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Abstract: In this work, we consider the problem of steering the first two moments of the
uncertain state of an unknown discrete-time stochastic nonlinear system to a given terminal
distribution in finite time. Toward that goal, first, a non-parametric predictive model is learned
from a set of available training data points using stochastic variational Gaussian process
regression: a powerful and highly scalable machine learning tool for learning distributions over
arbitrary nonlinear functions. Second, we formulate a tractable nonlinear covariance steering
algorithm that utilizes the learned Gaussian process predictive model to compute a feedback
policy that will drive the distribution of the state of the system close to the goal distribution. In
a greedy approach, we linearize the Gaussian process model at each time step around the latest
predicted mean and covariance, solve the linear covariance steering problem, and propagate the
state statistics to the next time step using the unscented transform. This process is then repeated
in a shrinking-horizon model predictive control fashion. The cautiousness of the Gaussian process
predictive model, which captures both the process noise and modeling errors, is demonstrated
in numerical simulations.

Keywords: nonparametric methods, nonlinear system identification, stochastic system
identification, covariance steering, stochastic optimal control problems

1. INTRODUCTION

In this paper, we consider the finite-horizon covariance
steering problem for discrete-time stochastic nonlinear
systems described by non-parametric Gaussian process
models. In particular, we consider the problem of 1)
learning sparse stochastic variational Gaussian process
(SVGP) predictive models for stochastic nonlinear systems
from training data and 2) using the SVGP models for
computing feedback control policies that steer the mean
and covariance of the uncertain state of the underlying
system to desired quantities at a given (finite) terminal
time. This problem will be referred to as the Gaussian
process-based nonlinear covariance steering problem.

Literature Review: Gaussian Processes (GP) [Rasmussen
(2003)] are non-parametric regression models that describe
distributions over functions and are ideal for learning pre-
dictive models for arbitrary nonlinear stochastic systems
due to their flexibility and inherent ability to provide un-
certainty estimates that capture both model uncertainties
and process noise. GP regression models have been used
extensively for learning predictive state models for dynam-
ical systems [Grimes et al. (2006); Ko et al. (2007a)] and
observation models for state estimation [Ko et al. (2007b);
Ko and Fox (2009)], as well as trajectory optimization [Pan
and Theodorou (2015)] and motion planning [Mukadam
et al. (2016); Hewing et al. (2020)]. Inference using GP
models is inherently dependent on the training data and
the cost of inference with exact GPs scales with the cube
of the number of training points. For that reason, a num-
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ber of sparse approximations of GPs have been proposed
in the literature, the most common ones using a set of
“inducing variables” [Quinonero-Candela and Rasmussen
(2005); Titsias (2009)]. Further scalability can be achieved
by using stochastic variational inference [Hoffman et al.
(2013)], leading to sparse GP models that can be trained
on large datasets with thousands or millions of data points
using stochastic gradient descent, while retaining a small
inference cost [Hensman et al. (2013)].

The covariance steering (or covariance control) problem for
both continuous and discrete-time linear Gaussian systems
has been studied extensively for the infinite-horizon [Hotz
and Skelton (1987); Xu and Skelton (1992)] as well as the
finite-horizon case [Chen et al. (2016a,b); Bakolas (2016);
Goldshtein and Tsiotras (2017)]. Nonlinear density steer-
ing problems for feedback linearizable nonlinear systems
were recently studied in Caluya and Halder (2019), while
an iterative covariance steering algorithm for nonlinear
systems based on a linearization of the system along
reference trajectories was presented in Ridderhof et al.
(2019). Stochastic nonlinear model predictive control with
probabilistic constraints can also be found in Mesbah et al.
(2014); Sehr and Bitmead (2017).

