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Abstract— In this paper, we propose a Koopman operator
based approach to describe the nonlinear dynamics of a
quadrotor on SE(3) in terms of an infinite-dimensional linear
system which evolves in the space of observables (lifted
space) and which is more appropriate for control design
purposes. The major challenge when using the Koopman
operator is the characterization of a set of observables that
can span the lifted space. Most of the existing methods
either start from a set of dictionary functions and then
search for a subset that best fits the underlying nonlinear
dynamics or they rely on machine learning algorithms to
learn these observables. Instead of guessing or learning
the observables, in this work we derive them in a sys-
tematic way for the quadrotor dynamics on SE(3). In addi-
tion, we prove that the proposed sequence of observables
converges pointwise to the zero function, which allows
us to select only a finite set of observables to form (an
approximation of) the lifted space. Our theoretical analysis
is also confirmed by numerical simulations which demon-
strate that by increasing the dimension of the lifted space,
the derived linear state space model can approximate the
nonlinear quadrotor dynamics more accurately.

Index Terms— Aerospace, Modeling, Robotics

I. INTRODUCTION

W
E consider the problem of forming a lifted space over

which the nonlinear dynamics of a quadrotor on SE(3)
can be described by a (possibly infinite-dimensional) linear

system. The approach utilized herein, which relies on the

framework of Koopman operator, allows one to account for

the nonlinearities of the dynamics of the quadrotor while at the

same time linear control design techniques are still applicable.

The major challenge in using the Koopman operator for

approximating nonlinear dynamics is finding a suitable set of

observable functions (or observables) that can serve as basis

functions for the lifted space. In this paper, we propose a

systematic way to derive a set of observables for the quadrotor

dynamics on SE(3). A subset of the latter set is chosen to

form the truncated (approximation of the) “lifted” linear state

space model for the quadrotor dynamics. In prior literature

[1], [2], control design methods for quadrotors are based on

linearization of their dynamics around a reference trajectory or

a fixed point to facilitate the use of linear control design tools

such as linear Model Predictive Control (MPC) [3]. These
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methods achieve reduced computational overhead compared

to Nonlinear MPC (NMPC), thereby allowing more on-board

processing power for other applications like communication

and perception. However, the desired accuracy from linearized

based models cannot be guaranteed for large deviations from

the linearization point. Other more sophisticated linearization

methods like Carleman linearization [4] cannot be used for

quadrotors as their applicability is limited to polynomial vector

fields. Quadrotor systems have received a lot of attention in the

robotics and control communities. The strong nonlinear cou-

pling and underactuated characteristics of quadrotor dynamics

make the design of an effective controller more difficult than

other mobile robots. In this paper, we use a Koopman operator

based approach to derive a set of observables which will allow

us to approximate the nonlinear dynamics of a quadrotor on

SE(3) by a higher dimensional linear state space model which

is more appropriate for (model based) control design purposes.

Literature review: Koopman operator-based methods have

been widely used for approximating nonlinear systems [5]–

[10]. Extensions of these methods for controlled systems have

been proposed in [11]–[16]. Koopman-based approaches have

been proposed for robotic applications in [17], [18]. The main

challenge in using Koopman operator based methods is choos-

ing the right set of observables for modeling purposes [19].

Approaches using neural networks [20], [21], reproducing

kernels [22], and basis functions [23] have also been proposed

for estimating the Koopman operator. However, these methods

require prior data and a suitable finite set of observables which

are typically chosen in a heuristic way. In addition, there is no

guarantee that the data collected is rich enough for estimating

the Koopman operator that can approximate the nonlinear

dynamics accurately enough. In [24], a set of observables are

derived and thereafter a Koopman based LQR controller is

proposed for the spacecraft attitude dynamics.

Main contributions: In contrast with [24], which has in-

spired this work, we derive a set of observables for the

quadrotor dynamics on SE(3) in which the attitude and

position of the quadrotor are coupled in a nonlinear fashion.

