
Perception-Based UAV Fruit Grasping Using Sub-Task Imitation

Learning

Gabriel Baraban1, Siddharth Kothiyal2 and Marin Kobilarov1

Abstract— This work considers autonomous fruit picking
using an aerial grasping robot by tightly integrating vision-
based perception and control within a learning framework. The
architecture employs a convolutional neural network (CNN) to
encode images and vehicle state information. This encoding
is passed into a sub-task classifier and associated reference
waypoint generator. The classifier is trained to predict the
current phase of the task being executed: Staging, Picking, or
Reset. Based on the predicted phase, the waypoint generator
predicts a set of obstacle-free 6-DOF waypoints, which serve
as a reference trajectory for model-predictive control (MPC).
By iteratively generating and following these trajectories, the
aerial manipulator safely approaches a mock-up goal fruit and
removes it from the tree. The proposed approach is validated in
29 flight tests, through a comparison to a conventional baseline
approach, and an ablation study on its key features. Overall, the
approach achieved comparable success rates to the conventional
approach, while reaching the goal faster.

I. INTRODUCTION

Unmanned aerial vehicles (UAV) are well suited to carry

out tasks which would be otherwise inefficient or unsafe

for human-piloted vehicles. These devices have been utilized

successfully in autonomous racing, photography, and map-

ping. An unmanned aerial vehicle (UAV) must be aware of its

environment to avoid collisions en route to its specified goal.

In aerial manipulation tasks, such as package delivery [1],

infrastructure inspection [2], or construction [3], the UAV

must interact with the environment, not merely avoid it. This

requires two important processes: sensing and path planning.

In the first, information from onboard sensors (cameras,

LIDARs, IMUs, etc.) is used to map out and understand

the UAV’s surroundings, estimating objects of interests such

as goals and the obstacles. In the second, this information

about the environment is used to generate a plan of action,

allowing the UAV to achieve its aim safely and efficiently.

This work describes the development of an algorithm for

picking fruits off of trees using a system comprised of a

quadrotor with an attached rigid arm. This system is under-

actuated and has no prior knowledge of the environment.

A convolutional neural network (CNN) is taught to mimic

an expert trajectory planner, and to predict a safe, collision-

free set of waypoints that converge towards the desired goal

(i.e. an orange). The ResNet-based CNN is trained end-to-

end to create a deep integrated pipeline for both sensing

and path planning. This allows the model to integrate visual

1Gabriel Baraban and Marin Kobilarov are with the Department of
Mechanical Engineering, Johns Hopkins University, 3400 N Charles Str,
Baltimore, MD 21218, USA gbaraban|marin@jhu.edu

2 Siddharth Kothiyal is with the Laboratory for Computational Sensing
and Robotics, Johns Hopkins University, 3400 N Charles Str, Baltimore,
MD 21218, USA sidkothiyal@jhu.edu

features largely ignored by prior methods, such as leaf edges,

corners, and shadows, when inferring waypoints to guide

the UAV. The model outputs waypoints to guide the UAV.

Dynamic feasibility is enforced by an optimization step

using Differential Dynamic Programming (DDP) to produce

a dense trajectory out of these inferred waypoints. By using

this network as a receding horizon path planner, the UAV is

able to bundle together successive predictions and reach the

goal.

Imitation learning has been trained to successfully perform

complex tasks with robotic systems. Conventional imitation

learning pipelines generally require a large amount of data,

as the dataset must cover most of the spectrum of the

expected input data space. Dataset creation for such pipelines

also relies on the data being representative of all scenar-

ios encountered by the robotic system. Without this equal

distribution, imitation learning based systems can suffer in

quality, requiring supplemental strategies such as DAgger [4]

to improve the model performance (as in Loquercio et al.

[5]).

This work proposes a variation to the conventional imita-

tion learning, as shown in Figure 3. The network contains

a common ResNet like CNN sub-network, followed by a

set of dense sub-networks, each used to perform waypoint

prediction during different phases encountered by the UAV.

Sharing a common CNN allows the network to encode the

visual information sensed from the environment into a latent

vector representation, which is then used by each of the dense

sub-networks for optimizing waypoint prediction in their

respective phases. The latent vector is concatenated with state

information before passing through the dense sub-networks.

The network also takes in as input state information, which

is concatenated to the latent vector representation encoded

by the CNN.

