In the following, we present a

method for approximating the collision avoidance constraints

while introducing only MN constraints and no additional

variables.

IV. COLLISION AVOIDANCE VIA MINKOWSKI SUMS

We will utilize Minkowski sums to represent the collision

avoidance constraints between a closed, convex polytope

obstacle O = {y ∈ R
n |aTi y ≤ bi, i ∈ [L]} and a

vehicle with shape given by the Euclidean ball B = {w ∈
R

n|wTw ≤ r2}. We first review a fundamental result from

computational geometry.

Lemma 4. Let O and B be sets in R
n. Let V = B ⊕ t be

the set B translated by t ∈ R
n. Then the following relation

holds:

O ∩ V 6= ∅ ⇔ t ∈ O ⊕ (−B) (16)

Proof. See, e.g. [5], [20]

In words, when B is located at position t, it makes contact

with O if and only if t is in the Minkowski sum O⊕−B. Thus

collision avoidance with respect to obstacle O is equivalent

to ensuring t 6∈ O ⊕ −B.

When O is a polytope and B is a Euclidean ball, the set

O ⊕ (−B) is semi-algebraic. As such we cannot directly

include the condition t 6∈ O ⊕ (−B) as a constraint in a

nonlinear optimization problem which requires closed-form,

twice differentiable expressions.

Instead we propose to find an outer approximation O ⊕
(−B) ⊆ M̃ ⊂ R

n where M̃ is defined as the 1-level set of

a function p : Rn → R. Recall in our setting the translation

of the ball at time index k is a function of the vehicle’s

state xk as given by t : R
nx → R

n. Collision avoidance

with respect to obstacle O can then be ensured by imposing

the constraint p(t(xk)) > 1 ⇔ t(xk) 6∈ M̃ ⇒ t(xk) 6∈
O ⊕ (−B) ⇔ O ∩ V = ∅.

If multiple obstacles O(m),m ∈ [M ] are present, we re-

peat this process for each obstacle and denote the associated

function as p(m)(x). In our trajectory optimization problem

we replace (14e) with MN constraints.

p(t(xk))
(m) > 1, k ∈ [N ], m ∈ [M ]. (17)

A. Outer Approximations of the Minkowski Sum

We would like our outer approximations to closely ap-

proximate the true set. To do so, we pose an optimization

problem in which we minimize the volume of the outer

approximation.

min
p(x)

vol M̃

s.t.

1− p(x) ≥ 0 ∀x ∈ O ⊕ (−B),

M̃ = {x | p(x) ≤ 1}

(18)

In general we cannot solve this optimization problem.

To arrive at a tractable formulation, we apply the gener-

alized S-procedure. We first parameterize the polynomial

as p(x) = z(x)TPz(x) where z(x) is a monomial basis

chosen by the user and P is a positive semi-definite matrix

of appropriate dimension. For arbitrary polynomials, we lack

an expression for minimizing the volume of the 1-level set.

Various heuristics have been proposed [14]–[16]. We have

found maximizing the determinant of P , as proposed in

[16], to work well for the problems herein. The resulting

optimization problem is

min
P

− log detP

s.t.

p(x) = z(x)TPz(x), P � 0,

1− p(x) ≥ 0 ∀x ∈ {y − w | aTi y ≤ bi,

wTw ≤ r2, i ∈ [L]}

(19)

where we have explicitly written the set resulting from the

Minkowski sum in terms of y and w along with inequalities

that ensure y ∈ O and w ∈ B.

We apply the S-procedure to replace the set-containment

condition with a sufficient condition. This requires introduc-

ing multipliers λ(y, w). We then replace the non-negativity

conditions with the sufficient condition that the expression

admits a sum-of-squares decomposition in terms of free

variables y and w.

Optimization Problem 1: Outer Approximation

min
P, λ[0:L](y, w)

− log detP

s.t.

p(x) = z(x)TPz(x), P � 0, (OA)

1− p(y − w)− λ0(y, w)(r
2 − wTw)

−
L∑

i=1

λi(y, w)(bi − aTi y) ∈
∑

[y, w]

λi(y, w) ∈
∑

[y, w] i = 0, . . . , L

The formulation given by (OA) is viable but computationally

expensive because the SOS decompositions involve both

w and y giving 2n free variables for x ∈ R
n. As we

seek higher-order approximations, the monomial basis grows

rapidly in size leading to large semidefinite programs. We



now develop a computationally cheaper program by leverag-

ing convexity.