Subsequently, we use these functions to form the lifted space

in which the quadrotor dynamics is described by a linear state

space model. This linear model becomes equivalent to the

nonlinear model as the dimension of the lifted space tends

to infinity. In addition, we prove the pointwise convergence of

the observables to the zero function as the dimension of the

lifted state space goes to infinity. This allows us to truncate the

higher dimensional lifted space to a lower (finite) dimensional



lifted space. The main advantage of using the derived set

of observables is that it does not require prior data of state

and control input pairs for using the Koopman operator based

control approaches. To the best of our knowledge, this is the

first paper which derives a set of observables for both position

and attitude dynamics of a quadrotor on SE(3).

Structure of the paper: The organization of the paper is

as follows. In Section II, we introduce the nonlinear state

space model for a quadrotor followed by an overview of the

Koopman operator. In Section III, we provide the derivation

of the set of observables and then the formulation of the lifted

space linear dynamics. Numerical simulations are presented in

Section IV, and finally Section V presents concluding remarks.

II. PRELIMINARIES

A. Nomenclature

Given a vector a ∈ R
n, let (a)i denote its ith element and let

|a| denote its Euclidean norm. Given a = [a1, a2, a3]
T ∈ R

3,

we denote by a× ∈ R
3×3 the matrix which is such that

the cross product a × b = a×b for all b ∈ R
3. The set

of natural numbers is denoted by N. Given a, b ∈ N with

a ≤ b, we denote the discrete interval from a to b as [a, b]d,

where [a, b]d := [a, b]∩N. Let bdiag(D1, . . . , Dk) denote the

block diagonal matrix comprising of matrices D1, . . . , Dk.

Let 0n×m (or simply 0) denote the n × m zero matrix,

0n denote the n × n zero matrix and In denote the n × n
identity matrix. In addition, we denote by A = vec(A),
the vector that is formed by concatenating the columns that

comprise the matrix A. The trace operator is denoted as

tr(·). Let ‖X‖F denote the Frobenius norm for a matrix

X ∈ R
n×m where ‖X‖F := |vec(X)|. For a matrix X ,

we denote by X† its Moore-Penrose inverse. In addition, let

⊗ denote the Kronecker product. By SE(3), we denote the

Special Euclidean group which can be represented as follows:

SE(3) =
{
A | A =

[
R p

0 1

]
, p ∈ R

3, RRT = RTR = I3
}

.

Let J ∈ R
3×3 denote the quadrotor’s inertia (positive

definite) matrix, p ∈ R
3 its position in the inertial frame,

and R ∈ SO(3) its rotation matrix from body-fixed frame to

inertial frame (see Fig. 1). Finally, let v ∈ R
3 and ω ∈ R

3

denote the linear and angular velocities of the quadrotor in

the body-fixed frame, respectively, and m its mass.

B. Quadrotor dynamics
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Fig. 1: Inertial and body fixed frame of the quadrotor

The quadrotor is an under-actuated system whose motion

can be described as follows [17], [25]:

ḣ = h
[
ω×

v

0 0

]
, Jω̇ =M + Jω×ω,

v̇ = (1/m)Fe3 − ω×v − gRTe3, (1)

where h ∈ SE(3), g is the acceleration due to gravity and

e3 = [0, 0, 1]T. Finally,

F = kt (u1 + u2 + u3 + u4) ,

M = [ktl(u2 − u4), ktl(u3 − u1), km(u1 − u2 + u3 − u4)]
T

where u = [u1, u2, u3, u4]
T

is the control input, kt, km and

l are model parameters which are positive real numbers. In

particular, ui = Ω2
i for all i ∈ [1, 4]d, where Ωi are the angular

speeds of the motors. Now consider the modified control input

ũ = [ũ1, ũ2, ũ3, ũ4]
T defined as follows:

