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Abstract: The dynamics of a three-phase gas-liquid-liquid multiphase system is examine by direct
numerical simulations. The system consists of a continuous liquid phase, buoyant gas bubbles and
smaller heavy drops that fall relative to the continuous liquid. The computational domain is fully
periodic and a force equal to the weight of the mixture is added to keep it in place. The governing
parameters are selected so that the terminal Reynolds numbers of the bubbles and the drops are
moderate and while the effect of bubble deformability is examined by changing its surface tension,
the surface tension for the drops is sufficiently high so they do not deform. One bubble in a “unit
cell” and eight freely interacting bubbles are examined. The dependency of the slip velocities, the
velocity fluctuations, as well as the distribution of the dispersed phases, on the volume fraction of
each phase are examined. It is found that while the distribution of drops around a single bubble in
a “unit cell” is uneven and depends on its deformability, the distribution of drops around freely
interacting bubbles is relatively uniform, for the parameters examine here.
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1. Introduction

The dynamics of a three phase gas-liquid-liquid multiphase system, is examined
by direct numerical simulations, where the continuum equations describing fluid flows
are solved sufficiently accurately so that every length and time scale are fully resolved,
for unsteady systems. The system consists of a continuous liquid phase, buoyant gas
bubbles that rise and heavy drops that fall, relative to the continuous liquid. Three-
phase gas-liquid-liquid systems are found in many engineering applications. One of
the more common one consists of gas bubbles and oil drops in water as found in, for
example, water management in the oil industry and the separation of oil and grease from
municipal and industrial waste water. The density difference between oil and water is
generally small, so separation relying on gravity driven settling is slow. However, by
injecting gas bubbles into the mixture that stick to the oil drops and carry them to the
top, the rate of separation can be greatly increased. While the collision of bubbles and
drops and their subsequent interactions, such as when an oil drop engulfs an air bubble,
is critical to the efficiency of the process, here we focus on the pre-collision stage where
the drops do not stick to the bubbles. For a relatively recent review of gas flotation see [?
] and discussions of the capture of an oil drop by a gas bubble can be found in [? ? ? ],
for example. Oil-water-gas flows are also found in many other circumstances, such as in
oil wells and pipeline ([? ]).

Numerical simulations, particularly direct numerical simulations, have come a
long way in the last two decades. Early simulations of many interacting bubbles can
be found in [? | who examined bubbles in initially quiescent liquid in fully periodic
domains, and more recent studies include [? ? ] where the dynamics of bubbles in
turbulent channel flows is examined. While a large number of authors have examined
the dynamics of two-phase flows, fully resolved numerical simulations of three-phase
systems are relatively rare and usually concerned with systems different from the one
considered here. Those include simulations of bubbles and drops in minichannels using
a volume of fluid method by [? ]; [? ] who use a level set method to study drops in

Version June 28, 2021 submitted to Journal Not Specified

https:/ /www.mdpi.com/journal /notspecified


https://www.mdpi.com
https://doi.org/10.3390/1010000
https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/notspecified

Version June 28, 2021 submitted to Journal Not Specified 20f11

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

two-layer stratified flows; and [? ] who examined the dynamics of a drop on the interface
between two different fluids, using Smooth Particle Hydrodynamics. The only studies
that we have found of the dynamics of fully resolved bubbles and drops are [? ] who
use a method that they refer to as density functional hydrodynamics. They present
several pictures of the interaction of a few bubbles with a few drops, but no quantitative
information.

While the focus here is on the interactions of buoyant bubbles with heavy drops,
we expect the dynamics before collision to be similar to the interaction of spherical solid
particles with bubbles, such as in froth flotation for mineral processing and recycling of
plastics, where hydrophobic particles stick to bubbles and are carried to the top of the
mixture and removed ([? ? ]). Most simulations of such systems involve considerable
simplifications such as where the bubbles are fully resolved and the flow around them
but the solid phase modeled as point particles. [? ] simulated the motion of bubbles in
initially quiescent flow using a front tracking method to track the bubble surface but
modeling the particles as point particles, with two-way coupling. The bubbles were
initially put in the lower part of the computational domain, which contained a large
number of particles and the simulations examined how particles were transported in the
wake of the bubbles, as they left the particle rich region. A similar study was done by [?
], who simulated the motion of one and two bubbles and their interactions with point
particles, using a VOF method to represent the bubble. Those studies where, however,
limited to two-dimensional flows. Other authors have focused on the interaction of a
single bubble with point particles. Those include [? ] who captured the bubble by a
phase field method and [? ] who used an LBM method. [? ? ] studied the influence of
turbulence on the interaction of several point particles with a single bubble, but used a
k — e models for the turbulence, rather than fully resolving the flow. In some cases, the
bubbles are also modeled as point particles, such as by [? ] who simulated turbulent
flow with bubbles and solid particles that were both modeled as point particles using
one-way coupling where the disperse phases did not affect the carrier phase. Similarly,
a discrete element method has been used to examine the interaction of several point
particles with one bubble in [? ? ]. The only simulations that we are aware of, where
both the bubbles and the solid particles are resolved, are [? ? ] who use a front tracking
method for the bubbles and an immersed boundary method (IBM) for the solid particles
to simulate the interactions between several bubbles and drops and [? ] who use a
volume-of-fluid (VOF) method for the bubbles and examine the interactions of a few
bubbles and particles. Modeling of three phase systems using Euler-Euler models for
the average flow are more common. For bubbles and drops see, for example, [? ] and for
bubbles and solid particles see the extensive review by [? ].

