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Improving the Reliability of Pick-and-Place With
Aerial Vehicles Through Fault-Tolerant Software and
a Custom Magnetic End-Effector

Gowtham Garimella*”, Matthew Sheckells

Abstract—Aerial manipulation is an emerging field in robotics
with various potential applications such as transport and deliv-
ery, agriculture, and, infrastructure inspection. To deploy aerial
vehicles in the real world, the safety and reliability of these sys-
tems is paramount. Motivated by the need for safety and relia-
bility, this work proposes a software framework that has built-in
robustness to algorithmic failures and hardware faults. The frame-
work allows users to build complex applications while reasoning
about faults that can happen at different stages of an aerial ma-
nipulation task and specifying fallback actions to return to normal
operating mode. The aerial manipulator is further endowed with a
magnetic gripper that can handle positional errors arising from
perception and control uncertainties. We also introduce a bias
estimator for measuring the contact forces and sensor bias. We
demonstrate how the estimator can be used to detect either comple-
tion or failures across several tasks. We demonstrate the reliability
of the proposed framework on two tasks: package sorting task (e.g.
as might be used in a distribution center) and sensor placement task
(for infrastructure inspection). We show different failure modes
that can occur and how our aerial manipulation system recovers
from them.

Index Terms—Planning, scheduling and coordination, software
architecture for robotic and automation, factory automation.

1. INTRODUCTION

ERTICAL take-off and landing (VTOL) vehicles such as
quadrotors have gained recent attention due to their agility
and ability to navigate in remote and cluttered environments.
Current research suggests that VTOL vehicles attached with
manipulators, known as aerial manipulators, are attractive for

Manuscript received March 1, 2021; accepted June 12, 2021. Date of publi-
cation June 30, 2021; date of current version August 13, 2021. This letter was
recommended for publication by Associate Editor T. Liu and Editor J. Yi upon
evaluation of the reviewers’ comments. This work was supported by NSF award:
1925189. (Gowtham Garimella and Matthew Sheckells contributed equally to
this work.) (Corresponding author: Marin Kobilarov.)

Gowtham Garimella was with the Department of Mechanical Engineering,
Johns Hopkins University, Baltimore, MD 21218, U.S., and now with Zoox
Inc., Foster City, CA 94404, U.S. (e-mail: marin@jhu.edu).

Matthew Sheckells was with the Department of Computer Science, Johns
Hopkins University, Baltimore, MD 21218, U.S., and now with the SpaceX,
Hawthorne, CA 90250, U.S. (e-mail: garimella.gowtham74 @ gmail.com).

Soowon Kim was with the Department of Mechanical Engineering, Johns
Hopkins University, Baltimore, MD 21218, U.S., and now with the Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061, U.S. (e-mail:
msheckel @jhu.edu).

Gabriel Baraban and Marin Kobilarov are with the Department of Mechanical
Engineering, Johns Hopkins University, Baltimore, MD 21218 USA (e-mail:
soowk311@gmail.com; gbarabal @jhu.edu).

Digital Object Identifier 10.1109/LRA.2021.3093864

, Soowon Kim ", Gabriel Baraban

, and Marin Kobilarov

numerous applications, including package transportation [1],
collaborative load transportation [2], collaborative construction,
vision based target interception [3], and structural maintenance
applications [4], [5].

Previous research efforts on aerial manipulation focused on
building novel control techniques and hardware to push the
boundary of applications for manipulators [6]. Aerial manip-
ulators are usually applied in situations requiring a high level
of safety and reliability. For example, package transportation
requires that the aerial manipulator detect the packages are safely
picked up and sensor placement tasks require that the sensors
are placed firmly on the target.

We propose a two-fold approach to improve the reliability
of the aerial manipulators: on the software side, a fault tolerant
state machine framework which has estimators and monitors
that can in real time detect contact forces and faults, and, on
the hardware side, a novel magnetic gripper that tolerates end-
effector error up to 2 cm while grasping. The result is a reliable
aerial manipulation system that is demonstrated on a pick-and-
place scenario and remote sensor payload placement task. We
hope that the aerial manipulation software will provide a base for
researchers to develop custom aerial manipulation applications
with improved reliability.

