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Synthesis of Watt-Type Timed
Curve Generators and Selection
From Continuous Cognate Spaces

Following recent work on Stephenson-type mechanisms, the synthesis equations of Watt six-
bar mechanisms that act as timed curve generators are formulated and systematically
solved. Four variations of the problem arise by assigning the actuator and end effector
onto different links. The approach produces exact synthesis of mechanisms up to eight pre-
cision points. Polynomial systems are formulated and their maximum number of solutions is
estimated using the algorithm of random monodromy loops. Certain variations of Watt
timed curve generators possess free parameters that do not affect the output motion, indi-
cating a continuous space of cognate mechanisms. Packaging compactness, clearance, and
dimensional sensitivity are characterized across the cognate space to illustrate trade-offs

and aid in selection of a final mechanism. [DOI: 10.1115/1.4050197]

Keywords: mechanism design, mechanism synthesis, theoretical kinematics

1 Introduction

Timed curve synthesis refers to the design of mechanisms that
trace a desired curve as coordinated with the angle of an input
link. In a recent publication [1], the synthesis equations for timed
curve generators for all of the Stephenson-type six-bar mechanisms
were formulated, and the entirety of their solution sets were approx-
imately computed. In this paper, the techniques introduced in
Ref. [1] are extended to the Watt-type six bars, collectively covering
all types of six bars with actuated base joints. Distinct from the
previous work, some Watt type timed curve generators possess con-
tinuous cognate spaces, referred in literature as “Infinite Manyfold-
ness” [2]. This is in contrast to the more commonly addressed
discrete cognates exemplified by Roberts’ work on the four-bar
linkage [3]. In this paper, we show how the continuous cognate
spaces of Watt mechanisms can be exploited to manage trade-offs
between competing design metrics. In a numerical example, we
illustrate the trade-offs between link packaging, ground clearance,
and dimensional sensitivity of the design as subject to manufactur-
ing errors. The existence of continuous cognate spaces leads to
additional results that expand design options. For example, a contin-
uous space of cognates contains a point that can be classified as
more than one mechanism type. This cognate can be transformed
into the cognates of the new type, leading to more design options.

A schematic of a Watt-linkage is shown in Fig. 1. It consists of
two ternary links and four binary links assembled in a manner
that it is constituted by two independent four-bar loops. Depending
on the nature of the ground link (binary or ternary), Watt mecha-
nisms are classified as Watt I (WI) and Watt IT (WII), respectively.
For the Watt topology of six-bar linkages, a number of timed curve
synthesis problems can be posed. Since we are studying timed
paths, different choices of the actuator location give rise to distinct
problems. In this work, we focus only on the class of problems
where the actuator is located at one of the base joints for consider-
ations of manufacturability. This narrows down the scope of the
work to four distinct problems as listed in Table 1, namely,
WI-A, WI-B, WI-C, and WII. The actuated link is indicated in
red and the end effector point in blue. The former two cases
allow a maximum of eight generic precision point specification
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for which the mechanism can be designed, while the latter two
cases admit only up to seven points. This distinction is due to the
decoupled nature of the two independent four-bar loops in the
latter cases which permits a stretch-rotation of one of the four-bars
in them relative to the other without affecting the output motion.
Thus, unlike the four-bars and the Stephenson-type six bars,
certain Watt-type mechanisms offer two free design choices
which manifest in the form of a choice in one of the base pivots,
forming a continuous space of linkage cognates.

2 Literature Review

Recent research in exact kinematic synthesis has been driven by
the development of powerful tools in numerical algebraic geometry
[4—6]. This is because the commonly used kinematic lower pairs are
conveniently represented by algebraic constraints, forming polyno-
mial systems. Apart from numerical continuation, several techni-
ques demonstrated the design of linkages, often four-bars, using
closed form expressions [7,8] to identify all solutions to a set of
synthesis equations. In the absence of closed form expressions,
researchers have employed various optimization techniques to
design four- and six-bar linkages [9—11]. The advantage of obtain-
ing all synthesis solutions from the designer’s perspective is to gen-
erate a large pool of options for a given specification. Numerical
continuation has enabled this strategy to be applied to larger,
highly nonlinear systems where closed form expressions are practi-
cally impossible [12-14].

Fig. 1 Six-bar linkage of Watt-type
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Table 1 Timed curve synthesis of Watt-type six-bar mechanisms

Name Watt I (WI-A) Watt I (WI-B) Watt I (WI-C) Watt IT (WII)
Description

Precision points 8 8 7 7
Number of free parameters - - 2 2

Root count estimate® 237,566 x4 1,104,140 x 2 101,054 x 1 12,360 x 2

— Actuated link; e End-effector point.