2. Numerical Method and Problem Specification

We consider incompressible flow consisting of different fluids or phases, evolving

in time, governed by the Navier Stokes equations

dpu T

?—FVpuu =-Vp+(0—Pag)g§ +V -u(Vu+Vu' )+ f, and V-u=0. (1)
Here, u is the velocity, p is the pressure, p is the density, p is the viscosity, g is the gravity
acceleration and f;; is the surface tension term. Solving these equations accurately gives
the fully resolved flow field at any given time and spatial location. To identify the
different phases we define two index or marker functions, x, to identify the gas phase
and x, to identify the heavy droplet phase.

_ [ Oin the liquid _ [ Oin the liquid
Xg(x) = { 1 in the bubbles,, Xalx) = { 1 in the drops. @
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Figure 1. A bubble and 12 drops at time 0 (left frame) and 100 for Eo, = 2 (middle frame) and
Eop, = 10 (right frame). The enstropy is shown in a plane cutting through the center of the domain,
for the later times.

The various flow quantities, such as density and viscosity can then be written as

¢ =1+ (¢ — P1)xi ®)

where ¢, is the property of the continuous liquid and i = g for the bubbles and i = d
for the drops. Surface tension is assigned to each interface point and is different for the
bubbles and the drops.

The governing equations are solved using an explicit second order finite volume
projection method on a staggered fixed regular grid. The advection terms are approx-
imated by a QUICK upwind scheme and the viscous terms by a centered scheme. To
update the marker function, and thus the material properties, we represent the interfaces
between different fluids by connected marker points (usually called front) that move
with the fluid velocity. The marker function is then constructed from the location of the
marker points. Surface tension is computed on the front and transferred to the fixed
grid and added to the discrete Navier-Stokes equations. For a detailed description of the
method and various verification tests, see [? ].

The computational domain is a 3D hexahedron, with periodic boundaries in all
directions, and to prevent the system from “falling” due to gravity, we add a positive
upwards force equal to the weight of the mixture (0458)-

The dynamics of systems with bubbles or drops is usually described by the Morton
and the E6tvds numbers, defined by

Apgp* Apgd?
M=-55  Eo==— (4)

For our system we need to specify those for both the bubbles and the drops. In addition,
the volume fraction is generally needed for multiphase systems and here, where we
work with bubbles and drops of specific sizes, we report the number of bubbles N, and
number of drops Nj.

3. Results
3.1. One 3D bubble and several drops

We start by examining the motion of one relatively large bubble and several smaller
drops in a cubical computational domain with side lengths equal to 1, resolved by
a 643 grid. The bubbles have a diameter d;, = 0.4 and the droplets have diameters
dj = 0.2. The density and viscosity of the continuous fluid are p; = 1.0 and p; = 0.002,
respectively, for the bubble we have p, = 0.05 and y;, = 0.0004 and for the drops p; = 2.0
and p; = 0.016. Surface tension is 0; = 0.01 for the drop-liquid interface but the surface
tension for the bubble-liquid interface is varied, resulting in different Morton and the
Eo6tvos numbers as shown in Table 1. While the grid resolution is relatively low, grid
refinement studies have confirmed that the results are reasonably accurate and correctly
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o 0.04 0.01 0.00667 0.004 0.002
Eoy 0.5 2.0 3.0 5.0 10.0
M, | 31x1078 | 20x107° | 6.7 x107°% | 31x107° | 25x 1074

Table 1: The surface tension for the bubbles and the corresponding Eo, and M;,.