Main Contribution: In this work, non-parametric state
predictive models of discrete-time stochastic nonlinear sys-
tems with unknown dynamics are learned using stochastic
variational GP regression from a set of training samples
obtained by measuring the underlying stochastic nonlinear
system. Then, the learned SVGP model is used to control
the mean and covariance of the state of the unknown
systems in a cautious greedy nonlinear covariance steering
algorithm that takes into account both process noise and
model uncertainties. Similar to Bakolas and Tsolovikos
(2020), the SVGP-based greedy nonlinear covariance steer-
ing algorithm linearizes the learned model around the



latest mean state prediction or estimate, solves the linear
covariance steering problem from the current to the target
distribution and then propagates the state statistics to
the next step using the unscented transform [Julier and
Uhlmann (2004)], modified to take into account the un-
certainty estimates provided by the GP predictive model
[Ko et al. (2007b)]. This three-step process is repeated
in a shrinking-horizon model predictive control fashion
until the final time step, when the terminal state mean
and covariance should sufficiently approximate the goal
quantities.

Structure of the paper: The rest of the paper is organized
as follows. In Section 2, the process of learning a predictive
model from sample data points using SVGP regression is
presented. The greedy nonlinear covariance steering prob-
lem for non-parametric GP predictive models is formulated
in Section 3. Section 4 presents numerical simulations and
comparisons of the GP model with the analytic one. We
conclude with remarks and directions for future research
in Section 5.

Notation: Given a random vector x, E[x] denotes its
expected value (mean) and Cov[x] its covariance. The
space of real symmetric n × n matrices will be denoted
by Sn. The convex cone of n × n (symmetric) positive
semi-definite and (symmetric) positive definite matrices
will be denoted by S

+
n and S

++
n , respectively. Finite-length

sequences are denoted as {x1, . . . ,xN} = {xi}
N
i=1. The i-

th element of a vector x is denoted by [x]i. Similarly, the
i-th element of the j-th column of a matrix M is denoted
as [M ]ij . For a scalar-valued function f(·) : R

n → R

and a sequence of vectors X = {xi}
N
i=1, we define f(X)

as the vector with [f(X)]i = f(xi). Similarly, if k(·, ·) :
R

n × R
n → R, then k(X,X) is the matrix with elements

[k(X,X)]ij = k(xi,xj). Finally, if x ∈ R
n and y ∈ R

m,
then [x;y] = [x>,y>]> ∈ R

n+m will denote the vertical
concatenation of x and y.

2. STOCHASTIC VARIATIONAL GAUSSIAN
PROCESSES FOR DISCRETE-TIME DYNAMICS

2.1 Sparse Variational Gaussian Process Regression

Consider the vector y, where yi is a noisy observation
of an unknown scalar-valued function f(·) : R

n → R

at a known location xi, for all X = {xi}
N
i=1, and the

measurement likelihood p(yi | f(xi)) is known. Let f be
the (unknown) vector containing the values of f(·) at
the points X. We introduce a Gaussian prior on f(·), i.e.
f(x) ∼ N (f(x) | m(x), k(x,x)), where m(·) : Rn → R is
a chosen mean function (e.g. zero, constant, or linear) and
k(·, ·) : Rn ×R

n → R is the kernel function that measures
the closeness between two input points and specifies the
smoothness and continuity properties of the underlying
function f(·). Now, the prior over the vector f can be
written as

p(f ;X) = N (f | m(X), k(X,X)) , (1)

where the mean vector is defined as [m(X)]i = m(xi) and
the covariance is [k(X,X)]ij = k(xi,xj).

Exact GP Inference: The joint density of y and f is

p(y, f ;X) = p(y | f ;X)p(f ;X). (2)

If the likelihood function is chosen to be Gaussian, e.g.
p(y | f ;X) = N

(

y | f , σ2
ε I

)

, then, the marginal likelihood

p(y;X) =

∫

p(y | f ;X)p(f ;X)df

= N
(

y | m(X), k(X,X) + σ2
ε I

)

(3)

is analytically computed and the hyperparameters Θ =
{θm, θk, σε} that define the Gaussian process mean, kernel,
and likelihood functions can be directly optimized by
minimizing the negative log-likelihood of the training data:

