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Abstract— This paper addresses the problem of identifying
whether/how a black-box autonomous system has regressed
in performance when compared to previous versions. The
approach analyzes performance datasets (typically gathered
through simulation-based testing) and automatically extracts
test parameter clusters of predicted performance regression.
First, surrogate modeling with quantile random forests is
used to predict regions of performance regression with high
confidence. The predicted regression landscape is then clustered
in both the output space and input space to produce groupings
of test conditions ranked by performance regression severity.
This approach is analyzed using randomized test functions as
well as through a case study to detect performance regression
in antonomous surface vessel software.

I. INTRODUCTION

Given the need to trust autonomous systems in safety-
critical domains, it is well understood that rigorous testing
and evaluation (T&E) methods are needed to ensure robust
performance [1]. This is especially critical due to the “black-
box” nature of complex decision-making components. Field
experiments in realistic settings are the ideal avenue to per-
form autonomy T&E; however, they are expensive and time-
consuming. Simulation-based testing offers an alternative
that can produce large datasets under a wide array of test
conditions for statistical performance analysis.

A significant technical gap within autonomy T&E exists,
however, when it comes to comparing the performance of
the current system against previous versions, i.e., perfor-
mance regression testing. While traditional regression test-
ing is common in software development for code analysis
and fault detection [2], autonomous systems introduce a
new challenge where it also becomes necessary to ensure
that software changes do not adversely affect the holistic
performance and behavior of the autonomy in unexpected
ways, particularly when changes are constantly made during
active development. When using simulation-based testing to
study holistic performance, the question becomes how to
analytically compare the performance and failure regions of
one dataset to another. Figure 1 illustrates this notion of
performance regression in an obstacle avoidance example,
where performance landscapes for two different autonomy
versions (A and B) are shown. These scatter plots represent
simulated scenarios for various test parameter combinations
of the obstacle position. The color shows the performance
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Fig. 1: Simulation performance datasets for two versions of obstacle
avoidance software. The red box highlights performance improve-
ment whereas the gray box highlights performance regression.

score assigned to each scenario based on the autonomy’s
actions. Two failure regions (red and gray) are highlighted
between the datasets. The red failure region exists in version
A, but is fixed based on software changes made for version
B. The gray region does not exist in version A, but rather
appears as a new, unexpected failure mode in version 5. In
this sense, the gray region represents a region of performance
regression characterized by a decrease in performance.

The underlying research objective highlighted by the ex-
ample of Fig. 1 is to apply statistical learning to analytically
compare two (potentially high-dimensional) performance
landscapes. Such an analysis helps ensure that more “mature”
releases of autonomy software reduce the failure space and
do not produce new, unexpected failure modes. Alternatively,
this process could also be used to conduct a principled
performance comparison between two different autonomy
strategies (or two different autonomy products) tested within
the same context. To the best of the authors’ knowledge,
this paper presents one of the first frameworks specifically
designed to extract regression regions based on the holistic
performance of the system from non-identical datasets. The
remainder of this paper is organized with Section II providing
related work, Section III formalizing the problem definition,
Section IV detailing the methodology for identifying and
analyzing performance regression regions, and Section V
evaluating the efficacy of the approach through randomized
test functions and an autonomous surface vessel case study.

II. RELATED WORK

Autonomy T&E encompasses a large swath of research
summarized in [3]. These areas include fault detection and
software robustness [4], [5], formal methods [6], and simula-



tion scenario generation [7]. With regards to the latter, several
veins of research [8], [9], [3] have shown that adaptive sce-
nario generation is an effective method to identify unknown
failure modes within high-dimensional testing spaces (i.e.,
the space of all possible test conditions under consideration).
The work in [10] uses the cross-entropy method to detect
rare-event failures in autonomous driving scenarios. Previous
work by the authors [11] has also explored adaptive scenario
generation with the purpose of discovering performance
boundaries in autonomous systems, defined as regions with
a large performance gradient. The datasets of Fig. 1 serve as
an example to this form of adaptive sampling.

While simulation-based testing is an effective way to gen-
erate performance datasets, there is more limited literature
on performance regression techniques. The work in [12]
considered auto-generating scenarios for regression tests in
the context of self-driving car maneuvering. The problem
posed here, however, is the more general comparison of
performance datasets, one which shares similarities with the
change detection field. Applications within this field usually
fall into detecting changes within time-series information
[13] or between images [14], [15]. Generalized methods that
detect differences in the underlying probability distributions
between datasets also exist [16], [17].