A. Related Work

Past research has focused on developing novel control algo-
rithms and manipulators for aerial manipulation tasks. Manipu-
lators range from rigid arms [7], [8] to compliant arms [9], [10],
and more recently novel compliant bimanual aerial manipulators
have also been proposed in [11], [12]. In this work we use a
simple 2DOF arm which is sufficient for the tasks considered
in this work. An omnidirectional aerial manipulator that can
improve the stability of the aerial manipulator has been proposed
by Bodie et al, [13].

Several novel control techniques for aerial manipulation have
been proposed in [6], [14]-[16]. Benchmarks for the control
performance of aerial manipulators have been proposed in [17].
In this work we use control algorithms that can be applied to off
the shelf quadrotors that can be retrofitted with a manipulator.
We focus on improving the reliability of the system without
using a sophisticated controller.

A few fully integrated applications for aerial manipulation
have been proposed in recent years. An aerial manipulation
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system for moving metallic discs and sheets is proposed by [18],
[19]. The system developed by Gawel et al. [18] used an
electro-permanent gripper that can turn on and off the magnetic
effect by reversing an electric current. In contrast, our work
proposes a permanent magnetic gripper solution that can turn
on and off by changing the polarity of the magnets using a
mechanical servo. This type of gripper does not use energy
to hold the object and only requires momentary energy to
release objects. Lee ef al. proposed a collaborative framework
for moving an unknown object in an unknown obstacle ridden
environment [20]. Kim et al. developed an aerial manipulation
system for lab automation using a parallel manipulator [21].
Orsag et al. suggested a benchmark for different aerial grasping
applications [22]. Our work performs two similar benchmark
applications: grasping objects from a table and placing them in
slots on a shelf, and placing an adhesive sensor payload on a
remote surface.

An open source software package for aerial manipulation has
been proposed by Perez et al, [23]. The software framework
proposed in this work focuses on building aerial manipulation
applications whereas the above package provides several hard-
ware options and controllers for manipulators.

B. Organization

The rest of the article is organized as follows. The basic
software framework for building complex aerial manipulation
experiments and the controllers needed are described in Section
II, III. We define the types of faults that can be detected, and
the online estimators and monitors needed to make the software
framework fault tolerant in Section I'V. The hardware modifica-
tions to make the system more reliable are explained in Section
V. The aerial manipulation system is evaluated on two tasks in
Section VI and the conclusions are presented in Section VII.

II. SOFTWARE FRAMEWORK

At the core of the aerial manipulation system lies a software
framework with several important capabilities. The software
framework has been designed to: combine modular behaviors
into complex state machines to perform complicated tasks;
enable robustness to sensor, controller, and hardware failure,
through introspection and fail-safe actions; provide a simulation
environment for testing the system before actual deployment;
automate tests for controllers and logic systems, independent of
their hardware implementation; serve as an open-source system
for developing complex aerial autonomy applications. It tightly
integrates high-level control strategies for both quadrotors and
manipulators with an existing finite state machine library to
provide robustness to controller and hardware failures during the
task. The framework consists of several modular features, such
as hardware drivers, controllers, and visual trackers. Figure 2
illustrates the interaction between different components of the
robot system.
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Fig. 1. Proposed aerial manipulation system picking (top) and placing (bot-
tom) a package.
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Fig.2. Illustration of the interaction between the various software components
of the developed framework.

III. AERIAL MANIPULATOR CONTROL

We now describe two of the trajectory tracking controllers
implemented on our aerial manipulation system: an acceleration-
based controller that relies on roll-pitch-yaw-thrust commands
and an MPC controller.

A. Acceleration-Based Control

Define the state of the quadrotor as = (p, R, v,w), where
p € R3isthe position, R € SO(3) s the rotation matrix, v € R?
is the velocity, and w € R3 is the angular velocity. The autopilot
takes as input the desired roll ¢4, desired pitch 6, desired
yaw rate thq and a thrust command v, € R. It internally runs a
feedback loop that controls the rotor velocities to achieve these
high-level commands. The aim of the controller is to accurately
track a desired reference trajectory in terms of position, velocity,
and yaw, where the reference is specified as a smooth trajectory
in quadrotor position p,. € R3 and quadrotor yaw 1),.. To achieve
this task, we design a controller that computes the desired
acceleration ag € R? based on the error in position e, = p, — p
and error in velocity e, = p, — v as

aq = Kpe, + Kge, + ar, 1
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where K,,, K; € R3*3 are positive diagonal matrices that act as
proportional and derivative gains and a,» = p, is the feedforward
acceleration based on the reference trajectory.

