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Abstract: The dynamics of a three-phase gas-liquid-liquid multiphase system is examine by direct1

numerical simulations. The system consists of a continuous liquid phase, buoyant gas bubbles and2

smaller heavy drops that fall relative to the continuous liquid. The computational domain is fully3

periodic and a force equal to the weight of the mixture is added to keep it in place. The governing4

parameters are selected so that the terminal Reynolds numbers of the bubbles and the drops are5

moderate and while the effect of bubble deformability is examined by changing its surface tension,6

the surface tension for the drops is sufficiently high so they do not deform. One bubble in a “unit7

cell” and eight freely interacting bubbles are examined. The dependency of the slip velocities, the8

velocity fluctuations, as well as the distribution of the dispersed phases, on the volume fraction of9

each phase are examined. It is found that while the distribution of drops around a single bubble in10

a “unit cell” is uneven and depends on its deformability, the distribution of drops around freely11

interacting bubbles is relatively uniform, for the parameters examine here.12

Keywords: Multiphase flow; numerical simulations; three-phase flow13

1. Introduction14

The dynamics of a three phase gas-liquid-liquid multiphase system, is examined15

by direct numerical simulations, where the continuum equations describing fluid flows16

are solved sufficiently accurately so that every length and time scale are fully resolved,17

for unsteady systems. The system consists of a continuous liquid phase, buoyant gas18

bubbles that rise and heavy drops that fall, relative to the continuous liquid. Three-19

phase gas-liquid-liquid systems are found in many engineering applications. One of20

the more common one consists of gas bubbles and oil drops in water as found in, for21

example, water management in the oil industry and the separation of oil and grease from22

municipal and industrial waste water. The density difference between oil and water is23

generally small, so separation relying on gravity driven settling is slow. However, by24

injecting gas bubbles into the mixture that stick to the oil drops and carry them to the25

top, the rate of separation can be greatly increased. While the collision of bubbles and26

drops and their subsequent interactions, such as when an oil drop engulfs an air bubble,27

is critical to the efficiency of the process, here we focus on the pre-collision stage where28

the drops do not stick to the bubbles. For a relatively recent review of gas flotation see [?29

] and discussions of the capture of an oil drop by a gas bubble can be found in [? ? ? ],30

for example. Oil-water-gas flows are also found in many other circumstances, such as in31

oil wells and pipeline ([? ]).32

Numerical simulations, particularly direct numerical simulations, have come a33

long way in the last two decades. Early simulations of many interacting bubbles can34

be found in [? ] who examined bubbles in initially quiescent liquid in fully periodic35

domains, and more recent studies include [? ? ] where the dynamics of bubbles in36

turbulent channel flows is examined. While a large number of authors have examined37

the dynamics of two-phase flows, fully resolved numerical simulations of three-phase38

systems are relatively rare and usually concerned with systems different from the one39

considered here. Those include simulations of bubbles and drops in minichannels using40

a volume of fluid method by [? ]; [? ] who use a level set method to study drops in41
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two-layer stratified flows; and [? ] who examined the dynamics of a drop on the interface42

between two different fluids, using Smooth Particle Hydrodynamics. The only studies43

that we have found of the dynamics of fully resolved bubbles and drops are [? ] who44

use a method that they refer to as density functional hydrodynamics. They present45

several pictures of the interaction of a few bubbles with a few drops, but no quantitative46

information.47

While the focus here is on the interactions of buoyant bubbles with heavy drops,48

we expect the dynamics before collision to be similar to the interaction of spherical solid49

particles with bubbles, such as in froth flotation for mineral processing and recycling of50

plastics, where hydrophobic particles stick to bubbles and are carried to the top of the51

mixture and removed ([? ? ]). Most simulations of such systems involve considerable52

simplifications such as where the bubbles are fully resolved and the flow around them53

but the solid phase modeled as point particles. [? ] simulated the motion of bubbles in54

initially quiescent flow using a front tracking method to track the bubble surface but55

modeling the particles as point particles, with two-way coupling. The bubbles were56

initially put in the lower part of the computational domain, which contained a large57

number of particles and the simulations examined how particles were transported in the58

wake of the bubbles, as they left the particle rich region. A similar study was done by [?59