Root count represents a high ceiling for the maximum number of solutions possible in each case.

Root count estimate = g x ¢, where g =#groups, ¢ =#cognates.

For the cases WI-C and WII, the root count estimates presented correspond to a generic choice of the two free parameters.

In much of these works, emphasis has been on designing mech-
anisms for functions, paths, and motions. Timed curve synthesis
involves coordinating a path with an input angle. This coordination
can deliver required force transmission characteristics while the
desired path is being traced. In the domain of four-bars, a few refer-
ences that address timed motion can be found in the literature
[9,15]. The need for specifying greater number of precision points
requires the exploration of six-bar design space. Approximately
complete solution sets to timed curve synthesis equations of
Stephenson-type six bars has recently been solved [1,16]. This
work extends those results to Watt-type six bars.

The availability of two free choices in certain Watt mechanisms
makes it possible to study the solution space for optimal design
characteristics which are secondary to the input specification. In
this work, we consider a few secondary considerations, including
the sensitivity of the output task to dimensional errors. Lee et al.
[17] and Hanzaki et al. [18] have also produced synthesis method
that explicitly consider dimensional sensitivity. We employ a
two-staged design process. First, we synthesize WI-C mechanisms
for a given input specification using parameter homotopy and then
study the free space of two dimensions to arrive at optimal designs
for packaging requirements and dimensional sensitivity.

3 Mathematical Formulation

The timed curve synthesis problems in the Watt linkages are for-
mulated in this section. The schematics are shown in Table 2. WI-A
and WI-B differ only by the choice of input and are combined in
Table 2 for concise representation. The goal is to formulate a
system of equations from first principles. The steps adopted here
follow the recent work on Stephenson linkages [1] with some
notable changes.

In each case, the reference configuration of the mechanism is
chosen such that the end effector corresponds to the initial precision
point Py. The pivots and the end effector tips are labeled as shown,
namely, A, B, C, D, F, G, H, and P, respectively. We then consider a
displaced configuration where the end effector visits the precision
point P, The displaced angle of each of the moving links
between the two configurations are labeled using ¢;, p;, ;. 6;, p;,
and v; as shown in the schematics. Note that there are only five
displaced angles in each case, and we adopt a slightly modified con-
vention for each.

The mechanism is drawn in the complex plane where each pivot
location is represented as a complex position vector. This notation
called the isotropic coordinates [19] offers multiple advantages in
view of the numerical technique we use. The angular displacements
must also be represented as complex numbers for consistent
representation. We introduce the following rotation operators to
achieve this
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Tj=ei6j, Uj=€wj, ijeiyj
where i = /=1 is the imaginary unit.

With the notation defined as above, vector loop equations can be
written in each case between the two configurations. All the vector
loops initiate from one of the ground pivots, running through the
two precision points Py and P; and terminating back at the same
ground pivot. Three independent vector loops are written in each
case which is the maximum number of independent loops possible.
All the pivot locations and the rotation operators with the exception
of the one corresponding to the input link are variables in the formu-
lation, while the precision points and the input rotation operator are
specified design parameters.

Conjugates of the vector loop equations must also be considered
because a complex variable and its conjugate are treated indepen-
dently in the isotropic coordinates representation. Thus, the conju-
gate of a pivot location is considered a distinct variable. For the
rotation operator variables though, the conjugates are their respec-
tive reciprocals by definition. These reciprocals result in equations
containing fractions which are cleared using appropriate multipliers
to obtain the equations in polynomial form. To demonstrate, the
conjugate equation of the third loop of the WI-C mechanism is

B'S;V; + (G = BY)V; + (Py — G")S; = P1S;V; $))

The maximum number of generic precision points for which the
Watt linkages can be synthesized has to be determined. Unlike the
Stephenson linkage where a maximum of eight points can be speci-
fied in all its cases [1], the WI-C and WII mechanisms can be
designed for a maximum of seven precision points but allow two
free parameters. This can be shown by checking for equation inde-
pendence in the square systems formed by WI-C and WII and is
geometrically understood by the existence of a stretch rotation of
one of the component four-bars that renders the output motion
unchanged. Simple arithmetic analysis shows that for WI-A and
WI-B, the formulation results in a full-rank square system® of
dimension 42 for eight precision points (Py, Py, ..., P7). This anal-
ysis is explained in detail in the context of Stephenson linkages [1]
and is omitted here. This completes the formulation of the system of
equations for WI-A and WI-B.