Next, we compute the roll, pitch, and thrust commands that
achieve the desired acceleration a4. The rotors on the quadrotor
are aligned with the body z-axis, which implies the quadrotor
can only apply acceleration along this axis. The net acceleration
produced by the quadrotor is given by

a= Rz(Y)Ry(0)Rx(p)esus — g, (2)

where 1, 0, and ¢ represent a ZY X Euler parametrization of R,
R,y represents rotation about z, y, and z-axes, g = [0, 0, —9.81]
is the gravity vector and e3 = [0, 0, 1]7 is the body z-axis. Mass
does not enter the equation as u; is a commanded body z-axis
acceleration rather than a true thrust force. We solve for the
autopilot inputs ¢, 6, and u; by setting a as ay. The desired
thrust command is given by

up = [laq + g 3)

To find the desired roll and pitch, we define the normalized
acceleration vector as aq = (aq + g)/us. The desired roll and
pitch are then given by

bq = arcsin(aje; siny — ajescosy),  (4)

cos ¢p(ajer costp + ajessiny) 5)
cos¢ ajes ’

04 = arctan (

The maneuver during the tasks is limited to avoid any sin-
gularities during the conversion. The commanded yaw rate is
proportional to the error between the current yaw and desired
yaw obtained from the reference trajectory as

Ya = ky (Y —Pp) + Uy, (6)

with £, € R > 0.

Previous work proves stability for a similar class of trajectory
tracking controllers that use Proportional-Integral-Derivative
(PID) controller to compute a desired force and an inner-loop
attitude controller to achieve the desired force direction [24]. We
assume the arm is attached to the Center of Gravity (CoG) of
the quadrotor and arm dynamics are relatively slow compared
to the quadrotor dynamics. Under these assumptions, the arm
is assumed to be a kinematic system and is controlled indepen-
dently of the quadrotor without affecting the overall stability of
the system.

B. Model Predictive Controller

The Model Predictive Controller (MPC) computes the thrust
and desired rotation matrix for the quadrotor by solving a trajec-
tory optimization problem. The trajectory optimization problem
at a high level can be written as

uj.y = argmin(zy — fN)TQN(IN—i‘N)—F

N-1
(2i—7:) " Qi —Ti) + (ui— ;) R(u; —u;), (7)

i=0
zit1 = f(2i,us), ®)
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where x; is the state of the aerial manipulator, ; is the
reference state, u; is the control, and w; is the reference control,
and N is the number of trajectory steps.

The optimization minimizes the cost over a predicted trajec-
tory for the aerial manipulator using a sequence of control inputs
subject to the dynamics of the system and other application based
constraints. The advantage of MPC over traditional controller is
that it can handle constraints such as obstacles and the interaction
between the manipulator and the rotor base.

We support using the full aerial manipulator dynamics as
explained in [25]. The inputs to the MPC are the joint torques
and the rotor thrusts which are mapped to the body torques and
body thrust. Since we use an off the shelf quadrotor, we can
only input the desired Euler angles of the rotor base and the
joint angles. These are picked from the reference states of the
optimal trajectory obtained through MPC.

A simplified second order model of the quadrotor rotational
dynamics as shown in [26] can also be used for the MPC.
This system assumes the interactions between the quadrotor
and the arm as external disturbances and tries to apply controls
to compensate for these external disturbances and follow the
optimal trajectory. This approach allows for independent control
of quadrotor and the manipulator. Although not as efficient as
the above apprroach, it simplifies the MPC problem and the
optimization can be done at a much higher rate.

The system dynamics used in MPC consists of unknown
system parameters that need to be estimated. For example for the
simplified MPC, we need to estimate the external disturbances
modeled as accelerations on the quadrotor base. We use online
estimators described in Section IV to estimate and update the
system parameters continuously. We also provide a way to
manually control the system or perturb the system automatically
around the point of operation to estimate the model parameters.

C. Reference Trajectory Generation

Two strategies are used to generate reference trajectories for
navigation and manipulation purposes.

