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Abstract. We study infinitely-repeated two-player zero-sum games
with one-sided private information and a persistent state. Here, only one
of the two players learns the state of the repeated game. We consider two
models: either the state is chosen by nature, or by one of the players.
For the former, the equilibrium of the repeated game is known to be
equivalent to that of a one-shot public signaling game, and we make this
equivalence algorithmic. For the latter, we show equivalence to one-shot
team max-min games, and also provide an algorithmic reduction. We
apply this framework to repeated zero-sum security games with private
information on the side of the defender and provide an almost complete
characterization of their computational complexity.
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1 Introduction

Private information can give one a strategic advantage over other players in
a game. However, if play is repeated, then taking advantage of one’s private
information through one’s actions risks leaking that information and thereby
the advantage. This is nicely illustrated in the movie The Imitation Game, in
which British intelligence, having cracked the Enigma code, strategically decides
not to act on some of its information, in order to preserve its informational
advantage [12]. Less dramatically, consider a buyer and a seller that interact
repeatedly. The seller has a higher-quality and a lower-quality version of the
item for sale, and offers these at different prices. The buyer may, at the current
prices, prefer the higher-quality version – but worry that choosing this option will
reveal her (persistently) high valuation/type, causing the seller to raise prices in
the future, and therefore choose the cheaper low-quality version instead.
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In equilibrium, to what extent should a party with an informational advan-
tage refrain from acting on this information? This is the question we set out
to address in this paper. It is, in its most general form, a challenging question
to answer. The state of the game may change over time; there may be a mul-
tiplicity of equilibria; the discount factor matters; and so on. Thus, answering
the question in general would require us to simultaneously resolve a number of
fundamental questions in (algorithmic) game theory. In this paper, in order to
stay focused on the question at hand, we focus on the following special case:

– The state of the game is persistent, i.e., it does not change over time (the
game is repeated rather than stochastic).

– Only one player has private information, and it does not change.
– The game is two-player and zero-sum.
– Each agent cares about their long-term average payoff.

Even in this setting, it is easy to see that the optimal answer is in general not
one of the two extremes – either exploit information fully, or never use it. Some
information may not be actionable for the adversary so that one can simply take
advantage of it and not worry about revealing it. On the other hand, for other
information, it is possible that the adversary would be able to make even better
use of it than the initially better-informed player. In that case, the benefits of
getting to use the information for one round, without the adversary being able
to use it in that particular round, will be completely wiped out by the infinitely
many remaining rounds in which the adversary can use the information better.

The technical and conceptual foundations for the study of repeated games
of incomplete information with persistent state were laid by [2]. They con-
sider a persistent state of the game drawn by nature from a common prior,
and agents who receive private signals regarding this state. [14] provides an
in-depth accounting of the special case of this model with two players and zero-
sum payoffs. The aforementioned texts reveal that the even-more-special case
we consider, that of repeated two-player zero-sum games with one-sided private
information, admits an essentially-unique equilibrium (in the sense of payoff
equivalence) with an elegant, simple, and instructive characterization which is
robust to modeling assumptions. In particular, the equilibrium of the repeated
two-player game is equivalent, in a precise technical sense, to the equilibrium of
a one-shot public signaling game with three players. Moreover, this characteriza-
tion is robust to how one chooses to model long-term payoffs; say through using
a discount factor, taking the limit of the finite repeated game as the number
of stages grows to infinity, or considering the infinite game directly. Even mild
generalizations of this special case, for example to more players, non-zero-sum
payoffs, or incomplete information on both sides, lead to the collapse of this char-
acterization, and such settings are not yet fully understood to the best of our
knowledge. This further cements our model as the timely choice for algorithmic
study.
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1.1 Our Contributions

We examine repeated two-player zero-sum games with one-sided private infor-
mation from the perspective of algorithmic game theory, both in general and as
exemplified by application to the influential domain of security games [16]. We
consider both the case when the state is drawn by nature—this is the classical
model in [2,14]—as well as a natural, and to our knowledge novel, variant in
which the (typically randomized) state is chosen by one of the players, who is
therefore the informed party. We refer to this variant as the allocation model.