In order to solve synthesis equations for WI-C and WII, two free
dimensions must be specified. This can be done many different
ways and has ramifications on the amount of floating point precision
required for the proceeding numerical homotopy tracking. Dijks-
man [2] has suggested the specification of ground pivot A in

%A square system of equations is a system with an equal number of equations and
variables.
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Table 2 Mathematical model of Watt-type six-bar mechanisms for timed curve synthesis

Schematic Mathematical model®
WI-A & WI-B
‘ Input WI-A o Input WI-B A+(C—AR; + (F = OT; + (Py — F)U; = P},
B+ (D —B)S; + (F — D)T; + (Py — F)U; = P;,
B+(G-B)S;+(H—-G)V;+(Py—H)U;=P;.
Parameters: {P, P;, M;}
Variables: {A, B, C, D, F, G, H,N;, T}, U;, V;},
where the definitions of M; and N; are as follows.
Case | M; |N;
WI—A|R |5
WI-B| 5 | R
WI-C
A+(C-AR +(F-OTj+H-F)Uj+ Py —H)V;=P;,
A+(C—-AR +(D—-OT;+(G—-D)S;+(Po— GV, =P},
B+(G—B)S/'+(P0 —G)V/‘=Pj.
Extra constraint: (D — B) =7(G — B).
Parameters: {Po, P;, R;, 7}
Variables: {A, B, C,D, F, G, H, S;, Tj, U, V;}
WII

B+ (A—-B)Q;+(C—-AR;+(F—-OT;+ (Py— F)U; =P;,
D+ (F-D)T;+(Py—F)U;=Pj,

G+(H-G)V;+ Py —-HU; =P,

Extra constraint: (C — D) =7(F — D),

Parameters: {Po, P;, O, 7}

Variables: {A, B, C,D, F, G, H,R;, T;, U;, V;}

“The usage of isotropic coordinates involves additional conjugate equations and variables which are not printed for brevity. They follow the form shown in

Eq. (1).

WI-C to resolve the ambiguity. In this work, we make the system
square by adding an extra constraint as shown in Table 2. In
WI-C, the extra constraint specifies the shape factor (z) of the trian-
gular link BDG. It represents the relative stretch-rotation of vector
DB with respect to GB. Similarly, in WII, a constraint that fixes
the vector CD in relation to FD is specified. Naturally, the conjugate

Journal of Mechanisms and Robotics

equation of these constraints must also be included. This yields a
square system of dimension 38. The stretch factor that denotes
the magnitude of 7 and its conjugate 7* is chosen close to unity.
We discuss the numerical advantage of this strategy in Sec. 5.
With this final step, the formulation of WI-C and WII problems is
also completed.
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Table 3 Cognates of Watt-type timed curve generators

Cognate constructions

Solution group

WI-A & WI-B Case WI-A
AX):={&A), B, {(C), B+ F — D, F, {(G), {(H), Py}, X
_F-D _ _B-D _ AX)
wheref(z)—C_D(z B)+ B, and §(z)—G_D(z F)+F. X
AoD)X)
I'X): = {x(A), B, x(C), k(D), k(F), G, G+ Py — H, Py}, Case WI-B
X
where x(z) =1;0__I_I;I(z— G)+G, and y(z) =K(DD)+BB(Z —B)+8B. {F(X) }
WI-C QX, 0): = {&(A), B, £(C), &(D), {(F), G, {(H), Po},
{QX, o)}
D—-B)+B-
where é(z) =o(z—B)+B, ()= %(Z -G6)+G,
and o is the complex stretch-rotation parameter of two free choices.
Wil Q(X, 0): ={&(A), &B), &(C), D, F, G, H, Py},
where &(z) =o0(z — D) + D, X, o)
. . . ,0
and o is the complex stretch-rotation parameter of two free choices. { AQ(X. 0) }
AX): = {x(A), x(B), x(C), k(D), k(F), G, G+ Py — H, Py},
_Po-H _KE)=KD)
where k(z) = 7 (z—=G)+G, and y(2)= 7—D (z— D) + k(D).

Note: For any mechanism design given by the architecture variables in lexicographical ordering X: ={A, B, C, D, F, G, H, Py}, the cognate constructions are
presented here following the same order of the architecture variables of the respective linkage (refer the figures in Table 2.).

4 Solving Polynomial Systems Using Monodromy
Loops

The system of equations derived in the earlier section are polyno-
mial in nature. An advantage of polynomial formulations is that the
equations possess a finite number of roots, referred to as the root
count of the system. The first step (or the ab initio step) in
solving these systems is finding the root count through a numerical
continuation run. Several techniques in numerical algebraic geom-
etry have been developed to enable this step. Techniques such as
multi-homogeneous homotopy and regeneration homotopy were
used in the last decade to solve function generation problems for
six-bar linkages [14,20]. Because of the occurrence of a large
number of divergent paths, iterative techniques that generate roots
starting from a small subset assumed prominence in the recent
years [1,21-24]. The application of random monodromy loops
(RML technique) is one such technique and is described later.