Θopt = argmin
Θ

(−log p(y;X)) . (4)

Prediction of y∗ on a new location x∗ is done by condi-
tioning on the training data,

p(y∗;x∗,y,X) =

∫

p(y∗,y;x∗,X)dy

= N (y∗ | µ∗, σ∗) , (5)
where

µ∗ = m(x∗) + k(x∗,X)
[

k(X,X) + σ2
ε I

]−1
(y −m(X))

σ∗ = k(x∗,x∗)− k(x∗,X)
[

k(X,X) + σ2
ε I

]−1
k(X,x∗).

The inference cost is O(N3), which can be expensive when
the number of training points N is large. In order to
reduce the inference cost of a GP model, we can use sparse
approximations of Gaussian processes.

Sparse Variational GP Inference: Define a set of M
inducing locations Z = {zi}

M
i=1, with M � N , where M

and Z are parameters to be chosen. Also, define the vector
u as [u]i = f(zi). The joint density of y, f , and u is

p(y, f ,u) = p(y | f ;X)p(f | u;X,Z)p(u;Z), (6)

where p(u;Z) = N (u | m(Z), k(Z,Z)) is the Gaus-
sian prior on u (similar to (1)) and p(f | u;X,Z) =

N
(

f | µ̃, Σ̃
)

, with

[µ̃]i = m(xi) + k(xi,Z)k(Z,Z)
−1 (u−m(Z)) ,

[Σ̃]ij = k(xi,xj)− k(xi,Z)k(Z,Z)
−1k(Z,xj).

However, u is unknown, since f(·) is also unknown. Fol-
lowing Hensman et al. (2013), we choose a variational
posterior

q(f ,u) = p(f | u;X,Z)q(u), (7)

where q(u) = N (u | m,S) and m, S are the parameters
defining the variational distribution (along with Z). Since
both terms in (7) are Gaussian, we can get rid of u by
marginalizing over it, that is,

q(f | m,S;X,Z) =

∫

p(f | u;X,Z)q(u)du

= N (f | µ,Σ) , (8)
where, if we define the functions

µf (xi) := m(xi) + k(xi,Z) [k(Z,Z)]
−1

(m−m(Z)) ,

Σf (xi,xj) := k(xi,xj)

− k(xi,Z)k(Z,Z)
−1 [k(Z,Z)− S] k(Z,Z)−1k(Z,xj),

then [µ]i = µf (xi) and [Σ]ij = Σf (xi,xj).

The variational parameters (Z, m, and S), along with
the hyperparameters Θ = {θm, θk, σε}, can be found by
maximizing the lower bound L on the marginal likelihood,

log p(y | X) ≥ Eq(f ,u)

[

log
p(y, f ,u)

q(f ,u)

]

= L. (9)

The lower bound can be factorized as

L =

N
∑

i=1

Eq(fi|m,S;xi,Z) [log p(yi | fi)]−KL [q(u)‖p(u)] ,



where KL denotes the Kullback-Leibler divergence. Note
that the expectation can be computed analytically if the
likelihood p(yi | fi) is Gaussian. An immediate conse-
quence of that choice is that, since the bound is the sum
over the training data, we can perform stochastic inference
through minibatch subsampling. This allows inference on
large datasets and, more importantly, online learning of
the variational parameters.

Once the variational parameters have been trained, pre-
dicting the distribution of y∗ on a test location x∗ is simply

p(y∗;x∗,m,S,Z) = N
(

y∗ | µf (x∗),Σf (x∗,x∗) + σ2
ε

)

.

Now, only an M ×M matrix needs to be inverted.