], who simulated the motion of one and two bubbles and their interactions with point60

particles, using a VOF method to represent the bubble. Those studies where, however,61

limited to two-dimensional flows. Other authors have focused on the interaction of a62

single bubble with point particles. Those include [? ] who captured the bubble by a63

phase field method and [? ] who used an LBM method. [? ? ] studied the influence of64

turbulence on the interaction of several point particles with a single bubble, but used a65

k− ε models for the turbulence, rather than fully resolving the flow. In some cases, the66

bubbles are also modeled as point particles, such as by [? ] who simulated turbulent67

flow with bubbles and solid particles that were both modeled as point particles using68

one-way coupling where the disperse phases did not affect the carrier phase. Similarly,69

a discrete element method has been used to examine the interaction of several point70

particles with one bubble in [? ? ]. The only simulations that we are aware of, where71

both the bubbles and the solid particles are resolved, are [? ? ] who use a front tracking72

method for the bubbles and an immersed boundary method (IBM) for the solid particles73

to simulate the interactions between several bubbles and drops and [? ] who use a74

volume-of-fluid (VOF) method for the bubbles and examine the interactions of a few75

bubbles and particles. Modeling of three phase systems using Euler-Euler models for76

the average flow are more common. For bubbles and drops see, for example, [? ] and for77

bubbles and solid particles see the extensive review by [? ].78

2. Numerical Method and Problem Specification79

We consider incompressible flow consisting of different fluids or phases, evolving
in time, governed by the Navier Stokes equations

∂ρu
∂t

+∇ρuu = −∇p + (ρ− ρavg)g +∇ · µ(∇u +∇uT) + fσ and ∇ · u = 0. (1)

Here, u is the velocity, p is the pressure, ρ is the density, µ is the viscosity, g is the gravity
acceleration and fσ is the surface tension term. Solving these equations accurately gives
the fully resolved flow field at any given time and spatial location. To identify the
different phases we define two index or marker functions, χg to identify the gas phase
and χd to identify the heavy droplet phase.

χg(x) =
{

0 in the liquid
1 in the bubbles ,

χd(x) =
{

0 in the liquid
1 in the drops.

(2)
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Figure 1. A bubble and 12 drops at time 0 (left frame) and 100 for Eob = 2 (middle frame) and
Eob = 10 (right frame). The enstropy is shown in a plane cutting through the center of the domain,
for the later times.

The various flow quantities, such as density and viscosity can then be written as

φi = φl + (φi − φl)χi (3)

where φl is the property of the continuous liquid and i = g for the bubbles and i = d80

for the drops. Surface tension is assigned to each interface point and is different for the81

bubbles and the drops.82

The governing equations are solved using an explicit second order finite volume83

projection method on a staggered fixed regular grid. The advection terms are approx-84

imated by a QUICK upwind scheme and the viscous terms by a centered scheme. To85

update the marker function, and thus the material properties, we represent the interfaces86

between different fluids by connected marker points (usually called front) that move87

with the fluid velocity. The marker function is then constructed from the location of the88

marker points. Surface tension is computed on the front and transferred to the fixed89

grid and added to the discrete Navier-Stokes equations. For a detailed description of the90

method and various verification tests, see [? ].91

The computational domain is a 3D hexahedron, with periodic boundaries in all92

directions, and to prevent the system from “falling” due to gravity, we add a positive93

upwards force equal to the weight of the mixture (ρavgg).94

The dynamics of systems with bubbles or drops is usually described by the Morton
and the Eötvös numbers, defined by

M =
∆ρgµ4

ρ2σ3 Eo =
∆ρgd2

σ
. (4)