4.1 Random Monodromy Loops. Let the polynomial system
of equations be defined by F(z, p) =0, where z is the set of variables
and p is the set of parameters/constants. The algorithm requires
at least one start solution to initiate the iterations. Each iteration
of the algorithm involves the creation of an auxiliary system
F(z, p,) = 0 with a randomly chosen set of parameters p,.. The orig-
inal system is deformed into the auxiliary system, then back into the
original system according to the equation,

H(z, 1): =F(z, p)(1 + ¢") + F(z, p,)(1 — €)= 0 )

by incrementing ¢ from O to 2z. During this deformation, the accu-
mulated roots are tracked using the Bertini homotopy tracking
module [25]. Each orbit out to a random system returns paths to a
permuted set of roots, a subset of which will be newly accumulated
roots. The first few iterations of RML accumulate roots quickly and
last few converge on the root count of the system. The model of the
progression follows Lincoln—Petersen model which is based on the
percentage of repeated solutions in an iteration as described in

051003-4 / Vol. 13, OCTOBER 2021

Ref. [26]. In the same study, it has been demonstrated using a sta-
tistical analysis that monodromy technique leads to robust estimates
of the root count.

4.2 Cognates of Watt Linkages. Solutions to some kinematic
synthesis equations occur in groups called cognates. Cognate
groups indicate linkages of dissimilar dimensions that possess
some identical relevant slice of their configuration space. The pro-
totypical examples of linkage cognates are Roberts’ cognates of the
four-bar. Hence, if one solution satisfies the system of equations,
the others in the group must exist as well. One of the key features
of the RML technique and the root generation techniques in
general is that if the polynomial system admits group solutions, it
can be exploited to reduce the computational effort required for
the ab initio step. The existence of Watt cognates was listed in
Dijksman’s work [2], which has also been validated recently [27].
In Table 3, we have provided algebraic rules to compute the cog-
nates given a candidate.

Cognates in Watt linkages can be classified into two kinds. The
first is the discrete cognates that occur as isolated members
(denoted by I' and A in Table 3). WI-A, WI-B, and WII admit
such kind of cognates. WI-C and WII admit a second kind
denoted by € that occur as a continuous family of cognates with
o as the complex stretch-rotation parameter. These continuous cog-
nates share an identical slice of the input—output configuration space
just like a set of discrete cognates. The occurrence of this family of
cognates can be attributed to the existence of two four-bar loops in
Watt linkages. In WI-C and WII, the location of actuators and end
effectors is such that the actuated four-bar acts as a function gener-
ator in a serial manner over the other four-bar that contains the
end effector. It is well-known that function generators are unaf-
fected by stretch and rotation—hence, the complex stretch-rotation
parameter o.

For the ab initio computation, the size of the set of discrete cog-
nates reduces the convergence limit by that factor, resulting in com-
putational savings. WI-A is reduced by a factor of 4, and WI-B
and WII are reduced by a factor of 2. Members of a cognate
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Table 4 Design specification for the numerical study

Py Py Py P Py Ps P P
X+Yi(m) 0 —0.0038 —-0.0074 -0.0175 -0.0270 —0.0345 —-0.0434 —-0.0599
+0.0105i1 +0.01771 +0.02501 +0.01871 +0.0078i —0.0088i —0.0372i
a (rad) 0 0.2398 0.5857 1.3963 1.8621 2.2689 2.7110 3.3161

Note: The parameters are as follows: X and Y coordinates of the path points and the corresponding angular displacement a of the input link from the reference
configuration. For WI-C and WII cases, the precision point Ps is omitted from the design specification.

Table 5 Summary of the parameter homotopy computations and the post-processing steps

No. of linkages free of all kinematic defects

No. of paths tracked  Percentage of successful paths (%)  No. of physical linkages 8 position 7 position 6 position 5 position
WI-A 237,566 56.57+0.27 3463+ 834 2+3 3+3 40+ 14 156 + 60
WI-B 1,104,140 38.03+0.10 6487 +572 2+2 12+7 75+29 279 £ 86
WI-C 101,054 74.01£0.22 1197 + 156 - 0+0 4+2 37+18
WIL 12,360 76.95+0.05 334+43 - 0+0 0+0 5+3

group of the discrete kind are considered as one entity during the ab
initio run. A similar reduction was available for Stephenson link-
ages in Ref. [1].