In order to generate a dataset for training the network,

a visual-servoing method was created. It solves the fruit-

picking problem using a state machine implemented in

the Aerial Autonomy [6] software architecture. This state

machine acts as a deterministic Markov Decision Process

(MDP), with each state solving a distinct sub-problem of

the overall fruit-picking task. This method was also used as

a comparison baseline for the network-based solution.

A. Problem Formulation

The system used in this work is an aerial manipulator with

a fixed arm. The position of the quadrotor base, p ∈ R
3, its

orientation R ∈ SO(3), and the arm joint angles r ∈ R
2

together form the posture of the system, q = (p,R, r). This

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:09:38 UTC from IEEE Xplore. Restrictions apply.

defines two transforms in SE(3): g(q) =

[
R p

0 1

]
, the loca-

tion and attitude of the quadrotor base, and Φ(r) the relative

pose of the end effector in the body frame. When multiplied,

the resulting transform ge(q) = g(q)Φ(r) ∈ SE(3) is

the position and orientation of the end effector in world

coordinates. The geometry of the system in euclidean space

is defined as A(q), the set of points within the workspace

W .

The system velocity q̇ = (v, ω, ṙ), is the derivative of each

element of q: the body-fixed linear and angular velocities

v, ω ∈ R
3 and the joint velocities ṙ ∈ R

2. Because the arm

is fixed, ṙ = 0. The velocities are used in homogeneous

coordinates using the formulas:

V̂ =

[
ω̂ v

0 0

]
, ω̂ =




0 −ωx ωy

ωz 0 −ωx

−ωy ωx 0


 .

The full state of the system x = (q, q̇) is controlled by the

input u ∈ R
4. u is composed of three torques around the

body-fixed axes, and a thrust force applied along the local

z-axis. The dynamics are of the form ẋ = f(x, u) based on

the derivations in [7] and [8]:

ġ(q) = g(q)V̂ , M(q)V̇ + b(x) = B(q)u (1)

M(q), b(x), B(q) are the mass matrix, bias vector, and

control transformation matrix.

The goal of robotic fruit picking is to compute a reference

trajectory x̄(t) and a series of control inputs u(t) minimizing

the cost: ∫ tf

t0

1

2
‖x(t)−x̄(t)‖2Q +

1

2
‖u(t)‖2Rdt

subject to the constraints:

ẋ = f(x(t), u(t)) (2)

A(q(t)) ∩ E = ∅ (3)

g(x̄(tf))Φ(r) =

[
⋆ pgoal
0 1

]
(4)

The first constraint (Equation 2) enforces the dynamics from

equation 1. The second constraint (Equation 3) prevents the

system from colliding with the environmental obstacles, de-

fined through the set of points E ⊂ W . The third constraint

(Equation 4) requires that the final posture of the system

place the end-effector position at pgoal ∈ R
3, the location of

the fruit. The values of x are fully observable, and accessed

through the hardware suite onboard the system. E and pgoal
are not known a priori and must be estimated online through

a fusion of camera images and state measurements.

B. Imitation Learning Sub-Tasks

The fruit-picking task outlined above requires a wide

variety of actions from the UAV. At the beginning of a trial,

it moves quickly to close the gap between the vehicle and

the tree. Once it nears the tree, its speed slows. It must move

more precisely, avoiding collisions with the tree and lining

up the end-effector with the fruit. This, in addition to the

dynamical relationship between successive states, prevents

the training dataset from being independent and identically

distributed (i.i.d), a common expectation of machine learning

data.

To allow for visual-servoing, the larger task of fruit picking

was modelled as an MDP, divided into three control phases.

Each phase solves a discrete-time stochastic control problem:

• Staging: The quadcopter begins in this state and makes

large motions to reach an offset location within 1 meter

of the goal.

• Picking: Once the goal is close, the quadcopter takes

smaller, more-precise steps to grasp the fruit.

• Reset: If any malfunction occurs during the Picking

phase, the system returns to the Staging location, so

it can make another attempt.

Each of these phases has greater internal consistency, and

training a separate model for each phase leads to better

learning performance than training one network for the entire

dataset. Training these networks is made more efficient by

using a shared visual CNN-based encoder, as a significant

amount of visual information will have an overlap in multiple

phases. In addition to learning behaviors for each phase,

the network also learns to predict its current phase, thereby

choosing the next action to follow.