The domain-agnostic part of the paper is organized as follows. For the clas-
sical model, where the game state is drawn by nature, we first provide (a) our
own exposition of the previously-described equilibrium characterization in terms
of one-shot public signaling games, one that is particularly tailored to an algo-
rithmic game theory audience and makes explicit the connection to recent work
on public signaling games (e.g., [6–8]). Then, we turn to our novel contribu-
tions. We provide (b) an efficient reduction to equilibrium computation in the
related one-shot public signaling game to make the equilibrium characterization
constructive. For the allocation model, where one of the players determines the
(persistent) state, we provide (a’) a characterization of the equilibrium of the
repeated game as equivalent, in a precise technical sense, to the equilibrium of
a one-shot three-player team max-min game, as first studied by [15]; (b’) an
efficient reduction to computing the equilibrium of the associated team max-
min game. We note that, in both (b) and (b’), the uninformed player’s strategy
is particularly nontrivial, and involves efficiently solving a related instance of
Blackwell’s approachability [1,4]. We also note that the reductions in (b) and
(b’) are “reversible”, since both the repeated game and the associated one-shot
game share the same game value. Finally, we (c) show that the allocation model
is computationally easier than the classical model by way of a polynomial time
reduction. We note that this is not reversible, and the complexity relationship
is strict, as evidenced by our results for security games which we describe next.

We then examine repeated zero-sum security games with private information
on the side of the defender. In the security games we consider, the state is a
deployment of “treasures” to “locations”, a defender strategy is a deployment
of “defensive resources” to the locations, and the attacker’s strategy is a loca-
tion to attack. Such security games are particularly versatile exemplars for both
the classical and allocation models of repeated games with persistent state. The
classical model abstracts challenges faced in recent applications to environmental
protection [9,17,18], where the locations of environmental assets (the treasures)
are determined by nature and slow to change over time. The allocation model
can be applied to armed conflict scenarios in which supply-chain assets (the
treasures) must be deployed covertly to locations early on in the conflict, and
can not be easily moved from stage to stage. We show that the classical model
of repeated security games is strongly NP-hard even when treasures, locations,
and defensive resources are homogeneous. A more nuanced picture emerges for
the allocation model of repeated security games: the fully homogeneous case is
tractable, as is the case where only the treasures are heterogeneous. The fully
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heterogeneous case is strongly NP-hard. Remaining cases are either weakly or
strongly NP-hard, and we provide an almost complete accounting of the com-
putational complexity of all combinations.

2 Preliminaries

2.1 One-Shot Games

A one-shot two-player zero-sum game of complete information is described by a
utility function U : S1 × S2 → R, where Si is the family of pure strategies for
player i, and U(s1, s2) is the utility of player 1 when player 1 plays s1 ∈ S1 and
player 2 plays s2 ∈ S2. Implicitly, the utility of player 2 is −U(s1, s2). A mixed
strategy for player i is si ∈ Δ(Si), where Δ(Si) is the set of distributions over Si.
A one-shot two-player Bayesian zero-sum game with incomplete information on
one side

(
Π,

{Uθ
}

θ∈Θ

)
is given by: (1) pure strategy sets S1 and S2 for players 1

and 2 respectively; (2) a family Θ of states of nature; (3) for each state θ ∈ Θ, a
one-shot two-player zero-sum game of complete information Uθ; and (4) a prior
distribution Π over states of nature Θ.

In such a game, nature draws θ from Θ according to the prior Π and then
player 1 learns the state θ while player 2 is uninformed about the state. Both
players simultaneously choose their strategies si (while s1 can depend on θ but
s2 cannot), which results in a utility of Uθ(s1, s2) to player 1 and −Uθ(s1, s2) to
player 2. Moreover, given a distribution Π over Θ, we denote by UΠ the game
induced by Π such that player 1’s payoff is UΠ(s1, s2) =

∑
θ∈Θ Π(θ) ·Uθ(s1, s2).

We restrict attention to games where Θ, S1, S2 are finite, or at least compact.
All mixed Nash equilibria of such a game are payoff equivalent to the Nash
equilibrium in which each player employs their maximin mixed strategy [11].

