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Abstract— In this paper, we propose a Koopman operator
based approach to describe the nonlinear dynamics of a
quadrotor on SE(3) in terms of an infinite-dimensional linear
system which evolves in the space of observables (lifted
space) and which is more appropriate for control design
purposes. The major challenge when using the Koopman
operator is the characterization of a set of observables that
can span the lifted space. Most of the existing methods
either start from a set of dictionary functions and then
search for a subset that best fits the underlying nonlinear
dynamics or they rely on machine learning algorithms to
learn these observables. Instead of guessing or learning
the observables, in this work we derive them in a sys-
tematic way for the quadrotor dynamics on SE(3). In addi-
tion, we prove that the proposed sequence of observables
converges pointwise to the zero function, which allows
us to select only a finite set of observables to form (an
approximation of) the lifted space. Our theoretical analysis
is also confirmed by numerical simulations which demon-
strate that by increasing the dimension of the lifted space,
the derived linear state space model can approximate the
nonlinear quadrotor dynamics more accurately.

Index Terms— Aerospace, Modeling, Robotics

I. INTRODUCTION

E consider the problem of forming a lifted space over

which the nonlinear dynamics of a quadrotor on SE(3)
can be described by a (possibly infinite-dimensional) linear
system. The approach utilized herein, which relies on the
framework of Koopman operator, allows one to account for
the nonlinearities of the dynamics of the quadrotor while at the
same time linear control design techniques are still applicable.
The major challenge in using the Koopman operator for
approximating nonlinear dynamics is finding a suitable set of
observable functions (or observables) that can serve as basis
functions for the lifted space. In this paper, we propose a
systematic way to derive a set of observables for the quadrotor
dynamics on SE(3). A subset of the latter set is chosen to
form the truncated (approximation of the) “lifted” linear state
space model for the quadrotor dynamics. In prior literature
[1], [2], control design methods for quadrotors are based on
linearization of their dynamics around a reference trajectory or
a fixed point to facilitate the use of linear control design tools
such as linear Model Predictive Control (MPC) [3]. These
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methods achieve reduced computational overhead compared
to Nonlinear MPC (NMPC), thereby allowing more on-board
processing power for other applications like communication
and perception. However, the desired accuracy from linearized
based models cannot be guaranteed for large deviations from
the linearization point. Other more sophisticated linearization
methods like Carleman linearization [4] cannot be used for
quadrotors as their applicability is limited to polynomial vector
fields. Quadrotor systems have received a lot of attention in the
robotics and control communities. The strong nonlinear cou-
pling and underactuated characteristics of quadrotor dynamics
make the design of an effective controller more difficult than
other mobile robots. In this paper, we use a Koopman operator
based approach to derive a set of observables which will allow
us to approximate the nonlinear dynamics of a quadrotor on
SE(3) by a higher dimensional linear state space model which
is more appropriate for (model based) control design purposes.

Literature review: Koopman operator-based methods have
been widely used for approximating nonlinear systems [5]-
[10]. Extensions of these methods for controlled systems have
been proposed in [11]-[16]. Koopman-based approaches have
been proposed for robotic applications in [17], [18]. The main
challenge in using Koopman operator based methods is choos-
ing the right set of observables for modeling purposes [19].
Approaches using neural networks [20], [21], reproducing
kernels [22], and basis functions [23] have also been proposed
for estimating the Koopman operator. However, these methods
require prior data and a suitable finite set of observables which
are typically chosen in a heuristic way. In addition, there is no
guarantee that the data collected is rich enough for estimating
the Koopman operator that can approximate the nonlinear
dynamics accurately enough. In [24], a set of observables are
derived and thereafter a Koopman based LQR controller is
proposed for the spacecraft attitude dynamics.

