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ABSTRACT
Market simulation is an increasingly important method for evaluat-
ing and training trading strategies and testing “what if” scenarios.
The extent to which results from these simulations can be trusted
depends on how realistic the environment is for the strategies be-
ing tested. As a step towards providing benchmarks for realistic
simulated markets, we enumerate measurable stylized facts of limit
order book (LOB) markets across multiple asset classes from the
literature. We apply these metrics to data from real markets and
compare the results to data originating from simulated markets. We
illustrate their use in �ve di�erent simulated market con�gurations:
The �rst (market replay) is frequently used in practice to evaluate
trading strategies; the other four are interactive agent based simula-
tion (IABS) con�gurations which combine zero intelligence agents,
and agents with limited strategic behavior. These simulated agents
rely on an internal “oracle” that provides a fundamental value for
the asset. In traditional IABS methods the fundamental originates
from a mean reverting random walk. We show that markets exhibit
more realistic behavior when the fundamental arises from historical
market data. We further experimentally illustrate the e�ectiveness
of IABS techniques as opposed to market replay.
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1 BACKGROUND AND RELATEDWORK
1.1 Motivation
Most professional investors, hedge funds, investment institutions
and banks need robust means of testing trading strategies in simu-
lation before “going live” with funds at risk. A key reason for this
is to gain assurance that the strategy is likely to be e�ective. As
a motivating example, a pension fund may have concluded that it
should reduce its holdings in a particular stock by a large amount
and therefore trigger a sell order for that asset. If this order was
sent to an exchange as a market sell order, the price would likely
fall signi�cantly and provide the seller a less than desirable average
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price. In order to reduce transaction costs, it is a common practice
to design execution strategies distributing a larger order as a set of
smaller orders over time, thereby minimizing the price impact [2].

Signi�cant research e�ort is aimed at applying Reinforcement
Learning (RL) to such trading problems in which the learners are
trained in simulation: an RL market-maker was presented in [45];
an RL approach to algorithmic execution was introduced in [40];
deep hedging a portfolio of derivatives in the presence of market
friction was considered in [13]; LSTM representations for an RL
trading agent are given in [38].

In these �nancial trading problems, the statistical properties
of the environment are often unknown and di�cult to model. In
such cases, repeating the process a number of times in a simulated
environment obviates the need to know transition probabilities
and an optimal policy can be learned from the gained simulated
experience, necessitating realistic market simulation tools.

In real-time algorithmic trading, the actions of any given agent
incurs a response from the other market participants. In simulation,
autonomous agents can choose to place orders at any time and the
market’s response to them will not be re�ected in historical data.
Therefore, simple market replay of historical orders is not su�-
cient for e�ective back testing or strategy construction. Interactive
agent-based simulation (IABS) has the potential to realistically sim-
ulate the interactions between individual market participants [39],
[redacted] In such simulators, prices arise from incentives of fully
autonomous agents each of whom act rationally in order to maxi-
mize their pro�ts. These principles re�ect how real markets operate;
the challenge is to �nd realistic agent con�gurations and prescribe
agent behavior in such a way that their actions produce synthetic
time series whose statistical properties resemble real markets.

1.2 Limit Order Book (LOB) Behavior
Later sections of this paper rely on the reader’s understanding
of the mechanisms by which electronic markets operate, so we
brie�y review them here. Public exchanges such as NASDAQ and
NYSE facilitate the buying and selling of assets by accepting and
satisfying buy and sell orders from multiple market participants.
The exchange maintains an order book data structure for each asset
traded. The limit order book (LOB) represents a snapshot of the
supply and demand for the asset at a given time. It is an electronic
record of all the outstanding buy and sell limit orders organized by
price levels. A matching engine, such as �rst-in-�rst-out (FIFO), is
used to pair incoming buy and sell order interest [9].

Order types are further distinguished between limit orders and
market orders. A limit order speci�es a price that should not be
exceeded in the case of a buy order (bid), or should not be gone
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below in the case of a sell order (ask). A limit order queues a resting
order in the LOB at the corresponding side of the book. Placing a
limit order at a certain price level is sometimes referred to as placing
a quote. A market order indicates that the trader is willing to accept
the best price available immediately. A diagram illustrating LOB
structure is provided in Figure 1.
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Figure 1: Visualization of the LOB structure.

1.3 Stylized facts
Many of the metrics we present below are derived from observation
of the market over time. Properties of market behavior that are
repeated across a wide range of instruments, markets and time
periods are referred to as stylized facts [18].