III. PROBLEM SETUP

Let the autonomous system under test (SUT) be treated as
a function F : XP — ) that maps a D-dimensional testing
space XP = X} x ... x Xy to a scalar performance space
Y C R. This research tackles the problem of comparing two
different SUTSs, F4 and Fp, where F, # Fp. Assuming
both SUTSs are evaluated on the same testing space X7,
we define the change in performance over the entire testing
space as AY = Vg — Va4 = Fp(&XP) — Fa(XP). Given
these definitions, we aim to identify the subset of regression
regions characterized by a decrease in performance: X~ =
{xP|AY <0}

Because an exact characterization of the regression regions
is intractable, we aim to estimate them using samples col-
lected from each SUT (in the form of simulation datasets). A
scenario © = [z1,...,zp|’ € X is a specific instantiation
of the testing space, where z; € A} is the value of each
test parameter. The performance score y = F(x) € Y
is the output of each simulated scenario. Further, let sets
of N scenarios X = {:n }N | and their resulting perfor-
mance scores Y = {y;}}¥, be combined to form a study

= {X,Y}. These studies could be generated through the
adaptive scenario generation techniques described in Section
I or simply through randomized Monte Carlo methods.
While we assume that both SUTs are evaluated on the same
testing space, the resulting studies S4 and Sp (collected
from F4 and Fp respectively) need not be identical. For
the purposes of performance regression analysis, we aim
to estimate the regression regions by identifying a set of
regression clusters R, that are uniquely determined by both
the severity of the performance decrease between S, and
Sp, and also the location within the testing space.

IV. APPROACH

The overall approach taken to identify and characterize the
regression clusters is a combination of both supervised and
unsupervised learning. Fig. 2 shows a graphical flowchart
of the process. The algorithms that follow are assumed to
operate on the normalized testing space X” € [0,1]” and
normalized performance space ) € [0,1], where the (%)
operator indicates data that has been normalized to this range
based on its maximum and minimum possible values.

A. Regression Modeling

The first step of the performance regression analysis en-
tails fitting surrogate models to each normalized study dataset
S4 and Sp. These surrogate models M : XP — Y attempt
to approximate the input-output relationship of the SUT,
where ) is the predicted normalized performance space.
Given that S4 # Sp, regression regions are estimated by first
fitting surrogate models M 4 and Mp to each dataset S,
and Sp, respectively. Regression regions are then estimated
based the predicted response of each model to the opposite
dataset:

VA, Yap, Yip] = Mp(Xa), ()
Yiu Yea, YEL] = Ma(Xp), 2
AY) =Yap — Ya, (3)
AYp = —(Yga — YB). 4)

Here, }A/'A B and }A/B 4 are the predicted scores from studies A
and B on models B and A, respectively. The superscripts
()% and (-)“* represent the lower and upper prediction
bounds under the assumption that the choice of M can
provide these values. These measures are translated to predict
the bounds on the performance regression of each dataset as

AV =Yy — Ya, )
AV =Y — Yy, (6)
AYY = —(YEY — YB), (7)
AYEP = —(Y —Y3). (8)

A combined study set S, = {X*7AY} where X, =
X4 UXp and AY, = AY,4 U AYp, is then created to
predict the change from Fa to Fp. The set of samples
representing performance regression can be estimated as
S; = {S.|AY. < 0}. This combined set augments the
number of samples (N, = Ny + Np) for improved fidelity
in cluster analysis. Alternatively, the predicted regression
bounds AY® = AV UAYY and AV = AYVP U AYE
could also be used to define the combined study set. Using
the lower bound offers a conservative approach and priori-
tizes extracting regions with the greatest possible regression.
The upper regression bound, meanwhile, lets the analysis
prioritize performance regression that is occurring with high
confidence, meaning that even the upper bound is predicted
to have regressed.