Main contributions: In contrast with [24], which has in-
spired this work, we derive a set of observables for the
quadrotor dynamics on SFE(3) in which the attitude and
position of the quadrotor are coupled in a nonlinear fashion.
Subsequently, we use these functions to form the lifted space
in which the quadrotor dynamics is described by a linear state
space model. This linear model becomes equivalent to the
nonlinear model as the dimension of the lifted space tends
to infinity. In addition, we prove the pointwise convergence of
the observables to the zero function as the dimension of the
lifted state space goes to infinity. This allows us to truncate the
higher dimensional lifted space to a lower (finite) dimensional



lifted space. The main advantage of using the derived set
of observables is that it does not require prior data of state
and control input pairs for using the Koopman operator based
control approaches. To the best of our knowledge, this is the
first paper which derives a set of observables for both position
and attitude dynamics of a quadrotor on SFE(3).

Structure of the paper: The organization of the paper is
as follows. In Section II, we introduce the nonlinear state
space model for a quadrotor followed by an overview of the
Koopman operator. In Section III, we provide the derivation
of the set of observables and then the formulation of the lifted
space linear dynamics. Numerical simulations are presented in
Section IV, and finally Section V presents concluding remarks.

Il. PRELIMINARIES
A. Nomenclature

Given a vector @ € R™, let (a); denote its i element and let
|a| denote its Euclidean norm. Given a = [a1, ag, as]T € R3,
we denote by a* € R3*3 the matrix which is such that
the cross product a x b = a*b for all b € R3. The set
of natural numbers is denoted by N. Given a,b € N with
a < b, we denote the discrete interval from a to b as [a, b]g,
where [a,b]q := [a, b)) "N. Let bdiag(D1, ..., Dy) denote the
block diagonal matrix comprising of matrices D1, ..., Dg.
Let 0,,x.m (or simply O) denote the n X m zero matrix,
0,, denote the n x n zero matrix and I,, denote the n X n
identity matrix. In addition, we denote by A = vec(A),
the vector that is formed by concatenating the columns that
comprise the matrix A. The trace operator is denoted as
tr(-). Let || X||r denote the Frobenius norm for a matrix
X € R™™ where | X||p := |vec(X)|. For a matrix X,
we denote by X T its Moore-Penrose inverse. In addition, let
® denote the Kronecker product. By SE(3), we denote the
Special Euclidean group which can be represented as follows:
SE(3) = {A | A = [Igﬂ , pER3 RRT =RTR = 13}.
Let J € R3*3 denote the quadrotor’s inertia (positive
definite) matrix, p € R? its position in the inertial frame,
and R € SO(3) its rotation matrix from body-fixed frame to
inertial frame (see Fig. 1). Finally, let v € R3 and w € R3
denote the linear and angular velocities of the quadrotor in
the body-fixed frame, respectively, and m its mass.

B. Quadrotor dynamics

]
€.
2 e,
Inertial frame

Fig. 1: Inertial and body fixed frame of the quadrotor

The quadrotor is an under-actuated system whose motion
can be described as follows [17], [25]:

h=h[w 2], Jo=M+Ju w,

v = (1/m)Fes —w v — gR e, (1)
where h € SE(3), g is the acceleration due to gravity and
e3 = [0,0,1]T. Finally,

F =k (uy +ug + ug + ug),
M = [kil(ug — ug), kel(uz — u1), b (ug — ug 4+ uz — ug)]*
where w = [uq, us, us, U4]T is the control input, k¢, k,, and
l are model parameters which are positive real numbers. In
particular, u; = Q? for all i € [1,4]4, where §; are the angular
speeds of the motors. Now consider the modified control input
w = [y, Uso, Us, u4)" defined as follows:

u= [ﬂh U, ﬂg}T =M+ Jw*w,

Uy = (0)3 =e3 ((1/m)Fes —w v —gR"e;3). (2)
Then, the quadrotor dynamics given in Eqn. (1) can be written
more compactly as follows:

h=hs,  [&" (0);']" = Ta, 3)
where J € R**4, S € R*** and h € SFE(3) are given by
J = [J—lo], S = [wx v}’ b= [RP].