4.3 Computational Details. A generic system is formed for
each problem. The parameter values can be randomly specified as
complex numbers. We do not impose the conjugate relations of
the parameters for the ab initio runs. Note that the conjugate rela-
tionship on the design parameters is not adhered to only for the
ab initio problem.’ With an initial start solution, homotopy contin-
uation iterations are carried out using the software Bertini [6,25]
in parallel mode on a Intel Xeon 2.30 GHz system with 192 cores in
the Center for Research Computing at the University of Notre
Dame. We use double precision of 64 bit for most of the iterations
and 128 bit for the final few in each case. This strategy bias our
implementation toward speed for the bulk of iterations, then
toward accuracy for the final few iterations. About 5% of paths
resulted in numerical failure with 64 bit precision versus <1% for
128 bit precision. The failed solutions of initial iterations are
highly likely to be picked up in subsequent iterations. The conver-
gence limit of RML provides an accurate estimate of the ultimate
root count of the system. These final converged estimates are
reported in Table 1. WI-B admits the highest number of solutions
(more than a million) to a generic specification. Note that this indi-
cates the number of complex solutions and not of physical linkages,
which tend to be a small subset. The WII system computed the
fastest in 10 min. WI-B computed the slowest over 2 days to
reach its convergence limit. This striking difference in the compu-
tation time is attributed to disparity in the root count of the corre-
sponding systems. The solution sets computed are sufficient to
find candidate designs for practical applications via parameter
homotopy which is demonstrated in Sec. 5.

5 Numerical Examples

For the numerical study, we present a design problem defined by
the precision points shown in Table 4. The home precision point P
is assumed to be the origin without loss of generality and the other

3This structure is avoided for the time being in order to keep our computed solution
set numerically general. During subsequent computations, parameter sets specified
with conjugate relationships are less general and therefore encompassed by our ab
initio computational work.

Journal of Mechanisms and Robotics

design points are referenced with respect to the origin. Similarly,
the angular displacement of the input link is also measured relative
to the home configuration, which is unknown yet. In each case, the
direction of input motion could be clockwise or counter-clockwise
leading to two variations. It may be noted that the phase of motion
between the precision points Py and P is about 80 deg. We con-
sider two other variations instead (not shown in Table 4) where
this phase of motion is 40 and 20 deg, respectively, totaling six
sub-problems in each of the four cases WI-A, WI-B, WI-C, and
WII, respectively. For WI-C and WII, the precision point Ps is
omitted because of the natural restriction that limits the number
of generic precision points to seven. We are interested in identify-
ing fully mobile mechanisms containing at least five precision
points in a configuration circuit [28] and delivering desirable
motion through a cycle of 2z radians.

In order for numerical computations to proceed for the WI-C
and WII cases, first a member of its two parameter continuous
cognate space must be selected. We investigated two such selection
strategies. First, we considered specifying a ground pivot (A for
WI-C and B for WII). This lead to a high failure rate of about
50% during homotopy path tracking. An alternative strategy was
then formed by specifying the shape factor 7 of the triangular link
(=i and 7=1 for WI-C* and WII, respectively, refer Table 2),
reducing the failure rate to 5%. We theorize that the second strategy
does a better job keeping numbers near unity in order to reduce the
floating point precision requirement.

The design specifications decided above represent parametric
variations of the generic systems solved in the ab initio runs and
form the target system. Then, the parameter homotopy technique
provides a means for deforming generic systems into target exam-
ples [6]. We execute parameter homotopy runs using Bertini
in 64-bit precision to find numerical solutions to the target
system. A consistent percentage of solution paths failed due to
numerical issues typical to homotopy path tracking. We report the
success percentage of the homotopy paths in Table 5. As six sub-
problems are solved in each case, we represent the entries as AM
+SD, where AM is the arithmetic mean and SD is the standard
deviation of the respective entries.

The source(s) of the failure rates displayed in Table 5 are not
entirely clear. However, they can seemingly be explained by our
choice of parameter space for the ab initio problem. Ab initio start

“For WI-C case, the natural choice 7= 1 fails because of a degeneracy whereby the
floating loop DGHF collapses to a point.
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A= 0.041181 +0.017561i,

o

G=-0.008841

B=-0.014684 — 0.056907i,
C=-0.043395 + 0.0308881,
D= 0.000995 —0.0086301i,
F=-0.039480 + 0.0138464i,
—0.0955164i,
H= 0.017203 — 0.051360i.

X-coordinate of P (m) vs. a (rad)

0.02r

—-0.02
—0.04
—0.06
—0.08

0.02
0]
-0.02
—-0.04
—-0.06
—-0.08

=0.1n

(=]
NI -
a

=
[\S}
a

Fig. 2 A design candidate from the WI-B pool of solutions showcasing the desired output motion. Only the relevant
output circuit is shown here. The pivot location numbers presented correspond to the home configuration P, and not

the depicted one.

parameters were chosen such that rotation operator pairs, e.g.,
(0, Q;‘), were independent. For short, we will call these sets
Type A. For physical problems, these parameter sets deform
during homotopy into final sets where Q; and QF are reciprocals.
For short, we will call these Type B. Since Type A parameters are
more generic than Type B parameters, they can be expected to
correspond to systems with more or the same number of solutions
than systems constructed from Type B parameters. Therefore,
enforcing Type B parameters during an ab initio computation
might result in a tighter solution count. Despite this potential
benefit, Type B parameters greatly raise numerical precision
requirements and computational time. Therefore, Type A ab
initio sets were chosen because they present more tractable calcu-
lations, for the trade-off of having slightly inflated solution
counts.