For our system we need to specify those for both the bubbles and the drops. In addition,95

the volume fraction is generally needed for multiphase systems and here, where we96

work with bubbles and drops of specific sizes, we report the number of bubbles Nb and97

number of drops Nd.98

3. Results99

3.1. One 3D bubble and several drops100

We start by examining the motion of one relatively large bubble and several smaller101

drops in a cubical computational domain with side lengths equal to 1, resolved by102

a 643 grid. The bubbles have a diameter db = 0.4 and the droplets have diameters103

dd = 0.2. The density and viscosity of the continuous fluid are ρl = 1.0 and µl = 0.002,104

respectively, for the bubble we have ρb = 0.05 and µb = 0.0004 and for the drops ρd = 2.0105

and µd = 0.016. Surface tension is σd = 0.01 for the drop-liquid interface but the surface106

tension for the bubble-liquid interface is varied, resulting in different Morton and the107

Eötvös numbers as shown in Table 1. While the grid resolution is relatively low, grid108

refinement studies have confirmed that the results are reasonably accurate and correctly109
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σ 0.04 0.01 0.00667 0.004 0.002
Eob 0.5 2.0 3.0 5.0 10.0
Mb 3.1× 10−8 2.0× 10−6 6.7× 10−6 3.1× 10−5 2.5× 10−4

Table 1: The surface tension for the bubbles and the corresponding Eob and Mb.

Figure 2. The slip velocity versus time for Eob = 2 and Nd = 12.

describe the dynamics of the system. The number of drops is varied and we show results110

for Nd = [12, 16, 20]. The simulations were run up to time 200, at which time the bubble111

had passes about forty times through the computational domain.112

Figure 1 shows the bubble and twelve drops at time zero and time 200 for Eob = 2.0113

and Eob = 10.0. For the lower Eötvös number the bubble deforms only slightly as it114

rises but for the higher one more deformation are seen. The drops remain essentially115

spherical. The results for Eob = 0.5 are similar to the Eob = 2.0 case and the Eob = 5.0116

results fall in-between the Eob = 2.0 and the Eob = 10.0 case. In addition to the bubble117

and the drops, the enstropy (E = ω ·ω) is plotted in a plane cutting through the middle118

of the domain. The highest values are ahead and behind the bubble spanning the region119

between the bubble in one period and the next one, suggesting it is the wake of the120

bubbles that produces the strongest vorticity.121

The slip velocities of the bubble and the drops are plotted versus time for Eob = 2.0122

and Nd = 12 in figure 2. The bubble wobbles slightly as it rises as is seen in the nearly123

periodic oscillations in the slip velocity. For the drops we plot the average slip velocity,124

Figure 3. The slip velocity versus bubble Eötvös number for Nd = 12 (left) and versus number of
drops (Nd) for Eob = 2 (right).
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Figure 4. The kinetic energy in the liquid versus time for Nd = 12 and several Eötvös numbers
(left). The time averaged kinetic energy versus Nd for Eob = 2 (right).

Figure 5. The relative location of the drops for 21 time samples for Nd = 12. Eob = 0.5 on the right
and Eob = 10 on the left.

which is negative and relatively steady. After the initial transient the system reaches an125

approximately stationary state where the average motion does not change. When we126

compute average steady state quantities for the system (shown below) we start at time127

t = 100 and average until the last time simulated (t = 200). Results for other bubble128

Eötvös numbers and different number of drops are similar.129

The slip velocity between the bubble and the continuous liquid and between the130

heavy drops and the continuous liquid averaged over time after the systems reaches131

an approximate stationary state are shown in figure 3(a) versus Eötvös number of the132

bubble (Eob) and Nd = 12. It is clear that while the droplet velocity remains nearly133

unchanged, the bubble slows down slightly as it becomes more deformable, although134

the decrease is relatively small and not completely monotonic. Figure 3(b) shows the135

averaged rise velocity for different numbers of drops for Eob = 2.0 and while the bubble136

velocity is only minimally affected, the velocity of the drops decreases slightly as their137

number is increased.138

In figure 4 we examine the velocity fluctuations in the liquid by plotting the kinetic139

energy of the liquid versus time for four Eötvös numbers on the left and the average140