0 1 00 01

C. Brief review of Koopman operator

Consider a controlled dynamical system & =
whose state evolution is described as follows:

@ (t;+ts) = Fy, (2 (6) 0, 0,41.])
titts
—at)+ [ falo)ulo)do

i

f(z,u)

where t; is the i sampling time and ¢, > 0 is the sampling
interval, x(t) € R™ is the state of the system at time ¢,
u(t) € R™ is the control input at time ¢ and wp, ;,4¢,) =
{u(t) : t € [t; + t5]}, and finally, F}_ is the flow mapping
which advances the state of the x at time ¢; to the state o’
at time ¢ = ¢; + t; when the system is driven by the input
signal wu(t) for t € [t;,t; + t5]. The Koopman operator K is a
linear infinite-dimensional (composition) operator that acts on
functions known as observables or observables which belong
to a function space F. We refer to F as the lifted space or the
space of observables. In particular, given a countably infinite
collection of observables b = (b1 (x(t)), b2(x(t)),...), where
b; : R™ — R, the Koopman operator K : F — F is defined
as follows:

Kb ( (t:)) = b (Fy, (z (t:) ; up, 1,41.)) = b (@ (tiy1)) -

Note that the Koopman operator K is a linear operator which
takes the observation of state b;(x(t;)) at time ¢ = ¢; and
shifts it to the next observation at time ¢ = ¢;4;. In contrast
to standard linearization methods used for approximation of
nonlinear systems, which become inaccurate away from the
linearization point, the Koopman operator can describe the
exact evolution of the observables of a nonlinear system



globally (except from, perhaps, chaotic systems). Finding,
however, a suitable set of observables that can span the lifted
space J can be a challenging task as there is no systematic
way to construct these functions in general. In practice, one
has to work with a finite collection of observables (truncation
of the countably infinite collection of observables that span
F), which is represented as a vector b(x) € RY, where
b(x) = [b1(x), ba(x),...,bx(x)]T, for N > n. The vector
b(x) is often referred to as the lifted state as it corresponds to
the state of the system in the lifted state space.

[1I. DERIVATION OF OBSERVABLES

We will now present a systematic way to derive a sequence
of observables that will allow us to form the lifted space for
the quadrotor dynamics governed by Eqn. (3).

Theorem 1: The lifted (function) space F of the quadrotor
dynamics on SFE(3) is spanned by the following (countably
infinite) collection of observable (basis) functions:

b=(bbo. ) = (w, (), (g )00 (i) . @)

where g, = hS* and f, = w**v, for k € N.
Proof: Let go := h. Then, go = h = hS. Let g1 := hS.
Then,

1 =hS+hS=gqgS+hS=gs+hS,

where go := ¢1S. Therefore, the time derivative of g, :=
gr—1S for all k € [1, Ny]q satisfies
k
gk = gryr + 0y SETHESETD, (5)
i=1

Now, vectorization of the matrices h and g, yields

h =9, Qk =91 + Bru, Vke€[l,Ni]q, (6)

where Bju is obtained by vectorization of the matrix
hZf:l Si—1)§5(k=i) Now let fy := v. Then,

fo=v=—w v=—f,
where f; := w™ fp, which implies that
fi =X v+ wv = (Ju) v — (w*)?.
Let f := w™ fr_1. Then, it follows that

k
fro = —fuopr + z:w><(i71)(Ja)><w><(lc7i),u7 (7
i=1

for k € [1, N3]4. By taking N7 — oo and N2 — oo, we obtain
the countably infinite collection of observables defined in (4)
which spans the lifted (function) space F. ]

Remark 1: Note that the observables f; are associated
with the linear and angular velocities of the quadro-
tor whereas the observables ¢, with its position and
attitude. Now, the finite (truncated) collection of ob-
servable / basis functions can be written as follows:

b= (by,....bn) = (w,(v)s, {g, }ato " {fu} 2o "), where

[b1,b2,b3}T = w, b4 = ('v)g, [b5...b20]T = go,...,
[b16N1+4+3(N271)1-~-7bN]T :fN 1 Wlth N = 16N1 +
3Ny + 4.