2.2 Bayesian Repeated Games

We now describe the classical model of Bayesian repeated games that we con-
sider, henceforth just Bayesian repeated games for convenience. Here, a Bayesian
zero-sum game is repeated infinitely many times, with incomplete information
on one side. We call the one-shot game the stage game, and refer to each iteration
as a stage. We replicate the standard assumptions made by [2,14], as follows.
We assume that the state of nature is persistent : it does not change from stage
to stage.1 Moreover, we assume that players observe each others’ pure strategies
after each stage, but do not observe the payoffs directly. This assumption is nec-
essary for the model to be interesting: If players can observe the payoffs directly,
then the uncertainty in the game is superfluous, as players can eventually recon-
struct relevant entries of the game matrix and the state of nature. Obscuring
1 If the state of nature is drawn afresh at each stage, then repetition is superfluous

for a zero-sum game: the folk theorem and minimax theorem imply that repeating
the minimax equilibrium at each stage is the essentially unique equilibrium of the
repeated game (up to payoff equivalence).
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payoffs in this manner can be viewed as abstracting a situation where payoffs are
delayed till the end of the (long, many stage) game. Formally, given a two-player
Bayesian zero-sum stage game Grepeated =

(
Π,

{Uθ
}

θ∈Θ

)
as described above,

the Bayesian repeated game proceeds as follows:

1. θ is drawn by nature from Π and player 1 learns θ while player 2 does not;
2. The stage game Uθ is repeated infinitely many times. After each stage, each

player observes the pure strategy played by the other player, but does not
directly observe the utility gained.

A history of play with T stages HT =
(
(s1

1, s
1
2), (s

2
2, s

2
2), . . . , (s

T
1 , sT

2 )
)

is a finite
sequence, where st

i is player i’s pure strategy at stage t. For convenience, we
will use the vectorized form without superscript si = (s1

i , · · · , sT
i ) to represent

the strategy of player i. A pure strategy for player 1 in the repeated game is a
function which maps the state θ and an observed history H to player 1’s strategy
in the next stage of the repeated game, while a pure strategy for player 2 simply
maps the observed history H to player 2’s strategy in the next stage. A mixed
strategy is naturally a distribution over such functions.

2.3 Bayesian Allocation Games

In addition to classical Bayesian repeated games, we introduce a novel vari-
ant, the Bayesian allocation game, in which the distribution Π of the states is
determined by player 1 instead of the nature. Formally, given one-shot games
Galloc =

({Uθ
}

θ∈Θ

)
, the Bayesian allocation game proceeds as follows:

1. Player 1 selects a prior Π over Θ that player 2 cannot observe;
2. θ is drawn by nature from Π and player 1 learns θ while player 2 does not;
3. The stage game Uθ is repeated infinitely many times. After each stage, each

player observes the pure strategy played by the other player, but does not
directly observe the utility gained.

In the Bayesian allocation game, in addition to choosing the actions to play
at each stage, player 1’s strategy also includes a choice of the prior Π ∈ Δ(Θ).

2.4 Utility and Equilibrium Model

We consider the utility/equilibrium models deduced from the infinitely-repeated
game perspective for agents that are interested in their long-term payoffs. Each
player’s expected utility is the limit, as T → ∞, of his average expected utility
over the first T stages alone. Though this limit may not exist in general, we can
nevertheless define a value and equilibrium as in [2,14]. The max-min value of the
game is the supremum over all player 1’s mixed strategies, of the infimum over
player 2’s mixed strategies, of the limit infimum as T → ∞ of player 1’s average
expected utility. Player 1’s max-min strategy is that attaining this supremum.
We can similarly define the min-max value of the game and Player 2’s min-max
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strategy. When both the max-min and min-max values are equal we refer to them
as the value of the game, and the corresponding max-min and min-max strategies
form the equilibrium. For a Bayesian repeated game Grepeated and a Bayesian
allocation game Galloc, we denote their game value by νrepeated(Grepeated) and
νalloc(Galloc), respectively. Several other natural utility/equilibrium models are
equivalent to this one, and we defer the detailed discussions to the full version.

Example 1. Consider a zero-sum security game with 3 identical locations
(denoted by �A, �B , �C) and 2 identical treasures, in which the defender can
defend 1 location. The defender determines how to allocate the treasures to the
locations (once) and how to defend them (every round). The attacker earns one
unit of payoff if she attacks an undefended location with a treasure, and zero oth-
erwise. For comparison, in the one-shot Bayesian allocation game (i.e., if there
is only a single round), it is straightforward to verify that the optimal strategy
for the defender is to allocate two treasures uniformly at random, and for each
realization, defend each of the two locations with a treasure with probability 1

2 ,
leading to an expected payoff 1

3 for the attacker. However, it turns out that in
the infinitely-repeated version, an optimal strategy (unique up to symmetries)
to allocate the treasures for the defender is as follows:

– Allocate a treasure to �A with probability 1;
– Allocate the remaining treasure to �B with probability α =

√
5−1
2 ≈ 0.618

and to �C with probability 1 − α = 3−√
5

2 ≈ 0.382.

