
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021 7501

Improving the Reliability of Pick-and-Place With

Aerial Vehicles Through Fault-Tolerant Software and

a Custom Magnetic End-Effector
Gowtham Garimella , Matthew Sheckells , Soowon Kim , Gabriel Baraban , and Marin Kobilarov

Abstract—Aerial manipulation is an emerging field in robotics
with various potential applications such as transport and deliv-
ery, agriculture, and, infrastructure inspection. To deploy aerial
vehicles in the real world, the safety and reliability of these sys-
tems is paramount. Motivated by the need for safety and relia-
bility, this work proposes a software framework that has built-in
robustness to algorithmic failures and hardware faults. The frame-
work allows users to build complex applications while reasoning
about faults that can happen at different stages of an aerial ma-
nipulation task and specifying fallback actions to return to normal
operating mode. The aerial manipulator is further endowed with a
magnetic gripper that can handle positional errors arising from
perception and control uncertainties. We also introduce a bias
estimator for measuring the contact forces and sensor bias. We
demonstrate how the estimator can be used to detect either comple-
tion or failures across several tasks. We demonstrate the reliability
of the proposed framework on two tasks: package sorting task (e.g.
as might be used in a distribution center) and sensor placement task
(for infrastructure inspection). We show different failure modes
that can occur and how our aerial manipulation system recovers
from them.

Index Terms—Planning, scheduling and coordination, software
architecture for robotic and automation, factory automation.

I. INTRODUCTION

V
ERTICAL take-off and landing (VTOL) vehicles such as

quadrotors have gained recent attention due to their agility

and ability to navigate in remote and cluttered environments.

Current research suggests that VTOL vehicles attached with

manipulators, known as aerial manipulators, are attractive for
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numerous applications, including package transportation [1],

collaborative load transportation [2], collaborative construction,

vision based target interception [3], and structural maintenance

applications [4], [5].

Previous research efforts on aerial manipulation focused on

building novel control techniques and hardware to push the

boundary of applications for manipulators [6]. Aerial manip-

ulators are usually applied in situations requiring a high level

of safety and reliability. For example, package transportation

requires that the aerial manipulator detect the packages are safely

picked up and sensor placement tasks require that the sensors

are placed firmly on the target.

We propose a two-fold approach to improve the reliability

of the aerial manipulators: on the software side, a fault tolerant

state machine framework which has estimators and monitors

that can in real time detect contact forces and faults, and, on

the hardware side, a novel magnetic gripper that tolerates end-

effector error up to 2 cm while grasping. The result is a reliable

aerial manipulation system that is demonstrated on a pick-and-

place scenario and remote sensor payload placement task. We

hope that the aerial manipulation software will provide a base for

researchers to develop custom aerial manipulation applications

with improved reliability.

A. Related Work

Past research has focused on developing novel control algo-

rithms and manipulators for aerial manipulation tasks. Manipu-

lators range from rigid arms [7], [8] to compliant arms [9], [10],

and more recently novel compliant bimanual aerial manipulators

have also been proposed in [11], [12]. In this work we use a

simple 2DOF arm which is sufficient for the tasks considered

in this work. An omnidirectional aerial manipulator that can

improve the stability of the aerial manipulator has been proposed

by Bodie et al, [13].

Several novel control techniques for aerial manipulation have

been proposed in [6], [14]–[16]. Benchmarks for the control

performance of aerial manipulators have been proposed in [17].

In this work we use control algorithms that can be applied to off

the shelf quadrotors that can be retrofitted with a manipulator.

We focus on improving the reliability of the system without

using a sophisticated controller.

A few fully integrated applications for aerial manipulation

have been proposed in recent years. An aerial manipulation
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system for moving metallic discs and sheets is proposed by [18],

[19]. The system developed by Gawel et al. [18] used an

electro-permanent gripper that can turn on and off the magnetic

effect by reversing an electric current. In contrast, our work

proposes a permanent magnetic gripper solution that can turn

on and off by changing the polarity of the magnets using a

mechanical servo. This type of gripper does not use energy

to hold the object and only requires momentary energy to

release objects. Lee et al. proposed a collaborative framework

for moving an unknown object in an unknown obstacle ridden

environment [20]. Kim et al. developed an aerial manipulation

system for lab automation using a parallel manipulator [21].