Based on Eqns. (5) and (7), the linear model of the quadrotor
in the lifted space is given by

X = AX + Ba, (®)

where X € RY is the lifted state for the quadrotor dynamics
and A € RV*N and B € RN¥** are given by

X = [wTa (U)37g§7 v 7&%1_17 fOTv LR} ngflT}Ta (9)
A = bdiag(A1, Az, A3), B=[B, O16x4, Bi1, ..., Bn/]",
where N =4+ 16Ny + 3Ny, N' = Ny + N5 and

_ _ [ Oweng—1yx16  Tie(vy—1)
Al_j’ AQ_[ 016 O16x16(Ny—1) |’

_ | O3(vyg—1)x3 —Iz(ng-1)
Az = [ 03 O3x3(Ng—1) | °

Note that (8) is an approximation of the original dynamics of
the quadrotor given in (1). Furthermore, the matrices B}, are
such that Bju satisfies:

vec(h Y28, SG-1DG8H=0) " ke [1, N4

B u = k—Ny . ~ .
ru Z wx(l_l)(Jﬂ)XwX(k_z)’v,k‘ c [Nl 4 LN/]d
i=1

The following result will be useful in subsequent discussion.
Proposition 1: For all k € [1, N']4, the matrix By, is only
state dependent. Thereafter, B is also a state-dependent matrix
only.
Proof: We have

wx(ifl)(J,ﬁ)xwxév _ (71)E+1w><(kfi)vxwx(ifl)(]ﬁ,
where ¢ := k — i. Therefore,
k=N, ‘
By, = bdiag( Z (fl)éleJrle(Z*Nl)vxwx(kl)J, 0),
i=1
for all & € [Ny + 1, N']4. In addition,
hSU=D 55t
_ (_1)2 |: wa(kfl)J,ix _wa(ffl)vxwx(zém{],ﬁ

0 0
Let Cl,ik = (—1)£wa(k_1)J

(=1)=D RW* (=D y* > (=2) ] Then,
vec((—1) Rw* =V Ji*) = (I3 ® C1 i) Cs,

where C3 € R%%% is a constant matrix such that vec(u*) =
Csu. Therefore, By, € R16*4 is given by

and Cgﬂ'k =

k
By = Z[(I:s ® C1,ik)C3, [Coik, 031", 04]7F,
i=1
for k € [1, N1]4. This completes the proof. [ |

Remark 2: Since B is a state-dependent matrix (from
Proposition 1), let us consider the following input transfor-
mation U* = Bu. Then, Eqn. (8) can be written as follows:

X = AX + BU*, (10)
where B = bdiag(I4, 016, Iig(n, —1), 03, Is(n,—1)). To realize

the control input U from U™, one can solve the following

least-squares optimization problem
minimize: (Ba — BU*)" (Ba — BU™), (11)

whose solution is given by @ = BIBU*.



A. Point-wise Convergence

To truncate the lifted space dynamics, we must first ensure
that the terms which will be truncated are close to zero. Let
us define the sets

D, ={weR?: |w <&}, D,:={veckR:|v|<v},

where @ < 1/ V2 and ¥ < 1. In addition, we will assume that
22| is upper bounded due to practical actuator constraints.
Theorem 2: Let us assume that there ex1sts ¢ > 0 such
that |Ju| < c. The sequences of functions g, fk and fj,
converge pointwise to 0 as k tends to infinity, that is,

hmgk—O hmgk:O VheSEQ3), SeD, xD,,
k—o0™ k—o0™
lim fy, =0, lim f,=0 V weD,, veD,.
k—oo k—o00

Proof: Since w**v = w x ... x w xv, we have

k times
lw*Fv| < |w|*|v). (12)
Because |w| < 1/v2, |[v| < 1 and f;, = w**v, we can
conclude that lim |fx| = 0, which implies lim f; = 0. From
k—o0 k—o0

