Far-Field Minimum-Fuel Spacecraft Rendezvous using Koopman
Operator and /,/{; Optimization

Vrushabh Zinage!

Abstract— We propose a method to compute approximate
solutions to the minimum-fuel far-field rendezvous problem
for thrust-vectoring spacecraft. When the distance between the
active and the target spacecraft is significantly greater than
the distance between the target spacecraft and the center of
gravity of the planet, linearization-based approximations of
the nonlinear rendezvous dynamics may not be sufficiently
accurate. For this reason, control methods that rely on such
linearizations may not be appropriate for far-field rendezvous.
In this paper, we address the control design problem based
on a nonlinear state space model. To overcome the well-known
challenges of nonlinear control design, we utilize a Koopman
operator based approach in which the nonlinear spacecraft
rendezvous dynamics is lifted into a higher dimensional space
over which the nonlinear dynamics can be approximated by a
linear system which is more suitable for control design purposes
than the original nonlinear model. An Iteratively Recursive
Least Squares (IRLS) algorithm from compressive sensing is
then used to solve the minimum fuel control problem based on
the lifted linear system. Numerical simulations are performed
to show the efficacy of the proposed Koopman operator based
approach.

I. INTRODUCTION

We propose a Koopman operator based method for the
computation of nearly optimal (approximate) solutions to
the minimum-fuel far-field rendezvous problem for thrust-
vectoring spacecraft. In a typical rendezvous problem, the
relative motion of the active chaser spacecraft with respect
to a target spacecraft in a circular or elliptical orbit can
be described in terms of a system of autonomous nonlinear
differential equations. The control design in such problems
is based, however, on linearized equations of motion such
as the Hill-Clohessy—Wiltshire (H-C—W) equations, which
correspond to a time-invariant system of equations, or the
Tschauner—-Hempel (T-H) equations, which correspond to a
periodic linear system. These widely used linearized models
are rarely effective to describe the relative motion for far-field
rendezvous [1]. Therefore, linearization-based control design
techniques cannot guarantee the desired accuracy in far-
field rendezvous problems. The Koopman operator approach
utilized herein allows one to account for the nonlinearities
of the dynamics of the spacecraft rendezvous problem while
at the same time linear control design techniques are still
applicable. The key idea of the Koopman operator is that
the nonlinear dynamics of the rendezvous problem can be
approximated by a higher dimensional linear state space
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model based on which we can compute approximate solu-
tions to the minimum-fuel rendezvous problem for a thrust
vectoring spacecraft. The proposed control algorithms rely on
tools from compressive sensing [2] and in particular, ¢ /(1
optimization and the Iteratively Reweighted Least Squares
algorithm [3], [4], [5].

Literature review: A rendezvous mission is usually divided
into far-field rendezvous, near-field rendezvous, and final
approach. Various control approaches have been proposed for
near-field and final approach rendezvous operations [6], [7],
[8], [9], [10], [11], [12]. However, most of these approaches
use linearized rendezvous equations. References [13], [14]
consider more general and challenging proximity operation
problems under realistic constraints. While these methods are
very robust, they are rarely effective for far-field rendezvous
[1]. In addition, these methods [8], [9], [10], [15] cannot be
used for far-field rendezvous as these linearized equations
give inaccurate results, are computationally expensive and do
not guarantee any optimality in terms of fuel consumption.

Koopman operator is an infinite dimensional linear opera-
tor that describes the evolution of functions of states (referred
to as observable functions or just observables). This operator
allows one to “convert” a finite-dimensional nonlinear system
into a linear system by lifting the state space of the former
system to a higher dimensional state space over which it
admits a linear, yet infinite-dimensional, state space model
representation. However, in practical applications, a finite-
dimensional approximation of the Koopman operator can
provide a sufficiently accurate description of the evolution
of a nonlinear dynamical systems. By applying linear control
design techniques to the system on the “lifted” state space,
one obtains indirectly a controller that can be applied to
the original nonlinear system of interest [16], [17], [18].
Koopman operator methods for state estimation and nonlin-
ear system identification are used in [19], [20]. Recent studies
on the computation of finite-dimensional approximations to
the Koopman operator that lead to better approximations
of nonlinear dynamics can be found in [21]. A systematic
process to choose the observable functions that can best
approximate the Koopman operator remains, however, an
open research problem. Some recent efforts to address the
latter problem based on a combination of machine learning
and trial and error methods can be found in [22], [23].