≈

u = [ũ1, ũ2, ũ3]
T =M + Jω×ω,

ũ4 = (v̇)3 = eT3
(
(1/m)Fe3 − ω×v − gRTe3

)
. (2)

Then, the quadrotor dynamics given in Eqn. (1) can be written

more compactly as follows:

ḣ = hS, [ω̇T (v̇)3
T
]T = J ũ, (3)

where J ∈ R
4×4, S ∈ R

4×4 and h ∈ SE(3) are given by

J :=
[
J−1 0
0 1

]
, S :=

[
ω×

v

0 0

]
, h :=

[
R p

0 1

]
.

C. Brief review of Koopman operator

Consider a controlled dynamical system ẋ = f(x,u)
whose state evolution is described as follows:

x (ti + ts) = Fts

(
x (ti) ;u[ti,ti+ts]

)

= x (ti) +

∫ ti+ts

ti

f(x(σ),u(σ)dσ,

where ti is the ith sampling time and ts ≥ 0 is the sampling

interval, x(t) ∈ R
n is the state of the system at time t,

u(t) ∈ R
m is the control input at time t and u[ti,ti+ts] :=

{u(t) : t ∈ [ti + ts]}, and finally, Fts is the flow mapping

which advances the state of the x at time ti to the state x′

at time t = ti + ts when the system is driven by the input

signal u(t) for t ∈ [ti, ti + ts]. The Koopman operator K is a

linear infinite-dimensional (composition) operator that acts on

functions known as observables or observables which belong

to a function space F . We refer to F as the lifted space or the

space of observables. In particular, given a countably infinite

collection of observables b = (b1(x(t)), b2(x(t)), . . . ), where

bi : R
n → R, the Koopman operator K : F → F is defined

as follows:

Kb (x (ti)) = b
(
Fts

(
x (ti) ;u[ti,ti+ts]

))
= b (x (ti+1)) .

Note that the Koopman operator K is a linear operator which

takes the observation of state bi(x(ti)) at time t = ti and

shifts it to the next observation at time t = ti+1. In contrast

to standard linearization methods used for approximation of

nonlinear systems, which become inaccurate away from the

linearization point, the Koopman operator can describe the

exact evolution of the observables of a nonlinear system



globally (except from, perhaps, chaotic systems). Finding,

however, a suitable set of observables that can span the lifted

space F can be a challenging task as there is no systematic

way to construct these functions in general. In practice, one

has to work with a finite collection of observables (truncation

of the countably infinite collection of observables that span

F), which is represented as a vector b(x) ∈ R
N , where

b(x) = [b1(x), b2(x), . . . , bN (x)]T, for N � n. The vector

b(x) is often referred to as the lifted state as it corresponds to

the state of the system in the lifted state space.

III. DERIVATION OF OBSERVABLES

We will now present a systematic way to derive a sequence

of observables that will allow us to form the lifted space for

the quadrotor dynamics governed by Eqn. (3).
Theorem 1: The lifted (function) space F of the quadrotor

dynamics on SE(3) is spanned by the following (countably
infinite) collection of observable (basis) functions:

b = (b1, b2, . . . ) =
(
ω, (v)3, {gk}

∞
k=0, {fk}∞k=0

)
, (4)

where gk = hSk and fk = ω×kv, for k ∈ N.

Proof: Let g0 := h. Then, ġ0 = ḣ = hS. Let g1 := hS.

Then,

ġ1 = ḣS + hṠ = g1S + hṠ = g2 + hṠ,

where g2 := g1S. Therefore, the time derivative of gk :=
gk−1S for all k ∈ [1, N1]d satisfies

ġk = gk+1 + h

k∑

i=1

S(i−1)ṠS(k−i). (5)

Now, vectorization of the matrices h and gk yields

ḣ = g
1
, ġ

k
= g

k+1
+Bkũ, ∀k ∈ [1, N1]d, (6)

where Bkũ is obtained by vectorization of the matrix

h
∑k

i=1 S
(i−1)ṠS(k−i). Now let f0 := v. Then,

ḟ0 = v̇ = −ω×v = −f1,

where f1 := ω×f0, which implies that

ḟ1 = ω̇×v + ω×v̇ = (J
≈

u)×v − (ω×)2v.