Eqn. (7), fk can be written as follows:

k
fr=—fen + Y WO (JR) Wy (13)
i—1
Now,
|wX(i—1)(Jﬁ)XwX(k_i)v| < ‘w‘(k—1)|=]ﬁ||v|. (14)
In view of (13), (14) implies
k
1> W TE) W e < Kw|*Vefo]. (15)

i=1

Because |w| < 1/+/2 and klim (k|lw[¥) = 0 for all w € D,
—00

taking limits on both sides of (15) gives

k
lim | wa(i_l)(Jﬁ)

XWXy = 0. (16)
k—o0 P
In view of Eqn. (7), we have
k
|l < ‘fk+1|+‘wa(i_l)(Jﬁ)xwx(k_i)v‘. (17)

i=1
Using Eqns. (13), (16) and taking limits on both sides of (17)
gives lun | £ < 0. Therefore, hm | fx| = 0, which implies
lim fk = O

k—

o0
The expression for g5, can be written as follows:

gr = [Rg" R (0] = [Re R ] aig)

0

Since the rotation matrix R is orthogonal, we have

| Beo*¥ ] = [vee(Ru )| = \/ex((Roxh)T Rob)

N e

|vec(w ).

= [lw*|F = (19)

Because the Frobenius norm is a submultiplicative norm,

e < ol = lvec@ )l = V2 lwl®.  @0)
Using (19) and (20), it follows that
vec(Rw™)| < [vecw)F = v wlt. 1)
Since |w| < 1/+/2, taking limits on both sides of (21) gives
lerr;O\vec(Rka)\ = ler&|vec(ka)| =0. (22

From (12) we have, |Rf;_1| = |fx—1]| < |w|*~!|v|. There-
fore, lim |vec(Rfk 1)| = 0 and we can conclude that
khm |Sk| = 0 (using (18) and (22)) which implies hm |gk| =
0 and thus khm g9, = 0. Now consider gk (from Eqn (6))
which is given as follows:

k
95 =941 +vec(hZS(i71)SS(k7i)). (23)

i=1

Now since klim |S*| = 0, it follows that
—00

84D 85E= | p = |vec(SUDSSE=D) < |S||S* D).
Taking limits on both sides, we have
k
li (-1 ggk—iy| < 1 311 gk—1)| —
k;ﬂ;@lveC(;S SSED)| < lim KS||ISETV =0

Hence, from Eqn. (23) we get
k

Ce ~ - (i—1) & q(k—i)
Jon 10, < i lgy 1+ Jim [vec( STTHSSE)
1=
<0.
Thus, lim |§,| = O which implies lim g, = 0 and the
k— o0 =k k—oo™k
theorem is proved. [ ]

Remark 3: Theorem 3 allows us to truncate the proposed
sequence of observables that span the lifted space to obtain a
lower (finite) dimensional linear state space model with lifted
state w € D, and v € D, for higher values of N. However
this is not applicable for all w and v.

B. Point-wise convergence for constrained case

For most practical applications, the magnitude of the an-
gular and linear velocities are constrained due to actuation
limitations. In other words, there exist wg > 0 and vg > 0
such that

wo > V2max(|wl),

vo > max(|v|).
v

Therefore, for higher |w| and |v|, these two terms can be
normalized so that the truncation can be made possible as
will be illustrated later. Let @ = w/wy and v := v/vy. The
new observables g and f} are then defined as follows:
Gr = hS*/sk = hS*, fu = Wk Jwhvg = 5%FD,  (24)
where sy = max{wo,vo}. Next, we prove that both g, and fk
tend to zero for all (w,v) € Dy x Dy as k — oo where