0.35

Aub
it Aud 1

031

0.25}

021

0.15}

Au

200

Figure 2. The slip velocity versus time for Eo, = 2 and N; = 12.

describe the dynamics of the system. The number of drops is varied and we show results
for N; = [12, 16, 20]. The simulations were run up to time 200, at which time the bubble
had passes about forty times through the computational domain.

Figure 1 shows the bubble and twelve drops at time zero and time 200 for Eo, = 2.0
and Eo, = 10.0. For the lower E6tvos number the bubble deforms only slightly as it
rises but for the higher one more deformation are seen. The drops remain essentially
spherical. The results for Eo, = 0.5 are similar to the Eo, = 2.0 case and the Eo;, = 5.0
results fall in-between the Eo;, = 2.0 and the Eo, = 10.0 case. In addition to the bubble
and the drops, the enstropy (£ = w - w) is plotted in a plane cutting through the middle
of the domain. The highest values are ahead and behind the bubble spanning the region
between the bubble in one period and the next one, suggesting it is the wake of the
bubbles that produces the strongest vorticity.

The slip velocities of the bubble and the drops are plotted versus time for Eo, = 2.0
and Ny = 12 in figure 2. The bubble wobbles slightly as it rises as is seen in the nearly
periodic oscillations in the slip velocity. For the drops we plot the average slip velocity,

03— — I s
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Figure 3. The slip velocity versus bubble E6tvos number for N; = 12 (left) and versus number of
drops (Ny) for Eoj = 2 (right).
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Figure 4. The kinetic energy in the liquid versus time for N; = 12 and several E6tvés numbers
(left). The time averaged kinetic energy versus N for Eo, = 2 (right).
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Figure 5. The relative location of the drops for 21 time samples for N; = 12. Eo;, = 0.5 on the right
and Eo, = 10 on the left.

which is negative and relatively steady. After the initial transient the system reaches an
approximately stationary state where the average motion does not change. When we
compute average steady state quantities for the system (shown below) we start at time
t = 100 and average until the last time simulated (¢ = 200). Results for other bubble
Eo6tvos numbers and different number of drops are similar.

The slip velocity between the bubble and the continuous liquid and between the
heavy drops and the continuous liquid averaged over time after the systems reaches
an approximate stationary state are shown in figure 3(a) versus E6tvos number of the
bubble (Eoy) and N; = 12. It is clear that while the droplet velocity remains nearly
unchanged, the bubble slows down slightly as it becomes more deformable, although
the decrease is relatively small and not completely monotonic. Figure 3(b) shows the
averaged rise velocity for different numbers of drops for Eo, = 2.0 and while the bubble
velocity is only minimally affected, the velocity of the drops decreases slightly as their
number is increased.

In figure 4 we examine the velocity fluctuations in the liquid by plotting the kinetic
energy of the liquid versus time for four E6tvos numbers on the left and the average
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Figure 6. The angular average pair distribution function versus distance from the bubble center
(left) and radially average pair distribution function versus angle, measured from the top of the
bubble (right).

kinetic energy versus number of drops for Eo;, = 2 on the right. For the less deformable
bubbles the kinetic energy is relatively constant after after an initial sharp rise, but for
the more deformable bubbles we see large fluctuations at later times. The dependency
of the average kinetic energy in the liquid on the number of drops rises slightly with the
number of drops, but the dependency is weak. Similar results are seen for other E6tvos
numbers.

One of the main questions in many applications of disperse three phase flows is how
the drops (or solids) and the bubbles interact. In wastewater remediation the efficiency
on the process depends critically on the bubbles colliding with and capturing droplets,
and the same is true for flotation in mineral processing, where the drops are replaced
by solid particles. To examine how the droplets are distributed around the bubble, we
show the angular and radial location of droplets with respect to the bubble in figure 5 at
twenty one equispaced times, for twelve drops (N; = 12). Data for Eo;, = 0.5 are shown
on the left and for Eo, = 10 on the right. In both cases the drops move past the bubble,
with essentially no drops directly ahead or behind the bubble. For the nearly spherical
bubble the drops are clustered in a relatively narrow column that almost touches the
bubble since the sum of the bubble and drop radii is R, + Rz = 0.3, but for the more
deformable bubble the droplets are more spread out and we see more drops closer to the
centerline in front of the bubble. Since the high Eoj, bubble becomes relatively “flat” as it
rises and can change its orientation, a few drops are found closer to the center than for
the nearly spherical bubbles.