Let fk := ω×fk−1. Then, it follows that

ḟk = −fk+1 +

k∑

i=1

ω×(i−1)(J
≈

u)×ω×(k−i)v, (7)

for k ∈ [1, N2]d. By taking N1 → ∞ and N2 → ∞, we obtain

the countably infinite collection of observables defined in (4)

which spans the lifted (function) space F .
Remark 1: Note that the observables fk are associated

with the linear and angular velocities of the quadro-
tor whereas the observables gk with its position and
attitude. Now, the finite (truncated) collection of ob-
servable / basis functions can be written as follows:
b = (b1, . . . , bN ) =

(
ω, (v)3, {gk}

N1−1
k=0 , {fk}N2−1

k=0

)
, where

[b1, b2, b3]
T := ω, b4 := (v)3, [b5 . . . b20]

T := g
0
, . . . ,

[b16N1+4+3(N2−1), . . . , bN ]T = f
N2−1

with N = 16N1 +
3N2 + 4.

Based on Eqns. (5) and (7), the linear model of the quadrotor

in the lifted space is given by

Ẋ = AX + Bũ, (8)

where X ∈ R
N is the lifted state for the quadrotor dynamics

and A ∈ R
N×N and B ∈ R

N×4 are given by

X = [ωT, (v)3, g
T
0
, . . . , gT

N1−1
, f0

T, . . . , fN2−1
T]T, (9)

A = bdiag(A1, A2, A3), B = [B, 016×4, B1, . . . , BN ′ ]T,

where N = 4 + 16N1 + 3N2, N ′ = N1 +N2 and

A1 = J , A2 =
[
016(N1−1)×16 I16(N1−1)

016 016×16(N1−1)

]
,

A3 =
[
03(N2−1)×3 −I3(N2−1)

03 03×3(N2−1)

]
.

Note that (8) is an approximation of the original dynamics of

the quadrotor given in (1). Furthermore, the matrices Bk are

such that Bkũ satisfies:

Bkũ =





vec(h
∑k

i=1 S
(i−1)ṠS(k−i)), k ∈ [1, N1]d

k−N1∑
i=1

ω×(i−1)(J
≈

u)×ω×(k−i)v, k ∈ [N1 + 1, N ′]d

The following result will be useful in subsequent discussion.
Proposition 1: For all k ∈ [1, N ′]d, the matrix Bk is only

state dependent. Thereafter, B is also a state-dependent matrix
only.

Proof: We have

ω×(i−1)(J
≈

u)×ω×`v = (−1)`+1ω×(k−i)v×ω×(i−1)J
≈

u,

where ` := k − i. Therefore,

Bk = bdiag
( k−N1∑

i=1

(−1)`−N1+1ω×(`−N1)v×ω×(i−1)J, 0
)

,

for all k ∈ [N1 + 1, N ′]d. In addition,

hS(i−1)ṠS(k−i)

= (−1)`
[
Rω×(k−1)J

≈

u× −Rω×(`−1)v×ω×(i−2)J
≈

u

0 0

]
.