Dy ={0eR®: B <w}, Dy={veR?:|v| <o},



where @ < 1/4/2 and v < 1.
Theorem 3: For any w € Dy and v € Dy, the sequences

of functions /ﬂ\k’ gk, fk and fk converge pointwise to 0, i.e,
limg, =0, limg, =0 VheSE®3),ScDsx Dy
k—sco—k k—sco=k

lim fk =0,

k—oc0

lim f, =0 VYweDy, veDs.
k—o0

Proof: Since |@| < 1/v/2 and [7] < 1, using Theorem
2, we conclude that klim |9,/ =0, and klim | fz] = 0. Now gy
— 00 T — 00

and fj can be written as

I~

k
Fe = —wofer1 + Z@X(iil)((]ﬁ)x@x(kii)ﬁ
=1

k -~
Gk = soGke1 +h Y SOTNGFETD,
i=1
Since |@| < 1/v2 and [8| < 1, using Theorem 2, we can
easily conclude that lim [§ | = 0 and lim |f,| = 0. Hence
k—o0 =k k—o0
the proof is complete. [ |

Therefore, we obtain the following new lifted state which will
be used instead of that given in Eqn. (9):

T ~T ~T 7T 7T T
X = [w a(v)3?g0a"' 7QN1717f0 7~-.afN2—1]

and .A = bdlag(ﬁl, A\Q, A\3>, B = [B, 016><4, El, ..
where

(25)

'a§N/]Tr

A=Ay, Ay =uwody, As=s0ds,
R vec(h Y28 | SG-DSSH=0) ke [1, N4

> @V IE) @ 5,k € [Ny +1, N
i=1

Following a similar procedure as in Theorem 1, it can be
shown that By, is only state dependent.

Theorem 4: For any w € Dy and v € Dy, the following
inequalities hold

‘fk+1|<|fk|7 ‘§k+1|<‘gk|7 vV keN.

Proof: Using Eqn. (24), we have
en] _ [@*E05) _ |3]|0* 5|

1] < =@ <1/V2.
| x|

&R o<k
Therefore, | fes1| < |f4]- In addition,

In addition,
[vee(ROX )| _ |vec@ V)| pny
[vec(RO<H)] [vec(®xF)|

Therefore, [vec(R&**D)| < [vec(R&*®)|. Since | fi| <
| fe—1l, by using (26), we conclude that [g, [ < [g, |- Hence
the theorem is proved. ]

Remark 4: Based on Theorem 3 and Theorem 4, we can
consider truncating the higher dimensional lifted space (10)

to obtain a lower (finite) dimensional linear state space model
for any w € Dz and v € Dy.

Proposition 2: The truncated lifted linear state space model
given by Eqn. (10) is controllable for any w € Dy and v € D5.
In other words, the pair (A, B) is controllable.

Proof: The N x N? controllability matrix C' for the
linear model is given as C' = [B AB, A?B... AV~'B]. The
expression for A’B can be given as follows:

bdiag (044165, Iien, —16j+3n,)s J € [1, N"]a
bdiag(04116n, 43, I3n,—35), J € [N +1,N]q

where N” = N —3Ns. The matrices B and A7 B have 16N; —
165 + 3Nz — 3j common independent columns and the matrix
A’B has 16N1 — 165 + 3Nz — 35 independent columns. In
addition, B has 4 + 16~+ 3 independent columns which are
not common to any A7 B. Therefore, rank of C' is 4+ 16 /N7 +
3Ny = N and hence the lifted linear state space model is
controllable. This completes the proof. [ ]

AjE:{

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to validate
the proposed Koopman operator based approximation of the
nonlinear dynamics (1) with the derived linear state space
model (10). Simulation studies have been carried out using
MATLAB R2020b on an Intel Core i7 2.2GHz processor.

