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Abstract— We propose a method to compute approximate
solutions to the minimum-fuel far-field rendezvous problem
for thrust-vectoring spacecraft. When the distance between the
active and the target spacecraft is significantly greater than
the distance between the target spacecraft and the center of
gravity of the planet, linearization-based approximations of
the nonlinear rendezvous dynamics may not be sufficiently
accurate. For this reason, control methods that rely on such
linearizations may not be appropriate for far-field rendezvous.
In this paper, we address the control design problem based
on a nonlinear state space model. To overcome the well-known
challenges of nonlinear control design, we utilize a Koopman
operator based approach in which the nonlinear spacecraft
rendezvous dynamics is lifted into a higher dimensional space
over which the nonlinear dynamics can be approximated by a
linear system which is more suitable for control design purposes
than the original nonlinear model. An Iteratively Recursive
Least Squares (IRLS) algorithm from compressive sensing is
then used to solve the minimum fuel control problem based on
the lifted linear system. Numerical simulations are performed
to show the efficacy of the proposed Koopman operator based
approach.

I. INTRODUCTION

We propose a Koopman operator based method for the

computation of nearly optimal (approximate) solutions to

the minimum-fuel far-field rendezvous problem for thrust-

vectoring spacecraft. In a typical rendezvous problem, the

relative motion of the active chaser spacecraft with respect

to a target spacecraft in a circular or elliptical orbit can

be described in terms of a system of autonomous nonlinear

differential equations. The control design in such problems

is based, however, on linearized equations of motion such

as the Hill–Clohessy–Wiltshire (H–C–W) equations, which

correspond to a time-invariant system of equations, or the

Tschauner–Hempel (T–H) equations, which correspond to a

periodic linear system. These widely used linearized models

are rarely effective to describe the relative motion for far-field

rendezvous [1]. Therefore, linearization-based control design

techniques cannot guarantee the desired accuracy in far-

field rendezvous problems. The Koopman operator approach

utilized herein allows one to account for the nonlinearities

of the dynamics of the spacecraft rendezvous problem while

at the same time linear control design techniques are still

applicable. The key idea of the Koopman operator is that

the nonlinear dynamics of the rendezvous problem can be

approximated by a higher dimensional linear state space
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model based on which we can compute approximate solu-

tions to the minimum-fuel rendezvous problem for a thrust

vectoring spacecraft. The proposed control algorithms rely on

tools from compressive sensing [2] and in particular, `2/`1
optimization and the Iteratively Reweighted Least Squares

algorithm [3], [4], [5].

Literature review: A rendezvous mission is usually divided

into far-field rendezvous, near-field rendezvous, and final

approach. Various control approaches have been proposed for

near-field and final approach rendezvous operations [6], [7],

[8], [9], [10], [11], [12]. However, most of these approaches

use linearized rendezvous equations. References [13], [14]

consider more general and challenging proximity operation

problems under realistic constraints. While these methods are

very robust, they are rarely effective for far-field rendezvous

[1]. In addition, these methods [8], [9], [10], [15] cannot be

used for far-field rendezvous as these linearized equations

give inaccurate results, are computationally expensive and do

not guarantee any optimality in terms of fuel consumption.

Koopman operator is an infinite dimensional linear opera-

tor that describes the evolution of functions of states (referred

to as observable functions or just observables). This operator

allows one to “convert” a finite-dimensional nonlinear system

into a linear system by lifting the state space of the former

system to a higher dimensional state space over which it

admits a linear, yet infinite-dimensional, state space model

representation. However, in practical applications, a finite-

dimensional approximation of the Koopman operator can

provide a sufficiently accurate description of the evolution

of a nonlinear dynamical systems. By applying linear control

design techniques to the system on the “lifted” state space,

one obtains indirectly a controller that can be applied to

the original nonlinear system of interest [16], [17], [18].

