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Abstract— Learning robust policies for robotic systems op-
erating in presence of uncertainty is a challenging task. For
safe navigation, in addition to the natural stochasticity of the
environment and vehicle dynamics, the perception uncertainty
associated with dynamic entities, e.g. pedestrians, must be
accounted for during motion planning. To this end, we construct
an algorithm with built-in robustness to uncertainty by directly
minimizing an upper confidence bound on the expected cost of
trajectories instead of employing a standard approach based
on minimizing the expected cost itself. Perception uncertainty
is incorporated into the policy search framework by predicting
each pedestrian’s intent belief and propagating their state dis-
tribution in time using closed-loop goal-directed dynamics. We
train the policy in simulation and show that it could be trans-
ferred to an agile ground vehicle for successful autonomous
robot navigation in presence of pedestrians with perception
uncertainty. We further show the superior performance of this
policy over a policy that does not consider pedestrian intent
and perception uncertainty.

I. INTRODUCTION

Planning safe trajectories is of great importance for au-

tonomous vehicles. The uncertainty introduced by the in-

herent stochastic nature of the operating environment and

the stochastic dynamics of the vehicle and other participant

entities makes this task challenging. In addition, the uncer-

tainty associated with sensory observations from perception

imposes further challenges to this task. Failure to account for

such uncertainty in planning may lead to unsafe behavior.

In robotics tasks, uncertainty could arise from different

sources such as robot localization [1], [2], control [3], [4] and

perception [5], [6], [7]. In this work, we mainly focus on the

perception uncertainty. Previous works have tackled the prob-

lem of planning under perception uncertainty from different

perspectives. Jha et al. proposed a probabilistic extension

of temporal logic that can be used to specify correctness

requirements in presence of perception uncertainty [5]. Xu et

al. used Gaussian propagation of uncertainty along predicted

trajectories for traffic participants to achieve safer trajectories

in autonomous driving [6]. Jasour et al. used risk contours

map that contain the risk information of different regions in

uncertain environments [7]. Sampling-based methods such
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Fig. 1. JHU all-terrain agile ground vehicle.

as rapidly-exploring random belief trees have also been used

for motion planning under uncertainty [8], [9].

In this work, we approach this problem through policy

search, which is a method for computing the optimal control

parameters of a robotic system operating in an unknown,

uncertain environment. Consider a ground vehicle (e.g. the

one shown in Fig. 1) autonomously performing a navigation

task with uncertainty induced in the environment by the

presence of pedestrians. For safe navigation, we incorporate

the sensory measurement uncertainties associated with the

perceived pedestrian states into the policy search problem.

This is done by predicting the participant agents’ intents and

rolling out their trajectories with Gaussian uncertainty prop-

agation in time using closed-loop goal-directed dynamics.

A multitude of update strategies exists for the policy

search problem: 1) policy gradient methods like PEPG,

DDPG [10], and REINFORCE [11], 2) gradient-free meth-

ods, such as Reward-weighted Regression (RwR) [12]

and CMA-ES, 3) information-theoretic methods like REPS

and TRPO, 4) actor-critic methods like A3C and TRPO

[13], [14], [15], 5) methods that minimize an upper con-

fidence bound on the expected cost of trajectories, e.g.

High Confidence Policy Improvement [16] and Probably-

Approximately-Correct Robust Policy Search (PROPS) [17].

The last update strategy is particularly useful because it

provides a bound on the expected performance of the policy

which it computes, where the bound can be regarded as a

certificate for guaranteed future performance.

To leverage the guaranteed future performance of the



policy, we employ Actor-Critic PROPS (AC-PROPS) [18]

that minimizes an upper confidence probably approximately

correct (PAC) bound on the negative advantage of a con-

trol policy at each policy update iteration. The algorithm

estimates these unknown advantages using Generalized Ad-

vantage Estimation (GAE) [19]. This approach results in an

advantage estimator that has a tunable bias-variance trade-

off. This algorithm is categorized as actor-critic since the

advantage estimation makes use of a learned value function

in order to update the policy.

Problem statement: Given the perceived state of the world

x, our objective is to learn the parameters of a control policy

π for the vehicle which minimizes the upper confidence

bound on the expected value of a user-defined cost function

J , that encodes desired performance metrics such as mission

progress, obstacle avoidance, and safety. We assume the

state of the vehicle and other entities are perceived through

the on-board sensors and an initial belief over the future

intent of dynamic entities is available which gets updated as

new measurements z become available from the perception

module. We train an AC-PROPS policy [18] in simulation

using a high quality stochastic dynamics model [20] of a 1/5-
scale agile ground vehicle (Fig. 1) and show that the policy

could be transferred to the vehicle for successful autonomous

robot navigation around a track in presence of pedestrians

with perception uncertainty.

