


tion scenario generation [7]. With regards to the latter, several

veins of research [8], [9], [3] have shown that adaptive sce-

nario generation is an effective method to identify unknown

failure modes within high-dimensional testing spaces (i.e.,

the space of all possible test conditions under consideration).

The work in [10] uses the cross-entropy method to detect

rare-event failures in autonomous driving scenarios. Previous

work by the authors [11] has also explored adaptive scenario

generation with the purpose of discovering performance

boundaries in autonomous systems, defined as regions with

a large performance gradient. The datasets of Fig. 1 serve as

an example to this form of adaptive sampling.

While simulation-based testing is an effective way to gen-

erate performance datasets, there is more limited literature

on performance regression techniques. The work in [12]

considered auto-generating scenarios for regression tests in

the context of self-driving car maneuvering. The problem

posed here, however, is the more general comparison of

performance datasets, one which shares similarities with the

change detection field. Applications within this field usually

fall into detecting changes within time-series information

[13] or between images [14], [15]. Generalized methods that

detect differences in the underlying probability distributions

between datasets also exist [16], [17].

III. PROBLEM SETUP

Let the autonomous system under test (SUT) be treated as

a function F : XD → Y that maps a D-dimensional testing

space XD = X1 × . . . × Xd to a scalar performance space

Y ⊂ R. This research tackles the problem of comparing two

different SUTs, FA and FB , where FA 6= FB . Assuming

both SUTs are evaluated on the same testing space XD,

we define the change in performance over the entire testing

space as ∆Y = YB − YA = FB(X
D) − FA(X

D). Given

these definitions, we aim to identify the subset of regression

regions characterized by a decrease in performance: X− =
{XD |∆Y < 0}.

Because an exact characterization of the regression regions

is intractable, we aim to estimate them using samples col-

lected from each SUT (in the form of simulation datasets). A

scenario x = [x1, . . . , xD]T ∈ XD is a specific instantiation

of the testing space, where xk ∈ Xk is the value of each

test parameter. The performance score y = F(x) ∈ Y
is the output of each simulated scenario. Further, let sets

of N scenarios X = {xi}
N
i=1

and their resulting perfor-

mance scores Y = {yi}
N
i=1

be combined to form a study

S = {X,Y }. These studies could be generated through the

adaptive scenario generation techniques described in Section

II or simply through randomized Monte Carlo methods.

While we assume that both SUTs are evaluated on the same

testing space, the resulting studies SA and SB (collected

from FA and FB respectively) need not be identical. For

the purposes of performance regression analysis, we aim

to estimate the regression regions by identifying a set of

regression clusters R∗ that are uniquely determined by both

the severity of the performance decrease between SA and

SB , and also the location within the testing space.

IV. APPROACH

The overall approach taken to identify and characterize the

regression clusters is a combination of both supervised and

unsupervised learning. Fig. 2 shows a graphical flowchart

of the process. The algorithms that follow are assumed to

operate on the normalized testing space X̄D ∈ [0, 1]D and

normalized performance space Ȳ ∈ [0, 1], where the (̄·)
operator indicates data that has been normalized to this range

based on its maximum and minimum possible values.

A. Regression Modeling

The first step of the performance regression analysis en-

tails fitting surrogate models to each normalized study dataset

S̄A and S̄B . These surrogate models M : X̄D → Ŷ attempt

to approximate the input-output relationship of the SUT,

where Ŷ is the predicted normalized performance space.

Given that S̄A 6= S̄B , regression regions are estimated by first

fitting surrogate models MA and MB to each dataset S̄A

and S̄B , respectively. Regression regions are then estimated

based the predicted response of each model to the opposite

dataset:

[Ŷ lb
AB , ŶAB , Ŷ

ub
AB ] = MB(X̄A), (1)

[Ŷ lb
BA, ŶBA, Ŷ

ub
BA] = MA(X̄B), (2)

∆ŶA = ŶAB − YA, (3)

∆ŶB = −(ŶBA − YB). (4)

Here, ŶAB and ŶBA are the predicted scores from studies A
and B on models B and A, respectively. The superscripts

(·)lb and (·)ub represent the lower and upper prediction

bounds under the assumption that the choice of M can

provide these values. These measures are translated to predict

the bounds on the performance regression of each dataset as

∆Ŷ lb
A = Ŷ lb

AB − YA, (5)

∆Ŷ ub
A = Ŷ ub

AB − YA, (6)

∆Ŷ lb
B = −(Ŷ ub

BA − YB), (7)

∆Ŷ ub
B = −(Ŷ lb

BA − YB). (8)

A combined study set S̄∗ = {X̄∗,∆Ŷ∗}, where X̄∗ =
X̄A ∪ X̄B and ∆Ŷ∗ = ∆ŶA ∪ ∆ŶB , is then created to

predict the change from FA to FB . The set of samples

representing performance regression can be estimated as

S̄−

∗
= {S̄∗ |∆Ŷ∗ < 0}. This combined set augments the

number of samples (N∗ = NA +NB) for improved fidelity

in cluster analysis. Alternatively, the predicted regression

bounds ∆Ŷ lb
∗

= ∆Ŷ lb
A ∪∆Ŷ lb

B and ∆Ŷ ub
∗

= ∆Ŷ ub
A ∪∆Ŷ ub

B

could also be used to define the combined study set. Using

the lower bound offers a conservative approach and priori-

tizes extracting regions with the greatest possible regression.

The upper regression bound, meanwhile, lets the analysis

prioritize performance regression that is occurring with high

confidence, meaning that even the upper bound is predicted

to have regressed.