Koopman operator methods for state estimation and nonlin-

ear system identification are used in [19], [20]. Recent studies

on the computation of finite-dimensional approximations to

the Koopman operator that lead to better approximations

of nonlinear dynamics can be found in [21]. A systematic

process to choose the observable functions that can best

approximate the Koopman operator remains, however, an

open research problem. Some recent efforts to address the

latter problem based on a combination of machine learning

and trial and error methods can be found in [22], [23].

Main contributions: In this paper, we use the Koopman

operator to lift the nonlinear spacecraft rendezvous dynamics

into a higher but finite-dimensional space over which it can

be approximated by a linear system. An Iteratively Recursive

Least Squares (IRLS) [5] algorithm is then used to compute

approximate solutions for control sequences that minimize

the fuel consumption for far-field rendezvous of a thrust



vectoring spacecraft. Through numerical simulations, it is ob-

served that the Koopman based approach is able to steer the

active spacecraft to the desired final states for both near-field

and far-field rendezvous with higher accuracy than when the

same controller is designed based on the linearized model for

rendezvous. The superiority of the Koopman approach over

the standard linearization-based approach is more significant

in the case of far-field rendezvous, in which the latter often

gives significantly large miss-target errors. To the best of our

knowledge, this is the first paper which utilizes the Koopman

operator for spacecraft rendezvous problems.

Structure of the paper: The organization of the paper is

as follows. In Section II, the continuous-time and discrete-

time nonlinear state space models for spacecraft rendezvous

are introduced. Koopman operator is reviewed in Section III.

Section IV introduces the proposed solution approach for the

minimum fuel problem based on the IRLS algorithm. Numer-

ical simulations are presented in Section V, and Section VI

presents concluding remarks.

II. STATE SPACE MODEL AND PROBLEM SETUP

In this section, we briefly discuss the governing equations

and introduce continuous-time and discrete-time state space

models for spacecraft rendezvous. Then, we introduce the

problem addressed in this paper. Assume that the target
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Fig. 1: Local Vertical Local Horizontal (LVLH) coordinate system for
spacecraft rendezvous.

spacecraft is in an elliptical orbit with eccentricity e. Con-

sider the Local-Vertical-Local-Horizontal coordinate system

X − Y − Z as shown in Fig. 1 where the origin is fixed at

the center of mass of the target spacecraft, and the Y axis

is normal to the orbital plane X − Z. The relative motion

of the active chaser spacecraft in the LVLH frame can be

captured by the following nonlinear equation [24]:

r̈ = −µ
(

R+ r/|R+ r|3 −R/|R|3
)

+ u, (1)

where µ is the gravity constant, u is the control input

(acceleration vector due to thrust forces on the active chaser

spacecraft), r is the vector from the target spacecraft to

the active chaser spacecraft and R is the relative position

vector from the center of gravity of the planet to the target

spacecraft.

A. Continuous-time nonlinear model

Using the notation r =
[

x y z
]T

, Eq. (1) can be

written as [24]




ẍ
ÿ
z̈



 =





2ωż + ω̇z + ω2x− µx
|R+r|3

− µy
|R+r|3

ω2z − 2ωẋ− ω̇x− µ
(

z−R
|R+r|3 + 1

R2

)



+ u, (2)

where R := |R|, r := |r|, |R+ r|2 := x2 + y2 + (z −R)2,

and ω is the orbital rate of the rotating coordinate system.

Let h be the orbital angular momentum of the target. Then,

R2ω = h = constant. Let e ∈ [0, 1) be the eccentricity of

the target orbit, ν the true anomaly, ρ = 1 + e cos ν, and

k = µ/h
3
2 = constant, ω = h/R2 = k2ρ2. (3)

The eccentric anomaly E and the true anomaly ν satisfy the

following equations:

sin(E) =

√
1− e2 sin(ν)

1 + e cos(ν)
, cos(E) =

e+ cos(ν)

1 + e cos(ν)
(4)

In addition, the eccentric anomaly E and time t satisfy the

well-known Kepler’s equation: t = To

(

E − e sin(E)
)

/2π,

where To is the time period of the orbit. The nonlinear

equations of motion given in (2) can be rewritten in state

space form as follows:

ẋc = f(xc,u), (5)

where xc = [x y z ẋ ẏ ż]T. The vectors [x y z]T and

[ẋ ẏ ż]T correspond to, respectively, the position and velocity

of the active chaser spacecraft with respect to the target

spacecraft in the LVLH frame.

