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Abstract— Learning robust policies for robotic systems op-
erating in presence of uncertainty is a challenging task. For
safe navigation, in addition to the natural stochasticity of the
environment and vehicle dynamics, the perception uncertainty
associated with dynamic entities, e.g. pedestrians, must be
accounted for during motion planning. To this end, we construct
an algorithm with built-in robustness to uncertainty by directly
minimizing an upper confidence bound on the expected cost of
trajectories instead of employing a standard approach based
on minimizing the expected cost itself. Perception uncertainty
is incorporated into the policy search framework by predicting
each pedestrian’s intent belief and propagating their state dis-
tribution in time using closed-loop goal-directed dynamics. We
train the policy in simulation and show that it could be trans-
ferred to an agile ground vehicle for successful autonomous
robot navigation in presence of pedestrians with perception
uncertainty. We further show the superior performance of this
policy over a policy that does not consider pedestrian intent
and perception uncertainty.

I. INTRODUCTION

Planning safe trajectories is of great importance for au-
tonomous vehicles. The uncertainty introduced by the in-
herent stochastic nature of the operating environment and
the stochastic dynamics of the vehicle and other participant
entities makes this task challenging. In addition, the uncer-
tainty associated with sensory observations from perception
imposes further challenges to this task. Failure to account for
such uncertainty in planning may lead to unsafe behavior.

In robotics tasks, uncertainty could arise from different
sources such as robot localization [1], [2], control [3], [4] and
perception [5], [6], [7]. In this work, we mainly focus on the
perception uncertainty. Previous works have tackled the prob-
lem of planning under perception uncertainty from different
perspectives. Jha et al. proposed a probabilistic extension
of temporal logic that can be used to specify correctness
requirements in presence of perception uncertainty [5]. Xu et
al. used Gaussian propagation of uncertainty along predicted
trajectories for traffic participants to achieve safer trajectories
in autonomous driving [6]. Jasour et al. used risk contours
map that contain the risk information of different regions in
uncertain environments [7]. Sampling-based methods such
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Fig. 1.

JHU all-terrain agile ground vehicle.

as rapidly-exploring random belief trees have also been used
for motion planning under uncertainty [8], [9].

In this work, we approach this problem through policy
search, which is a method for computing the optimal control
parameters of a robotic system operating in an unknown,
uncertain environment. Consider a ground vehicle (e.g. the
one shown in Fig. 1) autonomously performing a navigation
task with uncertainty induced in the environment by the
presence of pedestrians. For safe navigation, we incorporate
the sensory measurement uncertainties associated with the
perceived pedestrian states into the policy search problem.
This is done by predicting the participant agents’ intents and
rolling out their trajectories with Gaussian uncertainty prop-
agation in time using closed-loop goal-directed dynamics.

A multitude of update strategies exists for the policy
search problem: 1) policy gradient methods like PEPG,
DDPG [10], and REINFORCE [11], 2) gradient-free meth-
ods, such as Reward-weighted Regression (RwR) [12]
and CMA-ES, 3) information-theoretic methods like REPS
and TRPO, 4) actor-critic methods like A3C and TRPO
[13], [14], [15], 5) methods that minimize an upper con-
fidence bound on the expected cost of trajectories, e.g.
High Confidence Policy Improvement [16] and Probably-
Approximately-Correct Robust Policy Search (PROPS) [17].
The last update strategy is particularly useful because it
provides a bound on the expected performance of the policy
which it computes, where the bound can be regarded as a
certificate for guaranteed future performance.

To leverage the guaranteed future performance of the



policy, we employ Actor-Critic PROPS (AC-PROPS) [18]
that minimizes an upper confidence probably approximately
correct (PAC) bound on the negative advantage of a con-
trol policy at each policy update iteration. The algorithm
estimates these unknown advantages using Generalized Ad-
vantage Estimation (GAE) [19]. This approach results in an
advantage estimator that has a tunable bias-variance trade-
off. This algorithm is categorized as actor-critic since the
advantage estimation makes use of a learned value function
in order to update the policy.