II. METHODS

A. Stochastic Policy Search

Consider a finite horizon Markov Decision Process (MDP)

defined by the combined state x = (x0, x1, . . . , xnp), com-

bined control inputs u = (u0, u1, . . . , unp). Each agent

with index i has initial state probability density p0(x
i) and

transition density p(xik+1|x
i
k, u

i
k), where superscript index

i = 0 corresponds to the vehicle and i = 1, . . . , np denote

the pedestrians (non-player characters) and subscript k is

the time step. We assume that the vehicle control policy

u0 = π(x; ξ) is parameterized by a vector ξ (described

in section II-D). Each pedestrian is modeled using a goal-

driven controller ui = φi(xi, xig), where xig is an es-

timated goal-state (described in section II-B). The robot

state-control trajectory over N time-segments is denoted by

τ , (x00, u
0
0, ..., u

0
N−1, x

0
N ), the i-th pedestrian trajectory is

ηi , (xi0, ..., x
i
N ) with all pedestrian trajectories denoted by

η , (η1, ..., ηnp), and have densities

p(τ |ξ) = p0(x
0
0)

N−1∏

k=0

p(x0k+1|x
0
k, u

0
k)π(uk|xk; ξ),

p(ηi) = p0(x
i
0)

N−1∏

k=0

p(xik+1|x
i
k, φ

i(xi, xig)),

for i = 1, . . . , np. The objective is to find the optimal set of

vehicle policy parameters ξ∗ such that:

ξ∗ = argmin
ξ

Eτ∼p(·|ξ),ηi∼p(·)[J(τ, η)], (1)

where J(τ, η) = −
∑N

t=0 r(xt, ut) is a cost function en-

coding the desired performance metric. Note that the pedes-

trian dynamics is assumed to be independent of the robot,

while the robot control policy π depends on the pedestrian

states. Instead of directly searching for the optimal ξ to

solve (1) a common strategy is to iteratively construct a

surrogate stochastic model π(ξ|ν) with hyper-parameters

ν ∈ V . The model, thus, induces a joint density p(τ, ξ|ν) =
p(τ |ξ)π(ξ|ν) that encodes natural stochasticity p(τ |ξ) and

artificial control-exploration stochasticity π(ξ|ν). In previous

work [17], a robust policy search methodology was devel-

oped that was based on the PAC bounds on the performance

of a stochastic policy. This algorithm directly minimizes an

upper confidence bound on the expected cost of trajectories

instead of employing a standard approach based on the

expected cost itself. Consequently, it has built-in robustness

to uncertainty, as the bound can be regarded as a certificate

for guaranteed future performance.

Given a prior distribution π(·|ν0) on control parameters

and M executions based on the prior, the expected cost of the

new policy π(·|ν) based on episode-based policy sampling

is given by:

J (ν) , Eτ,ξ∼p(·|ν)[J(τ, η)]=Eτ,ξ∼p(·|ν0)

[
J(τ, η)

π(ξ|ν)

π(ξ|ν0)

]
.

For step-based policy sampling, this learning objective can

alternatively be written in terms of step-wise advantages [18]:

J (ν) , Ex,ξ∼p(x|ξ)ρ(ξ|ν)

[
−Aν0(x, u)

ρ(ξ|ν)

ρ(ξ|ν0)

]
, (2)

where Aν(xt, ut) = Qν(xt, ut) − V ν(xt) is the advantage

function, with Q(·) and V (·) defining the state-action and

state value functions, respectively.

J (ν) can be approximated empirically using samples

ξt,j ∼ ρ(ξ|ν) and xt,j ∼ p(x|ξt,j). The change of measure

likelihood ratio
ρ(ξt,j |ν)
ρ(ξt,j |ν0)

, however, can be unbounded [21]. A

robust estimation technique [22] could instead be employed

to deal with the unboundedness of the policy adaptation. In

addition, to obtain sharp bounds it is useful to employ sam-

ples over multiple iterations of the iterative stochastic policy

optimization algorithm, i.e. from policies ν0, ν1, . . . , νL−1

computed in previous iterations. The cost (2) of executing ν
can then be equivalently expressed as:

J (ν) ≡
1

L

L−1∑

i=0

Ez∼p(·|νi)ℓi(z, ν),

where z = (τ, η, ξ) and ℓi(z, ν) , J(τ, η) π(ξ|ν)
π(ξ|νi)

. This

can be approximated by the empirical mean J (ν) ≈
1

ML

∑L−1
i=0

∑M
j=1[ℓi(zij,ν)]. A more robust estimate [22] is

given by:

Ĵα(ν) ,
1

αLM

L−1∑

i=0

M∑

j=1

ψ (αℓi(zij , ν)) , (3)

where α > 0 and ψ(x) = log(1 + x + 1
2x

2). As outlined

in [22], [17], with probability 1 − δ the expected cost of





where E(zobsi |xig) is an energy function that is set equal

to distance between the observed trajectory and the shortest

trajectory to the goal. β adjusts the landscape of the resulting

probability distribution and Ψ(β) is a normalizing constant.