C. Related Work

1) Aerial Manipulation

Aerial manipulation research varies widely, using systems

of a variety of sizes, sensors, and end-effectors. Some works,

such as Zhang et al. [9], use overactuated systems, allowing

the end-effector dynamics to be completely decoupled from

the UAV. Others prefer lightweight underactuated systems,

using the coupling between the UAV and end-effector as

an advantage. For example, Welde et al. [10] prove that

underactuated aerial manipulators are differentially flat, al-

lowing for easy motion planning in the flat output space and

Spurny et al. [11] demonstrate an algorithm for cooperative

search, picking, and placing of a set of unknown ferrous

objects using a team of small UAVs. For sensing, a aerial

manipulators often use onboard cameras, allowing for vi-

sual servoing, such as in Mebarki et al. [12]. This visual

information can be synthesized with IMU data to perform

visual-inertial odometry, as in [13]. Other works choose less

conventional sensing techniques, such as Mulgaonkar et al.

[14], which uses collisions with the environment to create a

map of the surroundings. The manipulators used in different

research works range from simple 1-DOF grippers [11],

to more complex open-chain manipulators [9], to bimanual

end-effectors for more complex manipulations [15]. More

detail on the diversity of aerial manipulation systems used

in research can be found in the literature reviews by Ding et

al. [16] and Samadikhoshkho et al. [17].

2) Mapping

Classical machine learning approaches to UAV navigation

aim to distill an image into specific measurements of object

locations and orientations, which are then passed into a

planning algorithm. UAV control algorithms for obstacle

avoidance often use an explicit map of the environment.

This may be accomplished through a point cloud (often

provided by a depth camera) with processing via algorithms

like RANSAC [18] or point clustering [19]. In another

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:09:38 UTC from IEEE Xplore. Restrictions apply.

application,Francis et al. [20], use the differences between

successive frames to model the motion of pixels in the scene.

Beyond these classical methods, Foehn et al. [21] use

convolutional neural networks (CNNs) to map the locations

of objects in an environment (in their work, gates for drone

racing). Liu et al. [22] uses CNNs to map the location of fruit

in mango orchards. The above methods remove all visual

information not related to this explicit output.

3) Path Planning

Given input information such as a map or a measurement

of goal and obstacle locations, there are several ways to pro-

duce a safe, feasible trajectory. Typically, these approaches

fall into two categories, sampling and optimization. Sampling

approaches search the state space [23] or control space [24],

discarding any values that result in unsafe behaviour. These

safe states are then converted into a full trajectory, through

a minimum snap trajectory [25], [26], a polynomial or b-

spline fit [27]. Optimization approaches focus exclusively

on identifying and minimizing costs, skipping the sampling

step. They apply costs to collisions and rewards to reaching

goal spaces, (see [28]). Other methods, such as [29], [30],

find time-optimal paths.

Machine learning approaches to path planning typically

take in the state and environment observation vectors and use

fully connected networks to infer control actions. Hwangbo

et al. [31] use reinforcement learning to train a UAV to

quickly reach a stable equilibrium from any random initial-

ization. Song et al. [32] use a similar approach, but use an

observation of racing gates to infer u as well.

4) Imitation Learning

The present work aims to explore UAV navigation in un-

certain environments. In such contexts, Kaufmann et al. [33],

use deep learning to infer commands directly from images,

allowing the UAV to perform acrobatic maneuvers without

full state information. Similarly, the NVIDIA PilotNet [34]

infers a ground vehicle steering angle,and Yang et al. [35]

builds on PilotNet to output both a steering angle and speed

goal. The above works train networks using a regression-

based cost function. The cost function used in training the

fruit-picking network is based on work by Kim et al. [36],

which found that classification-based cross-entropy loss can

improve on the traditional regression-based loss.

II. BASELINE APPROACH

Before training a network to pick an fruit, we first develop

a method using existing techniques. This allows the novel

approach below to be compared with the current state of

the art. In this baseline approach a neural network segments

the fruit from the color image. The centroid pixel is then

back-projected using the depth image, providing a three

dimensional fruit position in the camera frame. Finally, the

pixels around the fruit are used to estimate a non-colliding

approach angle.

A. Control Framework

The baseline control algorithm performs the following

steps (shown in Figure 1):

1) The onboard camera captures color and depth images.

2) The color image is passed through a segmentation

network to find the location of the goal.

3) The location of the centroid in the camera coordinate

frame is calculated using the depth image and the

camera’s intrinsic matrix.

4) The points near the centroid are back-projected, creat-

ing an estimate of the local tangent plane.