An examination of the WII solution sets provides evidence to the
theory above. The WII case was inspected because its small size
made investigative computations tractable. A WII system was
constructed from Type B parameters, and 9,578 solutions were
found using 1024-bit precision. The computation was 50 times
slower than the original (Type A) ab initio computation, which
found 12,360 solutions. The reduction in solution counts,
9,578/12,360 = 77.49%, can be compared to the WII success rate
of 76.95% displayed in Table 5.

Further evidence that a Type B parameter set would reduce
the solution count from Type A comes from accounting monomials.
It can be shown that if an additional elimination step were
performed on the equations of Table 2, and the rec1procal relation
Q* =1/Q; was enforced, then the monomial AA” T;U; would
vamsh The additional step eliminates R; from the first WII equatlon
in Table 2.

In summary, a Type B parameter set most likely would reduce
solution counts, but at the expense of making computational work
intractable. Despite yielding reduced solution counts for generic
ab initio systems, for the parameter homotopies leading to physical
systems, both Type A and Type B start systems should lead approx-
imately to the same solution sets. This theory also applies to the
synthesis of Stephenson timed curve generators [1].

5.1 Post-Processing Steps. In the first step, solutions that cor-
respond to physical linkages are identified. This is done by compar-
ing the values of each variable and its “conjugate” counterpart to
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ascertain if they form an actual complex-conjugate pair. The same
can also be done by checking if the magnitude of all rotation oper-
ator variables are unity within an error limit.

The direct kinematics of Watt linkages can be solved one loop
at a time, admitting a maximum of four solutions. For instance,
in WI-A case, given the input angle, the assembly configura-
tions (elbow-up and elbow-down) of the four-bar ACDB can be
first solved, and the dyad FHG can be solved subsequently
(elbow-up and elbow-down). Existence of these modes gives
rise to the possibility of branch defects and circuit defects [28].
Solutions that do not contain at least five precision points in the
same elbow modes are rejected. We allow for some precision
points to skip the desired mode because design practice shows
that solutions with even only five of the eight desired points are
potentially useful. Note that the solutions that pass this filter
could still be defective and are subject to further investigation
as follows.

For the six-bar Watt mechanism to be fully mobile, it is a neces-
sary but not a sufficient condition that the actuated four-bar (ACDB
in WI and BACD in WIl—refer Table 2) is fully mobile. In other
words, we are looking to identify the solutions with crank-rocker
or double-crank type actuated four-bars. Conditions based on the
link dimensions to identify such four-bar types are well-
documented in the literature, see Ref. [29]. The final step is then
to verify that there are no locking configurations (where FH and
HG align) in the other loop (FHG) for mobility considerations.
This can be analytically done based on the link dimensions by com-
puting the locking configurations of the mechanisms explicitly and
verifying them against the desired elbow mode of the actuated
four-bar to ensure they do not match. In other words, it is necessary
that the locking configurations even if they exist do not occur in
the desired circuit. Solutions that pass all these checks contain pre-
cision points in the specified order inherently as they are timed. In
Table 5, the breakdown of these steps is described in terms of the
number of physical linkages including the discrete cognates and
the subset of linkages that are defect-free while containing 8, 7, 6,
and 5 precision points, respectively.

The direct kinematics of a Watt six-bar breaks into two sequential
four-bar mechanisms, providing closed-form expressions which
enable fast defect analysis routines [28,30]. This is an advantage
over Stephenson mechanisms which necessitate a more computa-
tionally demanding routine [1,13,14] due to their inclusion of a
five-bar loop.
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¢ A=-0.576259 + 0.187536i, H
B=-0.010154 + 0.1422634,
C=-0.611336 + 0.110936i,
D=-0.095027 + 0.236479i,
F=-0.302130 + 0.244477i,
G= 0.084062 + 0.2271351,
H=-0.170546 + 0.094987i.