1) Navigation: When navigating to a waypoint or approach-
ing a target object, we use a polynomial reference trajectory
of degree 9 along each individual axis to ensure the reference
derivatives are smooth up to fourth order. The coefficients of the
polynomial are found by solving a linear system defined by the
boundary conditions of the trajectory, where the initial position
and yaw are given by sensors and final position and yaw by the
user. The rest of the derivatives of the position at the boundaries
are set to zero so that the trajectory starts and ends at rest.

2) Grasping Strategy: Close to the object in the final stage of
the picking procedure, we track a trajectory that is constant in the
plane parallel to the object, but sinusoidal perpendicular to the
object, resulting in a periodic “poking” motion. This behavior
pushes the end-effector towards the object with the intent of
making contact during the first half cycle of the motion, but pulls
the end-effector back away from the object if it is misaligned
while poking. By pulling away, the robot has the opportunity to
correct its attitude and relative position without colliding with
the object before the next poking cycle begins.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:01:12 UTC from IEEE Xplore. Restrictions apply.



7504

TABLE I
FAULT MONITORS

Monitor
Quadrotor health

Description
Check the battery health and
readiness of quadrotor.
Monitor faults arising from servo
such as overload, joint limits etc
Detect external forces on
aerial manipulator
Detect unsafe commands being sent
to quadrotor and manipulator.

Manipulator health

Contact force monitor

Command monitor

IV. FAULT TOLERANCE

Reliable aerial manipulation tasks requires the monitoring
and detection of faults online, in order to make corrective
actions in real-time. In this work we deal with faults arising
from algorithmic failure, triggered e.g. when the autonomous
navigation software failed to reach its target, and hardware
failures triggered e.g. when the manipulator detects high contact
forces. Not all possible faults are recoverable. For example, the
loss of a rotor, a mechanical failure of the manipulator, or, a
seg-fault of user-specified state-machine are out of scope for
this work. In such extreme cases, the fallback behavior is to
employ a basic strategy such as immediate landing or hovering
in place if applicable.

The fault monitors used in this work are described in Table 1.
These monitors are integrated into state machine framework
to either abort current action or perform recovery action. For
instance, if the vehicle battery is below a threshold, we can land
if it is safe to do so. Similarly if the arm is subjected to a large
external contact force (measured through an estimator), we can
switch off the arm power. We also incorporated a command
monitor which detects if the commands being sent to the vehicle
and its manipulator are unsafe. For example, we can detect if the
desired position and yaw is outside a geo-fence or will lead to
collision. We can also detect if the commands to the arm will
cause self collisions. The commands can either be clipped or a
fault raised and the action can be aborted.

In addition to the generic monitors, each individual algorithm
can monitor its status and detect failures to reach target and abort
or retry. In this work, we use monitors to, detect if we are able to
pick a package, drop a package, place a sensor on wall, measure
the progress of each action, and, retry after a time-out.

The online monitors rely on estimating a number of vehicle
state parameters online. We next describe the estimators needed
to build the generic monitors.

A. Thrust Gain Estimation

The autopilot takes as input a normalized thrust command
between 0 and 100, where a non-constant scale factor transforms
the normalized value to a metric unit of thrust force. The scale
factor, called the thrust gain, is constantly changing as it depends
on the battery voltage and mass of the quadrotor. Since the
input to the MPC and the controller is the quadrotor’s thrust
force, a thrust gain estimator computes the mapping between
the thrust command and the actual thrust force. We combine
the mass into the thrust gain to directly map the normalized
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Fig. 3. Estimate of thrust gain k; computed from IMU data and expected
acceleration during pick-and-place task.

input to gravity compensated acceleration of the quadrotor.
The commanded thrust v € R maps to a corresponding global
acceleration a € R3 of the quadrotor as

a=kiResu+g 9)

where k; € R is the thrust gain, the orientation of the body is de-

noted by the rotation matrix R, and the thrust vector is assumed
to be pointed towards the body-z direction, i.e. e3 = [0, 0, 1].