B. Discrete-time nonlinear model

A classical fourth order Runga Kutta discretization method

[25] is used to convert the continuous-time nonlinear dy-

namical system given by Eq. (5) to a discrete-time nonlinear

dynamical system as follows:

x(k + 1) = x(k) + (T/6)
(

k|1 + 2k|2 + 2k|3 + k|4

)

, (6)

where k ∈ [0, N − 1]d, tk =
tf
N k = Tk, tf is the final time,

T > 0 is the sampling period, k|1, k|2, k|3, and k|4 are

given as follows [25]:

k|1 = f(x(k),u(k)), k|2 = f(x(k) + Tk|1/2,u(k))

k|3 = f(x(k) + Tk|2/2,u(k)),

k|4 = f(x(k) + Tk|3,u(k)),

The state of the continuous-time system xc and the state x

of the discrete-time system are related as follows: xc(tk) ≈
x(k). From Eq. (6), the discrete nonlinear spacecraft ren-

dezvous can be written in compact form as follows.

x(k + 1) = h(x(k),u(k)). (7)

Next, we present the problem that we address in this paper.

Problem 1: Given the discrete-time nonlinear dynamics

(7), N > 0, the initial state x0 and the final xf , find the

control input u?(k) for all k ∈ [0, N − 1]d which will steer

the active spacecraft from initial state x0 to final state xf at

k = N while minimizing the following performance index:

J2,1 (u
?(k)) :=

N−1
∑

i=0

‖u(i)‖2. (8)

The solution to Problem 1 poses significant challenges

and requires the use of computationally expensive and so-

phisticated optimization algorithms [6], [13], [14]. Instead,

we propose the following two-step approach. First, we use

a Koopman operator based approach to approximate the

discrete nonlinear model (7) to a higher dimensional (lifted)

linear state space model. Second, we exploit the linearity



of this lifted state space model to solve the minimum-fuel

problem for a thrust vectoring spacecraft.

III. KOOPMAN OPERATOR

A. Quick review of Koopman operator

The Koopman operator K : F → F is an infinite-

dimensional operator which operates on the lifted space, F ,

which is a function space comprised of observable functions

(or observables). The lifted space is invariant under the

action of the operator K. In addition, for a given collection

of observable functions, g = [g1, g2, . . . , gNk
]T, where

gi(x) : R
n → R, for i ∈ {1, . . . , Nk} and Nk � n, (g

corresponds to a finite truncation of an infinite collection of

basis functions that span the lifted space F), it holds that

(Kg)x(k) = g(f(x(k))) = g(x(k+1)), which implies that

the evolution of this set of functions is linear. In contrast with

linearization-based approximations of nonlinear dynamics

around a fixed linearization point which become less accurate

as one moves away from the latter point, the Koopman

operator describes the exact evolution of the observables of a

nonlinear system globally. Finally, we will refer to the vector

z(k) = g(x(k)) as the lifted state as it corresponds to the

state of the system in the lifted state space (in which its

evolution is linear). For more details, the reader can refer to

[16], [23].