Main contributions: In this paper, we use the Koopman
operator to lift the nonlinear spacecraft rendezvous dynamics
into a higher but finite-dimensional space over which it can
be approximated by a linear system. An Iteratively Recursive
Least Squares (IRLS) [5] algorithm is then used to compute
approximate solutions for control sequences that minimize
the fuel consumption for far-field rendezvous of a thrust



vectoring spacecraft. Through numerical simulations, it is ob-
served that the Koopman based approach is able to steer the
active spacecraft to the desired final states for both near-field
and far-field rendezvous with higher accuracy than when the
same controller is designed based on the linearized model for
rendezvous. The superiority of the Koopman approach over
the standard linearization-based approach is more significant
in the case of far-field rendezvous, in which the latter often
gives significantly large miss-target errors. To the best of our
knowledge, this is the first paper which utilizes the Koopman
operator for spacecraft rendezvous problems.

Structure of the paper: The organization of the paper is
as follows. In Section II, the continuous-time and discrete-
time nonlinear state space models for spacecraft rendezvous
are introduced. Koopman operator is reviewed in Section III.
Section IV introduces the proposed solution approach for the
minimum fuel problem based on the IRLS algorithm. Numer-
ical simulations are presented in Section V, and Section VI
presents concluding remarks.

II. STATE SPACE MODEL AND PROBLEM SETUP

In this section, we briefly discuss the governing equations
and introduce continuous-time and discrete-time state space
models for spacecraft rendezvous. Then, we introduce the
problem addressed in this paper. Assume that the target

Target elliptical orbit

Active chaser spacecraft
Y

Fig. 1: Local Vertical Local Horizontal (LVLH) coordinate system for
spacecraft rendezvous.

spacecraft is in an elliptical orbit with eccentricity e. Con-
sider the Local-Vertical-Local-Horizontal coordinate system
X —Y — Z as shown in Fig. 1 where the origin is fixed at
the center of mass of the target spacecraft, and the Y axis
is normal to the orbital plane X — Z. The relative motion
of the active chaser spacecraft in the LVLH frame can be
captured by the following nonlinear equation [24]:

#=-p(R+r/[R+r]>—R/IRP®)+u, (1)
where p is the gravity constant, w is the control input
(acceleration vector due to thrust forces on the active chaser
spacecraft), r is the vector from the target spacecraft to
the active chaser spacecraft and R is the relative position

vector from the center of gravity of the planet to the target
spacecraft.

A. Continuous-time nonlinear model

Using the notation r = [ T Yy z }T, Eq. (1) can be
written as [24]

. 3 . 2, nx

P 2wz + wz +wx R

.. oy

i | = Rir® +u, (2)
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where R := |R|,r :==|r|, |[R+7|?> =22+ 9>+ (2 — R)?,
and w is the orbital rate of the rotating coordinate system.
Let h be the orbital angular momentum of the target. Then,
R?w = h = constant. Let e € [0,1) be the eccentricity of
the target orbit, v the true anomaly, p = 1 + ecos v, and

k= ,u/h% = constant, w = h/R* = k*p°. (3)

The eccentric anomaly E and the true anomaly v satisfy the
following equations:

_ V1 —e?sin(v) _e+cos(v)
sin(E) = 1+ ecos(v) ’ cos(E) = 1+ ecos(v) @

In addition, the eccentric anomaly E and time ¢ satisfy the
well-known Kepler’s equation: ¢ = T,(E — esin(E))/2m,
where T, is the time period of the orbit. The nonlinear
equations of motion given in (2) can be rewritten in state
space form as follows:

& = f(xc, u), (&)
where ©. = [x y 2z @ ¢ 2|*. The vectors [z y 2] and
[# 9 2]T correspond to, respectively, the position and velocity
of the active chaser spacecraft with respect to the target

spacecraft in the LVLH frame.