The choice of surrogate model in this step is impor-
tant since autonomous systems can exhibit unpredictable



Dataset S,

Estimated Performance T4

Predict on
Opposite Model:

W wes
Predicted Score
Difference

A 2

Concatenate
Predictions
7'y

Dataset Sg
“:ﬁ""“&‘}.”‘s}'f}{.*‘"’ SoACEIN
-

Estimated Performance g

\

Predicted Score
Difference

Regression Modeling

<
Regression Clustering

o )
Performance Clusters

Severe ; %

Degradation

Performance
Clustering

Performance
Improvement

Regression Dataset S.
o e PR

Moderate
o Degradanun\@

Test
Parameter

Regression Clusters

A
ahil

Performance Clusiriig . E

Degradation

S

« | Regression Cluster 1 %4

.. | Regression Cluster 2 »
: Performance
Regression
Report

J - v

Fig. 2: Overall performance regression analysis approach. Surrogate modeling is used to normalize each study to the other and predict
whether samples have regressed. Unsupervised clustering is then used to extract unique regression clusters in both the severity of the

performance decrease and its location within the testing space.

emergent behavior that results in highly nonlinear and/or
discontinuous performance (as exampled in Fig. 1). Further,
the surrogate model must also be able to accommodate high-
dimensional testing spaces (i.e., tens of dimensions) and
large sample sets. For these reasons, this work adopts quan-
tile random forests (QRFs) [18] as the surrogate modeling
technique, although as discussed in Section V, alternative
methods such as deep neural networks or Gaussian process
models could be easily substituted. QRFs are well-suited to
handle the challenges described above through their non-
parametric structure, while also providing confidence bounds
on predictions. In general, for a response variable Y, pre-
dictor variable X, and underlying conditional distribution
P(Y < y|X = x), quantile regression methods attempt to
estimate the conditional a-quantiles, defined as

Qo(z) = inf{y : P(Y < y|X = x) > a}. )

Quantile random forests achieve estimates Qa (x) of these
a-quantiles using the inherent bagging structure of random
forests. In essence, rather than simply storing the weighted
mean of all observations for a given leaf node (as is the case
with traditional random forests), QRFs extend this by storing
the values of all observations from each tree to compute an
estimate of the full conditional distribution,

~

N
PY <ylX =z) = wil@)ivicy), (10)
=1

where w; are the typical weights calculated when training
the random forest and I is the indicator function (see [18]
for details). The a-quantile estimates can then be calculated
by using Eq. (10) in Eq. (9). Most importantly, Q, () can be
used to provide confidence bounds on the predictions made
by the QRF model. Using a 95% prediction interval, the
predictions provided by Eq. (1) and (2) become

[Ylb, Y, Yub] = [Qo.o%(ﬂf), Q0.5($), Q0.975($)]-

B. Regression Clustering

Y

It is possible for S_ to contain samples from all areas
of the testing space with varying degrees of performance

regression. Thus, to aid in understanding the reason for the
performance change, it is useful to cluster the regression
samples in both (i) the degree of performance decrease and
(i1) the region of the testing space where regression occurs.

1) Performance Space Clustering: The regression dataset
is first clustered on the AY ™~ space such that performance
degradation can be separated based on its severity. Sim-
ilar to the choice of surrogate model used to represent
the data, the algorithm used for unsupervised clustering is
dependent on the structure of the data and the fact that
the number of regression clusters is not known a priori.
The clustering algorithm implemented for performance space
clustering uses Gaussian mixture models (GMMs) fit with the
iterative Expectation-Maximization algorithm [19], although
alternative algorithms could also be used. The assumption
of Gaussian structure to the performance clusters imposes
limitations to their shape, but also adds useful analysis
properties by giving estimates of the cluster center (mean)
and spread (covariance). A set of j performance clusters is
defined as P; = {p;})_, = GM M (AY,",j), where each p;
is a unique performance cluster and GM M is the clustering
operation of [19]. To overcome the assumption inherent to
GMMs that the number of clusters is known, multiple models
are fit, where each assumes a different number of clusters
J € [1,jmaz), and each is evaluated using its averaged
silhouette score of the clustered samples [20]. The final
performance cluster set P, is then chosen as the P; set with
the maximum associated silhouette score.

2) Testing Space Clustering: The second clustering step
takes samples within each performance cluster and further
groups them in the X' space. This aids in diagnosing
regions of the testing space that cause different forms of
performance regression. In other words, as illustrated in Fig.
2, performance regression could occur at multiple different
locations within the testing space and it is useful to separate
each of these clusters.