A. Approximation error

The goodness of fit for the lifted-space dynamics with
the exact nonlinear model for the quadrotor was calculated
using the approximation error as |a — b|/|b| where a is
computed after integrating the lifted-space dynamics (8) and
b is computed after integrating the nonlinear dynamics (1).
A random control input taking values in [—0.005,0.005] is
used to propagate the lifted linear state space model and
nonlinear dynamics and is given by u = 0.001v(¢)sin(0.1¢)
where ~y(t) is a random number taken from the uniform
distribution [—5,5] and the initial conditions are as follows:
R(0) = I3, w(0) = [0.05 0.05 0.05]™, »(0) = [0.1 0.1 0.1]T.
Figs. 2a, 2b and 2c show the variation of approximation error
for @, v and [¢, 0,] respectively for different values of N,
and N». As expected, we observe that as the dimension of
the lifted space increases, the approximation error decreases.
We have also used both sinusoidal control inputs and constant
signals and observed that the trend in the approximation errors
for position, velocity and attitude is nearly the same. Note
that irrespective of the dimension NV, the approximation error
becomes larger with time mainly because the integral of the
truncated terms increases with time.

B. Relative error between BU* and Bu

We compute the state evolution of the lifted linear system
(10) when random control inputs U* whose values lie in
[—30, 30] are applied to it. The obtained states are then used
to compute the state-dependent matrix 3. The control input u
corresponds to the solution to the least square problem given
in (11). We take N1 = Np = 15. It is observed that the relative
error between BU* and Bu is approximately 3%. When
N; = Ny = 25, the relative error becomes approximately

1%.



5 x10°

0.16 1
—N,=3N,=3
0.14 ——N=4N,=4 J— 6 —— N =19,N,=19)
012 Ny=5.N,=5 08 —N _ —— N, =21 Ny=21
e T NBN=6 8 g5 N,=23N,-23
e 01 NN c - c —N,=25N,=25
s N1-9N 0 508 T 54 1=25Ny
T T o}
2008 _N‘=H‘N2=1| E 53
H ——N,=25,N,=25 504 —N. o
2 0.08 g g
g g — 2
<0.04 <
0.2
0.02 1
0 0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s)

Time (s)

(a) Approximation error of

Time (s)

(b) Approximation error of v

(c) Approximation error of [¢, 0, w}T

Fig. 2: Approximation error for position, velocity and Euler angles.

C. Comparison with prior method

We compare our approach with a recent Koopman based
method for modeling quadrotor dynamics on SFE(3) pre-
sented in [17], in which a data-driven approach was used
to approximate the matrices A and B based on the fol-
lowing 18 observables: z(z) = [a,,w, v, g(v,w)]" € R,
where a, is the gravity vector and g(v,w) = [vsws,
'U2w37'v3wla'Ul‘-'-’BaU2w1;w2w3>w1w37w1w2], where v; =
(v); and w; = (w);. In contrast to [17], our approach does
not require any data and the observables were not guessed.
From Table I, it can be observed that the approximation error
obtained with our approach for N; = Ny = 25 is one
order of magnitude less than [17] at ¢ = 60s. However, the
approximation error using [17] was slightly better than our
approach when N7 = Ny = 15.

Approx. error | N1 = Na = 25 N1 =Ny =15 Method [17]
x 4.923 x 1073 1.697 x 10—2 1.564 x 10—2

v 4.167 x 103 1.893 x 10~2 | 1.714 x 102

¢ 6 ¥]T 5247 x 10~% [ 2457 x 105 | 2.243 x 10~3

TABLE |: Comparisons with prior methods demonstrate an
order-of-magnitude improvement in approximation error.

V. CONCLUSION

In this paper, we used the framework of Koopman operator
to describe the nonlinear dynamics of a quadrotor on SE(3)
by means of a linear state space model evolving on the lifted
space. We proposed a systematic way to derive a sequence of
observables that span the lifted space and proved that the latter
sequence converges pointwise to the zero function. This result
allowed us to choose a finite subset of this set of functions
to form a truncated (approximation of the) lifted space. Our
simulations indicated that as the dimension of the lifted space
dynamics increases, the approximation error decreases. In our
future work, we plan to use the derived lifted space linear
model for design of controllers for quadrotors.
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