Multiple Outputs: So far, the output yi ∈ R has been
a scalar. In the case of multiple outputs yi ∈ R

D, we can
define the matricesY, F, andU as the matrices containing
the observation yi and function values f(xi) and f(zi)
as their i-th rows. The latent functions are now fd(·) :
R

n → R, for d = 1, . . . , D, and an independent sparse
GP is learned for each function by maximizing a lower
bound similar to the scalar case, but with p(Y,F,U) =
ΠD

d=1p(yd, fd,ud) and q(F,U) = ΠD
d=1q(fd,ud) in place of

p(y, f ,u) and p(f ,u), respectively.

2.2 SVGP for Discrete-time Dynamics

Consider a discrete-time dynamical system of the form

zt+1 = g(zt,ut) + εt, (10)

where zt ∈ R
nz is the state at time step t, ut ∈ R

nu is the
control input, and εt ∈ R

nz the i.i.d. additive Gaussian
white noise, with wt ∼ N

(

εt | 0, σ
2
ε I

)

.

Assume that the underlying dynamics g(·, ·) are unknown,
but full-state measurements of the state transitions for
given inputs are available for sampling (e.g. via experi-
ments). In particular, assume that observations

yi = g(zi,ui) + εi (11)

at known locations

xi = [zi;ui] (12)

are available, that is, our dataset consists of N triplets,
D = {(yi, zi,ui)}

N
i=1. Following Subsection 2.1, we can

fit a multitask (multi-output) sparse variational GP to
the measurements, in order to get a non-parametric ap-
proximate model of the dynamics. The observations and
corresponding inputs to the SVGP are the ones defined
in (11) and (12), respectively, the number of outputs is
D = nz and the number of inputs (features) is n = nz+nu.
Choosing an appropriate mean m(·) (e.g. zero, constant,
or linear) and a kernel function k(·, ·) (typically, a squared
exponential), the variational parameters and hyperparam-
eters of the SVGP are learned by minimizing the negative
of the lower bound, −L, via stochastic gradient descent on
minibatches of D.

The learned SVGP model can now be defined as

zt+1 = G(zt,ut) +wt, (13)

where

G(zt,ut) = µf ([zt;ut]) (14)

is the mean of the next state and

wt ∼ N
(

wt | 0,Σf ([zt;ut], [zt;ut]) + σ2
ε

)

(15)

is the additive noise, the covariance of which captures not
only the process noise, but also the model uncertainties.

2.3 Linearization of the SVGP Dynamics

Given a trained SVGP model like the one in (13), if a
linearization around a given state z∗ and input u∗ is
necessary, it can be easily computed as

zt+1 ≈ A∗zt +B∗ut + d∗, (16)

where

A∗ =
∂

∂z
G(z∗,u∗) =

∂

∂[z;u]
µf ([z;u])

[

Inz

0

] ∣

∣

∣

∣

z=z∗

u=u∗

, (17)

B∗ =
∂

∂u
G(z∗,u∗) =

∂

∂[z;u]
µf ([z;u])

[

0
Inu

] ∣

∣

∣

∣

z=z∗

u=u∗

, (18)

and

d∗ = −A∗z∗ −B∗u∗ +G(z∗,u∗).

For compactness, denote the linearization operation as

{A∗, B∗,d∗} = LING{z∗,u∗}. (19)

Note that linearization with respect to the inputs to the
GP will depend on the selected meanm(·) and kernel k(·, ·)
functions. In practice, the above Jacobians can be easily
computed via automatic differentiation (e.g. Autograd in
PyTorch [Paszke et al. (2017)]).

3. GREEDY NONLINEAR COVARIANCE STEERING

3.1 Problem Formulation

Consider the finite-time evolution of the stochastic system
(10). The goal of finite-time covariance steering is to find a
control policy that will steer the state of (10) from a given
initial distribution with mean µ0 and covariance Σ0 to a
given terminal one with mean and covariance µf and Σf ,
respectively, in a finite horizon of T time steps.