B. Lifted dynamics for rendezvous operations

In this section, we present the main steps for the approx-

imation of the discrete-time nonlinear rendezvous equation

(7) with higher dimensional linear state space model using

Koopman operator. Consider the discrete-time nonlinear ren-

dezvous equation given in Eq. (7). Our goal is to approximate

Eq. (7) as the following linear lifted state space model

z(k + 1) = Akoopz(k) +Bkoopu(k), (9)

where Nk is the dimension of the lifted state z(k), Akoop ∈
R

Nk×Nk , Bkoop ∈ R
Nk×m, z(k) ∈ R

Nk , u(k) ∈ R
m and

k ∈ [0, N − 1]d. The initial condition z0 is given by

z0 = g(x0) = [g1(x0), g2(x0), . . . , gNk
(x0)]

T (10)

where x0 = x(0) is the initial condition for the original

discrete nonlinear equation given in Eq. (7). The terminal

state z(N) can be written as

z(N) = AN
koopz0 +

N−1
∑

τ=0

AN−1−τ
koop Bkoopu(τ), (11)

where z(N) = g(x(N)) and x(N) denotes the terminal

state of the original discrete-time nonlinear equation (7). The

terminal state can be rewritten in a compact form as

z(N) = CNkoop
ukoop + βkoop, (12)

where CNkoop
∈ R

Nk×Nm, ukoop ∈ R
Nm and βkoop ∈ R

Nk

are defined as follows:

ukoop := [u(0)T, u(1)T, . . . ,u(N − 1)T]T, (13a)

CNkoop
:= [AN−1

koop Bkoop, . . . , Bkoop], (13b)

βkoop := AN
koopz0. (13c)

C. A data-driven method to compute Akoop and Bkoop

In our problem, the nonlinear spacecraft rendezvous dy-

namics is described by the discrete-time state space model

(7) which is known a priori. We now use a data-driven

approach to approximate the matrices Akoop and Bkoop that

appear in (9). To this aim, a set of random control inputs

and a set of initial states x0 that correspond to a random

sample from the uniform distribution [−1, 1] are used. These

randomly generated control inputs are applied sequentially

to (7) with initial state x0 to get the subsequent states. Let the

control input u(k) be applied to take the state of the active

spacecraft from x(k) to x(k+1). In this way, we construct

the matrices X,U , and Y where X := [x(0), . . . ,x(d)],
U := [u(0), . . . ,u(d)], and Y = [x(1), . . . ,x(d+ 1)]
where (d + 1) is the number of data points. The matrix Y

can be expressed as Y =f(X,U).
Given the data X,Y , and U , the matrices Akoop and Bkoop

in (9) are obtained via the solution to the following least

squares optimization problem:

min
Akoop,Bkoop

‖Y lift −AkoopX lift −BkoopU‖
F
, (14)

where X lift=[g(x(0)), . . . , g(x(d))] and

Y lift=[g(x(1)), . . . , g(x(d+ 1))] with g(x)=
[g1(x), . . . , gNk

(x)]T , being a given collection of nonlinear

observable functions gi(x), for i ∈ {1, . . . , Nk}. The symbol

‖·‖F denotes the Frobenius norm of a matrix. The analytical

solution to (14) is given by [Akoop, Bkoop] = Y lift [X lift,U ]
†

where (.)† denotes the Moore-Penrose pseudoinverse

operator.

IV. PROPOSED SOLUTION APPROACH FOR THE MINIMUM

FUEL PROBLEM BASED ON THE IRLS ALGORITHM

Now that we have approximated the matrices Akoop and

Bkoop of the lifted space dynamics (9), a modified version of

Problem 1 is presented next.

Problem 2: Let x0, xf ∈ R
6 and N > 0 be given. Find

a control sequence u?
koop(k) ∈ R

3 for all k ∈ [0, N − 1]d
that will minimize the performance index given in (8) and

subject to the following terminal equality constraint:

CNkoop
ukoop + βkoop = zf , (15)

where zf = g(x(N)).
The proposed approach to solve Problem 2 is based on the

an iterative approach known as the Iteratively Reweighted

Least Squares (IRLS) algorithm. It is a popular tool for the

computation of the minimum `2/`1 or `1 norm solution to

an under-determined system of linear (algebraic) equations

in the literature of compressive sensing [2].