Orsag et al. suggested a benchmark for different aerial grasping

applications [22]. Our work performs two similar benchmark

applications: grasping objects from a table and placing them in

slots on a shelf, and placing an adhesive sensor payload on a

remote surface.

An open source software package for aerial manipulation has

been proposed by Perez et al, [23]. The software framework

proposed in this work focuses on building aerial manipulation

applications whereas the above package provides several hard-

ware options and controllers for manipulators.

B. Organization

The rest of the article is organized as follows. The basic

software framework for building complex aerial manipulation

experiments and the controllers needed are described in Section

II, III. We define the types of faults that can be detected, and

the online estimators and monitors needed to make the software

framework fault tolerant in Section IV. The hardware modifica-

tions to make the system more reliable are explained in Section

V. The aerial manipulation system is evaluated on two tasks in

Section VI and the conclusions are presented in Section VII.

II. SOFTWARE FRAMEWORK

At the core of the aerial manipulation system lies a software

framework with several important capabilities. The software

framework has been designed to: combine modular behaviors

into complex state machines to perform complicated tasks;

enable robustness to sensor, controller, and hardware failure,

through introspection and fail-safe actions; provide a simulation

environment for testing the system before actual deployment;

automate tests for controllers and logic systems, independent of

their hardware implementation; serve as an open-source system

for developing complex aerial autonomy applications. It tightly

integrates high-level control strategies for both quadrotors and

manipulators with an existing finite state machine library to

provide robustness to controller and hardware failures during the

task. The framework consists of several modular features, such

as hardware drivers, controllers, and visual trackers. Figure 2

illustrates the interaction between different components of the

robot system.

Fig. 1. Proposed aerial manipulation system picking (top) and placing (bot-
tom) a package.

Fig. 2. Illustration of the interaction between the various software components
of the developed framework.

III. AERIAL MANIPULATOR CONTROL

We now describe two of the trajectory tracking controllers

implemented on our aerial manipulation system: an acceleration-

based controller that relies on roll-pitch-yaw-thrust commands

and an MPC controller.

A. Acceleration-Based Control

Define the state of the quadrotor as x = (p,R, v, ω), where

p ∈ R
3 is the position,R ∈ SO(3) is the rotation matrix, v ∈ R

3

is the velocity, and ω ∈ R
3 is the angular velocity. The autopilot

takes as input the desired roll φd, desired pitch θd, desired

yaw rate ψ̇d and a thrust command ut ∈ R. It internally runs a

feedback loop that controls the rotor velocities to achieve these

high-level commands. The aim of the controller is to accurately

track a desired reference trajectory in terms of position, velocity,

and yaw, where the reference is specified as a smooth trajectory

in quadrotor position pr ∈ R
3 and quadrotor yawψr. To achieve

this task, we design a controller that computes the desired

acceleration ad ∈ R
3 based on the error in position ep = pr − p

and error in velocity ev = ṗr − v as

ad = Kpep +Kdev + ar, (1)
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where Kp,Kd ∈ R
3×3 are positive diagonal matrices that act as

proportional and derivative gains and ar = p̈r is the feedforward

acceleration based on the reference trajectory.