B. Discrete-time nonlinear model

A classical fourth order Runga Kutta discretization method
[25] is used to convert the continuous-time nonlinear dy-
namical system given by Eq. (5) to a discrete-time nonlinear
dynamical system as follows:

where k € [0, N — 1]4, t), = %k‘ =Tk, ty is the final time,
T > 0 is the sampling period, ki, k|2, k|3, and k4 are
given as follows [25]:
k= f(x(k),u(k)), ko= f(x(k)+Tk;/2,u(k))
ks = f(x(k) + Tky2/2,u(k)),
The state of the continuous-time system x. and the state x
of the discrete-time system are related as follows: @.(tx) ~

(k). From Eq. (6), the discrete nonlinear spacecraft ren-
dezvous can be written in compact form as follows.
2k + 1) = h(@(k), u(k)). ™)
Next, we present the problem that we address in this paper.
Problem 1: Given the discrete-time nonlinear dynamics
(7), N > 0, the initial state =, and the final xf, find the
control input u*(k) for all k € [0, N — 1]4 which will steer
the active spacecraft from initial state T to final state = at
k = N while minimizing the following performance index:

N—-1
T (W (k) =) [lu(i)]a- (®)
=0

The solution to Problem 1 poses significant challenges
and requires the use of computationally expensive and so-
phisticated optimization algorithms [6], [13], [14]. Instead,
we propose the following two-step approach. First, we use
a Koopman operator based approach to approximate the
discrete nonlinear model (7) to a higher dimensional (lifted)
linear state space model. Second, we exploit the linearity



of this lifted state space model to solve the minimum-fuel
problem for a thrust vectoring spacecraft.

IIT. KOOPMAN OPERATOR

A. Quick review of Koopman operator

The Koopman operator  : F — JF is an infinite-
dimensional operator which operates on the lifted space, F,
which is a function space comprised of observable functions
(or observables). The lifted space is invariant under the
action of the operator K. In addition, for a given collection
of observable functions, g = [g1,92,...,9n,]%, where
gi(x) : R" = R, for i € {1,...,Ng} and Ny > n, (g
corresponds to a finite truncation of an infinite collection of
basis functions that span the lifted space F), it holds that
(Kg)x(k) = g(f(x(k))) = g(x(k+1)), which implies that
the evolution of this set of functions is linear. In contrast with
linearization-based approximations of nonlinear dynamics
around a fixed linearization point which become less accurate
as one moves away from the latter point, the Koopman
operator describes the exact evolution of the observables of a
nonlinear system globally. Finally, we will refer to the vector
z(k) = g(x(k)) as the lifted state as it corresponds to the
state of the system in the lifted state space (in which its
evolution is linear). For more details, the reader can refer to
[16], [23].

B. Lifted dynamics for rendezvous operations

In this section, we present the main steps for the approx-
imation of the discrete-time nonlinear rendezvous equation
(7) with higher dimensional linear state space model using
Koopman operator. Consider the discrete-time nonlinear ren-
dezvous equation given in Eq. (7). Our goal is to approximate
Eq. (7) as the following linear lifted state space model

z(k +1) = Axoopz (k) + Broopu(k), 9)
where Ny, is the dimension of the lifted state z(k), Akoop €
RNXNe - By, € RNeXm ) 2(k) € RN:, u(k) € R™ and
k € [0, N — 1]4. The initial condition z; is given by

zo = g(x0) = [91(®0), ga(@0), .-, gn, (20)]T  (10)
where o = x(0) is the initial condition for the original

discrete nonlinear equation given in Eq. (7). The terminal
state z(IN') can be written as

N—-1
2(N) = Allpzo + > Apves " Brooptt(7), (11
7=0

where z(N) = g(«(N)) and x(N) denotes the terminal
state of the original discrete-time nonlinear equation (7). The
terminal state can be rewritten in a compact form as

Z(N) = CNkoopukoop + ﬂkoop? (12)
where Cy,,,, € RVN™ a0 € RN™ and By, € RM
are defined as follows:

Ugoop = [(0)T, w(1)T, ... w(N-1)T]T,  (13a)
C Ny = [Apop Broops - - - » Broop) (13b)
Broop = AlgopZ0- (13¢)

C. A data-driven method to compute Ayoop and Bioop

In our problem, the nonlinear spacecraft rendezvous dy-
namics is described by the discrete-time state space model
(7) which is known a priori. We now use a data-driven
approach to approximate the matrices Ayoop and Byogp that
appear in (9). To this aim, a set of random control inputs
and a set of initial states x that correspond to a random
sample from the uniform distribution [—1, 1] are used. These
randomly generated control inputs are applied sequentially
to (7) with initial state o to get the subsequent states. Let the
control input u(k) be applied to take the state of the active
spacecraft from x(k) to & (k + 1). In this way, we construct
the matrices X,U, and Y where X := [x(0),...,z(d)],
U = [u(0),...,u(d)], and Y = [z(1),...,2(d+1)]
where (d + 1) is the number of data points. The matrix Y
can be expressed as Y=f(X,U).