A greedy approach to finite-horizon covariance steering
was presented in Bakolas and Tsolovikos (2020), where the
dynamics (10) are linearized at each time step around the
current mean, the linear covariance steering problem from
the current to the target mean and covariance is solved,
and only the first control law is applied. However, the exact
dynamics in (10) are unknown and cannot be used in the
model-based covariance steering algorithm of Bakolas and
Tsolovikos (2020). Instead, the greedy algorithm will be
adapted to be used with the approximate, non-parametric
GP model that we learned in Section 2.

In particular, consider the learned model (13) for t =
0, . . . , T−1, with an initial state z0 drawn from a distribu-
tion with E[z0] = µ0 and Cov[z0] = Σ0, where µ0 ∈ R

nz

and Σ0 ∈ S
++
nz

are given. The process noise, wt, is assumed
to be a sequence of i.i.d. random variables drawn from (15).
Furthermore, z0 is conditionally independent of wt, for all
t = 0, . . . , T − 1.

Because the identified system in (13) is nonlinear, there is
no guarantee that an initial state drawn from a normal
distribution will lead to future states being Gaussian.
Therefore, as explained in Bakolas and Tsolovikos (2020),
it is more prudent to talk about steering the nonlinear
system mean and covariance close to desired quantities
(in the Loewner sense) rather than steering the state
distribution to a goal distribution.

If we take the class of admissible control policies to be the
set of sequences of control laws that are measurable func-
tions of the realization of the current state, the nonlinear
covariance steering problem can be formulated as follows:



Problem 1. (nonlinear covariance steering problem).
Let µ0,µf ∈ R

nz and Σ0,Σf ∈ S
++
nz

be given. Find a

control policy π := {κt(·)}
T−1
t=0 that will steer the system

(13) and, consequently, (10), from the initial state z0 with
E[z0] = µ0 and Cov[z0] = Σ0 to a terminal state zT with

µT = µf , (Σf − ΣT ) ∈ S
+
nz
. (20)

3.2 Finite-Horizon Linearized Covariance Steering Problem

Next, we formulate a linearized covariance steering prob-
lem for the system described by the linearization

zj+1|t ≈ Atzj|t +Btuj|t + dt, (21)

of (13) around the mean state µt and corresponding
(previous) control policy,

{At, Bt,dt} = LING{µt, φ
∗
t|t−1

(

{µi}
t
i=t−1

)

}, (22)

for j = t, . . . , T − 1. For the latter problem, consider
the class U of admissible control policies that consist of
the sequence of control laws {φj|t(·)}

T−1
j=t that are affine

functions of the histories of states, that is,

φj|t({zi|t}
j
i=t) = υj|t +

j
∑

i=t

Kj,i|tzi|t, (23)

for j = t, . . . , T − 1. The linearized covariance steering
problem at time step t is formulated as follows:

Problem 2. (t-th linearized covariance steering problem).
Let µt,µf ∈ R

nz and Σt,Σf ∈ S
++
nz

be given. Among

all admissible control policies $t := {φj|t(·)}
T−1
j=t ∈ U ,

with φj|t(·) of the form (23), find a control policy $∗
t that

minimizes the performance index

Jt($t) := E
[

T−1
∑

j=t

φj|t({zi|t}
j
i=t)

>φj|t({zi|t}
j
i=t)

]

(24)

subject to the recursive dynamic constraints (21) and the
boundary conditions

E[zt|t] = µt, Cov[zt|t] = Σt, (25a)

E[zT |t] = µf , (Σf − Cov[zT |t]) ∈ S
+
nz
. (25b)

The performance index ensures that the control input will
have finite energy, without excessive actuation. State and /
or input constraints can also be incorporated in the above
optimization-based solution (see Bakolas (2018)).

Problem 2 can be formulated as a convex semi-definite
program (SDP) and, thus, can be solved efficiently using
any available conic solver. The formulation of the SDP is
ommitted in the interest of space, but can be found in
Bakolas (2018) and Bakolas and Tsolovikos (2020).