In each stage of the repeated game, the defender defends �A with probability α
(so that the attacker’s utility of attacking this location is 1−α), and defends �B

with probability 1 − α (so that the attacker’s utility of attacking this location
is α2 = 1 − α). The defender never defends �C (so that the attacker’s utility for
attacking this target is also 1 − α).

The above example illustrates a fundamental difference between a one-shot
Bayesian allocation game and its infinitely-repeated counterpart. In the one-
shot version, the optimal strategy for the defender correlates the allocation and
the defensive strategy, and thus, the game is reduced to a two-player zero-sum
normal-form game so that the minimax theorem can be applied. However, in the
infinitely-repeated version, we will show that in the equilibrium, the allocation
of treasures and the defensive strategy are independent, as in the example above.
In other words, there exists no benefit for the defender to correlate the allocation
and the defensive strategy in the infinitely-repeated Bayesian allocation game.
Note that the attacker’s payoff is larger in the infinitely-repeated version as
1 − α = 3−√

5
2 > 1

3 . Intuitively, this is because the attacker can observe the
defender’s historical defensive actions in the infinitely-repeated game. This is
disadvantageous for the defender: either the defensive actions over time give
away where the treasures are, or these actions have to be chosen in such a
way that they do not, which is a costly constraint. We also emphasize that the
game value is an irrational number, demonstrating that the infinitely-repeated
Bayesian allocation game cannot be solved by a linear program.
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3 Reductions from Repeated Games to One-Shot Games

In this section, we discuss the relationship between one-shot games and both our
models of infinitely repeated games, so that one can solve the infinitely repeated
game by first solving the corresponding one-shot game. The equivalence between
classical Bayesian repeated games and public signaling games has already been
shown by [2] and [14]; for completeness, we will fully elaborate on this equivalence
first in Sect. 3.1. This will set the stage for our novel results on the equivalence
between Bayesian allocation games and team max-min games (Sect. 3.2), and
on the computational complexity of both models (Sect. 3.3). The omitted proofs
in this paper are deferred to the full version.

3.1 Equivalence Between Bayesian Repeated Games and Public
Signaling Games (Reproducing Known Results)

We begin with reproducing the known result relating the classical model of
Bayesian repeated games to public signaling games [2,14].

Definition 1 (Public Signaling Game [6–8]). Consider a one-shot two-
player zero-sum game Gsignal =

(
Π,

{Uθ
}

θ∈Θ

)
where players a-priori know

nothing about θ besides its prior Π. We consider a credible principal who is
privy to the realization of θ. The principal designs a public signaling scheme: a
randomized function ϕ : Θ → Δ(Σ) mapping states of nature to an abstract set
of signals Σ. The order of events is as follows:

– The principal commits to ϕ;
– The nature draws θ ∼ Π and the principal learns θ;
– The principal invokes the signaling scheme to obtain a signal σ ∼ ϕ(θ);
– Both players learn σ, and update their beliefs about the state θ, denoted as

Πϕ,σ, according to the Bayes’ rule: Πϕ,σ(θ) = Pr[ϕ(θ)=σ]·Π(θ)∑
θ′∈Θ Pr[ϕ(θ′)=σ]·Π(θ′) .

– Players play the equilibrium strategies in the zero-sum game UΠϕ,σ .

We assume that the principal designs ϕ so as to maximize player 1’s expected
utility, the maximum value of which, denoted by νsignal(Gsignal), is the game
value of the public signaling game.

It turns out the equilibrium in Bayesian repeated games corresponds to the
solution of the above signaling problem in a precise sense, stated below [2,14].

Theorem 1. νrepeated(Grepeated) = νsignal(Gsignal) when Grepeated = Gsignal.

We will prove Theorem 1 by constructing the equilibrium strategy s∗
1, s∗

2 for
player 1 and 2, respectively in the Bayesian repeated game Grepeated from the
solution of the public signaling game Gsignal. For convenience, in the Bayesian
repeated game, we will refer to player 1 (the informed player) as the leader and
player 2 (the uninformed player) as the follower.
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In particular, we will show that in the Bayesian repeated game Grepeated, if the
leader plays strategy s∗

1, then no matter how the follower reacts, the leader can
guarantee himself an average utility at least the game value νsignal(Gsignal) in
the public signaling game Gsignal over the first T stages as T → ∞. On the other
hand, if the follower plays strategy s∗

2, then no matter how the leader reacts,
the follower can guarantee the leader an average utility at most νsignal(Gsignal)
over the first T stages as T → ∞.