Given the data X, Y, and U, the matrices Ayoop and Byoop
in (9) are obtained via the solution to the following least
squares optimization problem:

min ||Y1ift - Akooleift - BkoopUHF s (14)

Akoop Broop
where Xit=[g(x(0)),...,g(x(d))] and
Yir=[g(x(1)),...,g(x(d+ 1))] with g(x)=
[g1(x),...,gn,(x)]" , being a given collection of nonlinear

observable functions g; (), fori € {1,..., N }. The symbol
||| F denotes the Frobenius norm of a matrix. The analytical
solution to (14) is given by [Axoops Broop] = Yiire [Xiiti, U]'
where (.)7 denotes the Moore-Penrose pseudoinverse
operator.

IV. PROPOSED SOLUTION APPROACH FOR THE MINIMUM
FUEL PROBLEM BASED ON THE IRLS ALGORITHM

Now that we have approximated the matrices Ajyqop and
Byoop of the lifted space dynamics (9), a modified version of
Problem 1 is presented next.

Problem 2: Let xg, Ty € R% and N > 0 be given. Find
a control sequence u,.,(k) € R* for all k € [0, N — 1]4
that will minimize the performance index given in (8) and
subject to the following terminal equality constraint:

CNknopukOOp + /gkoop =z, (15)

where z; = g(x(N)).

The proposed approach to solve Problem 2 is based on the
an iterative approach known as the Iteratively Reweighted
Least Squares (IRLS) algorithm. It is a popular tool for the
computation of the minimum ¢5/¢; or ¢; norm solution to
an under-determined system of linear (algebraic) equations
in the literature of compressive sensing [2].

A. IRLS Algorithm

The iterative approach presented here computes an approx-
imate solution to the minimum ¢5 /¢, norm problem in closed
form via the solution of a corresponding sequence of convex
quadratic programs. In particular, at every iteration j, u][i)jpl]
corresponds to the solution of the following convex quadratic
program:

1 m

@QP): min > > (i) wl! (k)u(i) subject to (15)

u
i=0 k=1



Algorithm 1 IRLS algorithm for solving ¢5 /¢, optimization
problem

I wlol(G) =1Vie[l,Nm]q

2: €0l =1

3: for j = 0 t0 jmax do

4: for k =0,...,N—1do )

5: Ul(k) = dlag (w[J] (km+1) ... wll(km + m))

6: end for ) )

7. WUl = bdiag (wlﬂl S, WUV - 1))

8wyt = (Wb )*(CTW (whil)-1)T

(C Ry, WD +I)*1<C mp(w[ﬂrl)Tﬁkmp
0: bt = min &b, juft Voo }
10: for /{=1,...,Nm do y
—1/4
. . 2

11: wli+l () = (( gy (e)) + (elit1) )

12: end for

13: if € € [0, € then

14: report “success’’

15: end if
16: end for
17: if € ¢ [0, €] then
18: report “failure’’
19: end if
with wl! = [wll(0)T, wll(1)T whl(N — D)T)T €
RYP, where wll(k) € R™ for all k € [0,N — 1] and
m = 3 for a thrust vectoring spacecraft [7]. First, the

input parameters w!% (k) for all k € [1, Nm] and €[ are
initialized to 1 and j is set to zero. We define the weight
matrix

WUl(k) = diag ('w[j](km +1),...,w (km + m)) , (16)

for k € [0,N — 1]4, which is a positive definite matrix
provided that wl! > 0. Furthermore, let
1)) .