Problem statement: Given the perceived state of the world
x, our objective is to learn the parameters of a control policy
7 for the vehicle which minimizes the upper confidence
bound on the expected value of a user-defined cost function
J, that encodes desired performance metrics such as mission
progress, obstacle avoidance, and safety. We assume the
state of the vehicle and other entities are perceived through
the on-board sensors and an initial belief over the future
intent of dynamic entities is available which gets updated as
new measurements z become available from the perception
module. We train an AC-PROPS policy [18] in simulation
using a high quality stochastic dynamics model [20] of a 1/5-
scale agile ground vehicle (Fig. 1) and show that the policy
could be transferred to the vehicle for successful autonomous
robot navigation around a track in presence of pedestrians
with perception uncertainty.

II. METHODS
A. Stochastic Policy Search

Consider a finite horizon Markov Decision Process (MDP)
defined by the combined state x = (2%, 2, ..., 2™), com-
bined control inputs v = (u® u!,...,u"). Each agent
with index 7 has initial state probability density po(z*) and
transition density p(x}, |z}, uj), where superscript index
t = 0 corresponds to the vehicle and ¢ = 1,...,n, denote
the pedestrians (non-player characters) and subscript k is
the time step. We assume that the vehicle control policy
u® = 7(x;¢) is parameterized by a vector & (described
in section II-D). Each pedestrian is modeled using a goal-
driven controller u’ = ¢'(«*, ), where z is an es-
timated goal-state (described in section II-B). The robot
state-control trajectory over N time-segments is denoted by
72 (2d,u, ...,ul_1,2%), the i-th pedestrian trajectory is
n' = (2},...,x%) with all pedestrian trajectories denoted by
n = (n',...,n™), and have densities

N-1
p(r1€) = po(d) T plafalef, ud)m(unlar; €),
k=0
N-1
p(n') = po(ap) [ plahialat, ¢' (' 27)),
k=0
for i =1,...,n,. The objective is to find the optimal set of

vehicle policy parameters £* such that:

¢" = argminErp.1)mimp() [ (7)), O

where J(7,7) = —Zivzor(xhut) is a cost function en-
coding the desired performance metric. Note that the pedes-
trian dynamics is assumed to be independent of the robot,
while the robot control policy 7 depends on the pedestrian
states. Instead of directly searching for the optimal £ to
solve (1) a common strategy is to iteratively construct a
surrogate stochastic model 7(¢|v) with hyper-parameters
v € V. The model, thus, induces a joint density p(7, {|v) =
p(7|€)m(€|v) that encodes natural stochasticity p(7|€) and
artificial control-exploration stochasticity 7(|v). In previous
work [17], a robust policy search methodology was devel-
oped that was based on the PAC bounds on the performance
of a stochastic policy. This algorithm directly minimizes an
upper confidence bound on the expected cost of trajectories
instead of employing a standard approach based on the
expected cost itself. Consequently, it has built-in robustness
to uncertainty, as the bound can be regarded as a certificate
for guaranteed future performance.

Given a prior distribution 7(-|vy) on control parameters
and M executions based on the prior, the expected cost of the
new policy 7(-|v) based on episode-based policy sampling
is given by:

7T(é“IV)}
(&) ]

For step-based policy sampling, this learning objective can
alternatively be written in terms of step-wise advantages [18]:

p(§|v)
P(€|Vo)

where AY(xy,u:) = Q¥ (x4, ur) — VV(zy) is the advantage
function, with Q(-) and V(-) defining the state-action and
state value functions, respectively.

J(v) can be approximated empirically using samples
&, ~ p(&|v) and 4 ; ~ p(x|& ;). The change of measure
likelihood ratio /f ((é’;f‘ l:))) , however, can be unbounded [21]. A
robust estimation technique [22] could instead be employed
to deal with the unboundedness of the policy adaptation. In
addition, to obtain sharp bounds it is useful to employ sam-
ples over multiple iterations of the iterative stochastic policy
optimization algorithm, i.e. from policies vy, v1,...,V 1
computed in previous iterations. The cost (2) of executing v
can then be equivalently expressed as:

TW) 2 Ergop(c o) [T (T, )] =Er (- 1) [J (T,m)

VO ]Ex,ew(zs)p(&v)[—/l”” (2, u) ] )