Lemma 1. When Grepeated = Gsignal, in the Bayesian repeated game Grepeated,
consider the following strategy for the leader:

– upon learning the state θ of the nature, the leader invokes the optimal signaling
strategy ϕ of the public signaling game Gsignal to obtain σ ∼ ϕ(θ);

– the leader then discards all information other than σ, i.e., behaves as if
his belief is Πϕ,σ, and plays the maximin strategy in the game UΠϕ,σ , i.e.,
argmaxs1

mins2 UΠϕ,σ (s1, s2), repeatedly.

This strategy can guarantee the leader an average expected utility νsignal(Gsignal).

Although the strategy for the leader is easy to construct from the signaling
scheme of the public signaling game, the follower’s strategy is not so straight-
forward. The main difficulty is that there does not exist a credible principal in
the repeated game as in the public signaling game, and therefore, the follower is
uncertain about whether the leader exactly follows the scheme. In particular, the
leader might have incentive to deviate by sending a different signal: conditioned
on his type θ, choose σ∗ such that σ∗ = argmaxσ∈Σ Uθ (s∗

1(σ), s∗
2(σ)), where

s∗
1(σ) = argmax

s1

min
s2

UΠϕ,σ (s1, s2) and s∗
2(σ) = argmin

s2

max
s1

UΠϕ,σ (s1, s2).

In other words, the leader can send a signal σ∗ that gives himself the maximum
utility conditioned on θ. Therefore, the follower’s strategy cannot rely on the
possibly non-credible signaling scheme.

To circumvent this difficulty, we will construct an adaptive strategy for the
follower, which does not depend on the non-credible signal σ but only depends
on the prior Π and the history of play. Our approach relies on the solution of the
dual program of the public signaling game. For convenience, given a distribution
Π over Θ, let f(Π) = maxs1 mins2 UΠ(s1, s2) be the game value of the induced
game UΠ . The problem of computing the optimal public signaling scheme can be
formulated as the following linear program with infinitely many variables x(Π ′)
for Π ′ ∈ Δ(Θ) [6–8]:

max
∑

Π′∈Δ(Θ) x(Π ′) · f(Π ′)
s.t.

∑
Π′∈Δ(Θ) x(Π ′) · Π ′(θ) = Π(θ) ∀θ ∈ Θ

x(Π ′) ≥ 0 ∀Π ′ ∈ Δ(Θ)
(1)

Intuitively, a signaling scheme can be viewed as a convex decomposition of the
prior Π into a collection of posteriors {Π ′} [8,10]. Based on the primal, we can
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construct its dual with |Θ| variables y(θ) for θ ∈ Θ as follows:

min
∑

θ∈Θ y(θ) · Π(θ)
s.t.

∑
θ∈Θ y(θ) · Π ′(θ) ≥ f(Π ′) ∀Π ′ ∈ Δ(Θ) (2)

Let x∗ and y∗ be the solution of the primal and the dual, respectively. By strong
duality,

∑
Π′∈Δ(Θ) x∗(Π ′) · f(Π ′) =

∑
θ∈Θ y∗(θ) · Π(θ) = νsignal(Gsignal). We

will interpret y and Π as vectors such that y =
(
y(θ1), · · · , y(θ|Θ|)

)
and Π =(

Π(θ1), · · · ,Π(θ|Θ|)
)
. The inner product 〈y,Π〉 is defined as

∑
θ∈Θ y(θ) · Π(θ).

The next proposition directly follows the feasibility of y∗ and strong duality:

Proposition 1. For any prior Π in the public signaling game, there exists y∗

such that 〈y∗,Π〉 = νsignal(Gsignal) and ∀Π ′ ∈ Δ(Θ), 〈y∗,Π ′〉 ≥ f(Π ′).