The choice of surrogate model in this step is impor-

tant since autonomous systems can exhibit unpredictable





more individual clusters within this space, amplifying the

challenge that the number, size, and locations of regression

clusters are not known a priori. Thus, the testing space

clustering makes use of density-based methods (specifically

DBSCAN [21]) to alleviate some of these problems, which

can accommodate an unknown number of clusters and im-

poses loose requirements on their shape.

Let X̄p be the scenarios for which their respective perfor-

mance scores belong to each p ∈ P∗, i.e., X̄p = {X̄∗ |∆Ŷ∗ ∈
p}. Then, in a similar fashion to the performance clus-

tering step, a set of regression clusters is calculated as

R = DBSCAN(X̄p, σ), where each r ∈ R is now a

unique regression cluster of scenarios, DBSCAN is the

clustering operation of [21], and σ denotes the clustering

algorithm’s hyperparameters. Because these hyperparameters

significantly affect the clustering process, several cluster sets

are calculated over variations to the hyperparameters and

each is again evaluated by its averaged silhouette score. The

regression cluster set for a given p, deemed Rp, is the set

with the maximum silhouette score. This clustering process

is then repeated using scenarios for each p ∈ P∗ such that

the final regression cluster set is R∗ = {Rp}
pmax

p=1
.

3) Feature Scaling: When analyzing realistic SUTs, the

well-known curse of dimensionality dilutes the effectiveness

of clustering if applied directly to high-dimensional data;

thus, feature importance scaling is applied during testing

space clustering to reduce the size of the testing space based

on the importance of each test parameter. This is achieved by

fitting a random forest surrogate model M∗ to the combined

study set S̄∗. The importance βk of each k-th parameter is

determined as in [22] by how much the out-of-bag mean-

squared error of M∗ changes through different parameter

permutations. Normalized parameter importance is given as

β̄k = βk/
∑D

ℓ=1
βℓ. The normalized importance values are

then used as weights to scale the Euclidean distance d
between two scenarios xm and xn as:

d(xm,xn) =
√

(xm − xn)TB(xm − xn), (12)

where B = diag(β̄1 . . . β̄D). This weighted distance function

is used during testing space clustering and has the effect of

minimizing unimportant test parameters.

V. ANALYSIS

A. Performance on Test Functions

The proposed framework is first evaluated on a Monte

Carlo study of auto-generated test functions from which a

ground truth regression landscape can be calculated. Each

randomized test function is meant to be representative of

the types of performance surfaces seen in autonomy testing

datasets. Specifically, the test functions generate Y to consist

of several “plateaus” within XD. The quantity, performance

score, and location of each plateau are all randomized. The

boundary between adjacent plateaus is linearly smoothed and

measurement noise is added to each sample such that y =
ytruth+N (0, σ2), where σ = 0.02. For each study, two test

functions are randomly generated and assigned as FA and

FB (examples shown in Fig. 3a).

Because unsupervised cluster evaluation is generally more

subjective in nature, this portion of the analysis primarily

focuses on the regression modeling aspects of the approach.

In order to compare different modeling approaches, the QRF

of Section IV was compared against a Gaussian process

regression (GPR) model and a five-layer neural network

(DNN), all of which used hyperparameters that were opti-

mized to minimize prediction error. The performance of the

regression framework using each model was then evaluated

across various combinations of D and N to determine

scalability for high-dimensional testing spaces and large

datasets. Ten studies were run for each combination of D
and N (each with new test functions) and the results were

averaged.

Figure 3 shows the performance of each model in its

predictions of the regression dataset S∗. When comparing

to the ground truth regression between pairs of randomized

test functions, the first evaluation metric shows the five-

fold cross validation mean absolute error (MAE) of ∆Ŷ∗.

Each model exhibits the expected trend that MAE increases

for large values of D and small values of N . The QRF

model has lower MAE scores than the GPR model over all

combinations of D and N , but is slightly outperformed by

the DNN model for large sample sizes, indicating that there

may be conditions to apply different modeling techniques.

The second evaluation metric shown in Fig. 3 is the

percentage of ∆Ŷ∗ predictions outside the regression bounds

(i.e., the 95% prediction interval [∆Ŷ lb
∗
,∆Ŷ ub

∗
]). For the

GPR and DNN models, the 95% prediction intervals of Eq.

(1) and (2) are calculated as [Ŷ lb, Ŷ ub] = Ŷ ± 1.96σ, where

the standard deviation σ for the GPR model is calculated

through its inherent covariance structure, and for the DNN

model is approximated using the model’s five-fold cross

validation root-mean-square error. The percentage of outliers

for all models is roughly consistent with a 95% confidence

interval, however, the QRF exhibits the lowest outlier per-

centage, where typically only ∼1–2% of predictions lie

outside the regression bounds. While the prediction interval

is centered on the mean for the GPR and DNN models, the

prediction interval of the QRF model could be asymmetrical

based on the estimated percentiles, which likely results in

the increased robustness.

Overall, the QRF surrogate modeling offers a good balance

of reducing MAE while also minimizing the number of

predictions that lie outside the 95% predicted regression

bounds. It is evident, however, that each surrogate modeling

technique may offer some benefits based on the character-

istics of the dataset and could be easily substituted into the

regression analysis framework.

B. ASV Dataset Case Study

We now apply the framework of Section IV to sim-

ulation sets generated by an ASV navigation algorithm.

The application of interest is that the ASV must avoid

other vessels according to the International Regulations for