To examine the droplet distribution in more detail, we show the weighted average
radial and angular distribution in figure 6. Since the volume of a torus around the bubble
depends on the distance from the centerline, we divide the average number of drops in
a volume element by the distance from the centerline. To produce a continuous curve,
we apply kernel smoothing, where the width of the kernel is selected by trial and error.
The left frame shows the radial distribution, averaged over the azimuthal direction. The
curves for the two lower Eoj, are similar and the curves for the two higher Eo;, are similar.
For the nearly spherical bubbles (lower Eoy) there is a distinct maximum at r = 0.3, as
also seen in figure 5, but for the two higher Eo; the distribution is more uniform and
there are fewer drops close to the bubble. The angular distribution, averaged for r < 0.5
is shown in the right frame and it is clear that for the lower Eos the distribution is highest
at around 0 = 71/5, then relatively uniform but with another peak at around 6 = 47/5.
At the poles we see very low values, consistent with the left hand side of figure 5 which
shows no drops there. For the higher Eo;, the distribution is more uniform, but tapers
slightly off at the back.

In figure 7 we examine the effect of the number of drops on the relative velocity
between the bubble and the drops by plotting the probability that the relative tangential
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Figure 7. The probability that the relative tangential (left) and radial (right) velocities of the drops
next to the bubble are positive, for Eo, = 2.0 and different number of drops.

velocity (left frame) and the relative radial velocity (right frame) are positive, following
[? ]. The tangential velocity is taken to be positive if the drop is moving towards the
back of the bubble and the radial velocities is positive if the drops move away from
the bubble. In all cases the plot on the left shows that the drops slide along the bubble
surface from the front to the back, as expected, with highest probability at around 77/5.
Similarly, the plot on the right shows that the drops are likely to be moving away from
the bubble near its back but not the front, as expected. Overall the results show relatively
weak dependency on the number of drops.

3.2. Several bubbles and drops

While examination of the interaction of several drops with one bubble in a “unit cell”
allows us to study some aspect of the system with relatively little effort, in real systems
we expect to have several bubbles and many drops. Here, we present a few results for
eight freely moving bubbles and 48, 96, and 192, drops in fully periodic domains. The
parameters are the same as in the previous section and the bubble surface tension is
varied to give different E6tvos and Morton numbers. The simulations are run on 128°
grids, up to time ¢t = 100 at which times the bubbles have moved ten times through
the domain, on the average. Figure 8 shows the solution at the last time simulated for
Eop = 1.0 (left frame), Eop, = 3.0 (middle frame) and Eoj, = 5.0 (right frame). In addition
to showing the bubbles and the drops, we also show the enstropy in a plane cutting
through the middle of the domain. An examination of those plots, as well as others at
different times, show that overall the flows are relatively similar. Both the bubbles and
the drops are distributed throughout the domain, although small clusters of drops are
often seen, such as here. Similarly, although sometime the bubbles collide with each
other, persistent clusters or “streams” as sometimes found for deformable bubbles in
fully three-dimensional flows, due to the differences in lift on a spherical and deformable
bubbles ([? ? ]), are not seen. We note that for the freely moving and interacting bubbles
we have not included results for Eo, = 10 since the bubbles sometime break as they
interact when the surface tension is low.

The slip velocity between the bubbles and the continuous liquid, averaged over
the eight bubbles, and the slip velocity between the drops and the continuous liquid,
averaged over all the drops, is shown in the left frame of figure 9 versus time for all three
Eo6tvos numbers and 96 drops. In the right frame, the time average of the slip velocities
is shown for Eo;, = 3, versus the number of drops N;. The bubbles rise due to buoyancy
so their slip velocity is positive, while the drops are denser than the continuous liquid
and fall down with a negative slip velocity. The left frame shows that the flow reaches
a statistically stationary state very quickly although the average bubble slip velocity
fluctuates slightly. This is presumably due to the relatively small size of the system, both
in terms of number of bubbles and domain size. However, even in a larger system where
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Figure 8. 8 bubble and 96 drops at time 100, for Eo;, = 1.0 (left frame), Eo, = 3.0 (middle frame),
and Eoj, = 5.0 (right frame). The enstropy is shown in a plane cutting through the center of the

domain.
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Figure 9. Slip velocity for the bubbles and the drops. Left frame: The slip velocity versus time for
96 drops and Eoy, = 1.0, 3.0 and 5.0. Right frame: The time averaged slip velocity for Eo, = 3.0
versus the number of drops Nj,.

the average over all the bubbles might be better converged, we still expect individual
bubbles to move very unsteadily. The slip velocity of the drops fluctuates much less, in
part because there are more of them so the average is better converged. As the number of
drops increases, the density of the liquid mixture (continuous liquid and drops) increases,
but the resistance (or effective viscosity) of the droplet/continuous liquid mixture also
increases, overcoming the increase in buoyancy and leading to a slight decrease of the
average bubble slip velocity. Similarly, we see a very slight decrease in the average drop
slip velocity. Plots of the average slip velocity versus Eo;, for a fixed Nj, (not included)
show essentially no dependency on Eo,. Although the flow reaches a stationary state
quickly, the time average in the right frame has been computed between time ¢ = 50 and
t = 100, using a time increment of At = 0.0305, except for the N; = 192 case, which was
only run up to time 84.2. The averages discussed below have all been computed in the
same way.