Next, we compute the roll, pitch, and thrust commands that

achieve the desired acceleration ad. The rotors on the quadrotor

are aligned with the body z-axis, which implies the quadrotor

can only apply acceleration along this axis. The net acceleration

produced by the quadrotor is given by

a = RZ(ψ)RY (θ)RX(φ)e3ut − g, (2)

where ψ, θ, and φ represent a ZYX Euler parametrization of R,

R(·) represents rotation about z, y, and x-axes, g = [0, 0,−9.81]
is the gravity vector and e3 = [0, 0, 1]T is the body z-axis. Mass

does not enter the equation as ut is a commanded body z-axis

acceleration rather than a true thrust force. We solve for the

autopilot inputs φ, θ, and ut by setting a as ad. The desired

thrust command is given by

ut = ‖ad + g‖. (3)

To find the desired roll and pitch, we define the normalized

acceleration vector as ād = (ad + g)/ut. The desired roll and

pitch are then given by

φd = arcsin(ā⊤d e1 sinψ − ā⊤d e2 cosψ), (4)

θd = arctan

(

cosφ(ā⊤d e1 cosψ + ā⊤d e2 sinψ)

cosφ ā⊤d e3

)

. (5)

The maneuver during the tasks is limited to avoid any sin-

gularities during the conversion. The commanded yaw rate is

proportional to the error between the current yaw and desired

yaw obtained from the reference trajectory as

ψ̇d = kψ(ψ − ψr) + ψ̇r, (6)

with kψ ∈ R > 0.

Previous work proves stability for a similar class of trajectory

tracking controllers that use Proportional–Integral–Derivative

(PID) controller to compute a desired force and an inner-loop

attitude controller to achieve the desired force direction [24]. We

assume the arm is attached to the Center of Gravity (CoG) of

the quadrotor and arm dynamics are relatively slow compared

to the quadrotor dynamics. Under these assumptions, the arm

is assumed to be a kinematic system and is controlled indepen-

dently of the quadrotor without affecting the overall stability of

the system.

B. Model Predictive Controller

The Model Predictive Controller (MPC) computes the thrust

and desired rotation matrix for the quadrotor by solving a trajec-

tory optimization problem. The trajectory optimization problem

at a high level can be written as

u∗
1:N = argmin

u1:N

(xN − x̄N )⊤QN (xN−x̄N )+

N−1
∑

i=0

(xi−x̄i)
⊤Q(xi−x̄i) + (ui−ūi)

⊤R(ui−ūi), (7)

xi+1 = f(xi, ui), (8)

where xi is the state of the aerial manipulator, x̄i is the

reference state, ui is the control, and ūi is the reference control,

and N is the number of trajectory steps.

The optimization minimizes the cost over a predicted trajec-

tory for the aerial manipulator using a sequence of control inputs

subject to the dynamics of the system and other application based

constraints. The advantage of MPC over traditional controller is

that it can handle constraints such as obstacles and the interaction

between the manipulator and the rotor base.

We support using the full aerial manipulator dynamics as

explained in [25]. The inputs to the MPC are the joint torques

and the rotor thrusts which are mapped to the body torques and

body thrust. Since we use an off the shelf quadrotor, we can

only input the desired Euler angles of the rotor base and the

joint angles. These are picked from the reference states of the

optimal trajectory obtained through MPC.

A simplified second order model of the quadrotor rotational

dynamics as shown in [26] can also be used for the MPC.

This system assumes the interactions between the quadrotor

and the arm as external disturbances and tries to apply controls

to compensate for these external disturbances and follow the

optimal trajectory. This approach allows for independent control

of quadrotor and the manipulator. Although not as efficient as

the above apprroach, it simplifies the MPC problem and the

optimization can be done at a much higher rate.

The system dynamics used in MPC consists of unknown

system parameters that need to be estimated. For example for the

simplified MPC, we need to estimate the external disturbances

modeled as accelerations on the quadrotor base. We use online

estimators described in Section IV to estimate and update the

system parameters continuously. We also provide a way to

manually control the system or perturb the system automatically

around the point of operation to estimate the model parameters.

C. Reference Trajectory Generation

Two strategies are used to generate reference trajectories for

navigation and manipulation purposes.

1) Navigation: When navigating to a waypoint or approach-

ing a target object, we use a polynomial reference trajectory

of degree 9 along each individual axis to ensure the reference

derivatives are smooth up to fourth order. The coefficients of the

polynomial are found by solving a linear system defined by the

boundary conditions of the trajectory, where the initial position

and yaw are given by sensors and final position and yaw by the

user. The rest of the derivatives of the position at the boundaries

are set to zero so that the trajectory starts and ends at rest.