WU = bdiag (W[ﬂ o), ...,
U'to the (QP) is given by

i+
koop
ukoop (W[J]) (CTkoop (W[J])_l)T
(CRy W)L+ D) 7HCR,, W) )T Broeps (18)
where C,,, and By, are given by Egs. (13b) and (13c)
respectively. The weight matrices WU (k) and WU (k) are
updated at every iteration and are used to compute the
control sequence uyqp at every iteration. This sequence of
control sequences ultimately converges to the optimal control
sequence ug,,, after a certain number of iterations that
minimizes the ¢5/¢; norm and solves Problem (2). The main
steps of the IRLS algorithm, which will generate a control
sequence that minimizes the ¢5/¢; control norm given by
the performance index in (8) are described next. The value
of eU+1 is now updated to min{ 7] ||uk00 1]||OQ} , where
+1] U1 The

wll(N - (17)

Then, the solution u

[i+1]

Hukoop | denotes the {.-norm of the vector u

koo
vector wlt1l is updated again as follows: w[JJrli

(b @) + (b))

ul[(jojpl] (¢) is the /™ element of the vector ul[fo;r ! from Eq.

(18). The value of j is now set to j + 1. Consequently, the
updated wb!(¢) is used to first update WUl(k) and next to
update the matrices WUl and w7 given by Eqns. (17) and

koop

4
, for all £ € [1, Nm], where
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Fig. 2: Evolution of states for near-field rendezvous. In this case, the control
inputs wji, and ukeop generated using the linearized dynamics (24) and the
lifted space dynamics (12) respectively are able to steer the active spacecraft
from initial state o to final state & with comparable accuracy. However,
as seen from Table I, the Koopman operator based approach gives better
performance in terms of the terminal state error.
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Fig. 3: Control inputs for near-field rendezvous

(18). This operation is repeated until the sequence of control
sequences {ul[(o]op} converges to the optimal control sequence
Ugoop- I lil ¢ [0,¢], two cases arise. First, if j < Jmax;
then go to Eq. (16) and if j = jmax, then conclude that the
algorithm failed to converge. Hence it is suggested to set a
larger jmax to increase the chances of success. Else if j is
less than or equal to jnax and el e [0, ], then Algorithm
1 is terminated successfully. The pseudo code for the IRLS
algorithm is given in Algorithm 1.

V. NUMERICAL SIMULATIONS

Simulation studies presented in this section have been
carried out using MATLAB R2020a on Intel Core i7 2.2GHz
processor. Two cases are considered. First, we consider a



near-field rendezvous in which the distance between the
target spacecraft and active spacecraft is much less than
the distance between the planet and the target spacecraft
(i.e. 7 <€ R). Second, we consider the case for far-field
rendezvous in which R ~ r. The target spacecraft is moving
in an elliptical orbit whose semimajor axis is equal to
6763 x 10°>m and its eccentricity e = 0.73074.

Terminal state error Koopman Linear
Near-field rendezvous 1.6246 4.7369
Far-field rendezvous 2.9320 605.6255

TABLE I: /5 norm of the terminal state error

The nonlinear dynamics (2) is discretized using fourth
order Runga Kutta method with discretization step 7' equal
to 1s and N equal to 500. For the Koopman operator we
consider N = 120. To generate the sequence of data x(k)
for k € {0....,d}, we sample 1000 initial conditions which
are taken from the uniform distribution over [—1,1]% . For
each sample, we apply control inputs w (k) which are taken
randomly from a uniform distribution over [—1, 1]2. Then, for
each sample of randomly generated initial conditions, we use
the discrete nonlinear dynamics in Eq. (7) to propagate the
dynamics with the given control inputs u(k). For each initial
condition, we simulate/propagate 2000 states along each
trajectory. This data generation process results in matrices
X,U and Y of size 6 x 2- 109, Therefore, the total number
of data points is equal to 1000x2000 =2-10°. The following
set of observable functions were used in our simulations:

9192939495 96 ] =[xy 2 T 9 Z]
[L,4,9,%, 2,9, 2]

(1+2%+y*+22)

97, 98, 99 910, 911, G12, g13] = 3
2
222,59, 2(2 — ||lzoll2) ]
@+ 32 + (2 — =oll2)?)?

[2,y, 2]
[22 + 42 + (2 — ||wo[2)?]2

6 ) )

where g;(z) = 1/1/1 +a?, q; = ijll(sc(j)Q.— 01(3)2)
and ¢; is a random sample taken from a uniform distribution
over [—1,1], for i € [20,120],.