L-1

1
Jw) = I Z E.p(uli(z,v),

=0

where z = (7,7,€) and {;(z,v) = J(Tﬂ]):((él:i)). This
can be approximated by the empirical mean J(v) =
T Ef:_ol ij\il[&(zij,,j)]. A more robust estimate [22] is
given by:
| Loim
a (e
ja(V)— oL M Zzw(agz(zzjay))7 (3)

i=0 j=1

where o > 0 and ¢ (z) = log(1 4+ = + 32?). As outlined
in [22], [17], with probability 1 — § the expected cost of
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Fig. 2. Block diagram of steps during policy training (left) policy testing (middle). The track navigation task in simulation (right).

executing a stochastic policy with parameters £ ~ 7(-|v) is
bounded according to:

: -
T0) < inf T W), @

TN o o Da(r(IllrClv)) | & o0 L
T ) =Tav)+ 2L;ble + 377108 5

computed after L iterations with M samples z;1, ..., zips ~
p(-|v;), where Dg(pl|g) denotes the Renyii divergence be-
tween p and ¢. The constants b; are such that 0 < J(7,7) <
b; at each iteration. Consequently, a new policy v; 1 is
computed using observed costs from previous iterations by
optimizing the bound (4) jointly over o and the policy v:

v R
V" = arg min min TS (). 5)

The block diagram of the steps taken during training and
testing of the policy is shown in Fig. 2. As observed in the
left figure, during training, the policy hyper-parameter v/,
as well as the robot and pedestrians states are randomly
initialized. Given the observations and predicted trajectory
of pedestrians (described in Sections 1I-B and II-C), v is it-
eratively updated until the cost function falls below a desired
threshold. During testing, given the perception observations
and the pedestrian intent predictions, robot controls will be
generated from the policy 7 (x;&).

B. Closed-loop Pedestrian Uncertainty Propagation

We assume that each pedestrian’s state has a Gaussian
distribution =}, ~ N(:|£}, P}) for ¢ = 1,...,n, which,
once a pedestrian goal x, is selected, can be propagated in
time using the pedestrian known closed-loop goal-directed
dynamics for N time segments to form n* = (xf, ...,z ;).
Let the pedestrian dynamics and controller be:

xl:fl(xlaul)a )a

where x; is the i*" pedestrian’s goal state. The closed-loop

dynamics f° could then be written as:
B P G ) & ).

More specifically, we employ a double-integrator model with
state ' = (p',v") consisting of position p* € R? and

u' = @' (a’, ng

(6)

(N

velocity v* € R? with dynamics:

=

0 =t w',
where u = ¢'(z, z4) = K(z—x4) with K = [—k,I5, —k,I5]
for some chosen gains ky, k, > 0, and w'(f) being zero-
mean with variance E[w!(t)w'(r)T] = Q.6(t — 7). The
closed-loop dynamics could be written in matrix form as:

i' = (F+GK)z' — GKzl + Lu'. (8)
The state propagation over time segment [{;_1, {x] is then:
By = @p1dy g — Te1 Ko, 9)
P =@ Pl @5y + Qi (10)
where I'y, 1, Qi1 are defined as:
ty
kal - / (I)(tkaT)GdTa
tr—1
tr
Qr-1 = / ®(ty, T)LQ LT ®T (ty, T)dr,
te—1
where the state-transition matrix @), _; = eAEFTCK) for
simplicity could be approximated by:
& = T+ AP+ GK). (11)

C. Intent-aware Pedestrian Prediction

To propagate the pedestrian state uncertainty using closed-
loop dynamics, a goal state is required. While various
approaches exist for human motion trajectory prediction [23],
we adapt the Bayesian method proposed in [24] and [25], that
estimates the probability of a desired goal, x;, on a grid-like
representation (Fig. 2) for the i*" pedestrian based on history
of past observations, z%*:

NCAYCRlt
a(z")
where g(x|22%%) is the posterior probability of pedestrian
goal, given an observation history z%S. q(x;) is the prior
probability of i** pedestrian’s goal. q(sz5|x;) is the likeli-
hood probability of observing 2% given x; and modelled
as a Gibbs measure:

q(="|g) =

obs

gl |z (12)

obs

exp(—BE({"|2))),  (13)

1
(5)



where E(z**|2}) is an energy function that is set equal
to distance between the observed trajectory and the shortest
trajectory to the goal. 5 adjusts the landscape of the resulting
probability distribution and (/) is a normalizing constant.