Hence, if the follower can ensure that for any strategy s1 deployed by the
leader, there exists an adaptive mixed strategy s2 for the follower such that,

∀θ ∈ Θ, lim
T→∞

∑T
t=1 Uθ(st

1, s
t
2)

T
≤ y∗(θ), (3)

then the average utility of the leader as T → ∞ would be

lim
T→∞

∑
θ∈Θ

Π(θ) ·
∑T

t=1 Uθ(st
1, s

t
2)

T
≤

∑
θ∈Θ

Π(θ) · y∗(θ) = νsignal(Gsignal).

To prove (3), it is equivalent to show that R(y∗) = {v | v ≤ y∗} is approachable.

Definition 2 (Blackwell’s Approachability [4]). Given a convex set R of
vectors of utilities, we say R is approachable from the perspective of the follower,
if for any strategy of the leader s1, there exists an adaptive strategy s2 for the
follower such that limT→∞ dist

(
1
T

∑T
t=1 U(st

1, s
t
2),R

)
= 0 almost surely, where

U(s1, s2) =
(Uθ1(s1, s2), · · · ,Uθ|Θ|(s1, s2)

)
and dist(u,R) = minv∈R ‖v − u‖.

Theorem 2 ([2,14]). R(y∗) = {v | v ≤ y∗} is approachable.

To establish the approachability of R(y∗), we first consider a halfspace
H(Π ′, b) such that v ∈ H(Π ′, b) if and only if 〈Π ′,v〉 ≤ b.

Lemma 2. A halfspace H(Π ′, b) is approachable if f(Π ′) ≤ b.

Theorem 3 ([4]). A convex set R is approachable if and only if all halfspaces
containing R are approachable.

All that remains to show is that all halfspaces containing R(y∗) are approach-
able.

Lemma 3. All halfspaces containing R(y∗) = {v | v ≤ y∗} are approachable.
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Proof. Notice that any minimal halfspace containing R(y∗) must cross y∗ by
the construction of R(y∗). Therefore, such a halfspace can be represented by
H(Π ′, 〈Π ′,y∗〉) with Π ′ ∈ Δ(Θ). By Proposition 1, f(Π ′) ≤ 〈Π ′,y∗〉, and
therefore, by Lemma 2, H(Π ′, 〈Π ′,y∗〉) is approachable.

Combining Theorem 3 and Lemma 3, we finish the proof of Theorem 2. We
can then apply Blackwell’s construction [4] to obtain an adaptive strategy for
the follower that approaches R(y∗) almost surely.

Intuitively, at stage t, if 1
t−1

∑t−1
τ=1 U(sτ

1 , sτ
2) ∈ R(y∗), then the follower first

finds a halfspace H(Π ′, 〈Π ′,y∗〉) that separates 1
t−1

∑t−1
τ=1 U(sτ

1 , sτ
2) and R(y∗).

Given such a Π ′, the follower plays the minimax strategy of UΠ′
at stage t, and

then the distance between the vector of average utilities and R(y∗) will become
smaller after stage t. Observe that the follower’s strategy can be computed from
the prior Π, the game Grepeated, and the history of play. In doing so, it guarantees
that the expected average utility of the leader is at most νsignal(Gsignal) in the
limit, and Proposition 2 follows:

Proposition 2. In a Bayesian repeated game Grepeated =
(
Π,

{Uθ
}

θ∈Θ

)
, given

y∗ satisfying Proposition 1 and an oracle to compute the minimax strategy of
the zero-sum game UΠ′

for all Π ′ ∈ Δ(Θ), there exists an efficient algorithm to
construct the follower’s optimal strategy.

We will elaborate the complexity of computing y∗ in Sect. 3.3.

3.2 Equivalence Between Bayesian Allocation Games and Team
Max-Min Games

Definition 3 (Team Max-Min Game [15]). In a zero-sum team max-min
game Gteam =

({Uθ
}

θ∈Θ

)
, in addition to player 1 and 2, there is a player 3

whose set of pure strategies is Θ. Player 1 and player 3 form a team and share
the same utility such that when player 1 plays s1 ∈ S1, player 2 plays s2 ∈ S2,
and player 3 plays θ ∈ Θ, the utility for both player 1 and player 3 is Uθ(s1, s2),
while the utility for player 2 is −Uθ(s1, s2). A team max-min equilibrium is a
Nash equilibrium that maximizes the team’s utility and we denote its game value
by νteam(Gteam): νteam(Gteam) = maxs1∈Δ(S1),Π∈Δ(Θ) mins2∈Δ(S2) UΠ(s1, s2).