Clearance

6 =0.411482-0.1276031

O Initial cognate member (a)

% Transformed cognate member (b)
Cognates with zero min. link length
[1Region with +ve min. ground clearance

—— Contours of max. vertex distance

(d) Max. Vertex Distance (e) Min. Ground Clearance (" Sensitivity Index
2 M0.0020<
1 0.0020
l0.0010
0 0.0005
-1 Io.oooz
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Fig. 3 (a) Watt I-C feasible design computed for the specification in Table 4. (b) A cognate in the parametric family of the design
following the rule in Table 3. (c) A pictorial representation of the design traits studied, namely, vertex distance and ground clear-
ance. (d) Contour plot of the maximum vertex distance among the continuous family of cognates. (e) Contour plot of the
minimum ground clearance among the cognate family. (f) Density plot of sensitivity index with the contour lines of max. vertex dis-

tance and min. ground clearance superimposed.

6 Eight Position Synthesis

Figure 2 is a WI-B design that produces desirable motion. All the
eight precision points are present in the circuit of interest as indi-
cated in the configuration space plots x versus a and y versus a.
We note that for the application considered, it is preferable to
have all the pivots (moving and fixed) located above the end effec-
tor point throughout the cycle of motion for ground clearance. It
follows that the location of fixed pivot B is undesirable. For the
WI-A and WI-B cases, the link dimensions cannot be tuned
without affecting the input—output motion. While it is possible to
relax a precision point requirement in order to address secondary
considerations such as the need for ground clearance, this would
require a sizable amount of extra computation to perform, on the

6 =0.057074 + 0.192633i

Fig. 4 lllustration of the confluence between WI-A and WI-C
mechanisms. Part (a) shows a WI-C cognate of the design in
Fig. 3(a). It is also a WI-A type mechanism as P, is common to
both the links GH' and FH. Because of this, WI-A cognate
shown in part (b) is also a potential design solution.

Journal of Mechanisms and Robotics

order of hours or days. The extra computational work would
involve varying parameter sets, computing a parameter homotopy
for each variation, and then processing the results. In comparison,
the continuous cognate families of WI-C and WII are defined by
simple closed-form equations that can be used to immediately
explore the variation of two free design parameters. We demon-
strate this using WI-C examples in the following. The general prin-
ciples hold true for WII case as well.

7 Seven Position Synthesis With Free Parameters

Consider an example design of WI-C mechanism shown in
Fig. 3(a). Its coupler path is mostly desirable, missing P, and P,
by an imperceptible margin, but its links are disproportionately
large. However, Fig. 3(a) displays just one member of a broader
continuous family of WI-C cognates. Another member is displayed
in Fig. 3(b), which is more compact. In order to knowledgeably
select a design from this two dimensional space of cognates, we
considered three secondary metrics: link compactness, ground
clearance, and dimensional sensitivity. For this study, we identify
the cognates by the relative positioning of ground pivot A from B
in terms of x and y coordinates. All allowable changes follow the
constructions shown in Table 3. Note that the location of B, G,
and P, (indicated by connected purple lines in Figs. 3(a) and
3(b)) are invariant of the cognate transformation Q. In other
words, the location of B and G in all configurations must be accept-
able to begin with.

1. Max. Vertex Distance: As a measure of compactness of a
design, we first compute the largest distance between any two of
the vertices A, B, C, D, F, G, H, and P in a given configuration.
For instance, in the configuration of the design in Fig. 3(b), the
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A=-0.146397 + 0.212531i,
B=-0.235749 + 0.0874384i,
C=-0.183481 + 0.178462i,
D=-0.112876 + 0.107863i,
F=-0.149650 + 0.188290i,
G=-0.266877 + 0.228849i,
H=-0.030759 + 0.108903i.

M0.0020<
IO.OOZO

0.0010

0.0005

I0.000Z

X
-2 -1 0 1 2

% Cognate member shown in (a)
Cognates with zero min. link length
[]Region with +ve min. ground clearance

Contours of max. vertex distance

Fig. 5 Another feasible design solution to the target specifica-
tion. Part (a) shows the design selected from the grid analysis
and part (b) shows the combined contour plots of the design
traits

distance C'G is the largest which is indicated in Fig. 3(c). Then, the
maximum of the vertex distance across all the configurations
through the input motion of 2z radians is found. This computation
is carried out at a resolution defined by 40 discrete set of input
values at equal step size in WOLFRAM MATHEMATICA [31]. In
Fig. 3(d), the result of this analysis is shown via a contour plot.
Coordinates of the plot indicate the relative position of the
ground pivot A with respect to B, which is a constant for all
cognate designs in this family. We use a rectangular grid” consisting
of 20,172 nodes within a radius of 2m at a resolution of 0.025 m.
For a compact design, the smaller the max. vertex distance the
better the design. While it is obvious that the max. vertex distance
increases as A moves away from the location of B, the analysis of
this family shows a bias in which it is favorable to position A hor-
izontally outwards, see Fig. 3(d).