Let C1,ik = (−1)`Rω×(k−1)J and C2,ik =
(−1)(`−1)Rω×(`−1)v×ω×(i−2)J . Then,

vec((−1)`Rω×(k−1)J
≈

u×) = (I3 ⊗ C1,ik)C3ũ,

where C3 ∈ R
9×4 is a constant matrix such that vec(

≈

u×) =
C3ũ. Therefore, Bk ∈ R

16×4 is given by

Bk =

k∑

i=1

[(I3 ⊗ C1,ik)C3, [C2,ik,03×1]
T, 04]

T,

for k ∈ [1, N1]d. This completes the proof.
Remark 2: Since B is a state-dependent matrix (from

Proposition 1), let us consider the following input transfor-
mation U? = Bũ. Then, Eqn. (8) can be written as follows:

Ẋ = AX + B̃U?, (10)

where B̃ = bdiag(I4,016, I16(N1−1),03, I3(N2−1)). To realize
the control input U from U?, one can solve the following
least-squares optimization problem

minimize: (Bũ− B̃U?)T(Bũ− B̃U?), (11)

whose solution is given by ũ = B†B̃U?.



A. Point-wise Convergence

To truncate the lifted space dynamics, we must first ensure

that the terms which will be truncated are close to zero. Let

us define the sets

Dω := {ω ∈ R
3 : |ω| ≤ ω̄}, Dv := {v ∈ R

3 : |v| ≤ v̄},

where ω̄ < 1/
√
2 and v̄ < 1. In addition, we will assume that

|≈u| is upper bounded due to practical actuator constraints.
Theorem 2: Let us assume that there exists c > 0 such

that |J ≈

u| ≤ c. The sequences of functions g
k
, ġ

k
, fk and ḟk

converge pointwise to 0 as k tends to infinity, that is,

lim
k→∞

g
k
= 0, lim

k→∞
ġ
k
= 0 ∀ h ∈ SE(3), S ∈ Dω ×Dv,

lim
k→∞

fk = 0, lim
k→∞

ḟk = 0 ∀ ω ∈ Dω, v ∈ Dv.

Proof: Since ω×kv = ω × . . .× ω︸ ︷︷ ︸
k times

×v, we have

|ω×kv| ≤ |ω|k|v|. (12)

Because |ω| < 1/
√
2, |v| < 1 and fk = ω×kv, we can

conclude that lim
k→∞

|fk| = 0, which implies lim
k→∞

fk = 0. From

Eqn. (7), ḟk can be written as follows:

ḟk = −fk+1 +

k∑

i=1

ω×(i−1)(J
≈

u)×ω×(k−i)v. (13)

Now,

|ω×(i−1)(J
≈

u)×ω×(k−i)v| ≤ |ω|(k−1)|J ≈

u||v|. (14)

In view of (13), (14) implies

|
k∑

i=1

ω×(i−1)(J
≈

u)×ω×(k−i)v| ≤ k|ω|(k−1)c|v|. (15)

Because |ω| < 1/
√
2 and lim

k→∞
(k|ω|k) = 0 for all ω ∈ Dω ,

taking limits on both sides of (15) gives

lim
k→∞

∣∣
k∑

i=1

ω×(i−1)(J
≈

u)×ω×(k−i)v
∣∣ = 0. (16)

In view of Eqn. (7), we have

|ḟk| ≤ |fk+1|+
∣∣

k∑

i=1

ω×(i−1)(J
≈

u)×ω×(k−i)v
∣∣. (17)

Using Eqns. (13), (16) and taking limits on both sides of (17)

gives lim
k→∞

|ḟk| ≤ 0. Therefore, lim
k→∞

|ḟk| = 0, which implies

lim
k→∞

ḟk = 0.

The expression for gk can be written as follows:

gk =
[
Rω×k Rω×(k−1)

v

0 0

]
=

[
Rω×k Rfk−1

0 0

]
. (18)

Since the rotation matrix R is orthogonal, we have

‖Rω×k‖F = |vec(Rω×k)| =
√
tr((Rω×k)TRω×k)

=
√
tr(ω×kTRTRω×k) = ‖ω×k‖F

= ‖ω×k‖F = |vec(ω×k)|. (19)

Because the Frobenius norm is a submultiplicative norm,

‖ω×k‖F ≤ ‖ω×‖kF = |vec(ω×)|k =
√
2
k|ω|k. (20)