The kinetic energy of the continuous liquid is plotted versus time in the left frame of
figure 10 for 96 drops and Eo;, = 1.0, 3.0 and 5.0. For the nearly spherical bubbles (Eo;, =
1) the fluctuations quickly reach a relatively constant level, but as the deformability of
the bubbles increases, the kinetic energy initially becomes much larger, although for
Eo, = 3.0 it then settles down to a similar value as seen for the Eo, = 1.0 case. For
Eo, = 5.0 large scale fluctuations seem to continue. We note that [? ] found that the
velocity fluctuations were much larger for deformable bubbles as compared to nearly
spherical ones, even when their rise velocity was similar and the deformable bubbles
were distributed relatively uniformly in the computational domain (not in a “streaming”
state). Figure 4 for a single bubble also shows similar differences in the average kinetic
energy between nearly spherical bubbles (low Eo,) and more deformable ones (high
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Figure 10. The kinetic energy of the liquid versus time for 96 drops and Eoj, = 1.0, 3.0 and 5.0 (left
frame) and versus the number of drops for Eo;, = 3.0 (right frame).

Eop). The time average of the kinetic energy of the continuous liquid is plotted in the
right frame of figure 10 versus N; for Eo, = 3. The dependency on the number of drops
is relatively weak, although it increases slightly with Nj,.

We have also examined the distribution of drops around the bubbles. Figure 11
shows the locations of drops with respect to the center of a single bubble, at eleven
evenly spaced times between ¢t = 50 and t = 100, for Eo, = 1.0 on the left of the
symmetry axis and for Eo, = 5.0 on the right. It is clear that the droplets are distributed
relatively uniformly around the bubbles. There are drop free regions in front and behind
the bubbles, with the behind region slightly larger than the one in front, and a few
more drops closer to the centerline for the more deformable bubbles. Thus, unlike for
the single three-dimensional bubble in a “unit cell,” there is little dependency on the
Eotvos number. This is borne out by a more detailed analysis, such as by examining the
radial and azimuthal pair-probability distributions of the drops, f(r) and f(6) averaged
over the eight bubbles, shown in figure 12 for different Eo, and 96 drops. The radial
distribution is shown in the frame on the left and the azimuthal direction in the right
frame, both found in the same way as in figure 6, and smoothed in the same way using a
kernel function. The radial distribution is nearly uniform and very similar for all three
Eotvos number but although the azimuthal distribution is mostly similar, the probability
of finding drops ahead of the bubble increases with its deformability (Eop).

4. Conclusions

We have examined the dynamics of a three phase system where buoyant bubbles
and heavy drops move in a continuous liquid, focusing on the dynamics of relatively
small systems where the drops do not collide and stick to, or engulf, the bubbles. We have,
in particular, compared the slip velocity, the velocity fluctuations and the distribution of
drops around the bubbles for a simple “unit cell” where we use one bubble in a periodic
domain, with a larger cell with eight freely moving bubbles. For one bubble in a cell the
results show that bubble deformability has strong impact on the distribution of drops
around the bubble, but results for a larger number of freely moving and interacting
bubbles show little effect of deformability and that the drops are relatively uniformly
distributed with respect to the bubbles, for the parameters examined.

The main conclusions from the study is that for a system with freely evolving
bubbles the droplet distribution and the slip velocity of the drops and the bubbles is
relatively insensitive to the bubble deformability and the volume fraction of drops, at
least for the parameter examined here, and that while a unit cell captures reasonably
well the effect of changing the bubble deformability and the number of drops, it does
not predict accurately the average distribution of drops abound each bubble. More
studies, presumably using larger systems and longer simulation times are needed to
clarify the role of deformability on the velocity fluctuations. In this study we have also
not examined the effect of changing the gas volume fraction.
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Figure 11. The location of drops with respect to bubble centers. The drops at several times are
shown in the left frame for Eo, = 1.0 (blue circles on the left) and Eo, = 5.0 (red circles on the

right).
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Figure 12. The radial distribution (left) and the azimuthal distribution, averaged around the
bubble is shown in the right frame, for three E6tvs numbers.
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