In practice, for the " pedestrian, a probability distribution
qi(:r;) on the set of possible goals in the grid representa-
tion is provided to the planner by the perception module.
Consequently, the goal state for the i*" pedestrian could be

generated by sampling % ~ ¢'(.).

D. Vehicle Control Policy

We express the state of the autonomous vehicle with
respect to a curvilinear coordinate system, with the reference
curvature of the coordinate system following the road or
path centerline. The state of the vehicle is defined as x =
(s, e, e0,v,a,0s) € RS, where s is the arc length along the
reference path, e, is the lateral offset from the path, ey is the
angular offset from the path tangent at s, and v is the forward
body-velocity, a is the forward body-acceleration, and J5 is
the steering angle. The control inputs to the system consist
of the jerk u; € R and steering angle rate uy € R. Given
k(s), the curvature of the path at s, and L, the vehicle’s
wheelbase, typical bicycle dynamics expressed using path
coordinates are derived as:

K veos(eg)
i 1—k(s)er
Er vsin(eg)
) tands .
€O _ (vt — K(s)$ . (14)
v a
@ u1
65 u2

We use a Lyapunov stable controller that achieves a
desired track offset and longitudinal velocity in a decoupled
manner, with relatively few learnable parameters [20]. Tak-
ing into account the uncertainty associated with perception
detections, a higher level planner commands a track offset
to the lateral controller to avoid detected dynamic entities.
The controller parameters are: lateral control gains k‘rp, krq,
k.o, velocity control parameters ky,, kv,s Glatmazs and Kqet
and kgpip: for detecting pedestrians and shifting the lateral
offset to navigate around them.

For more intelligent obstacle avoidance, we introduce
additional learnable parameters to the controller that incorpo-
rate perception uncertainty and pedestrian intent distribution
in the planning task using intuitive geometrical interpreta-
tions. In previous work [20], if a static obstacle was detected
within some radius of the vehicle, denoted kg4.;, then the
desired track offset generated by the high level planner was
shifted by a fixed value, ksp;f¢. This methodology, however,
does not take into account the uncertainty associated with
the detections. To do so, we define the lateral shift as
dshift = Eshift - Sdaer that incorporates the uncertainty from
perception, where Sg.; is the largest principal axis of the
covariance ellipse P in (10) for the pedestrian closest to
the vehicle. On the contrary to using only a fixed offset
(Kshife), such a formulation will adapt the overall lateral
shift according to the observed uncertainty from perception.

The high level planner would naturally generate track
offsets in the direction that the vehicle is pointing relative to
the pedestrians. For instance, if the robot is pointing to the
left of a pedestrian, then the desired track offset is shifted to
the left. However, taking into account the pedestrian intent,
the high level planner could more intelligently reason about
the direction to swerve around the pedestrian that would
avoid potential future interference of the vehicle with the
pedestrian’s intended path.

Given the state and dynamics limitations of the vehicle, a
sudden change of direction may be physically impossible or
require maneuvers with very sharp turns at high velocities.
We, therefore, allow the policy to decide on taking sharp
turns or not, based on a learnable parameter, k.o that
geometrically encodes the feasibility, and cost of executing
such maneuvers, if necessary. More specifically, if the angle
between the vehicle’s heading and the line that connects the
vehicle to the closest obstacle, o (Fig. 2), is larger than a
learned angle threshold, k¢.qs, a change of direction would
either be infeasible, too costly, or unnecessary. Consequently,
the high level planner generates the desired lateral controller
track offset e, as:

5)

ér - ert - er7
ery = €r, + dir (kspipt - Saet),

where e, and e, (computed using x* from perception) are
the vehicle’s and the closest obstacle’s lateral offset from
the center of the track, respectively. dir is determined by
the high level planner depending on the closest obstacle’s
sampled intent lateral offset and whether o < kycqs, Where
a=cos™! (Hz—z‘ . HL—’”), e, is the vector connecting the vehicle
to the closest obstacle, and v is the vehicle heading (Fig. 2).
We define the policy search cost function as:

tf/dt

J(r) =Y [Ra} + Qre?, + Qu(*/vgou — 1)

t=0

(16)

+|ve|O(dy) + Qigy],

where (-); indicates the state at a discrete time index ¢, a is
the vehicle acceleration, vy is the goal velocity, R, @,
Qv, Q; > 0 are tuning weights, ¢f is the pedestrian intent
probability for the grid cell, ¢, that is the closest to the vehicle
at time index ¢, d; is the time step, and O(d) is a cost that
encourages obstacle avoidance [20]. Of note, the computed
J(7) in (16) is used to compute J,(v) in (3).