Using (19) and (20), it follows that

|vec(Rω×k)| ≤ |vec(ω×)|k =
√
2
k|ω|k. (21)

Since |ω| < 1/
√
2, taking limits on both sides of (21) gives

lim
k→∞

|vec(Rω×k)| = lim
k→∞

|vec(ω×k)| = 0. (22)

From (12) we have, |Rfk−1| = |fk−1| ≤ |ω|k−1|v|. There-

fore, lim
k→∞

|vec(Rfk−1)| = 0 and we can conclude that

lim
k→∞

|Sk| = 0 (using (18) and (22)) which implies lim
k→∞

|g
k
| =

0 and thus lim
k→∞

g
k
= 0. Now consider ġ

k
(from Eqn. (6))

which is given as follows:

ġ
k
= g

k+1
+ vec

(
h

k∑

i=1

S(i−1)ṠS(k−i)
)
. (23)

Now since lim
k→∞

|Sk| = 0, it follows that

‖S(i−1)ṠS(k−i)‖F = |vec(S(i−1)ṠS(k−i))| ≤ |Ṡ||S(k−1)|.
Taking limits on both sides, we have

lim
k→∞

|vec(
k∑

i=1

S(i−1)ṠS(k−i))| ≤ lim
k→∞

k|Ṡ||S(k−1)| = 0.

Hence, from Eqn. (23) we get

lim
k→∞

|ġ
k
| ≤ lim

k→∞
|g

k+1
|+ lim

k→∞
|vec(

k∑

i=1

S(i−1)ṠS(k−i))|

≤ 0.

Thus, lim
k→∞

|ġ
k
| = 0 which implies lim

k→∞
ġ
k

= 0 and the

theorem is proved.
Remark 3: Theorem 3 allows us to truncate the proposed

sequence of observables that span the lifted space to obtain a
lower (finite) dimensional linear state space model with lifted
state ω ∈ Dω and v ∈ Dv for higher values of N . However
this is not applicable for all ω and v.

B. Point-wise convergence for constrained case

For most practical applications, the magnitude of the an-

gular and linear velocities are constrained due to actuation

limitations. In other words, there exist ω0 > 0 and v0 > 0
such that

ω0 >
√
2max

ω

(|ω|), v0 > max
v

(|v|).

Therefore, for higher |ω| and |v|, these two terms can be

normalized so that the truncation can be made possible as

will be illustrated later. Let ω̂ := ω/ω0 and v̂ := v/v0. The

new observables ĝk and f̂k are then defined as follows:

ĝk = hSk/sk0 = hŜk, f̂k = ω×kv/ωk
0v0 = ω̂×kv̂, (24)

where s0 = max{ω0, v0}. Next, we prove that both ĝk and f̂k
tend to zero for all (ω,v) ∈ Dω̂ ×Dv̂ as k → ∞ where

Dω̂ = {ω̂ ∈ R
3 : |ω̂| ≤ ω̄}, Dv̂ = {v̂ ∈ R

3 : |v̂| ≤ v̄},



where ω̄ < 1/
√
2 and v̄ < 1.

Theorem 3: For any ω ∈ Dω̂ and v ∈ Dv̂ , the sequences

of functions ĝ
k
, ˙̂g

k
, f̂k and

˙̂
fk converge pointwise to 0, i.e,

lim
k→∞

ĝ
k
= 0, lim

k→∞

˙̂g
k
= 0 ∀ h ∈ SE(3), S ∈ Dω̂ ×Dv̂

lim
k→∞

f̂k = 0, lim
k→∞

˙̂
fk = 0 ∀ ω ∈ Dω̂, v ∈ Dv̂.