B. Convex Outer Approximations of the Minkowski Sum

In developing an efficient method for outer approximating

the Minkowski sum, we will utilize the following Lemma.

Lemma 5. Let O ⊂ R
n be a polytope with K vertices

{vi}, i ∈ [K]. Let B ⊂ R
n be a convex set that is the α-

sublevel set of a function f : Rn → R. Let S be any convex

set in R
n. Then the following criterion holds:

O ⊕ (−B) ⊆ S ⇔ {vi} ⊕ (−∂B) ⊆ S (20)

Proof. First represent O⊕ (−B) in terms of its convex hull.

O ⊕ (−B) = conv{vi} ⊕ conv(−∂B), Lemma 1

= conv[{vi} ⊕ (−∂B)], Lemma 3

Next apply the property of the convex hull (1).

conv[{vi} ⊕ (−∂B)] ⊆ S ⇔ {vi} ⊕ (−∂B) ⊆ S

Lemma 5 provides a more efficient condition for outer ap-

proximating the Minkowski sum with a set M̃ = {x | p(x) ≤
1} as we only have to consider the vertices of O and the

boundary of B in our set-containment constraint as follows.

1− p(x) ≥ 0 ∀x ∈ vi ⊕ (−∂B) i ∈ [K]. (21)

However, it requires the condition that M̃ be a convex set.

We argue that this is a reasonable constraint as O⊕ (−B) is

itself convex. It is difficult to impose the condition that the

1-level set of p(x), i.e., M̃, is convex. Recalling Definition

6, we will instead impose the sufficient condition that the

function p(x) be sos-convex.

As done previously, we rewrite the set-containment con-

ditions using the generalized S-procedure. We then replace

the non-negativity conditions with SOS conditions.

Optimization Problem 2: Convex Outer Approximation

min
P, µ[1:K](w)

− log detP

s.t.

P � 0, p(x) = z(x)TPz(x) (COA)

1− p(vi − w)− µi(w)(r
2 − wTw) ∈

∑
[w], i ∈ [K]

uT∇2p(x)u ∈
∑

[x, u]

Remark 2. The formulation of (COA) is advantageous in

that the multipliers µ(w) do not have to be SOS and they

only depend on n free variables (w ∈ R
n). In contrast,

(OA) requires SOS multipliers λ(w, y) which depend on

2n free variables (w, y ∈ R
n). The former leads to smaller

semidefinite programs which scale better with respect to the

dimension n or the complexity of O. This is numerically

illustrated in the following example.

Fig. 2. Outer Approximation of Minkowski Sum

C. 2D Example

We generate 1000 random test cases in R
2. For each

case we generate a polytope O with n ∈ {3, 4, . . . , 12}
vertices vi ∈ [−1, 1]2, i = 1, . . . , n along with a disk

B with radius r ∈ [0, 1]. We form outer approximations

M̃ = {x | p(x) ≤ 1} of the set M = O ⊕ (−B) using both

(OA) and (COA). For each we consider polynomials p(x)
of degree 2, 4 and 6. To assess the accuracy of our outer

approximations, we compute the approximation error as
Area(M̃)
Area(M)−1. Table I lists the mean approximation error of the

1000 test cases. Empirically, as we increase the polynomial

order, the approximation error is reduced, indicating we

are getting better outer approximations. Table II lists the

mean solve times. As expected, (COA) has significantly

faster solve times than (OA) due to the smaller semidefinite

program. Figure 2 provides an example of the results.

Polynomial Degree 2 4 6

Outer Approximation 40% 9% 3%

Convex Outer Approximation 25% 9% 5%

TABLE I

MEAN APPROXIMATION ERROR OF MINKOWSKI SUMS

Polynomial Degree 2 4 6

Outer Approximation 0.020 0.174 0.925

Convex Outer Approximation 0.004 0.014 0.049

TABLE II

MEAN SOLVE TIMES (S) OF OPTIMIZATION PROBLEMS 1 & 2

Remark. For the case when p(x) is a quadratic, the re-

sulting minimum volume M̃ can be found exactly using

the semidefinite program for finding the minimum volume

outer ellipsoid (MVOE) covering a union of ellipsoids [6].

In this case each ellipsoid is a ball of radius r centered

at vertex vi. Our convex formulation (COA) can be seen

as a generalized form of this result. The non-convex case

(OA) has a smaller feasible set due to the reliance on SOS

multipliers and does not return the minimum volume outer

ellipsoid in general. Thus (OA) is only advantageous when

seeking non-ellipsoidal approximations.