Version June 28, 2021 submitted to Journal Not Specified 6 of 11

Figure 6. The angular average pair distribution function versus distance from the bubble center
(left) and radially average pair distribution function versus angle, measured from the top of the
bubble (right).

kinetic energy versus number of drops for Eob = 2 on the right. For the less deformable141

bubbles the kinetic energy is relatively constant after after an initial sharp rise, but for142

the more deformable bubbles we see large fluctuations at later times. The dependency143

of the average kinetic energy in the liquid on the number of drops rises slightly with the144

number of drops, but the dependency is weak. Similar results are seen for other Eötvös145

numbers.146

One of the main questions in many applications of disperse three phase flows is how147

the drops (or solids) and the bubbles interact. In wastewater remediation the efficiency148

on the process depends critically on the bubbles colliding with and capturing droplets,149

and the same is true for flotation in mineral processing, where the drops are replaced150

by solid particles. To examine how the droplets are distributed around the bubble, we151

show the angular and radial location of droplets with respect to the bubble in figure 5 at152

twenty one equispaced times, for twelve drops (Nd = 12). Data for Eob = 0.5 are shown153

on the left and for Eob = 10 on the right. In both cases the drops move past the bubble,154

with essentially no drops directly ahead or behind the bubble. For the nearly spherical155

bubble the drops are clustered in a relatively narrow column that almost touches the156

bubble since the sum of the bubble and drop radii is Rb + Rd = 0.3, but for the more157

deformable bubble the droplets are more spread out and we see more drops closer to the158

centerline in front of the bubble. Since the high Eob bubble becomes relatively “flat” as it159

rises and can change its orientation, a few drops are found closer to the center than for160

the nearly spherical bubbles.161

To examine the droplet distribution in more detail, we show the weighted average162

radial and angular distribution in figure 6. Since the volume of a torus around the bubble163

depends on the distance from the centerline, we divide the average number of drops in164

a volume element by the distance from the centerline. To produce a continuous curve,165

we apply kernel smoothing, where the width of the kernel is selected by trial and error.166

The left frame shows the radial distribution, averaged over the azimuthal direction. The167

curves for the two lower Eob are similar and the curves for the two higher Eob are similar.168

For the nearly spherical bubbles (lower Eob) there is a distinct maximum at r = 0.3, as169

also seen in figure 5, but for the two higher Eob the distribution is more uniform and170

there are fewer drops close to the bubble. The angular distribution, averaged for r < 0.5171

is shown in the right frame and it is clear that for the lower Eos the distribution is highest172

at around θ = π/5, then relatively uniform but with another peak at around θ = 4π/5.173

At the poles we see very low values, consistent with the left hand side of figure 5 which174

shows no drops there. For the higher Eob the distribution is more uniform, but tapers175

slightly off at the back.176

In figure 7 we examine the effect of the number of drops on the relative velocity177

between the bubble and the drops by plotting the probability that the relative tangential178
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Figure 7. The probability that the relative tangential (left) and radial (right) velocities of the drops
next to the bubble are positive, for Eob = 2.0 and different number of drops.

velocity (left frame) and the relative radial velocity (right frame) are positive, following179

[? ]. The tangential velocity is taken to be positive if the drop is moving towards the180

back of the bubble and the radial velocities is positive if the drops move away from181

the bubble. In all cases the plot on the left shows that the drops slide along the bubble182

surface from the front to the back, as expected, with highest probability at around π/5.183