Proof: Since |ω̂| < 1/
√
2 and |v̂| < 1, using Theorem

2, we conclude that lim
k→∞

|ĝ
k
| = 0, and lim

k→∞
|f̂k| = 0. Now ˙̂gk

and
˙̂
fk can be written as

˙̂
fk = −ω0f̂k+1 +

k∑

i=1

ω̂×(i−1)(J
≈

u)×ω̂×(k−i)v̂,

˙̂gk = s0ĝk+1 + h

k∑

i=1

Ŝ(i−1) ̂̇SŜ(k−i).

Since |ω̂| < 1/
√
2 and |v̂| < 1, using Theorem 2, we can

easily conclude that lim
k→∞

| ˙̂g
k
| = 0 and lim

k→∞
| ˙̂fk| = 0. Hence

the proof is complete.

Therefore, we obtain the following new lifted state which will

be used instead of that given in Eqn. (9):

X = [ωT, (v)3, ĝ
T

0
, · · · , ĝT

N1−1
, f̂T0 , . . . , f̂

T
N2−1]

T (25)

and A = bdiag(Â1, Â2, Â3), B = [B,016×4, B̂1, . . . , B̂N ′ ]T,

where

Â1 = A1, Â2 = ω0A2, Â3 = s0A3,

B̂kũ =





vec(h
∑k

i=1 Ŝ
(i−1) ˙̂SŜ(k−i)), k ∈ [1, N1]d

k−N1∑
i=1

ω̂×(i−1)(J
≈

u)×ω̂×(k−i)v̂, k ∈ [N1 + 1, N ′]d

Following a similar procedure as in Theorem 1, it can be

shown that B̂k is only state dependent.
Theorem 4: For any ω ∈ Dω̂ and v ∈ Dv̂ , the following

inequalities hold

|f̂k+1| < |f̂k|, |ĝ
k+1

| < |ĝ
k
|, ∀ k ∈ N.

Proof: Using Eqn. (24), we have

|f̂k+1|
|f̂k|

=
|ω̂×(k+1)v̂|
|ω̂×kv̂| ≤ |ω̂||ω̂×kv̂|

|ω̂×kv̂| = |ω̂| < 1/
√
2.

Therefore, |f̂k+1| < |f̂k|. In addition,

ĝk = hŜk =
[
Rω̂×k Rf̂k−1

0 0

]
. (26)

In addition,

|vec(Rω̂×(k+1))|
|vec(Rω̂×k)| =

|vec(ω̂×(k+1))|
|vec(ω̂×k)| ≤ |

√
2ω̂| < 1.

Therefore, |vec(Rω̂×(k+1))| < |vec(Rω̂×(k))|. Since |f̂k| <
|f̂k−1|, by using (26), we conclude that |ĝ

k+1
| < |ĝ

k
|. Hence

the theorem is proved.
Remark 4: Based on Theorem 3 and Theorem 4, we can

consider truncating the higher dimensional lifted space (10)

to obtain a lower (finite) dimensional linear state space model
for any ω ∈ Dω̂ and v ∈ Dv̂ .

Proposition 2: The truncated lifted linear state space model
given by Eqn. (10) is controllable for any ω ∈ Dω̂ and v ∈ Dv̂ .

In other words, the pair (A, B̃) is controllable.

Proof: The N × N2 controllability matrix C for the

linear model is given as C = [B̃ AB̃, A2B̃ . . .AN−1B̃]. The

expression for AjB̃ can be given as follows:

AjB̃ =

{
bdiag(04+16j , I16N1−16j+3N2), j ∈ [1, N ′′]d
bdiag(04+16N1+3j , I3N2−3j), j ∈ [N ′′ + 1, N ]d

where N ′′ = N−3N2. The matrices B̃ and AjB̃ have 16N1−
16j+3N2−3j common independent columns and the matrix

AjB̃ has 16N1 − 16j + 3N2 − 3j independent columns. In

addition, B̃ has 4 + 16 + 3 independent columns which are

not common to any AjB̃. Therefore, rank of C is 4+16N1+
3N2 = N and hence the lifted linear state space model is

controllable. This completes the proof.