[9143 915, 916] =

[917’ g18, 919] =

A. Near-field rendezvous (r < R)

Consider a scenario in which the active spacecraft is
performing a near-field rendezvous with a target spacecraft.
In this case, 103 ~ r < R ~ 105 We consider the
initial state ¢o = (103, —10%,10%,3,3,—3) and final state
xy = (0,0,0,0,0,0). The control inputs wj, and Uyeep are
computed by using the linearized and the lifted space linear
dynamics respectively. It is observed from Fig. 2 that these
control inputs when applied to the nonlinear discrete ren-
dezvous dynamics in Eq. (7) can steer the active spacecraft
to the desired final states. This is mainly because for the
near-field rendezvous, the linearized rendezvous equations
can represent the nonlinear spacecraft rendezvous dynamics
relatively well.
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Fig. 4: Evolution of states for far-field rendezvous. The control input wkeop
generated using the lifted space dynamics (12) is able to steer the active
spacecraft from initial state @ to final state & with better accuracy than
the control input wji, which is generated using the linear dynamics.
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Fig. 5: Control inputs for far-field rendezvous

B. Far-Field rendezvous (R ~ r)

Now, consider the case of far-field rendezvous where
R =~ r ~ 10°% We consider the initial state
xo = (10°,—10°,105,3,3,—3) and final state x; =
(0,0,0,0,0,0). Again, the control inputs i, and wUkep are
generated using the linearized and lifted space dynamics
respectively. It is observed that wy, is not able to steer the
active spacecraft to the desired final states as shown in Fig.
4. However, uiqop 18 able to steer the active spacecraft to the
desired final states. It can also be observed from Table I that
the ¢5-norm of the terminal state error is orders of magnitude
higher for near-field rendezvous than in the case of far-field
rendezvous.



VI. CONCLUSIONS

We have presented an iterative scheme for the compu-
tation of approximate solutions to the minimum-fuel far-
field spacecraft rendezvous problem for a thrust vectoring
spacecraft. The proposed approach uses tools from Koopman
operator theory to associate the nonlinear dynamics of the
rendezvous problem with a linear system of higher dimension
which evolves in the so-called lifted state space (or space
of observables). The latter linear system is subsequently
used together with an Iteratively Recursive Least Squares
(IRLS) algorithm to generate approximate solutions to the
minimum-fuel rendezvous problem for a thrust vectoring
spacecraft. Our numerical simulations have shown that the
control input computed based on the lifted space dynamics
can steer the system to its goal terminal state for both near-
field and far-field rendezvous with accuracy which is orders
of magnitude higher than the linearization-based methods,
which only produced satisfactory results for the short-field
rendezvous problem.

VII. APPENDIX

In this section, we present the Tschauner—Hempel (T-H)
linearized equations for spacecraft rendezvous. Consider the
following linearized rendezvous equation given by:

B(t) = Ac(B)2 (1) + Bo(t)u(t) (19)
where A.(t) and B.(t) are given as follows
_[o¥ B _13x3 13T
P

and A; and A, are given as follows:

w? — kw? 0 W 0 0 2w
A = 0 — kw32 0 JAo=10 0 0

-G 0 w? 4 2kw3/? 2w 0 0

If R > r, then the system in (2) can be linearized about
the origin and can be described by the following non-
autonomous discrete-time state space model:

x(k+1) = Ak)x(k) + B(k)u(k), k€[0,N —1]g (20)
where the matrices A(k) and B(k) are defined as follows:

A(k) = ®(tps1,tr), B(k) = /

tr
where @ is the state transition matrix. Using Eq. (20), it
follows that the terminal state at kK = N is given by
N—1
T(N) = Bq(N,0)x(0)+ > 4(N,7+1)B(r)u(r). (22)
7=0
where the state transition matrix of the discrete-time system
(20), ®4(k,m), is introduced as follows:

(I)d(k’7m)={ Ak —1)...A(m), k>m>0,

167 k= m,
where k and m are non negative integers. From Eq. (22), the
terminal state (V) = x; can be written as follows:

x(N) = B + C nwip,
where uy,, B and C'y are given by
Upip = [u(O)T, coou(N— 1)T]T, B = P4(N,0)xz(0)

th+1

D(tp41,0)Bedo,

(23)

(24)
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