III. SYSTEM SETUP
A. Vehicle Hardware

The all-terrain 1/5-scale ground vehicle used in our ex-
periments is shown in Fig. 1. A heavily modified Redcat
Racing Rampage XB-E serves as the base vehicle. The drive
motor and steering servo have upgraded motor controller
to enable control and retrieval of rotational position and
velocity information over serial link. An ATmega2560 board
is used as the low-level controller board to interface with
the motor controllers and radio receiver. In addition, it also



receives control commands from on-board computer and
relays wheel odometry information back. The computer sub-
system consists of an Intel NUC CPU, Nvidia Jetson AGX
Xavier, an ethernet switch and a wifi router. For sensing,
in addition to the wheel odometry feedback, we have an
Intel Realsense D455 RGB-D camera, a LORD Microstrain
3DM-GX4-25 IMU and a u-blox ZED-FOP RTK-GPS unit
for obtaining global position and absolute heading of the
vehicle.

B. Perception

The perception algorithms used can be primarily divided
into two groups: vehicle localization and pedestrian detec-
tion.

Vehicle localization is performed by fusing wheel odom-
etry, IMU and GPS position and heading by employing an
extended Kalman filter (EKF). We use an open-source ROS
implementation of the EKF named robot_localization [26].

The objective of the pedestrian detection algorithm is to
detect and localize pedestrians in the environment as well as
to compute the uncertainty of the associated detections. In
particular, the perception module receives RGB and depth
images from the camera system and produces a pose and
covariance estimate of all pedestrians with respect to the a
global coordinate frame. The pedestrian detection algorithm
is based on the Gaussian version of the Yolov3 architec-
ture [27], [28] which uses the Darknet-53 network as the
underlying feature extractor. This network architecture was
selected primarily due to its ability to produce accurate
bounding box locations of detected objects with real time
performance. The Gaussian version of the Yolov3 architec-
ture outputs two parameters for each bounding box coordi-
nate, a mean and standard deviation (Fig. 3). To determine
the pose, we compute the center pixel of the bounding box
for each detected pedestrian, ¢ represented as u;,v;. This
is followed by using the intrinsic camera calibration matrix
to convert the center pixel to real world coordinates, x;, y;.
We then use the coregistered depth image to provide the
z; coordinate corresponding to the depth of the pedestrian.
To compute the covariance matrix associated with the pose,
we add the standard deviation to the pixel coordinates,
u;, V5, reproject this point to real world coordinates and
subtract from the mean pose, x;, y;. This produces a standard
deviation in real world coordinates that is subsequently used
to populate the covariance matrix. Our final step is to perform
a series of transformations to convert the pose and covariance
of the pedestrian with respect to the global coordinate frame
which is subsequently used by the planning algorithm.

IV. EXPERIMENTS

Using collected robot motion trajectories, a high quality
stochastic dynamics model was previously developed for
the vehicle [20]. We leverage this dynamics model to train
policies in simulation and transfer them to the physical
system for navigating around an oval track with pedestrians
present in the environment. The block diagram of the steps

taken during training and testing of policies is shown in
Fig. 2.

The simulation environment is shown in Fig. 2. The vehi-
cle attempts to follow a 22 m x 14 m oval track in presence
of simulated moving pedestrians with the associating grid
representation of their intent belief. During training, in the
beginning of each episode, a pedestrian is spawned 8 m in
front of the vehicle with randomly sampled track offset, goal
location, and initial simulated state covariance. Throughout
the episode, the pedestrian moves with the controller outlined
by (6) and its state (z*) and uncertainty (P*) gets propagated
according to (9) and (10). An episode terminates if the
vehicle collides with the pedestrian or if ¢ seconds elapses.
The vehicle state at the end of an episode is maintained as
its initial state at the beginning of the next episode, so that
the vehicle always remains in motion.