5) A goal position and yaw are calculated from the

position of the fruit and the normal vector to the

tangent plane.

6) A polynomial reference trajectory is calculated, lever-

aging the differential flatness of the quadcopter dynam-

ics to generate a trajectory x̄(t) from the position and

yaw goal.

7) A low-level controller tracks x̄(t) while a new tra-

jectory update can be produced from the next camera

frame.

B. Segmentation

To be able to successfully attempt trajectory generation

to the goal, the environment must be sensed to locate the

fruit. Having access to only the onboard camera for sensing,

a custom segmentation network (based on the U-Net archi-

tecture [37]) was trained to achieve this task. For segmenting

out the fruit in the image, four convolutional layers, of sizes

128, 256, 512, and 512, respectively, are applied sequentially

to the image. Three transpose convolutional layers, of sizes

512, 256, and 128, are then applied, creating an output of the

same size as the original input image. Two skip connections

are added: one between layer 1 and layer 7, and the other

between layer 2 and layer 6. After training on a dataset of

10,000 hand-labeled images, the network was able to predict

the location of the fruit in the picture with an Intersection

over Union of 93.49%. The result can be seen in Figure 2.

C. 3D Projection and Plane Estimation

The centroid of the segmented pixels are then projected

to 3D using the depth channel of the camera and the

pinhole camera projection model. Knowing the location of

the fruit gives the algorithm the information it needs to

reach the final goal, but not enough to avoid collisions

with the environment. In order to approach the fruit from a

safe angle, the pixels near the centroid are back-projected

into three dimensional space and transformed into world

frame coordinates. The resulting point cloud is fit to a plane

using RANSAC [18]. The normal vector to this plane η

is an estimate of the safest approach angle for the aerial

manipulator. In order to ensure safe flight, the z coordinate

of η is set to zero, so that the quadcopter will approach from

a horizontal direction. An example is shown in Figure 2.

D. Trajectory Generation

During flight, the segmentation and plane estimation pro-

cesses occur at 5 hz, continuously updating the estimate

of pgoal and η. As this system completely depends on the

camera for estimating the location of the fruit, it must ensure

the fruit remains in view throughout the process. To ensure

this happens smoothly, especially towards the end of the

process (where the gripper is likely to block the view to the

fruit), a staging state is added, which makes the quadcopter

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:09:38 UTC from IEEE Xplore. Restrictions apply.

Segmentation NN

Aerial Vehicle

Current State: x0

Segmented Image

Depth Map and Image

Projection to 3D

Compute ggoal = (pgoal, η)

Trajectory Generation

Compute reference polynomial trajectory

given current state x0 and xf

Reference Trajectory: x0:N

RGBD

Fig. 1. Flow of data for baseline approach

Fig. 2. The point-cloud generated by the onboard camera. The points used
for plane estimation are shown in white, with the estimate of η shown as
the red axis at the centroid.

position itself at an offset slightly below and in front of

the fruit. At the beginning of each flight, the MDP phase is

initialized to Staging. The algorithm computes a safe location

at the predefined offset from pgoal in the direction of η.

A polynomial reference trajectory in position and yaw is

computed to bring the quadrotor from its current location to

the staging location. The other elements of the state (roll,

pitch, v, and ω) are calculated from the position and yaw

using the differential flatness of the system. After reaching

the goal pose, the MDP transitions into the Picking phase.

Another polynomial trajectory is calculated, this time to

bring the end effector to pgoal. Moving to the offset location

causes the final approach angle to pgoal to be parallel to η,

and therefore less likely to collide with the tree. This phase

ends when the end effector detects a successful connection

with the fruit. If the Picking phase takes too long without

reaching the fruit or the fruit goes out of view, the Reset

stage begins, which returns to the same offset location as

the end of Staging and then restarts Picking.

E. Shortcomings

This approach is effective only when the fruit is in view

during flight. If the fruit is not initially in view, the approach

has no means to explore and find it. Relatedly, if the fruit

leaves view during the Staging phase, the system has no

recourse but to backtrack and try again. If the fruit leaves

view during the Picking phase, it has the ability to retry

Picking, but this leads to slower behavior. Second, the

segmentation network accuracy is reduced when the fruit is

visible but occluded by leaves.