For compactness, denote the solution to the t-th linearized
covariance steering problem as

{φ∗
j|t(·)}

T−1
j=t = LCSt,T {At, Bt,dt,µt,Σt,µf ,Σf}. (26)

3.3 Gaussian Process-Based Unscented Transform for
Uncertainty Propagation

Let π = {κt(·)}
T−1
t=0 be an admissible control policy for

Problem 1. Then, the closed-loop dynamics become

zt+1 = G(zt, κt(zt)) +wt. (27)

The mean and covariance of the uncertain state of the
nonlinear system described by (27) is propagated using

the unscented transform [Julier and Uhlmann (2004)]. To
this aim, assume that the mean µt := E[zt] and covariance
Σt := Cov[zt] of the state of (13) (or estimates of these
quantities) are known at time step t.

First, we compute 2nz + 1 deterministic points, σ
(i)
t , i =

1, . . . 2nz+1, which are also known as sigma points. Then,

to each sigma point, we associate a pair of gains (γ
(i)
t , δ

(i)
t ).

Subsequently, the sigma points {σ
(i)
t }2nz+1

i=1 are propagated
to the next time step to obtain a new set of points

{σ̂
(i)
t+1}

2nz+1
i=1 , where

σ̂
(i)
t+1 = G(σ

(i)
t , κt(σ

(i)
t )), i = 1, . . . , 2nz. (28)

Using this new point-set, one can approximate the (pre-
dicted) state mean and covariance at time step t+ 1 as

µ̂t+1 =

2nz
∑

i=0

γ
(i)
t σ̂

(i)
t+1,

Σ̂t+1 =

2nz
∑

i=0

δ
(i)
t (σ̂

(i)
t+1 − µ̂t+1)(σ̂

(i)
t+1 − µ̂t+1)

> +Wt.

Similar to Ko et al. (2007b), we set Wt = Cov[wt] =
Σf ([zt;κt(zt)], [zt;κt(zt)]) + σ2

ε ∈ S
+
nz

as the process noise
covariance. Notice that Wt captures both the noise in the
system as well as the model uncertainties resulting from
the lack of training data points used in the learning phase,
thus leading to conservative uncertainty estimates.

3.4 Greedy Nonlinear Covariance Steering for Gaussian
Process Predictive Models

Now we have all the tools necessary to extend the greedy
nonlinear covariance steering algorithm of Bakolas and
Tsolovikos (2020) to Gaussian process predictive models.
The greedy algorithm consists of three main steps. Con-
sider the time step t, where t = 0, . . . , T − 1, and assume
that estimates of the state mean, µ̂t, the state covariance,

Σ̂t, as well as the input mean ν̂t, are known (starting from

µ̂0 = µ0, Σ̂0 = Σ0, and ν̂0 = 0).

The first step is to linearize (13) around (µ̂t, ν̂t):

{At, Bt,dt} = LING{µ̂t, ν̂t}, (29)

where ν̂t = φ∗
t|t−1({µ̂i}

t
i=t−1). The linearization will have

to be updated at each time step t since the estimates µ̂t
and ν̂t will also be updated.

The second step is to solve the t-th linearized covari-
ance steering problem (Problem 2) using the linearized
model {At, Bt,dt} and the predicted mean and covariance

(µ̂t, Σ̂t) estimated at time step t:

{φ∗
j|t(·)}

T−1
j=t = LCSt,T {At, Bt,dt, µ̂t, Σ̂t,µf ,Σf}. (30)

From {φ∗
j|t(·)}

T−1
j=t , we extract only the first control law,

κt(zt) := φ∗
t|t(zt) = υ

∗
t|t +K∗

t|tzt,

where z is the state of the original nonlinear system. The
one-time-step transition map for the closed-loop dynamics
based on information available at time step t is then

zt+1 = G(zt, κt(zt)) +wt. (31)

In the third step, the estimates (µ̂t+1, Σ̂t+1) are computed

by propagating the mean µ̂t and covariance Σ̂t of the
closed-loop system to the next time step. The new mean
and covariance, i.e., µ̂t+1 and Σ̂t+1, are computed using
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