We train two control policies using step-based sampling
in simulation: policy I and policy 2. Both policies share the
learnable parameters ki, ku;» kr,, kvd, K255 Kdets Kshifts
Glatmaz- Policy I shifts the desired lateral offset by the
fixed value of kgpn;¢¢ without any notion of the pedestrian
intent and uncertainty [18]. Policy 2 takes into account the
pedestrian intent and uses kjfeqs and kgp;f; to shift the
desired lateral offset by incorporating perception uncertainty
according to (15). For policy 2, the belief representation
of the intent (g(g)) for the pedestrians get updated by
maintaining a history of the past ten observations (z°%*) of
each pedestrian’s state. A new goal is sampled from the
belief distribution z, ~ ¢(g) whenever the distance between
the updated belief and the previous belief in terms of KL
divergence reaches an empirically determined threshold, .

We train each policy for 200 iterations, with 50 episodes
(i.e. trajectory roll-outs) in each iteration, using a sliding
window of 20 batches for each policy update. For the cost
function, we set Vgoq1 = 3.5 m/fs, ty = 75, dt = 0.02 s,
R =103, Q, = 025, Q, = 4, Q; = 10, Cipy = 800,
Chigh = 80, 010y = 0.5 m, and o0p;4, = 1.0 m. For the
pedestrian controller and intent, we set k, = 0.2, k, = 0.6,
B8 = 0.3, and v = 0.5. The two trained policies are then
tested in simulation during 100 episodes with pedestrians
randomly spawned in the scene.

Finally, we transfer the policies trained in simulation to the
JHU all-terrain !/s-scale agile ground vehicle for testing in
an off-road environment. In this case, the vehicle navigates

Fig. 3.
bounding boxes determined by the Gaussian Yolov3 detector (left). Top-
down view of the track (right).

Pedestrian detection (bold lines) and uncertainty (narrow lines)



around a similar but smaller oval track of size 18 m x 10 m.
Pedestrians are detected from the perception module along
with their uncertainties as outlined in section III-B.

V. RESULTS AND DISCUSSION

Fig. 4 demonstrates the convergence of the parameters
over time for the two learned policies. Policy I (blue)
learned larger lateral controller gains (k;,, kr,, kz,) to
track the reference more aggressively compared to policy
2. Policy 2 learned larger longitudinal controller gains (.,
and k,,), but smaller allowed maximum lateral acceleration
(a1atmaz) to track the reference velocity faster whenever the
vehicle is not taking sharp turns, i.e. vg < VUpmaz(ds) =
\/ Qlatmaz L/ |tands|, where 5 and L are the steering angle
and wheelbase of the vehicle. Both policies learned a similar
kqe+ for obstacle detection range. Policy 2 learned a larger
kshige for a fixed shift in the lateral offset, whereas policy 1
learned a smaller k,p; ¢, that is combined with the perception
uncertainty to determine a varying lateral shift dependent on
the level of uncertainty.

Fig. 5 shows the performance of each policy during 100
test episodes in terms of how often the vehicle traveled
over high probability regions of pedestrian intent, as well
as how close it got to the pedestrian state covariance. Policy
1 and policy 2 travelled over pedestrian intent regions with
probabilities above 10% in 60 and 20 of the episodes, with
average intent probability of 18% and 7%, respectively. In
addition, policy 1 maintained a mean distance of 0.71 m to
the closest pedestrian’s state covariance ellipse and intruded
it in 5 episodes, as it shifted the desired lateral offset by
a constant amount of kgp, ¢+ regardless of the uncertainty.
Policy 2, on the other hand, used the uncertainty associated
with the perception detections to determine the required
lateral shift by (15), resulting in a mean distance of 2.01
m and no intrusion in the pedestrian state covariance ellipse.
Of note, a negative distance in the figures denotes vehicle
intrusion into the pedestrian state covariance ellipse.