In practice, for the ith pedestrian, a probability distribution

qi(xig) on the set of possible goals in the grid representa-

tion is provided to the planner by the perception module.

Consequently, the goal state for the ith pedestrian could be

generated by sampling xig ∼ qi(.).

D. Vehicle Control Policy

We express the state of the autonomous vehicle with

respect to a curvilinear coordinate system, with the reference

curvature of the coordinate system following the road or

path centerline. The state of the vehicle is defined as x =
(s, er, eθ, v, a, δs) ∈ R

6, where s is the arc length along the

reference path, er is the lateral offset from the path, eθ is the

angular offset from the path tangent at s, and v is the forward

body-velocity, a is the forward body-acceleration, and δs is

the steering angle. The control inputs to the system consist

of the jerk u1 ∈ R and steering angle rate u2 ∈ R. Given

κ(s), the curvature of the path at s, and L, the vehicle’s

wheelbase, typical bicycle dynamics expressed using path

coordinates are derived as:



ṡ
ėr
ėθ
v̇
ȧ

δ̇s



=




vcos(eθ)
1−κ(s)er

vsin(eθ)

v tanδs
L − κ(s)ṡ

a
u1
u2



. (14)

We use a Lyapunov stable controller that achieves a

desired track offset and longitudinal velocity in a decoupled

manner, with relatively few learnable parameters [20]. Tak-

ing into account the uncertainty associated with perception

detections, a higher level planner commands a track offset

to the lateral controller to avoid detected dynamic entities.

The controller parameters are: lateral control gains krp , krd,

kzθ , velocity control parameters kvp
, kvd , alatmax, and kdet

and kshift for detecting pedestrians and shifting the lateral

offset to navigate around them.

For more intelligent obstacle avoidance, we introduce

additional learnable parameters to the controller that incorpo-

rate perception uncertainty and pedestrian intent distribution

in the planning task using intuitive geometrical interpreta-

tions. In previous work [20], if a static obstacle was detected

within some radius of the vehicle, denoted kdet, then the

desired track offset generated by the high level planner was

shifted by a fixed value, kshift. This methodology, however,

does not take into account the uncertainty associated with

the detections. To do so, we define the lateral shift as

dshift = kshift · Sdet that incorporates the uncertainty from

perception, where Sdet is the largest principal axis of the

covariance ellipse P in (10) for the pedestrian closest to

the vehicle. On the contrary to using only a fixed offset

(kshift), such a formulation will adapt the overall lateral

shift according to the observed uncertainty from perception.

The high level planner would naturally generate track

offsets in the direction that the vehicle is pointing relative to

the pedestrians. For instance, if the robot is pointing to the

left of a pedestrian, then the desired track offset is shifted to

the left. However, taking into account the pedestrian intent,

the high level planner could more intelligently reason about

the direction to swerve around the pedestrian that would

avoid potential future interference of the vehicle with the

pedestrian’s intended path.

Given the state and dynamics limitations of the vehicle, a

sudden change of direction may be physically impossible or

require maneuvers with very sharp turns at high velocities.

We, therefore, allow the policy to decide on taking sharp

turns or not, based on a learnable parameter, kfeas that

geometrically encodes the feasibility, and cost of executing

such maneuvers, if necessary. More specifically, if the angle

between the vehicle’s heading and the line that connects the

vehicle to the closest obstacle, α (Fig. 2), is larger than a

learned angle threshold, kfeas, a change of direction would

either be infeasible, too costly, or unnecessary. Consequently,

the high level planner generates the desired lateral controller

track offset ēr as:

ēr = ert − erd , (15)

erd = ero + dir (kshift · Sdet),

where ert and ero (computed using xi from perception) are

the vehicle’s and the closest obstacle’s lateral offset from

the center of the track, respectively. dir is determined by

the high level planner depending on the closest obstacle’s

sampled intent lateral offset and whether α ≤ kfeas, where

α = cos−1( eo
‖eo‖

· v
‖v‖ ), eo is the vector connecting the vehicle

to the closest obstacle, and v is the vehicle heading (Fig. 2).

We define the policy search cost function as:

J(τ) =

tf/dt∑

t=0

[Ra2t +Qre
2
rt +Qv(vt/vgoal − 1)2 (16)

+|vt|O(dt) +Qiq
c
t ],

where (·)t indicates the state at a discrete time index t, a is

the vehicle acceleration, vgoal is the goal velocity, R, Qr,

Qv , Qi > 0 are tuning weights, qct is the pedestrian intent

probability for the grid cell, c, that is the closest to the vehicle

at time index t, dt is the time step, and O(d) is a cost that

encourages obstacle avoidance [20]. Of note, the computed

J(τ) in (16) is used to compute Ĵα(ν) in (3).