We emphasize that player 1’s strategy and player 3’s strategy are not allowed
to be correlated; otherwise, the team max-min game degenerates to a classic
two-player zero-sum game in which player 1 and 3 can be treated as a single
player. [15] show that a team max-min equilibrium always exists. It turns out
the equilibrium in Bayesian allocation games corresponds to the solution of the
above team max-min games in a precise sense, stated below.

Theorem 4. νalloc(Galloc) = νteam(Gteam) when Galloc = Gteam.

To prove Theorem 4, we will construct strategies for players in the Bayesian
allocation game from the equilibrium strategies in the team max-min game.
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Lemma 4. When Galloc = Gteam, let s∗
1, s

∗
2,Π

∗ be the equilibrium strategies for
the team max-min game Gteam. In the Bayesian allocation game Galloc, consider
the following strategy for the leader:

– set the prior Π to be Π∗; then repeatedly play strategy s∗
1 for every stage.

This strategy can guarantee the leader an average expected utility νteam(Gteam).

In comparison to the Bayesian repeated games in which the follower knows
the prior, the follower does not even know the prior set by the leader in
the Bayesian allocation game. To overcome this obstacle, observe that in the
Bayesian repeated game, the approachability of a convex set is a property that
only depends on the collection of games

({Uθ}θ∈Θ

)
but independent of the prior.

Motivated by this observation, we show that R(νteam(Gteam) · 1) = {v | v ≤
νteam(Gteam) · 1} is approachable where 1 is a vector of all ones.

Lemma 5. R(νteam(Gteam) · 1) is approachable.

It is straightforward to show that, when R(νteam(Gteam) · 1) is approachable,
for any prior Π ∈ Δ(Θ), the average utility of the leader is at most νteam(Gteam).

Fig. 1. The relationships of computational problems, assuming the minimax strategy
of UΠ can be computed efficiently for all Π ∈ Δ(Θ): the arrows point to problems that
are computationally easier.

3.3 Computational Complexity of the Follower’s Optimal Strategy

As demonstrated before, constructing the follower’s optimal strategy in Bayesian
repeated games requires a solution to the dual program (2). Hence, it is not
immediate that one can efficiently construct the follower’s optimal strategy if
the public signaling game is efficiently solvable. Here, we say an algorithm is
efficient if the running time of the algorithm is polynomial in terms of the number
of states |Θ|, and the number of pure strategies |S1| + |S2|.

We manage to show that, when the minimax strategy of UΠ can be computed
efficiently for all Π ∈ Δ(Θ), in both Bayesian repeated games and Bayesian
allocation games, the follower’s optimal strategy can be efficiently constructed if
the corresponding game values are given. We further show that team max-min
game is computationally easier than the public signaling game, and therefore,
Bayesian allocation game is computationally easier than the Bayesian repeated
game. Figure 1 summarizes the relationships of the computational problems
discussed in this section, while the proofs are deferred to the full version.
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4 Bayesian Repeated Security Games

In Sect. 3, we have shown that Bayesian repeated games can be reduced to
public signaling games, while Bayesian allocation games can be reduced to team
max-min games. However, it has been shown that both public signaling games
and team max-min games are computationally intractable for general zero-sum
games and even worse, no FPTAS is possible [5,8]. Particularly, public signaling
games do not even admit PTAS [3,13].

Motivated by the applications in the domain of repeated security games, we
will concern ourselves with repeated games where the stage game is a security
game of a particularly simple form. The one-shot complete-information security
games are described by a set L of locations, a set M of treasures, and a set R
of defensive resources. For convenience, we use ⊥ to denote a null treasure or a
null defensive resource. v : L× (M ∪⊥) → R≥0 is a location-treasure importance
function such that v(�,m) characterizes the utility loss of the defender if location
� ∈ L with treasure m ∈ M allocated is attacked without defense. In addition,
there is a defense-quality function q : L × (M ∪ ⊥) × (R ∪ ⊥) → {0, 1} such that
q(�,m, r) characterizes the effectiveness of allocating defensive resource r ∈ R to
defend location � ∈ L that hosts treasure m. Note that in our setting, a defensive
resource is either 100% effective for a combination of location and treasure or
totally useless. For a null treasure, we have v(�,⊥) = 0 for all �, and for a null
defensive resource, we have q(�,m,⊥) = 0 for all � and m.