V. MOTION PLANNING EXAMPLES

A. Autonomous Car

We demonstrate our proposed obstacle avoidance con-

ditions on a motion planning problem for an autonomous

car. We adopt the autonomous racing car model from [3].

The model has 6 states, x =
[
px py ψ vx vy ω

]T
consisting of position (px, py), orientation (ψ), body veloc-

ities (vx, vy) and yaw rate (ω). The inputs are motor duty

cycle (d) and steering angle (δ). Due to space constraints

we refer the reader to [3] for more details of the dynamic

model. We represent the vehicle’s shape as a single disk

B of radius r = 0.067m. The center of the disk at time

step k is simply the (px,k, py,k) position of the vehicle:

t(xk) =
[
px,k py,k

]T
.

We consider a situation in which the vehicle is making

forward progress along a straight track while navigating

obstacles. We pose this as a trajectory optimization problem

of the form (14). The objective is to minimize the 2-norm

of the input, l(X,U) = ‖U‖22. The vehicle starts at state

xS =
[
0 py,S 0 1 0 0

]T
and must end at state

xF =
[
3 py,F 0 1 0 0

]T
. The dynamic constraints

(14c) are implemented using a 4th-order Runge-Kutta inte-

gration of the dynamics. We use a time-step of 0.03s over

N = 100 steps, giving a 3s time horizon. At each step

k = 0, . . . , N−1, the vehicle is subject to box constraints on

the position py,k ∈ [0, 0.3] and inputs dk ∈ [−0.1, 1], δk ∈
[−1, 1].

We consider scenarios consisting of M ∈ {1, 2, . . . , 10}
obstacles. For each scenario, we generate 100 random test

cases in which we vary the start and final y position,

py,S , py,F ∈ [0, 0.3] along with the placement and shapes

of the M obstacles. We solve (14)using both the exact

representation (15) of the collision avoidance constraints

and the approximate representation (17). We use 4th-order,

convex polynomials to represent the Minkowski sum approx-

imations.

B. Initialization

In optimization-based motion planning around obstacles,

it is advantageous to supply a collision-free initial path to

the solver. Similar to [7], we use A⋆ [21], [22] to find a

minimum-distance collision free path on a discretized rep-

resentation of the environment. This path does not consider

the dynamics and is generally not kinematically feasible. We

use this to initialize our guess for the vehicle’s position over

time. The same initialization is used for both the exact and

approximate methods. For the exact method, similar to [7],

we initialize the dual variables λ to 0.05.

C. Results

Figure 3 shows a scenario in which the vehicle navigates

six obstacles. We plot the obstacles in grey along with the

exact and approximate Minkowski sums of each obstacle and

the vehicle B. As the exact method is equivalent to ensuring

the vehicle’s position (px, py) remains outside the exact

Minkowski sums, this helps to visualize the conservatism of

our outer approximations. In this case, the 4th-order approx-

imate representations are quite tight and are only visible as

thin green borders around the exact Minkowski sums in red.

For reference, we also plot 2nd-order, ellipsoidal approxima-

tions which are unacceptably conservative and do not admit a

collision-free path. As the objective penalizes large steering

and acceleration commands, the vehicle naturally makes

tight maneuvers around the obstacles. The exact method

achieves a slightly lower cost because the configuration-

space obstacles it must avoid are slightly smaller, requiring

less maneuvering. However the difference is negligible and

the resulting trajectories are nearly identical.

Figure 4 shows the solve time statistics of the approximate

and exact methods as we vary the number of obstacles

present. Both methods exhibit linear trends in median solve

time as the number of obstacles increases. The approximate

method solves 1.7x faster than the exact method when just

one obstacle is present. With ten obstacles present, the

approximate method solves 4.0x faster. The approximate

method shows less variability in the solve times, with a

maximum solve time of 0.25s. For the exact method, 9

of the 1000 cases either did not converge or exceeded the

maximum allowed solve time of 1.5s. To evaluate the impact

of using the approximate method, we normalize the cost

of the trajectories by the cost of the trajectories obtained

with the exact method, 1 − Japprox

Jexact
. For 851 of the 991

cases in which the exact method was successfully solved,

the approximate method returned a trajectory less than 0.1%

sub-optimal. The worst-case sub-optimality was 1.5%.