Another limitation is that the RANSAC step is sensitive

to outliers in the point cloud. If the fruit is only sparsely

surrounded by leaves, the point cloud can include pieces

of the background or trunk, making the estimate of η

unreliable. Some of this can be effectively mitigated by low-

pass filtering. However, when the outliers are dependent on

the camera perspective, η can oscillate between estimates,

making staging impossible.

Finally, the biggest shortcoming of this method is the

rigid logic governing the phase transitions. Often, during the

Staging phase, the drone will overshoot its target position

and retreat to it. This maneuver actually takes it further away

from the fruit, wasting time and control effort. The aim of

this work is to use a neural network to imitate the successes

of this approach, while streamlining operation and avoiding

its flaws.

III. LEARNED MULTI-PHASE APPROACH

A. Control Framework

In this work, we use imitation learning via a neural

network trained on successful executions of the baseline

approach. The procedure follows the following steps:

1) The camera image is received and passed through the

segmentation network from section II-B.

2) The color and segmentation layers of the image are fed

into a CNN encoder. The resulting latent vector is com-

bined with a vector of the current roll, pitch, and back-

projected fruit pose and fed into a densely connected

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:09:38 UTC from IEEE Xplore. Restrictions apply.

Trajectory Optimization

Reference Trajectory

Aerial Vehicle

Current State: x0

Desired Relative Poses

RGBD

∆ḡ1:Nw

x∗

0:N

Segmentation NN

Depth Map and Image

Projection to 3D

CNN

DNN

DNN

Encoder

p Waypoint Generation

Sub-Networks

Phase Prediction

Sub-Network

Waypoints
for p

phases

States

compute trajectory

x0:N minimizing J

Prediction NN

Predicted

Phase

RGBD

Segmented

Image

Fig. 3. Flow of data for novel approach

network, trained to output which phase is currently

active, as well as N = 3 poses {∆ḡ1, ...,∆ḡN},

corresponding to the the desired states over the next

N intervals of a time-step ∆t.

3) The series of poses ∆ḡi are given to a DDP optimizer

which produces a smooth trajectory. This trajectory

passes through the ∆ḡ waypoints while minimizing

control effort and obeying the dynamics of the system.

4) A low-level controller tracks the smooth trajectory

while a new trajectory can be produced from the next

camera frame.

B. Network Architecture

The waypoint prediction network architecture (shown in

Figure 3) begins with a four channel image input, the RGB

image from the camera concatenated with the segmented

image Section II-B. This visual information, a 640 x 480

x 4 tensor, is passed into a 56 channel CNN and then

through three ResNet blocks. Each ResNet block performs

the following transformation y(x) = Ci(Re(Ci(Re(x)))) +
Ci(x), where Re is the ReLu activation function and Ci is a

convolutional layer with i channels (the blocks use i = 72,

i = 96 and i = 128 channels respectively). The output after

the third block is flattened into a vector, which represents

the latent state information encoded from the image data.

This vector is concatenated with the current roll, pitch,

and relative orange pose and passed into two fully connected

layers of size 16,384 and 8,192. The final step is an output

layer of size (p + p × N × b × 6), where p = 3 is the

number of phases, b = 100 is the number of bins used for

the classification cost (discussed in Section III-B.1), N = 3
is the number of waypoints being generated by the network,

each with 6 DOF: x,y,z,yaw, pitch,roll.

The first waypoint ∆ḡ0 ∈ SE(3) defines the transform

from the current position to a new goal position to be

reached after ∆t seconds. The subsequent outputs ∆ḡi=1,2

are relative to the i − 1 transform. By using this change of

coordinates, the network can learn to output ∆ḡi = ~0 when

the UAV should move to ∆ḡi−1 and stop.

1) Classification Cost

In training the ∆ḡ outputs, we use a classification cost,

similar to that used by Kim et al. [36]. The available space

of outputs is discretized into b sections (”bins”) in each

degree of freedom, and the network is trained to output

the likelihood that the correct waypoint falls within each

bin. This avoids the common pitfall in regression training of

unintentionally training a network with low variance which

simply outputs the dataset mean. Instead, the probability

output is compared to the one-hot output of the expert. Dur-

ing training, the loss function is the cross-entropy between

these two distributions. Two concerns when designing this

approach are the inherent limitation of the output space, as

each coordinate can now only be inferred to fall within the

space spanned by the bins, and the network output size, as

it is much larger than a direct regression would require. The

output space limitation is mitigated by the phase selection

architecture, as each MDP phase can be discretized into

its own output space. Thus, when in Picking, the network

will inherently output smaller, less aggressive waypoints than

when in Staging.