2. Min. Ground Clearance: The path generated for this example
has utility as a leg mechanism for a hopping robot. Therefore, as a
second metric we consider the distance at which its joints would
clear the ground over its motion cycle. Ground clearance is
defined as the minimum vertical displacement of all pivots A, B,
C, D, F, G, H from the end effector point P. Refer Fig. 3(c) for a
graphic illustration. We record the minimum of this value across
40 configurations of the input motion as earlier. A design is fit if
the min. ground clearance value is positive. The upper contour of
Fig. 3(e) represents acceptable regions of the continuous cognate
space.

3. Sensitivity Index: Finally, sensitivity of the design output to
errors in manufacturing is studied. For each member in the grid,
we perturb the location of the pivots in their respective

The same grid is used for all subsequent analysis in this work.
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neighborhoods of the home configuration via a multi-normal distri-
bution of sample size 50 with a constant diagonal co-variance
matrix of value 1.6 x 1075, This is chosen to correspond to standard
CNC machining tolerance. The total average error in the output path
of the perturbed designs from the ideal one is recorded through 40
discrete timed points of the input cycle in each case and is defined as
the sensitivity index. Figure 3(f) shows the density plot of the sen-
sitivity index where the black and red regions represent highly sen-
sitive regions that must be avoided.

7.1 Trade-Off Between Secondary Metrics. The contours of
max. vertex distance and min. ground clearance are superimposed
over the sensitivity index. The cognate members shown in Figs.
3(a) and 3(b) are marked in the Fig. 3(f). The members marked
with triangles indicate points in the cognate space where at least
one link length measures to zero. Given a candidate design of ver-
tices A, B, C, D, F, G, H, Py, these four points correspond to the fol-
lowing stretch-rotation parameter values:

c=0
B-G

oc=——
B-D

~ (D F)(B - G)

°TBO-F)+DF -G +C(-D+G)

_BG=H)+G(H ~Py)+D(~ G +Py)
(B—D)G —H)

Of these, the former two are degeneracies of the parametric family
where one of the four-bar loops of the Watt mechanism collapses to
a point. This explains why the neighborhood of these points are
highly sensitive in Fig. 3(f). The latter two cases correspond to
the lengths FC and HP, becoming zero, respectively. These
points do not affect the sensitivity adversely. The last case is inter-
esting for a different reason altogether. Because H and P, coincide
in this design, the end effector point lies at the junction of two links
as indicated in Fig. 4(a). Hence, the mechanism is simultaneously
WI-C and WI-A. This opens up a new cognate A of WI-A shown
in Fig. 4(b) which delivers the same timed motion. Note that
while WI-A has four cognates in a generic group, two of them
are always degenerate in this special construction and the only non-
degenerate ones are shown in Fig. 4. Dijksman has noted the exis-
tence of this special relation between WI-A and WI-C in Ref. [2].

We present a second design family in Fig. 5 arrived through iden-
tical analysis. The path shown in Fig. 5(a) actually does not pass
through P, and P;, which is imperceptible. The combined
contour plot shows that this family offers a larger range of preferred
designs compared to the earlier candidate. In particular, this family
of designs provides for more compact mechanisms.

8 Summary

In this work, timed curve synthesis of Watt six-bar linkages is
solved using a numerical continuation technique called random
monodromy loops. The mathematical modeling is through the deri-
vation of systems of polynomial equations. Four distinct cases of
Watt mechanisms, WI-A, WI-B, WI-C, and WII are posed. The
former two cases can satisty up to eight precision points while
the latter two can only satisty seven. The maximum number of pos-
sible solutions, called the root count, is estimated for the system of
equations using the continuation technique. Computational reduc-
tions are made possible by the existence of Watt cognates. To
enable this, existing literature on geometric construction of Watt
cognates is revisited, and simpler algebraic rules that mirror these
constructions are presented. It is estimated that the root count is
of the order of a million in WI-B and smaller in the other cases.
These estimates are available in Table 1 for reference. Furthermore,
a theory is offered in explanation of path failures for parameter
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homotopies that track from generic numerical space to systems with
extra structure that represent physical dimensions.

For practical applications, WI-C (and WII to some extent) offers
a natural advantage over WI-A, WI-B and even Stephenson link-
ages in terms of the availability of two free design choices. While
this comes at the cost of a reduction in the number of precision
points possible (seven as opposed to eight), it presents a readily
available avenue for enforcing secondary design considerations.
In this paper, secondary considerations are evaluated as a post-
analysis step on a grid of the two free parameters of the
WI-C. The trade-offs of three secondary performance metrics are
illustrated, namely, max. vertex distance (to measure link compact-
ness), min. ground clearance and sensitivity of the design output to
errors in link dimensions.
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