Remark 3. The solver times reported for the approximate

method only reflect the time spent solving the nonlinear

program. We do not include the time required to compute

the outer approximations. In a real-time motion planning

problem, these approximations would only be performed

once per obstacle, either offline or online. We note that

based on Table II, approximating an obstacle with a 4th-

order convex polynomial takes 0.014s. If this computation

time were included in Figure 4, the approximate method

would still be consistently faster than the exact method.

D. Quadcopter

Next we demonstrate our obstacle avoidance condi-

tions on a 3D motion planning problem for a quad-

copter model taken from [23]. The model has 12 states,

x =
[
px py pz φ θ ψ vx vy vz p q r

]T
consisting of position (px, py, pz) and velocity (vx, vy, vz)
of the quadcopter’s center-of-gravity in a world reference

frame, Euler angles (φ, θ, ψ), and body rates (p, q, r). The

inputs are the four rotor speeds (ωi, i = 1, . . . , 4). Due to

space constraints we refer the reader to [7], [23] for more

details of the dynamic model.

We represent the quadcopter’s shape as a single ball

B of radius r = 0.25m. The center of the disk at time

step k is simply the position of the quadcopter: t(xk) =[
px,k py,k pz,k

]T
.
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Fig. 4. Solve Time Statistics for Autonomous Car Example

We consider a situation in which the quadcopter is nav-

igating a cluttered room of dimensions 10 × 10 × 5. The

quadcopter starts at the origin with state xS = 012 and

must end at state xF =
[
px,F py,F pz,F 09

]T
while

avoiding any obstacles. Here 0i denotes the zero vector in

R
i. We pose this as a trajectory optimization problem of the

form (14). The objective is to minimize the 2-norm of the

input, l(X,U) = ‖U‖22. The dynamic constraints (14c) are

implemented using a 4th-order Runge-Kutta integration of

the dynamics. We use a time-step of 0.04s over N =
100 steps, giving a 4s time horizon. At each step k =
0, . . . , N − 1, the vehicle is subject to box constraints on

the position px,k ∈ [0, 10], py,k ∈ [0, 10], pz,k ∈ [0, 5] and

inputs ωi,k ∈ [1.2, 7.8], i = 1, . . . , 4.

The environment contains 20 obstacles. We consider 92

different final positions. For each we generate a collision-free

initial guess using A⋆. We solve (14) using both the exact

representation (15) of the collision avoidance constraints and

the approximate representation (17). For the approximate

Min. (s) Median (s) Max. (s)

Approx. Collision Avoidance 0.371 0.672 3.432

Exact Collision Avoidance 3.053 7.379 22.070

TABLE III

SOLVE TIMES STATISTICS FOR QUADCOPTER EXAMPLE

case we use 4th-order, convex polynomials to represent the

Minkowski sums. Table III lists the resulting solve times of

the nonlinear program. Of the 92 test cases, the approximate

method was less than 0.1% sub-optimal for 66 of the 92 test

cases. The worst-case was 1.5% sub-optimal. The resulting

trajectories of the exact and approximate methods were

nearly identical but the approximate method solved an order-

of-magnitude faster. The upper plot of Figure 5 shows the

quadcopter navigating the cluttered environment. The lower

plot gives the configuration-space view with the Minkowksi

sum approximations shown in red.

E. Implementation Details

All examples were solved on a MacBook Pro with a 2.6

GHz 6-Core Intel Core i7 CPU. YALMIP [24] was used in

conjunction with MOSEK [25] to solve the sum-of-squares

optimization problems. IPOPT [26] with the MA97 linear

solver [27] was used to solve the nonlinear optimization

problems with exact gradients and Hessians supplied by

CasADi [28].

VI. CONCLUSIONS

Optimization-based approaches to trajectory generation for

robots, autonomous vehicles, and quadcopters are appealing

for their great flexibility in the types of dynamics, objectives,

and constraints they can accommodate. One limitation of

these methods is that it can be difficult to efficiently represent

obstacle avoidance conditions in a manner acceptable to

the solvers. This work presented novel obstacle avoidance
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conditions based on outer approximations of Minkowski

sums. This method is advantageous in that yields a much

smaller nonlinear program compared to exactly represent-

ing the collision avoidance conditions. On motion planning

problems for an autonomous vehicle and quadcopter, the

approximate method solved 4x and 10x faster respectively

when navigating cluttered environments. The resulting trajec-

tories exhibited negligible sub-optimality compared to using

exact collision avoidance conditions. Currently our method

is limited to cases in which the vehicle is represented by

a union of Euclidean balls and the obstacle is a bounded,

convex polytope. In future work we plan to consider more

complicated vehicle shapes and non-convex obstacles.
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