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to validate

the proposed Koopman operator based approximation of the

nonlinear dynamics (1) with the derived linear state space

model (10). Simulation studies have been carried out using

MATLAB R2020b on an Intel Core i7 2.2GHz processor.

A. Approximation error

The goodness of fit for the lifted-space dynamics with

the exact nonlinear model for the quadrotor was calculated

using the approximation error as |a− b|/|b| where a is

computed after integrating the lifted-space dynamics (8) and

b is computed after integrating the nonlinear dynamics (1).

A random control input taking values in [−0.005, 0.005] is

used to propagate the lifted linear state space model and

nonlinear dynamics and is given by ũ = 0.001γ(t)sin(0.1t)
where γ(t) is a random number taken from the uniform

distribution [−5, 5] and the initial conditions are as follows:

R(0) = I3, ω(0) = [0.05 0.05 0.05]T, v(0) = [0.1 0.1 0.1]T.

Figs. 2a, 2b and 2c show the variation of approximation error

for x, v and [φ, θ, ψ] respectively for different values of N1

and N2. As expected, we observe that as the dimension of

the lifted space increases, the approximation error decreases.

We have also used both sinusoidal control inputs and constant

signals and observed that the trend in the approximation errors

for position, velocity and attitude is nearly the same. Note

that irrespective of the dimension N , the approximation error

becomes larger with time mainly because the integral of the

truncated terms increases with time.

B. Relative error between B̃U? and Bũ
We compute the state evolution of the lifted linear system

(10) when random control inputs U? whose values lie in

[−30, 30] are applied to it. The obtained states are then used

to compute the state-dependent matrix B. The control input ũ

corresponds to the solution to the least square problem given

in (11). We take N1 = N2 = 15. It is observed that the relative

error between B̃U? and Bũ is approximately 3%. When

N1 = N2 = 25, the relative error becomes approximately

1%.
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Fig. 2: Approximation error for position, velocity and Euler angles.

C. Comparison with prior method

We compare our approach with a recent Koopman based

method for modeling quadrotor dynamics on SE(3) pre-

sented in [17], in which a data-driven approach was used

to approximate the matrices A and B based on the fol-

lowing 18 observables: z(x) = [ag,ω,v, g(v,ω)]
T ∈ R

18,

where ag is the gravity vector and g(v,ω) = [v3ω3,
v2ω3,v3ω1,v1ω3,v2ω1,ω2ω3,ω1ω3,ω1ω2], where vi =
(v)i and ωi = (ω)i. In contrast to [17], our approach does

not require any data and the observables were not guessed.

From Table I, it can be observed that the approximation error

obtained with our approach for N1 = N2 = 25 is one

order of magnitude less than [17] at t = 60s. However, the

approximation error using [17] was slightly better than our

approach when N1 = N2 = 15.

Approx. error N1 = N2 = 25 N1 = N2 = 15 Method [17]

x 4.923× 10−3 1.697× 10−2 1.564× 10−2

v 4.167× 10−3 1.893× 10−2 1.714× 10−2

[φ θ ψ]T 5.247× 10−4 2.457× 10−3 2.243× 10−3

TABLE I: Comparisons with prior methods demonstrate an
order-of-magnitude improvement in approximation error.

V. CONCLUSION

In this paper, we used the framework of Koopman operator

to describe the nonlinear dynamics of a quadrotor on SE(3)
by means of a linear state space model evolving on the lifted

space. We proposed a systematic way to derive a sequence of

observables that span the lifted space and proved that the latter

sequence converges pointwise to the zero function. This result

allowed us to choose a finite subset of this set of functions

to form a truncated (approximation of the) lifted space. Our

simulations indicated that as the dimension of the lifted space

dynamics increases, the approximation error decreases. In our

future work, we plan to use the derived lifted space linear

model for design of controllers for quadrotors.
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