2) Phase Selection

The first p = 3 elements of the output vector are treated

as a classifier, trained to predict which phase best fits the

current system conditions. The rest of the output vector is

treated as a series of p distinct outputs, one for each phase.

Each output has N points, each with 6 degrees of freedom.

Each degree of freedom is encoded as b probabilities, trained

through the classification cost. The loss for training the

network is computed as the sum of the cross-entropy loss for

predicting the phase and the classification cost for predicting

the waypoints for the actual phase of the system . During

inference, the classifier output is used to determine which

set of waypoints will be forwarded along to the trajectory

generation algorithm (section III-C), as well as the value of

∆t to use. Staging behaviors use ∆t = 1.0s, while Picking

and Reset use ∆t = 0.25s.

C. Trajectory Generation

Once the waypoints have been produced, they are passed

to a short-term trajectory generator, which uses DDP to

produce a trajectory over the next N × ∆t seconds that

minimizes the cost

J =

∫ N×∆t

0

(x(t)TQx(t) + u(t)TRu(t) + w(x, t))dt

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:09:38 UTC from IEEE Xplore. Restrictions apply.

The Q cost on x(t) penalizes unsafely high velocities,

the R cost on u(t) penalizes high control effort, and the

waypoint cost w is zero when t 6= {∆t, 2∆t, ..N ×∆t} and

∆xTQf∆x otherwise. This Qf cost penalizes ∆x, the dif-

ference between x(t) and x̄(t) = g(x(0))
∏t/∆t

0
∆x̄i. Thus,

through choices of Q, R, and Qf , DDP finds a trajectory

that flies closely to each waypoint, while conforming to

the dynamics of the UAV. The trajectory lasts for N × ∆t

seconds, far longer than it takes for a new image to be

processed and a new trajectory to be recalculated.

D. Data Collection

Using the baseline controller, a dataset of approximately

40,000 images and associated paths were collected over the

course of 263 trials. Each trial consisted of placing the

fruit, tree, and UAV at randomized positions and orientations

within the workspace, then allowing the expert to run until

the end-effector contained the fruit. This was verified by a

magnetometer in the base of the basket and a small magnet

glued to the bottom of the fruit. Any trials containing errors

in Picking (crashing, losing sight of the fruit, getting trapped

in an equilibrium) were still used for training Staging and

Reset, provided they completed successfully. The network

was trained using these pairs, as well as horizontally mirrored

images with the associated waypoints transformed from left

to right as well.

IV. RESULTS

A. Hardware

The quadcopter base used in this work is the DJI Matrice

100. It carries an Intel NUC for onboard computation, a

Realsense D435i to collect RGB and Depth images, and

a LSM303DLHC magnetometer. The fruit is fitted with

a magnet on its underside and the magnetometer is used

to detect when an fruit has successfully entered the end-

effector. The workspace is limited to the volume covered

by a Optitrack motion capture system, allowing for 120Hz

odometry feedback.

B. Trial Design

After training the network was able to predict the correct

phase with 92.2% accuracy in the training dataset and 87.6%

accuracy in the validation dataset.

After training, the network was flown in an identical setup

to the data collection above (section III-D). Afterwards, the

trials were analysed for the following criteria:

1) Picking Success: The percentage of trials in which,

after staging, the end effector reached the goal, placing

the fruit in the basket.

2) Staging Success: The percentage of trials in which

the UAV reached the staging position, leaving only to

approach the goal.

3) Picking Speed: On trials which successfully picked

fruit, the average speed for the final phase.

4) Staging Speed: On trials which successfully reached

the staging position, the average speed of the staging

phase.

Mean values of these metrics for the baseline and network

controllers can be found in table IV-B.

TABLE I

COMPARISON OF THE BASELINE AND LEARNED APPROACHES

Method Picking
Success

Staging
Success

Picking
Speed
(cm/s)

Staging
Speed
(cm/s)

Baseline 75.6% 99.2% 3.4 12.5
Learned 70.3% 96.3% 2.7 19.2

TABLE II

ABLATION STUDY

Method Picking
Success

Staging
Success

Trials

Learned 70.3% 96.3% 29
Without Roll-Pitch 40% 80% 10
Without Fruit Pose 0% 60% 10
Without Multi-phase 10% 70% 10
Regression Loss 10% 20% 10

C. Ablation Study

The network architecture is further validated by an ab-

lation study on four of its features. The same dataset was

used to train a set of new networks, one without the roll and

pitch inputs, one without the fruit pose inputs, one without

multi-phase setup, and one using a regression cost instead of

the classification cost. The results of trials with these four

networks are shown in table IV-C.