The thrust gain can be obtained from the measured body

acceleration a; € R3 and gravity vector as

1

ky = Eeg(ab —R'g) (10)

These measurements can be obtained from the Inertial Mea-

surement Unit (IMU) on the quadrotor. The noise in the IMU
measurements is accounted for by using an exponential filter

ki, = Eti + Ak, — Eti)a (11)

where k;, is the filtered thrust gain estimate at time index i. By
increasing the scaling parameter A from O and 1, the thrust gain
can be adjusted to change more aggressively, which leads to the
quadrotor changing thrust faster to compensate for a change in
mass. Figure 3 shows the thrust gain estimated for the quadrotor
during a pick-and-place application. The positive jumps in the
gain coincide with a package being dropped and a negative
jump coincides with a package being picked up. The thrust gain
exhibits an overall downward trend as the battery voltage drops
over time.

i+1

B. Euler Angle Bias Estimation

We found a small difference of approximately 0.5° between
the roll and pitch reported by the IMU and the angles obtained
by inverting the fused body acceleration reported by the IMU
ap. The roll and pitch angles corresponding to fused body
acceleration ¢y, 0, are obtained using (4), (5) where desired
aq is replaced by the rotated body acceleration reported by the
IMU (a;), that is

a; = Ry (0)Rx (¢)asp,

and the normalized acceleration vector is given by a; = (a; +
9)/lla; + g||. To track the reference trajectory, we need to track
Euler angles that are consistent with the body acceleration.
Hence, we add the difference between the angles d4, dg to the

12)
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Fig. 4. The acceleration bias estimate during a sensor placement trial. The
system uses a threshold on the contact force to determine when the payload has
been pushed against the target surface. Once firmly pressed against the surface
and before releasing the payload, the robot pulls on the payload to ensure that it
successfully adhered to the surface.

commanded roll and pitch before sending them to the autopilot,
where

6¢> = ¢ — daces 0o = 0 — Ogee. (13)

C. Contact Force Bias Estimation

For applications that involve computing a contact force with
the environment, such as placing a sensor payload on a surface
with a specified amount of force, the system must estimate the
acceleration bias induced by these contact forces. Unfortunately,
due to the normalization of the thrust command as described
above, we cannot estimate force explicitly. Instead, we estimate
the acceleration bias using the difference between the IMU
reading and the expected thrust acceleration as

Qpias = Rayp — kit Resu — g. (14)

For applications like sensor placement, we use the local
z-coordinate of the bias vector for force estimation. When the
gripper is pressing against a wall, this quantity is negative, while
a force pulling on the gripper results in a positive estimate. Just
as with the other estimators in this section, the values calculated
by this formula are smoothed with an exponential filter to reduce
noise. Figure 4 shows an example contact force estimation
trajectory from a sensor placement trial. The acceleration bias,
when there is no external contact forces, is constant as shown in
the first section of the Figure 4. When there are external forces,
the acceleration bias keeps going up in proportion to the external
force being applied. Thus the difference in bias can be used as
a measure of the contact force applied. A newer approach using
an adaptive estimator to measure contact force in Newtons has
also been proposed in [27]. We found that the simpler approach
to estimate the contact force bias is sufficient for the applications
in this work.

V. HARDWARE
A. Commercial Off-the-Shelf quadrotor

The aerial manipulation system uses a modified DJI Ma-
trice quadrotor as the base. The quadrotor is equipped with a

7505

Fig. 5. The magnetic gripper (left) and a sample package (right) used in
our aerial manipulation experiments. The package is instrumented with an AR
marker to facilitate tracking and a magnetic mating joint so it can attach to the
gripper.

PointGrey Flea3 camera and an Intel NUCi5 computer, which
communicates with the Matrice flight controller.

B. Manipulator

1) Custom 2-DoF Arm: Several previous works, like [28]
and [7], develop arms specifically for aerial manipulation, but
they typically only grasp objects directly below the robot and
cannot reach outside the envelope of the quadrotor. In this work,
a light-weight 2-DoF manipulator is used for picking objects
outside the envelope of the quadrotor. Dynamixel servos control
the manipulator joints which are connected by carbon fiber
tubes. The manipulator end-effector is steered using a Cartesian
position controller which commands joint velocities to achieve
a desired end-effector position. As the arm is underactuated,
the pose of the end effector can only be specified using two
translational coordinates.

2) Magnetic Gripper: The arm uses a custom gripper to pick
and place objects. As the position accuracy of the quadrotor is
limited to around 2 centimeters, the gripper should be able to
pick the object without requiring a high degree of precision. The
gripper also needs to be able to pick objects of different sizes and
shapes. Existing open-source grippers, such as the Yale Open-
Hand [29], are too heavy and do not fit the requirements specified
above. Our custom gripper shown in Figure 5 is composed of
four magnets with alternating polarity embedded into a wheel
attached to a servo. The magnets are attracted to a mating joint
that is attached to the target object. The mating joint has a pattern
of magnets to provide several mounting points to have a higher
tolerance (<3 cm) of the position error.