2) Grasping Strategy: Close to the object in the final stage of

the picking procedure, we track a trajectory that is constant in the

plane parallel to the object, but sinusoidal perpendicular to the

object, resulting in a periodic “poking” motion. This behavior

pushes the end-effector towards the object with the intent of

making contact during the first half cycle of the motion, but pulls

the end-effector back away from the object if it is misaligned

while poking. By pulling away, the robot has the opportunity to

correct its attitude and relative position without colliding with

the object before the next poking cycle begins.
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TABLE I
FAULT MONITORS

IV. FAULT TOLERANCE

Reliable aerial manipulation tasks requires the monitoring

and detection of faults online, in order to make corrective

actions in real-time. In this work we deal with faults arising

from algorithmic failure, triggered e.g. when the autonomous

navigation software failed to reach its target, and hardware

failures triggered e.g. when the manipulator detects high contact

forces. Not all possible faults are recoverable. For example, the

loss of a rotor, a mechanical failure of the manipulator, or, a

seg-fault of user-specified state-machine are out of scope for

this work. In such extreme cases, the fallback behavior is to

employ a basic strategy such as immediate landing or hovering

in place if applicable.

The fault monitors used in this work are described in Table I.

These monitors are integrated into state machine framework

to either abort current action or perform recovery action. For

instance, if the vehicle battery is below a threshold, we can land

if it is safe to do so. Similarly if the arm is subjected to a large

external contact force (measured through an estimator), we can

switch off the arm power. We also incorporated a command

monitor which detects if the commands being sent to the vehicle

and its manipulator are unsafe. For example, we can detect if the

desired position and yaw is outside a geo-fence or will lead to

collision. We can also detect if the commands to the arm will

cause self collisions. The commands can either be clipped or a

fault raised and the action can be aborted.

In addition to the generic monitors, each individual algorithm

can monitor its status and detect failures to reach target and abort

or retry. In this work, we use monitors to, detect if we are able to

pick a package, drop a package, place a sensor on wall, measure

the progress of each action, and, retry after a time-out.

The online monitors rely on estimating a number of vehicle

state parameters online. We next describe the estimators needed

to build the generic monitors.

A. Thrust Gain Estimation

The autopilot takes as input a normalized thrust command

between 0 and 100, where a non-constant scale factor transforms

the normalized value to a metric unit of thrust force. The scale

factor, called the thrust gain, is constantly changing as it depends

on the battery voltage and mass of the quadrotor. Since the

input to the MPC and the controller is the quadrotor’s thrust

force, a thrust gain estimator computes the mapping between

the thrust command and the actual thrust force. We combine

the mass into the thrust gain to directly map the normalized

Fig. 3. Estimate of thrust gain kt computed from IMU data and expected
acceleration during pick-and-place task.

input to gravity compensated acceleration of the quadrotor.

The commanded thrust u ∈ R maps to a corresponding global

acceleration a ∈ R
3 of the quadrotor as

a = ktRe3u+ g (9)

where kt ∈ R is the thrust gain, the orientation of the body is de-

noted by the rotation matrix R, and the thrust vector is assumed

to be pointed towards the body-z direction, i.e. e3 = [0, 0, 1].
The thrust gain can be obtained from the measured body

acceleration ab ∈ R
3 and gravity vector as

kt =
1

u
eT3 (ab −R⊤g) (10)

These measurements can be obtained from the Inertial Mea-

surement Unit (IMU) on the quadrotor. The noise in the IMU

measurements is accounted for by using an exponential filter

k̄ti+1
= k̄ti + λ(kti − k̄ti), (11)

where k̄ti is the filtered thrust gain estimate at time index i. By

increasing the scaling parameter λ from 0 and 1, the thrust gain

can be adjusted to change more aggressively, which leads to the

quadrotor changing thrust faster to compensate for a change in

mass. Figure 3 shows the thrust gain estimated for the quadrotor

during a pick-and-place application. The positive jumps in the

gain coincide with a package being dropped and a negative

jump coincides with a package being picked up. The thrust gain

exhibits an overall downward trend as the battery voltage drops

over time.