D. Discussion

Compared to the baseline controller, the novel controller

performs slightly worse at both staging and picking success.

The network demonstrated two common failure modes. First,

the UAV would reach a valid staging location, but then

remain there instead of entering the Picking phase. Second,

the UAV would miss the fruit by a small amount, which

could knock the fruit to the outside of the basket. The Reset

behaviour would be unable to disentangle the end-effector

from the tree, requiring manual intervention.

The ablated networks performed as follows:

1) The network trained without roll and pitch inputs was

prone to more aggressive maneuvers, which often led

to the fruit leaving view or the UAV getting too close

to the tree.

2) The network trained without fruit pose inputs was dra-

matically worse, struggling to even reach the staging

position.

3) The network trained as a single phase suffered from

the equilibrium failures described above, getting to a

position with a good view of the fruit and remaining

there instead of moving in to pick it.

4) The network trained with a regression cost was not

very responsive to changes in its state. It moved

generally forward, frequently crashing into branches or

missing the tree outright. It only succeeded at reaching

the fruit if the randomized initial position placed it

directly in front of the fruit.

V. CONCLUSION

We have presented an algorithm for generating

dynamically-feasible paths which enable an aerial

manipulator to navigate to and pick a mock-up fruit from

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:09:38 UTC from IEEE Xplore. Restrictions apply.

S. Leutenegger, “Mid-fusion: Octree-based object-level multi-instance
dynamic slam,” 2019.

[20] S. L. Francis, S. G. Anavatti, and M. Garratt, “Detection of obstacles in
the path planning module using differential scene flow technique,” in
2015 International Conference on Advanced Mechatronics, Intelligent

Manufacture, and Industrial Automation (ICAMIMIA), pp. 53–57,
2015.

[21] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” 2020.

[22] X. Liu, S. W. Chen, C. Liu, S. S. Shivakumar, J. Das, C. J. Taylor,
J. Underwood, and V. Kumar, “Monocular camera based fruit counting
and mapping with semantic data association,” IEEE Robotics and

Automation Letters, vol. 4, no. 3, pp. 2296–2303, 2019.
[23] G. Kontoudis, Z. Xu, and K. G. Vamvoudakis, “Online, model-free

motion planning in dynamic environments: An intermittent, finite
horizon approach with continuous-time q-learning,” 07 2020.

[24] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” 2019.

[25] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, mod-
eling, estimation and control for aerial grasping and manipulation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 2668–2673, IEEE, 2011.
[26] G. Ryou, E. Tal, and S. Karaman, “Multi-fidelity black-box optimiza-

tion for time-optimal quadrotor maneuvers,” 2020.
[27] D. Jung and P. Tsiotras, On-line Path Generation for Small Unmanned

Aerial Vehicles Using B-Spline Path Templates.
[28] G. Garimella, M. Sheckells, and M. Kobilarov, “Robust obstacle avoid-

ance for aerial platforms using adaptive model predictive control,”
in 2017 IEEE International Conference on Robotics and Automation

(ICRA), pp. 5876–5882, IEEE, 2017.
[29] P. Foehn and D. Scaramuzza, “Cpc: Complementary progress con-

straints for time-optimal quadrotor trajectories,” 2020.
[30] S. Spedicato and G. Notarstefano, “Minimum-time trajectory genera-

tion for quadrotors in constrained environments,” IEEE Transactions

on Control Systems Technology, vol. 26, no. 4, pp. 1335–1344, 2018.
[31] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor

with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[32] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” 2021.

[33] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Deep drone acrobatics,” 2020.

[34] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural network
trained with end-to-end learning steers a car,” 2017.

[35] Z. Yang, Y. Zhang, J. Yu, J. Cai, and J. Luo, “End-to-end multi-modal
multi-task vehicle control for self-driving cars with visual perception,”
2018.

[36] J. W. Kim, C. He, M. Urias, P. Gehlbach, G. D. Hager, I. Iordachita,
and M. Kobilarov, “Autonomously navigating a surgical tool inside
the eye by learning from demonstration,” 2020.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” 2015.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 29,2021 at 16:09:38 UTC from IEEE Xplore. Restrictions apply.