Once an object is attached to the gripper, it can be released
by rotating the magnet wheel 90° which flips the polarity of the
magnets and repels the object. The gripper uses a momentary
switch to detect whether it has attached to a mating joint,
allowing the onboard computer to know when it has successfully
picked up an object.

VI. EXPERIMENTS

We evaluate the aerial manipulation system on two applica-
tions: Package sorting, Sensor placement. In both applications,
we demonstrate fault recovery capability of the aerial manipu-
lation system.
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Fig. 7.

An overhead view of the pick-and-place procedure.

A. Package sorting Application

The software framework developed in §1I is used to develop a
package sorting application leveraging the aerial manipulation
platform described in §V.

The goal of the application is to sort packages from a pack-
aging area (table) and transport them to corresponding storage
area (shelf) to demonstrate the system’s reliable aerial grasping
and object insertion capabilities.

The packages are tagged with AR markers [30] and have an
attached mating joint that connects to the gripper described in
§V-B2. Each package has a corresponding destination marker
ID where the object is placed. Figure 7 shows a timeline of
the quadrotor picking and transporting packages to their corre-
sponding storage spaces. The packages have masses between
120g and 170g. The mass of the package is limited by the arm
capacity (200g) and the quadrotor payload capacity (500g).

Figure 6 shows a simplified illustration of the finite state
machine for the pick place application.

The aerial manipulation system starts the package sorting
from “Waiting to Pick” state, automatically detects the clos-
est available package in the workspace, picks up the package,
determines the storage location based on the marker ID of the
object picked up, uses visual servoing using on-board camera
to navigate to a marked shelf, places the package on the shelf,
and returns to a start position with the packages in view. This
process is repeated indefinitely assuming new packages appear
continuously in the packaging area.

We use all the generic monitors mentioned in Table I during
the package sorting application. We classify the faults into two
categories: Recoverable, Unrecoverable. For recoverable faults,

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

TABLE II
RECOVERABLE FAULTS AND CORRECTING ACTIONS

Action

Retract to a previous known lo-
cation and retry

Abort pick

Recoverable Faults
Package not in Camera view

Package not at a known acces-
sible location

Package too heavy to pickup
based on thrust gain

Gripper failed to pick package
based on contact sensor

Lost package during placement

Abort picking package

Retract and retry

Abort place and go to pick.

TABLE III
PICK-AND-PLACE TASK STATISTICS
Unrecoverable faults 4
Recoverable faults 21

End-to-end Package delivery rate | 85/101

the software framework automatically retries algorithms and the
experiment is not interrupted. Unrecoverable faults are cases
where user interruption is needed but the software framework
is still safe. We did not encounter any faults that could not be
handled by the software framework among all the experiments
done in this work.

The recoverable faults handled by the software framework
are described in Table II. In the context of experiment recovery
implies the mission can go forward even if it will not be able to
complete transporting a particular package.

The unrecoverable faults encountered during the experiment
are: Losing motion capture control and Camera driver failure.
In these cases the aerial manipulator would hover in place using
low-level quadrotor controller provided by DJI. Manual operator
would then take over the control of quadrotor and bring it to a
recoverable state before continuing the mission.

We quantified the ability of the quadrotor to perform a suc-
cessful pick operation over 101 trials of picking and placing.
Table III shows the stats from the pick place trials. There
were 4 unrecoverable faults that required manual intervention.
There were around 21 recoverable faults out of which we lost
a package 12 times, but the mission continued autonomously.
Overall we were able to transport 85 packages end to end with
4 manual interventions. Without a recovery process, the system
would have resulted in 25 manual interventions i.e 21 recover-
able and 4 unrecoverable. Our system managed to bring down the
manual interventions to only 4 and even then, ensured the UAV
is safe until manual intervention. The package transportation
rate also improved due to the recovery process by successfully
transporting a package despite a recoverable fault in 9 out of 21
times. The rate of recoverable and unrecoverable faults can be
further minimized with better software and hardware and will
be the focus of future work.