Once again, the choice of clustering algorithm is important
given the new domain X'”. Imposing structure requirements
on the data (such as in GMMs) in the testing space proved
to be too limiting. Additionally, there are potentially many



more individual clusters within this space, amplifying the
challenge that the number, size, and locations of regression
clusters are not known a priori. Thus, the testing space
clustering makes use of density-based methods (specifically
DBSCAN [21]) to alleviate some of these problems, which
can accommodate an unknown number of clusters and im-
poses loose requirements on their shape.

Let X p be the scenarios for which their respective perfor-
mance scores belong to each p € P,, ie., X, = {X, | AY, €
p}. Then, in a similar fashion to the performance clus-
tering step, a set of regression clusters is calculated as
R = DBSCAN(X,,0), where each » € R is now a
unique regression cluster of scenarios, DBSCAN is the
clustering operation of [21], and o denotes the clustering
algorithm’s hyperparameters. Because these hyperparameters
significantly affect the clustering process, several cluster sets
are calculated over variations to the hyperparameters and
each is again evaluated by its averaged silhouette score. The
regression cluster set for a given p, deemed R, is the set
with the maximum silhouette score. This clustering process
is then repeated using scenarios for each p € P, such that
the final regression cluster set is R, = {Rp 22‘{”.

3) Feature Scaling: When analyzing realistic SUTSs, the
well-known curse of dimensionality dilutes the effectiveness
of clustering if applied directly to high-dimensional data;
thus, feature importance scaling is applied during testing
space clustering to reduce the size of the testing space based
on the importance of each test parameter. This is achieved by
fitting a random forest surrogate model M, to the combined
study set S,. The importance () of each k-th parameter is
determined as in [22] by how much the out-of-bag mean-
squared error of M, changes through different parameter
permutations. Normalized parameter importance is given as
Br = Br/ Zle B¢. The normalized importance values are
then used as weights to scale the Euclidean distance d
between two scenarios x,, and x,, as:

d(m’ma m’n) = \/(m'rn - mn)TB(m’m - wn)y (12)
where B = diag(3; ... Bp). This weighted distance function
is used during testing space clustering and has the effect of
minimizing unimportant test parameters.

V. ANALYSIS

A. Performance on Test Functions

The proposed framework is first evaluated on a Monte
Carlo study of auto-generated test functions from which a
ground truth regression landscape can be calculated. Each
randomized test function is meant to be representative of
the types of performance surfaces seen in autonomy testing
datasets. Specifically, the test functions generate ) to consist
of several “plateaus” within X'”. The quantity, performance
score, and location of each plateau are all randomized. The
boundary between adjacent plateaus is linearly smoothed and
measurement noise is added to each sample such that y =
Yeruth + N (0,02), where o = 0.02. For each study, two test

functions are randomly generated and assigned as F4 and
Fp (examples shown in Fig. 3a).

Because unsupervised cluster evaluation is generally more
subjective in nature, this portion of the analysis primarily
focuses on the regression modeling aspects of the approach.
In order to compare different modeling approaches, the QRF
of Section IV was compared against a Gaussian process
regression (GPR) model and a five-layer neural network
(DNN), all of which used hyperparameters that were opti-
mized to minimize prediction error. The performance of the
regression framework using each model was then evaluated
across various combinations of D and N to determine
scalability for high-dimensional testing spaces and large
datasets. Ten studies were run for each combination of D
and N (each with new test functions) and the results were
averaged.

Figure 3 shows the performance of each model in its
predictions of the regression dataset S,. When comparing
to the ground truth regression between pairs of randomized
test functions, the first evaluation metric shows the five-
fold cross validation mean absolute error (MAE) of AY*.
Each model exhibits the expected trend that MAE increases
for large values of D and small values of N. The QRF
model has lower MAE scores than the GPR model over all
combinations of D and N, but is slightly outperformed by
the DNN model for large sample sizes, indicating that there
may be conditions to apply different modeling techniques.

The second evaluation metric shown in Fig. 3 is the
percentage of AY, predictions outside the regression bounds
(i.e., the 95% prediction interval [AY! AY’]). For the
GPR and DNN models, the 95% prediction intervals of Eq.
(1) and (2) are calculated as [Y”’, Y“b] =Y +1.960, where
the standard deviation o for the GPR model is calculated
through its inherent covariance structure, and for the DNN
model is approximated using the model’s five-fold cross
validation root-mean-square error. The percentage of outliers
for all models is roughly consistent with a 95% confidence
interval, however, the QRF exhibits the lowest outlier per-
centage, where typically only ~1-2% of predictions lie
outside the regression bounds. While the prediction interval
is centered on the mean for the GPR and DNN models, the
prediction interval of the QRF model could be asymmetrical
based on the estimated percentiles, which likely results in
the increased robustness.