A. IRLS Algorithm

The iterative approach presented here computes an approx-

imate solution to the minimum `2/`1 norm problem in closed

form via the solution of a corresponding sequence of convex

quadratic programs. In particular, at every iteration j, u
[j+1]
koop

corresponds to the solution of the following convex quadratic

program:

(QP): min
u

N−1
∑

i=0

m
∑

k=1

u(i)Tw[j](k)u(i) subject to (15)



Algorithm 1 IRLS algorithm for solving `2/`1 optimization

problem

1: w[0](i) = 1 ∀ i ∈ [1, Nm]d
2: ε[0] = 1
3: for j = 0 to jmax do
4: for k = 0, . . . , N − 1 do
5: W

[j](k) = diag
(

w[j](km+ 1) . . .w[j](km+m)
)

6: end for
7: W [j] = bdiag

(

W
[j](0), . . . ,W[j](N − 1)

)

8: u
[j+1]
koop

= (W [j])−1(CT
Nkoop

(W [j])−1)T

(CT
Nkoop

(W [j])−1 + I)−1(CT
Nkoop

(W [j])−1)Tβkoop

9: ε[j+1] = min
{

ε[j], ‖u
[j+1]
koop

‖∞
}

10: for ` = 1, . . . , Nm do

11: w[j+1](`) =

(

(

u
[j+1]
koop

(`)
)2

+
(

ε[j+1]
)2

)

−1/4

12: end for
13: if ε ∈ [0, ε̄] then
14: report “success′′

15: end if
16: end for
17: if ε /∈ [0, ε̄] then
18: report “failure′′

19: end if

with w[j] := [w[j](0)T, w[j](1)T, . . . , w[j](N − 1)T]T ∈
R

Nm
>0 , where w[j](k) ∈ R

m for all k ∈ [0, N − 1]d and

m = 3 for a thrust vectoring spacecraft [7]. First, the

input parameters w[0](k) for all k ∈ [1, Nm] and ε[0] are

initialized to 1 and j is set to zero. We define the weight

matrix

W
[j](k) = diag

(

w[j](km+ 1), . . . ,w[j](km+m)
)

, (16)

for k ∈ [0, N − 1]d, which is a positive definite matrix

provided that w[j] ≥ 0. Furthermore, let

W
[j] = bdiag

(

W
[j](0), . . . ,W[j](N − 1)

)

. (17)

Then, the solution u
[j+1]
koop to the (QP) is given by

u
[j+1]
koop =(W [j])−1(CT

Nkoop
(W [j])−1)T

(CT
Nkoop

(W [j])−1 + I)−1(CT
Nkoop

(W [j])−1)Tβkoop, (18)

where CNkoop
and βkoop are given by Eqs. (13b) and (13c)

respectively. The weight matrices W
[j](k) and W

[j](k) are

updated at every iteration and are used to compute the

control sequence ukoop at every iteration. This sequence of

control sequences ultimately converges to the optimal control

sequence u?
koop after a certain number of iterations that

minimizes the `2/`1 norm and solves Problem (2). The main

steps of the IRLS algorithm, which will generate a control

sequence that minimizes the `2/`1 control norm given by

the performance index in (8) are described next. The value

of ε[j+1] is now updated to min
{

ε[j], ‖u[j+1]
koop ‖∞

}

, where

‖u[j+1]
koop ‖∞ denotes the `∞-norm of the vector u

[j+1]
koop . The

vector w[j+1] is updated again as follows: w[j+1](`) =
(

(

u
[j+1]
koop (`)

)2
+
(

ε[j+1]
)2
)−1/4

, for all ` ∈ [1, Nm], where

u
[j+1]
koop (`) is the `th element of the vector u

[j+1]
koop from Eq.