The performance of the controllers is shown in table IV.
The acceleration-based controller is used for these trials since
it was easier to tune and performed slightly better than MPC
at the picking task. Figure 8 compares the mean absolute er-
rors along translational positions, velocities, and yaw angle for
each controller. Both the MPC controller and acceleration-based
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TABLE IV
CONTROLLER STATISTICS

Min Pick Time 6.5 seconds

Mean Pick Time 11.5 seconds

Max Pick Time 25 seconds
Mean Absolute Error x 2.1cm
Mean Absolute Error y 2.5cm
Mean Absolute Error z 1 cm
Mean Absolute Error 1 0.03 rad

Controller
s MPC
W Acceleration control

z w Vx

Axis

0.04

0.03

0.
0.00
X Y Vy Vz

Fig. 8. Mean absolute errors along x, y, z (meters), and yaw 1) axes (radians)
and translational velocities (meters/second) for MPC and acceleration-based
controller. The black lines show the 95% confidence interval obtained using
bootstrapping.
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controller performed well during trajectory tracking, but the
acceleration-based controller with more extensive gain tuning
produced slightly better results.

Figure 7 shows a timelapse of the pick-and-place task, where
the quadrotor picks up a package from the table and places itin a
shelf. The media attachments associated with this work demon-
strate the complete pick-and-place task where the quadrotor sorts
multiple packages into the top and bottom shelves without any
manual interruptions.

B. Remote Sensor Payload Placement

Re-using many of the same behaviors from §VI-A, we lever-
age our software framework to develop a sensor placement task,
where the robot autonomously places a camera on a remote
surface. A remote operator specifies a Region of Interest (ROI)
on an onboard camera image, and the aerial manipulator visually
servos to the ROI and deploys the payload safely to the chosen
location, using an external force estimater to identify contact
with the surface.

The sensor placement software is composed of 3 parts: an ROI
tracker, an external force estimator (described in IV-C), and a
state machine.

1) ROI Stereo Tracking: The local frame of the region that
we want to track is computed using least square plane fitting over
point cloud data in the ROI, where the 3D point cloud is gener-
ated using an Intel RealSense 2. The location and orientation of
this estimated ROI plane is fed into the visual servoing controller,
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Fig. 9. A sensor placement trial. Inset are the image from the onboard camera
tracking the ROI and the image from the payload camera.

which drives the quad to pre-determined poses relative to the
planar surface.

2) State Machine: The state machine for this task is similar
to the pick-and-place state machine, described in § VI-A, with an
additional state for checking the adhesion of the payload. While
planting the payload on the wall, the state machine estimates
the contact force between the arm and the wall. When pressing
in, this estimate is negative, and when it falls below an exper-
imentally determined threshold, the state machine transitions
from the “Placing” state into the new “Checking” state. The
“Checking” state commands the robot to pull away slightly from
the ROL. If the payload has adhered to the surface, the estimated
contact force will become positive. When it exceeds another
threshold, the gripper releases the payload and the robot retreats
to a safe distance. If the force does not exceed the threshold in a
configured time interval, the placement is deemed a failure, and
the robot resets and tries again to place the sensor.

3) Results: The sensor placement application is demon-
strated in the media attachements included with this work. An
example frame from this video is shown in Figure 9. Three
videos were taken of the experiments: one from an external
vantage point, one from the onboard camera demonstrating the
ROI tracking, and one from the payload camera. Figure 4 shows
the estimated external force over the course of the trial.

VII. CONCLUSION

This work developed an aerial manipulation system using a
commercial quadrotor, a custom arm and end-effector, and a
new software framework for aerial autonomy capable of fault-
tolerant industrial pick-and-place and remote sensor placement
tasks. While failure detection and system health monitoring
increased the robustness of the system, more robust hardware
and environment-adaptive manipulation are necessary to further
reduce the failure modes and drive the system toward 100%
reliability. Future work will integrate advanced adaptive models
for the quadrotor and the arm that explicitly take into account
their coupled dynamics in order to reduce position control error
in MPC methods. Finally, while we were able to demonstrate
reliable and relatively efficient operation, the overall speed and
agility of the robot can be further improved through improved
modeling of the system dynamics and having access to the
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lower level controls of the quadrotor. Achieving extreme agility
without sacrificing reliability remains a central challenge yet to
be solved.
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