Fig. 6 shows the performance of each policy in a single
lap around the track with perfect simulated detections (no
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Fig. 4. Comparison of learned parameters for Policy 1 (blue) and policy
2 (red). The horizontal axis represents the number of iterations.

uncertainty) and relatively high uncertainty (covaraince disk
of 1 m radius). With perfect sensing (top row), policy I
deviated farther from the track (max 1.61 m) by taking a
more conservative deviation from the pedestrians (min 0.93
m). Policy 2, however, remained closer to the track (max
1.21 m) while still staying outside the uncertainty region
and maintaining a safe distance to the pedestrians (min 0.65
m). For the uncertain sensing scenario (bottom row), policy
2 always maintained a safe distance to the pedestrians (min
0.91 m) by regarding the uncertain state estimations, whereas
policy 1 occasionally intruded the uncertain region around
the pedestrian state (min —0.21 m), thus increasing the
chance of collision. For this scenario, policy 1 and policy
2 maximum deviation from track were 2.62 m and 3.71 m,
respectively.

Finally, we deployed each policy on the real ground
vehicle and tested it during navigation around the track in
presence of pedestrians. Both policies were able to perform
10 episodes of successful navigation around the track. The
top-down view of the track, as well as an example pedestrian
detection bounding box along with its standard deviation
from Gaussian Yolov3 are shown in Fig. 3.

The mean (std) [max] for the variances obtained
from Gaussian Yolov3 in the x and y directions were
0.0032 (0.0037) [0.0255] m and 0.0006 (0.0017) [0.0191] m,
respectively. With such small detection uncertainties, the
perception module is outputting near perfect detections. In
practice, however, perception detections could be more un-
certain due to e.g. occlusion or limited visibility. To simulate
this behavior and test the behavior of the trained policies,
we performed experiments with synthesized detection covari-
ances, by sampling the covariance ellipse axes in the range
of [1 m, 2 m].

To avoid hitting pedestrians, policy I uses a fixed shift in
the desired lateral offset, whereas policy 2 uses the detection
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to pedestrian in 100 episodes of test for policy I (blue) and policy 2
(red). A negative distance denotes vehicle intrusion into the pedestrian state
covariance ellipse.
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Fig. 6. Vehicle deviation from the track during obstacle avoidance with
no uncertainty (top), and 1 m covariance disk radius (bottom).

TABLE I
VEHICLE LATERAL DEVIATION FROM TRACK

Mean (m) Std (m) Max (m)
Policy 1 0.35 0.20 1.26
Policy 2 0.24 0.12 0.61

uncertainties to determine the desired lateral offset. Fig. 7
(a) and (b) demonstrate the overall performance of policy
1 and policy 2, respectively, in 10 episodes of navigation
around the track in presence of pedestrians. Policy 2 resulted
in a smoother tracking performance and less track deviation
compared to policy I due to incorporation of uncertainty
in determining more intelligent desired lateral offsets during
pedestrian avoidance. The pedestrian avoidance cases with
maximum deviation from the track for each policy are shown
in Fig. 7(c) and (d), where policy I has taken a sharper
deviation from the pedestrian and the track compared to
policy 2, even though it had a smaller pedestrian detection
uncertainty. Table I summarizes the statistics of the vehicle
lateral deviation from the track for each policy. The maxi-
mum deviation from track for policy I and policy 2 were 1.26
m and 0.61 m, respectively, indicating a smoother trajectory
for policy 2 while successfully navigating around pedestrians.

Finally, it should be noted that the underlying assumptions
in this work were that the pedestrians do not interact with
one another and they do not necessarily react to the robot’s
or other pedestrians’ presence.

V1. CONCLUSION

We presented a robust policy search framework for a
1/s-scale agile ground vehicle with built-in robustness to
uncertainty by minimizing an upper confidence bound on
the expected cost of trajectories. We showed in simulation
and through real vehicle testing how perception uncertainty
and pedestrian intent could be incorporated into this frame-

(d)

Fig. 7. Vehicle trajectory during ten episodes of navigation around the track
with pedestrians using (a) policy 1, and (b) policy 2. Pedestrian avoidance
cases with maximum deviation from the track using (c) policy I, and (d)
policy 2.

work to enable more intelligent navigation in presence of
pedestrians. Future work will combine deep neural networks
with the existing algorithm to enable more versatile control
frameworks for autonomous navigation in presence of dy-
namic entities with uncertainty.
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