(18). The value of j is now set to j + 1. Consequently, the

updated w[j](`) is used to first update W
[j](k) and next to

update the matrices W [j] and u
[j+1]
koop given by Eqns. (17) and
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Fig. 2: Evolution of states for near-field rendezvous. In this case, the control
inputs ulin and ukoop generated using the linearized dynamics (24) and the
lifted space dynamics (12) respectively are able to steer the active spacecraft
from initial state x0 to final state xf with comparable accuracy. However,
as seen from Table I, the Koopman operator based approach gives better
performance in terms of the terminal state error.
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Fig. 3: Control inputs for near-field rendezvous

(18). This operation is repeated until the sequence of control

sequences {u[j]
koop} converges to the optimal control sequence

u?
koop. If ε[j] /∈ [0, ε̄], two cases arise. First, if j < jmax,

then go to Eq. (16) and if j = jmax, then conclude that the

algorithm failed to converge. Hence it is suggested to set a

larger jmax to increase the chances of success. Else if j is

less than or equal to jmax and ε[j] ∈ [0, ε̄], then Algorithm

1 is terminated successfully. The pseudo code for the IRLS

algorithm is given in Algorithm 1.

V. NUMERICAL SIMULATIONS

Simulation studies presented in this section have been

carried out using MATLAB R2020a on Intel Core i7 2.2GHz

processor. Two cases are considered. First, we consider a



near-field rendezvous in which the distance between the

target spacecraft and active spacecraft is much less than

the distance between the planet and the target spacecraft

(i.e. r � R). Second, we consider the case for far-field

rendezvous in which R ≈ r. The target spacecraft is moving

in an elliptical orbit whose semimajor axis is equal to

6763× 103m and its eccentricity e = 0.73074.

Terminal state error Koopman Linear
Near-field rendezvous 1.6246 4.7369
Far-field rendezvous 2.9320 605.6255

TABLE I: `2 norm of the terminal state error

The nonlinear dynamics (2) is discretized using fourth

order Runga Kutta method with discretization step T equal

to 1s and N equal to 500. For the Koopman operator we

consider Nk = 120. To generate the sequence of data x(k)
for k ∈ {0. . . . , d}, we sample 1000 initial conditions which

are taken from the uniform distribution over [−1, 1]6 . For

each sample, we apply control inputs u(k) which are taken

randomly from a uniform distribution over [−1, 1]3. Then, for

each sample of randomly generated initial conditions, we use

the discrete nonlinear dynamics in Eq. (7) to propagate the

dynamics with the given control inputs u(k). For each initial

condition, we simulate/propagate 2000 states along each

trajectory. This data generation process results in matrices

X,U and Y of size 6× 2 · 106. Therefore, the total number

of data points is equal to 1000×2000 =2 ·106. The following

set of observable functions were used in our simulations:

[g1 g2 g3 g4 g5 g6 ] = [x y z ẋ ẏ ż]

[g7, g8, g9, g10, g11, g12, g13] =
[1, ẋ, ẏ, ż, x, y, z]

(1 + x2 + y2 + z2)
3
2

[g14, g15, g16] =
[x2ẋ, y2ẏ, z(z − ‖x0‖2)ż]
(x2 + y2 + (z − ‖x0‖2)2)

5
2

[g17, g18, g19] =
[x, y, z]

[x2 + y2 + (z − ‖x0‖2)2]
3
2

where gi(x) = 1/
√

1 + α2
i , αi =

∑6
j=1(x(j)

2 − ci(j)
2)

and ci is a random sample taken from a uniform distribution

over [−1, 1]6, for i ∈ [20, 120]d.

A. Near-field rendezvous (r � R)

Consider a scenario in which the active spacecraft is

performing a near-field rendezvous with a target spacecraft.