B. Euler Angle Bias Estimation

We found a small difference of approximately 0.5◦ between

the roll and pitch reported by the IMU and the angles obtained

by inverting the fused body acceleration reported by the IMU

ab. The roll and pitch angles corresponding to fused body

acceleration φacc, θacc are obtained using (4), (5) where desired

ad is replaced by the rotated body acceleration reported by the

IMU (ai), that is

ai = RY (θ)RX(φ)ab, (12)

and the normalized acceleration vector is given by āi = (ai +
g)/‖ai + g‖. To track the reference trajectory, we need to track

Euler angles that are consistent with the body acceleration.

Hence, we add the difference between the angles δφ, δθ to the
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Fig. 4. The acceleration bias estimate during a sensor placement trial. The
system uses a threshold on the contact force to determine when the payload has
been pushed against the target surface. Once firmly pressed against the surface
and before releasing the payload, the robot pulls on the payload to ensure that it
successfully adhered to the surface.

commanded roll and pitch before sending them to the autopilot,

where

δφ = φ− φacc, δθ = θ − θacc. (13)

C. Contact Force Bias Estimation

For applications that involve computing a contact force with

the environment, such as placing a sensor payload on a surface

with a specified amount of force, the system must estimate the

acceleration bias induced by these contact forces. Unfortunately,

due to the normalization of the thrust command as described

above, we cannot estimate force explicitly. Instead, we estimate

the acceleration bias using the difference between the IMU

reading and the expected thrust acceleration as

abias = Rab − ktRe3u− g. (14)

For applications like sensor placement, we use the local

x-coordinate of the bias vector for force estimation. When the

gripper is pressing against a wall, this quantity is negative, while

a force pulling on the gripper results in a positive estimate. Just

as with the other estimators in this section, the values calculated

by this formula are smoothed with an exponential filter to reduce

noise. Figure 4 shows an example contact force estimation

trajectory from a sensor placement trial. The acceleration bias,

when there is no external contact forces, is constant as shown in

the first section of the Figure 4. When there are external forces,

the acceleration bias keeps going up in proportion to the external

force being applied. Thus the difference in bias can be used as

a measure of the contact force applied. A newer approach using

an adaptive estimator to measure contact force in Newtons has

also been proposed in [27]. We found that the simpler approach

to estimate the contact force bias is sufficient for the applications

in this work.

V. HARDWARE

A. Commercial Off-the-Shelf quadrotor

The aerial manipulation system uses a modified DJI Ma-

trice quadrotor as the base. The quadrotor is equipped with a

Fig. 5. The magnetic gripper (left) and a sample package (right) used in
our aerial manipulation experiments. The package is instrumented with an AR
marker to facilitate tracking and a magnetic mating joint so it can attach to the
gripper.

PointGrey Flea3 camera and an Intel NUCi5 computer, which

communicates with the Matrice flight controller.

B. Manipulator

1) Custom 2-DoF Arm: Several previous works, like [28]

and [7], develop arms specifically for aerial manipulation, but

they typically only grasp objects directly below the robot and

cannot reach outside the envelope of the quadrotor. In this work,

a light-weight 2-DoF manipulator is used for picking objects

outside the envelope of the quadrotor. Dynamixel servos control

the manipulator joints which are connected by carbon fiber

tubes. The manipulator end-effector is steered using a Cartesian

position controller which commands joint velocities to achieve

a desired end-effector position. As the arm is underactuated,

the pose of the end effector can only be specified using two

translational coordinates.