A state of nature is a matching θ : L → M that maps the locations to
treasures such that for any i, j ∈ L with i = j, θ(i) = ⊥, and θ(j) = ⊥, we
have θ(i) = θ(j). A pure strategy for the defender is also a matching D : L → R
that maps the locations to the defensive resources such that for any i, j ∈ L with
i = j, D(i) = ⊥, and D(j) = ⊥, we have D(i) = D(j). Finally, a pure strategy for
the attacker is a single location a ∈ L to attack. A mixed strategy is naturally a
distribution over such functions. The defender’s utility under θ when the defender
plays D and the attacker plays a is Uθ(D, a) = −(

1−q
(
a, θ(a),D(a)

))·v(
a, θ(a)

)
,

while the attacker’s utility is simply −Uθ(D, a).
We say the treasures are homogeneous if for all m ∈ M , v(�,m) equals to

some constant for all � ∈ L; the locations are homogeneous if for all � ∈ L,
v(�,m) equals to some constant for all m ∈ M ; and the defensive resources are
homogeneous if q(�,m, r) = 1 for all � ∈ L, m ∈ M , and r ∈ R. If the condition
of homogeneity is not satisfied, we say they are heterogeneous.

We analyze the complexity of repeated security games under the contexts
of both Bayesian repeated games and Bayesian allocation games. In Bayesian
repeated games, an algorithm is efficient if its running time is in polynomial
of |Θ|, |L|, |M |, and |R|; while in Bayesian allocation games, an algorithm is
efficient if its running time is in polynomial of |L|, |M |, and |R|.
Proposition 3. Given the marginals of Π, the optimal strategies for both the
defender and the attacker in the security game UΠ can be computed efficiently.

However, for our class of security games with a general prior Π, computing
the game value of the Bayesian repeated games is computationally intractable.
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Theorem 5. It is strongly NP-hard to compute the game value of the Bayesian
repeated games with a security game as the stage game, even when all of trea-
sures, locations, and defensive resources are homogeneous. Moreover, no FPTAS
is possible. Consequently, it is strongly NP-hard to compute any representation
of the equilibrium which permits computing the game value.

5 Bayesian Allocation Security Games

We turn to Bayesian allocation games with a security game as the stage game.
It turns out that a Bayesian allocation game with a security game as the stage
game can be efficiently solved when only the treasures are heterogeneous (Fig. 2).

Theorem 6. There exists an efficient algorithm to compute the game value and
the defender’s optimal strategy of a Bayesian allocation game with a security
game as the stage game, when only the treasures are heterogeneous.

Fig. 2. The computational complexity of Bayesian allocation games with a security
game as the stage game: the arrows point to more general versions of the problem.

Moreover, the following lemma illustrates that one can efficiently construct
the attacker’s strategy when the game value is given.

Lemma 6. Given the game value of a Bayesian allocation game with a secu-
rity game as the stage game, there exists an efficient algorithm to compute the
attacker’s optimal strategy.

Therefore, one can efficiently construct both the defender’s optimal strategy
and the attacker’s optimal strategy when only the treasures are heterogeneous.
However, going beyond, the problem becomes computationally intractable.

Theorem 7. It is weakly NP-hard to compute the game value of the Bayesian
allocation games with a security game as the stage game, when only the locations
are heterogeneous. Moreover, there exists a pseudo-polynomial time algorithm
that can compute the game value.
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Theorem 8. It is strongly NP-hard to compute the game value of the Bayesian
allocation games with a security game as the stage game, when only the defensive
resources are homogeneous, or only the locations are homogeneous.

There are three other settings that have not been discussed: (1) heterogeneous
everything; (2) only treasures are homogeneous; and (3) only defensive resources
are heterogeneous. For the setting in which everything is heterogeneous, it is
also strongly NP-hard to compute the game value since it is a more general
setting than the settings in which only defensive resources are homogeneous or
only locations are homogeneous. As for the setting in which only treasures are
homogeneous, it is at least weakly NP-hard to compute the game value since it is
a more general setting than the case in which only locations are heterogeneous.
We leave it as an open question to settle whether it is strongly NP-hard. Finally,
for the setting in which only defensive resources are heterogeneous, this setting
is not well-defined: since the locations and the treasures are homogeneous, a
defensive resource should be either effective or ineffective for any combination of
the locations and the treasures. Consequently, the defender can simply eliminate
the ineffective defensive resources to focus on effective ones, which reduces the
problem to the case in which everything is homogeneous.
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