In this case, 103 ≈ r � R ≈ 106. We consider the

initial state x0 = (103,−103, 103, 3, 3,−3) and final state

xf = (0, 0, 0, 0, 0, 0). The control inputs ulin and ukoop are

computed by using the linearized and the lifted space linear

dynamics respectively. It is observed from Fig. 2 that these

control inputs when applied to the nonlinear discrete ren-

dezvous dynamics in Eq. (7) can steer the active spacecraft

to the desired final states. This is mainly because for the

near-field rendezvous, the linearized rendezvous equations

can represent the nonlinear spacecraft rendezvous dynamics

relatively well.
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Fig. 4: Evolution of states for far-field rendezvous. The control input ukoop

generated using the lifted space dynamics (12) is able to steer the active
spacecraft from initial state x0 to final state xf with better accuracy than
the control input ulin which is generated using the linear dynamics.
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Fig. 5: Control inputs for far-field rendezvous

B. Far-Field rendezvous (R ≈ r)

Now, consider the case of far-field rendezvous where

R ≈ r ≈ 106. We consider the initial state

x0 = (105,−105, 105, 3, 3,−3) and final state xf =
(0, 0, 0, 0, 0, 0). Again, the control inputs ulin and ukoop are

generated using the linearized and lifted space dynamics

respectively. It is observed that ulin is not able to steer the

active spacecraft to the desired final states as shown in Fig.

4. However, ukoop is able to steer the active spacecraft to the

desired final states. It can also be observed from Table I that

the `2-norm of the terminal state error is orders of magnitude

higher for near-field rendezvous than in the case of far-field

rendezvous.



VI. CONCLUSIONS

We have presented an iterative scheme for the compu-

tation of approximate solutions to the minimum-fuel far-

field spacecraft rendezvous problem for a thrust vectoring

spacecraft. The proposed approach uses tools from Koopman

operator theory to associate the nonlinear dynamics of the

rendezvous problem with a linear system of higher dimension

which evolves in the so-called lifted state space (or space

of observables). The latter linear system is subsequently

used together with an Iteratively Recursive Least Squares

(IRLS) algorithm to generate approximate solutions to the

minimum-fuel rendezvous problem for a thrust vectoring

spacecraft. Our numerical simulations have shown that the

control input computed based on the lifted space dynamics

can steer the system to its goal terminal state for both near-

field and far-field rendezvous with accuracy which is orders

of magnitude higher than the linearization-based methods,

which only produced satisfactory results for the short-field

rendezvous problem.

VII. APPENDIX

In this section, we present the Tschauner–Hempel (T–H)

linearized equations for spacecraft rendezvous. Consider the

following linearized rendezvous equation given by:

ẋ(t) = Ac(t)x(t) +Bc(t)u(t) (19)

where Ac(t) and Bc(t) are given as follows

Ac(t) =

[

O
3×3

I
3

A1 A2

]

, Bc = [O3×3
I
3]T

and A1 and A2 are given as follows:

A1 =





ω2 − kω
3
2 0 ω̇

0 −kω3/2 0
−ω̇ 0 ω2 + 2kω3/2



, A2 =





0 0 2ω
0 0 0

−2ω 0 0



.

If R � r, then the system in (2) can be linearized about

the origin and can be described by the following non-

autonomous discrete-time state space model:

x(k + 1) = A(k)x(k) +B(k)u(k), k ∈ [0, N − 1]d (20)

where the matrices A(k) and B(k) are defined as follows:

A(k) = Φ(tk+1, tk), B(k) =

∫ tk+1

tk

Φ(tk+1, σ)Bcdσ,

where Φ is the state transition matrix. Using Eq. (20), it

follows that the terminal state at k = N is given by

x(N) = Φd(N, 0)x(0)+

N−1
∑

τ=0

Φd(N, τ+1)B(τ)u(τ). (22)

where the state transition matrix of the discrete-time system

(20), Φd(k,m), is introduced as follows:

Φd(k,m) =

{

A(k − 1) . . . A(m), k > m ≥ 0,
I6, k = m,

(23)

where k and m are non negative integers. From Eq. (22), the

terminal state x(N) = xf can be written as follows:

x(N) = β +CNulin, (24)

where ulin, β and CN are given by

ulin = [u(0)T, . . .u(N − 1)T]T, β = Φd(N, 0)x(0)

CN = [Φd(N, 1)B(0), Φd(N, 2)B(1), . . . B(N − 1)]
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