Overall, the QRF surrogate modeling offers a good balance
of reducing MAE while also minimizing the number of
predictions that lie outside the 95% predicted regression
bounds. It is evident, however, that each surrogate modeling
technique may offer some benefits based on the character-
istics of the dataset and could be easily substituted into the
regression analysis framework.

B. ASV Dataset Case Study

We now apply the framework of Section IV to sim-
ulation sets generated by an ASV navigation algorithm.
The application of interest is that the ASV must avoid
other vessels according to the International Regulations for
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Fig. 3: Regression modeling performance on the prediction of AY,
for randomized test functions.

Prevention of Collisions at Sea (COLREGS) [23]. In short,
based on the vessel encounter geometry, COLREGS dictate
a set of maneuvering requirements that reduce the risk of
collision. They can be thought of as “rules of the road”
for marine surface craft. Thus, it is important to determine
whether the ASV decision-making complies with COLREGS
in all possible geometries of an oncoming target ship (TS)
through the 3D testing space of Fig. 4a. The normalized
performance score g € [0, 1] of each scenario is calculated
from a combination of mission criteria, safety criteria, and
COLREGS compliance according to [24]. Using these testing
and performance spaces, two versions of the ASV software
were evaluated using 3000 adaptively-generated scenarios
[11]: version A resulting in dataset S 4 of Fig. 4b, and version
B resulting in dataset Sp of Fig. 4c. Version A serves as
the baseline whereas version B included software changes
that encouraged the ASV to make turns in the direction
away from the current location of the target ship for better
performance in overtaking scenarios (scenarios with near-
zero TS relative heading).

The regression analysis produces the regression dataset
S. in Fig. 4d, which predicts changes in performance AY,

over the entire testing space. The five-fold cross validation
MAE of AY, was 0.015 and the percentage of samples
outside the prediction bounds was 1.7% (using 95% con-
fidence intervals). Both of these measures indicate even
better performance than that seen on the test functions when
applying the regression modeling to real autonomy datasets.
Qualitatively, Fig. 4d shows that the software changes to
version B did in fact improve performance in overtaking
scenarios with high TS speeds and a TS relative heading of
10 deg; however, these changes also produced unexpected
performance regression in other areas of the testing space.
The “top 3” regression clusters extracted from S, are then
shown in Fig. 4e. These clusters reveal that the most severe
performance regression occurs in scenarios with a TS relative
heading between 120-180 deg and is then split between low
and high TS speeds.

Further analysis into the scenarios comprising the R;
cluster reveals that the software change encouraging turns
away from the target ship location produced an unintended
side effect in high-speed crossing scenarios when ownship is
expected to stand-on. Figure 4f shows a pair of representative
scenarios from R, one from each 54 and Sg. Before the
software change, the ASV turns to port to avoid the noncom-
pliant target ship. Although this is undesirable behavior with
regards to COLREGS, the maneuver successfully mitigated
the collision risk. After the software change, however, the
ASV now turns to starboard (away from the current location
of the target ship), but crosses the bow of the target ship
and comes within the collision radius of both vessels. The
performance regression identified by R; encompasses a
small region of the testing space, but the new ASV behavior
within this region is extremely unsafe and would need to be
addressed with additional updates.

V1. CONCLUSION

This work presented a new algorithmic approach for
characterizing performance regression during black-box au-
tonomous system testing & evaluation. Specifically, the
approach uses a combination of surrogate modeling and
unsupervised clustering to extract unique groupings of test
conditions that have decreased in performance. Monte Carlo
analysis on randomized test functions, coupled with a case
study on detecting performance regression in autonomous
surface vessel software, show the efficacy of the approach
to predict performance regression with high-confidence and
report unique regression clusters to the user.

Future work is currently focused on algorithms to extract
representative samples from each regression cluster. In this
way, a user could easily examine the inherent behavior
changes of a regression cluster (in a similar manner to Fig.
4f) in an automated fashion. Additional work is also planned
to improve dimensionality reduction such that influential test
parameters are further emphasized in the final regression
clusters.
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