2) Magnetic Gripper: The arm uses a custom gripper to pick

and place objects. As the position accuracy of the quadrotor is

limited to around 2 centimeters, the gripper should be able to

pick the object without requiring a high degree of precision. The

gripper also needs to be able to pick objects of different sizes and

shapes. Existing open-source grippers, such as the Yale Open-

Hand [29], are too heavy and do not fit the requirements specified

above. Our custom gripper shown in Figure 5 is composed of

four magnets with alternating polarity embedded into a wheel

attached to a servo. The magnets are attracted to a mating joint

that is attached to the target object. The mating joint has a pattern

of magnets to provide several mounting points to have a higher

tolerance (≤3 cm) of the position error.

Once an object is attached to the gripper, it can be released

by rotating the magnet wheel 90◦ which flips the polarity of the

magnets and repels the object. The gripper uses a momentary

switch to detect whether it has attached to a mating joint,

allowing the onboard computer to know when it has successfully

picked up an object.

VI. EXPERIMENTS

We evaluate the aerial manipulation system on two applica-

tions: Package sorting, Sensor placement. In both applications,

we demonstrate fault recovery capability of the aerial manipu-

lation system.
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Fig. 6. Part of the state machine for picking and placing a package. The
recovery actions are red and user actions are green. The user can also abort
from any other state back to hovering if manual intervention is desired.

Fig. 7. An overhead view of the pick-and-place procedure.

A. Package sorting Application

The software framework developed in §II is used to develop a

package sorting application leveraging the aerial manipulation

platform described in §V.

The goal of the application is to sort packages from a pack-

aging area (table) and transport them to corresponding storage

area (shelf) to demonstrate the system’s reliable aerial grasping

and object insertion capabilities.

The packages are tagged with AR markers [30] and have an

attached mating joint that connects to the gripper described in

§V-B2. Each package has a corresponding destination marker

ID where the object is placed. Figure 7 shows a timeline of

the quadrotor picking and transporting packages to their corre-

sponding storage spaces. The packages have masses between

120g and 170g. The mass of the package is limited by the arm

capacity (200g) and the quadrotor payload capacity (500g).

Figure 6 shows a simplified illustration of the finite state

machine for the pick place application.

The aerial manipulation system starts the package sorting

from “Waiting to Pick” state, automatically detects the clos-

est available package in the workspace, picks up the package,

determines the storage location based on the marker ID of the

object picked up, uses visual servoing using on-board camera

to navigate to a marked shelf, places the package on the shelf,

and returns to a start position with the packages in view. This

process is repeated indefinitely assuming new packages appear

continuously in the packaging area.

We use all the generic monitors mentioned in Table I during

the package sorting application. We classify the faults into two

categories: Recoverable, Unrecoverable. For recoverable faults,

TABLE II
RECOVERABLE FAULTS AND CORRECTING ACTIONS

TABLE III
PICK-AND-PLACE TASK STATISTICS

the software framework automatically retries algorithms and the

experiment is not interrupted. Unrecoverable faults are cases

where user interruption is needed but the software framework

is still safe. We did not encounter any faults that could not be

handled by the software framework among all the experiments

done in this work.

The recoverable faults handled by the software framework

are described in Table II. In the context of experiment recovery

implies the mission can go forward even if it will not be able to

complete transporting a particular package.

The unrecoverable faults encountered during the experiment

are: Losing motion capture control and Camera driver failure.

In these cases the aerial manipulator would hover in place using

low-level quadrotor controller provided by DJI. Manual operator

would then take over the control of quadrotor and bring it to a

recoverable state before continuing the mission.

We quantified the ability of the quadrotor to perform a suc-

cessful pick operation over 101 trials of picking and placing.

Table III shows the stats from the pick place trials. There

were 4 unrecoverable faults that required manual intervention.

There were around 21 recoverable faults out of which we lost

a package 12 times, but the mission continued autonomously.

Overall we were able to transport 85 packages end to end with

4 manual interventions. Without a recovery process, the system

would have resulted in 25 manual interventions i.e 21 recover-

able and 4 unrecoverable. Our system managed to bring down the

manual interventions to only 4 and even then, ensured the UAV

is safe until manual intervention. The package transportation

rate also improved due to the recovery process by successfully

transporting a package despite a recoverable fault in 9 out of 21

times. The rate of recoverable and unrecoverable faults can be

further minimized with better software and hardware and will

be the focus of future work.