Similarly, the plot on the right shows that the drops are likely to be moving away from184

the bubble near its back but not the front, as expected. Overall the results show relatively185

weak dependency on the number of drops.186

3.2. Several bubbles and drops187

While examination of the interaction of several drops with one bubble in a “unit cell”188

allows us to study some aspect of the system with relatively little effort, in real systems189

we expect to have several bubbles and many drops. Here, we present a few results for190

eight freely moving bubbles and 48, 96, and 192, drops in fully periodic domains. The191

parameters are the same as in the previous section and the bubble surface tension is192

varied to give different Eötvös and Morton numbers. The simulations are run on 1283
193

grids, up to time t = 100 at which times the bubbles have moved ten times through194

the domain, on the average. Figure 8 shows the solution at the last time simulated for195

Eob = 1.0 (left frame), Eob = 3.0 (middle frame) and Eob = 5.0 (right frame). In addition196

to showing the bubbles and the drops, we also show the enstropy in a plane cutting197

through the middle of the domain. An examination of those plots, as well as others at198

different times, show that overall the flows are relatively similar. Both the bubbles and199

the drops are distributed throughout the domain, although small clusters of drops are200

often seen, such as here. Similarly, although sometime the bubbles collide with each201

other, persistent clusters or “streams” as sometimes found for deformable bubbles in202

fully three-dimensional flows, due to the differences in lift on a spherical and deformable203

bubbles ([? ? ]), are not seen. We note that for the freely moving and interacting bubbles204

we have not included results for Eob = 10 since the bubbles sometime break as they205

interact when the surface tension is low.206

The slip velocity between the bubbles and the continuous liquid, averaged over207

the eight bubbles, and the slip velocity between the drops and the continuous liquid,208

averaged over all the drops, is shown in the left frame of figure 9 versus time for all three209

Eötvös numbers and 96 drops. In the right frame, the time average of the slip velocities210

is shown for Eob = 3, versus the number of drops Nd. The bubbles rise due to buoyancy211

so their slip velocity is positive, while the drops are denser than the continuous liquid212

and fall down with a negative slip velocity. The left frame shows that the flow reaches213

a statistically stationary state very quickly although the average bubble slip velocity214

fluctuates slightly. This is presumably due to the relatively small size of the system, both215

in terms of number of bubbles and domain size. However, even in a larger system where216
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Figure 8. 8 bubble and 96 drops at time 100, for Eob = 1.0 (left frame), Eob = 3.0 (middle frame),
and Eob = 5.0 (right frame). The enstropy is shown in a plane cutting through the center of the
domain.

Figure 9. Slip velocity for the bubbles and the drops. Left frame: The slip velocity versus time for
96 drops and Eob = 1.0, 3.0 and 5.0. Right frame: The time averaged slip velocity for Eob = 3.0
versus the number of drops Nb.

the average over all the bubbles might be better converged, we still expect individual217

bubbles to move very unsteadily. The slip velocity of the drops fluctuates much less, in218

part because there are more of them so the average is better converged. As the number of219

drops increases, the density of the liquid mixture (continuous liquid and drops) increases,220

but the resistance (or effective viscosity) of the droplet/continuous liquid mixture also221

increases, overcoming the increase in buoyancy and leading to a slight decrease of the222

average bubble slip velocity. Similarly, we see a very slight decrease in the average drop223

slip velocity. Plots of the average slip velocity versus Eob for a fixed Nb (not included)224

show essentially no dependency on Eob. Although the flow reaches a stationary state225

quickly, the time average in the right frame has been computed between time t = 50 and226

t = 100, using a time increment of ∆t = 0.0305, except for the Nd = 192 case, which was227

only run up to time 84.2. The averages discussed below have all been computed in the228

same way.229

The kinetic energy of the continuous liquid is plotted versus time in the left frame of230

figure 10 for 96 drops and Eob = 1.0, 3.0 and 5.0. For the nearly spherical bubbles (Eob =231

1) the fluctuations quickly reach a relatively constant level, but as the deformability of232

the bubbles increases, the kinetic energy initially becomes much larger, although for233