III. SYSTEM SETUP

A. Vehicle Hardware

The all-terrain 1/5-scale ground vehicle used in our ex-

periments is shown in Fig. 1. A heavily modified Redcat

Racing Rampage XB-E serves as the base vehicle. The drive

motor and steering servo have upgraded motor controller

to enable control and retrieval of rotational position and

velocity information over serial link. An ATmega2560 board

is used as the low-level controller board to interface with

the motor controllers and radio receiver. In addition, it also





around a similar but smaller oval track of size 18 m × 10 m.

Pedestrians are detected from the perception module along

with their uncertainties as outlined in section III-B.

V. RESULTS AND DISCUSSION

Fig. 4 demonstrates the convergence of the parameters

over time for the two learned policies. Policy 1 (blue)

learned larger lateral controller gains (krp , krd , kzθ ) to

track the reference more aggressively compared to policy

2. Policy 2 learned larger longitudinal controller gains (kvp

and kvd
), but smaller allowed maximum lateral acceleration

(alatmax) to track the reference velocity faster whenever the

vehicle is not taking sharp turns, i.e. vd ≤ vmax(δs) =√
alatmaxL/|tanδs|, where δs and L are the steering angle

and wheelbase of the vehicle. Both policies learned a similar

kdet for obstacle detection range. Policy 2 learned a larger

kshift for a fixed shift in the lateral offset, whereas policy 1

learned a smaller kshift that is combined with the perception

uncertainty to determine a varying lateral shift dependent on

the level of uncertainty.

Fig. 5 shows the performance of each policy during 100
test episodes in terms of how often the vehicle traveled

over high probability regions of pedestrian intent, as well

as how close it got to the pedestrian state covariance. Policy

1 and policy 2 travelled over pedestrian intent regions with

probabilities above 10% in 60 and 20 of the episodes, with

average intent probability of 18% and 7%, respectively. In

addition, policy 1 maintained a mean distance of 0.71 m to

the closest pedestrian’s state covariance ellipse and intruded

it in 5 episodes, as it shifted the desired lateral offset by

a constant amount of kshift regardless of the uncertainty.

Policy 2, on the other hand, used the uncertainty associated

with the perception detections to determine the required

lateral shift by (15), resulting in a mean distance of 2.01
m and no intrusion in the pedestrian state covariance ellipse.

Of note, a negative distance in the figures denotes vehicle

intrusion into the pedestrian state covariance ellipse.

Fig. 6 shows the performance of each policy in a single

lap around the track with perfect simulated detections (no

Fig. 4. Comparison of learned parameters for Policy 1 (blue) and policy
2 (red). The horizontal axis represents the number of iterations.

uncertainty) and relatively high uncertainty (covaraince disk

of 1 m radius). With perfect sensing (top row), policy 1

deviated farther from the track (max 1.61 m) by taking a

more conservative deviation from the pedestrians (min 0.93
m). Policy 2, however, remained closer to the track (max

1.21 m) while still staying outside the uncertainty region

and maintaining a safe distance to the pedestrians (min 0.65
m). For the uncertain sensing scenario (bottom row), policy

2 always maintained a safe distance to the pedestrians (min

0.91 m) by regarding the uncertain state estimations, whereas

policy 1 occasionally intruded the uncertain region around

the pedestrian state (min −0.21 m), thus increasing the

chance of collision. For this scenario, policy 1 and policy

2 maximum deviation from track were 2.62 m and 3.71 m,

respectively.

Finally, we deployed each policy on the real ground

vehicle and tested it during navigation around the track in

presence of pedestrians. Both policies were able to perform

10 episodes of successful navigation around the track. The

top-down view of the track, as well as an example pedestrian

detection bounding box along with its standard deviation

from Gaussian Yolov3 are shown in Fig. 3.

The mean (std) [max] for the variances obtained

from Gaussian Yolov3 in the x and y directions were

0.0032 (0.0037) [0.0255] m and 0.0006 (0.0017) [0.0191] m,

respectively. With such small detection uncertainties, the

perception module is outputting near perfect detections. In

practice, however, perception detections could be more un-

certain due to e.g. occlusion or limited visibility. To simulate

this behavior and test the behavior of the trained policies,

we performed experiments with synthesized detection covari-

ances, by sampling the covariance ellipse axes in the range

of [1 m, 2 m].

To avoid hitting pedestrians, policy 1 uses a fixed shift in

the desired lateral offset, whereas policy 2 uses the detection

Fig. 5. Comparison of traveling over high intent probability and distance
to pedestrian in 100 episodes of test for policy 1 (blue) and policy 2

(red). A negative distance denotes vehicle intrusion into the pedestrian state
covariance ellipse.
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