The performance of the controllers is shown in table IV.

The acceleration-based controller is used for these trials since

it was easier to tune and performed slightly better than MPC

at the picking task. Figure 8 compares the mean absolute er-

rors along translational positions, velocities, and yaw angle for

each controller. Both the MPC controller and acceleration-based
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TABLE IV
CONTROLLER STATISTICS

Fig. 8. Mean absolute errors along x, y, z (meters), and yaw ψ axes (radians)
and translational velocities (meters/second) for MPC and acceleration-based
controller. The black lines show the 95% confidence interval obtained using
bootstrapping.

controller performed well during trajectory tracking, but the

acceleration-based controller with more extensive gain tuning

produced slightly better results.

Figure 7 shows a timelapse of the pick-and-place task, where

the quadrotor picks up a package from the table and places it in a

shelf. The media attachments associated with this work demon-

strate the complete pick-and-place task where the quadrotor sorts

multiple packages into the top and bottom shelves without any

manual interruptions.

B. Remote Sensor Payload Placement

Re-using many of the same behaviors from §VI-A, we lever-

age our software framework to develop a sensor placement task,

where the robot autonomously places a camera on a remote

surface. A remote operator specifies a Region of Interest (ROI)

on an onboard camera image, and the aerial manipulator visually

servos to the ROI and deploys the payload safely to the chosen

location, using an external force estimater to identify contact

with the surface.

The sensor placement software is composed of 3 parts: an ROI

tracker, an external force estimator (described in IV-C), and a

state machine.

1) ROI Stereo Tracking: The local frame of the region that

we want to track is computed using least square plane fitting over

point cloud data in the ROI, where the 3D point cloud is gener-

ated using an Intel RealSense 2. The location and orientation of

this estimated ROI plane is fed into the visual servoing controller,

Fig. 9. A sensor placement trial. Inset are the image from the onboard camera
tracking the ROI and the image from the payload camera.

which drives the quad to pre-determined poses relative to the

planar surface.

2) State Machine: The state machine for this task is similar

to the pick-and-place state machine, described in §VI-A, with an

additional state for checking the adhesion of the payload. While

planting the payload on the wall, the state machine estimates

the contact force between the arm and the wall. When pressing

in, this estimate is negative, and when it falls below an exper-

imentally determined threshold, the state machine transitions

from the “Placing” state into the new “Checking” state. The

“Checking” state commands the robot to pull away slightly from

the ROI. If the payload has adhered to the surface, the estimated

contact force will become positive. When it exceeds another

threshold, the gripper releases the payload and the robot retreats

to a safe distance. If the force does not exceed the threshold in a

configured time interval, the placement is deemed a failure, and

the robot resets and tries again to place the sensor.

3) Results: The sensor placement application is demon-

strated in the media attachements included with this work. An

example frame from this video is shown in Figure 9. Three

videos were taken of the experiments: one from an external

vantage point, one from the onboard camera demonstrating the

ROI tracking, and one from the payload camera. Figure 4 shows

the estimated external force over the course of the trial.

VII. CONCLUSION

This work developed an aerial manipulation system using a

commercial quadrotor, a custom arm and end-effector, and a

new software framework for aerial autonomy capable of fault-

tolerant industrial pick-and-place and remote sensor placement

tasks. While failure detection and system health monitoring

increased the robustness of the system, more robust hardware

and environment-adaptive manipulation are necessary to further

reduce the failure modes and drive the system toward 100%

reliability. Future work will integrate advanced adaptive models

for the quadrotor and the arm that explicitly take into account

their coupled dynamics in order to reduce position control error

in MPC methods. Finally, while we were able to demonstrate

reliable and relatively efficient operation, the overall speed and

agility of the robot can be further improved through improved

modeling of the system dynamics and having access to the
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lower level controls of the quadrotor. Achieving extreme agility

without sacrificing reliability remains a central challenge yet to

be solved.
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