Eob = 3.0 it then settles down to a similar value as seen for the Eob = 1.0 case. For234

Eob = 5.0 large scale fluctuations seem to continue. We note that [? ] found that the235

velocity fluctuations were much larger for deformable bubbles as compared to nearly236

spherical ones, even when their rise velocity was similar and the deformable bubbles237

were distributed relatively uniformly in the computational domain (not in a “streaming”238

state). Figure 4 for a single bubble also shows similar differences in the average kinetic239

energy between nearly spherical bubbles (low Eob) and more deformable ones (high240
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Figure 10. The kinetic energy of the liquid versus time for 96 drops and Eob = 1.0, 3.0 and 5.0 (left
frame) and versus the number of drops for Eob = 3.0 (right frame).

Eob). The time average of the kinetic energy of the continuous liquid is plotted in the241

right frame of figure 10 versus Nd for Eob = 3. The dependency on the number of drops242

is relatively weak, although it increases slightly with Nb.243

We have also examined the distribution of drops around the bubbles. Figure 11244

shows the locations of drops with respect to the center of a single bubble, at eleven245

evenly spaced times between t = 50 and t = 100, for Eob = 1.0 on the left of the246

symmetry axis and for Eob = 5.0 on the right. It is clear that the droplets are distributed247

relatively uniformly around the bubbles. There are drop free regions in front and behind248

the bubbles, with the behind region slightly larger than the one in front, and a few249

more drops closer to the centerline for the more deformable bubbles. Thus, unlike for250

the single three-dimensional bubble in a “unit cell,” there is little dependency on the251

Eötvös number. This is borne out by a more detailed analysis, such as by examining the252

radial and azimuthal pair-probability distributions of the drops, f (r) and f (θ) averaged253

over the eight bubbles, shown in figure 12 for different Eob and 96 drops. The radial254

distribution is shown in the frame on the left and the azimuthal direction in the right255

frame, both found in the same way as in figure 6, and smoothed in the same way using a256

kernel function. The radial distribution is nearly uniform and very similar for all three257

Eötvös number but although the azimuthal distribution is mostly similar, the probability258

of finding drops ahead of the bubble increases with its deformability (Eob).259

4. Conclusions260

We have examined the dynamics of a three phase system where buoyant bubbles261

and heavy drops move in a continuous liquid, focusing on the dynamics of relatively262

small systems where the drops do not collide and stick to, or engulf, the bubbles. We have,263

in particular, compared the slip velocity, the velocity fluctuations and the distribution of264

drops around the bubbles for a simple “unit cell” where we use one bubble in a periodic265

domain, with a larger cell with eight freely moving bubbles. For one bubble in a cell the266

results show that bubble deformability has strong impact on the distribution of drops267

around the bubble, but results for a larger number of freely moving and interacting268

bubbles show little effect of deformability and that the drops are relatively uniformly269

distributed with respect to the bubbles, for the parameters examined.270

The main conclusions from the study is that for a system with freely evolving271

bubbles the droplet distribution and the slip velocity of the drops and the bubbles is272

relatively insensitive to the bubble deformability and the volume fraction of drops, at273

least for the parameter examined here, and that while a unit cell captures reasonably274

well the effect of changing the bubble deformability and the number of drops, it does275

not predict accurately the average distribution of drops abound each bubble. More276

studies, presumably using larger systems and longer simulation times are needed to277

clarify the role of deformability on the velocity fluctuations. In this study we have also278

not examined the effect of changing the gas volume fraction.279
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Figure 11. The location of drops with respect to bubble centers. The drops at several times are
shown in the left frame for Eob = 1.0 (blue circles on the left) and Eob = 5.0 (red circles on the
right).

Figure 12. The radial distribution (left) and the azimuthal distribution, averaged around the
bubble is shown in the right frame, for three Eötvös numbers.
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