Evaluating stylized facts for simulated data and comparing to
those generated from real historical data allows us to infer the
level of �delity of a simulation. The question of whether stylized
facts originate from traders’ behavior, or if they are a natural con-
sequence of order book market matching mechanisms has been
widely discussed in the literature. If certain stylized facts can be de-
rived from markets populated only by zero intelligence (ZI) agents
which make decisions without the knowledge of market microstruc-
ture, then these facts must originate from the mechanism that is
governing the markets and not from strategic agent behavior. For
example, Farmer et al. [22] showed that a market simulation that
consists only of ZI agents is able to reproduce price and spread
dynamics as well as market impact. The ability of ZI agents to
reproduce fat tails and long range dependence was shown in [42].

In this paper, we list multiple measurable stylized facts of LOB
markets known in the literature. We apply these stylized facts as a
metric of realism to data from real markets and compare the results
to data arising from simulated markets. We further provide �ve
di�erent simulated market con�gurations – four that are based
on IABS which combine ZI agents with limited strategic behavior
agents; and one market replay con�guration that is commonly
used in practice due to its simplicity but does not constitute a true
IABS as interactions between multiple market participants are not
present. Our simulated agents rely on an internal “oracle” that
provides a fundamental value for the asset – we consider random
and historical fundamental models. We describe the con�gurations
and agent types in detail in Sections 3.2 and 3.3.

1.4 Related work on market simulation
Market simulation is an increasingly important technique for eval-
uating trading strategies and testing “what if” market scenarios.

The extent to which results from such simulations can be trusted
depends on how accurately they emulate real world environments.

IABS methods allow us to study phenomena that emerge as a
consequence of multiple participant interactions which are di�cult
to model otherwise. Examples of such complex phenomena include
both routine market microstructure events such as market response
to an individual participant’s trading [19] and rare events such as
�ash crashes [16, 31, 41] as well as extreme market shocks.

In the �nancial literature there are examples of simulators that
use learning behaviors with di�ering views of past data [27, 32].
Wellman helped establish an empirical approach to the study of
markets using simulated multi-agent systems [52] using a tech-
nique known as Empirical Game Theoretic Analysis (EGTA). Levy
et al. [34] and Wah and Wellman [49] take a synchronous approach
to simulation, wherein time is discretized between the start and
end of simulation and each step is individually simulated. Jacobs et
al [28, 29] introduced an asynchronous �nancial simulation frame-
work called JLMSim. NASDAQ researchers experimentally demon-
strated using IABS that under some agent scenarios reducing tick
size would lead to increased spreads (an undesirable property) and
would negatively impact price discovery [7, 21].

In real-time trading, injecting orders to the market induces other
market participant activity that typically drives prices away from
the agent. This activity is known asmarket impact [2, 3]. Presence of
market impact in real time implies that a realistic trading strategy
simulation should include deviation from historical data. In the
literature, it is common to make an assumption of negligible market
impact given the size of agent orders is small and su�cient amount
of time is allowed between consecutive trades [46]. A simple two-
agent simulated market environment that consists of an algorithmic
trading agent and the rest of the market with partial deviation from
historical prices is presented in [48]. This model is however only
suited for small order placement, and is unable to capture more
complex dynamics of transient price impact [10, 23].

While modeling the market as an interplay of multiple agents
seems a natural approach to mimic real market collective emergent
behavior, justifying the realism of such approach for validating new
trading strategies is di�cult. Agent-based modeling typically relies
on common sense hand-crafted rules (e.g., [42]), which can be di�-
cult to calibrate as historical data labeled with details about each
individual constituent agent behavior is typically not available for
public use. Several calibration approaches—e.g. error minimization
to �nd parameters for the asset pricing model with heterogeneous
beliefs [47] and using Bayesian techniques—have been introduced
[25]. When individual agent- or execution strategy-speci�c data is
available to the researcher, it can be used for the simulator calibra-
tion (e.g., [48, 53]). Multi-agent LOB environments can be viewed
as a non-cooperative games in which every agent pursues their
own goal and there is no communication between the agents [26].
Agents that learn to maximize their long term rewards by reinforce-
ment from empirical equilibrium environments have been discussed
in [44].

Other approaches to IABS realism can include inverse learning
agents’ rewards from the market [53]; generating synthetic LOB
data using Generative Adversarial Networks [35]; incorporating
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feedback from real-time trading into the simulation [43] and build-
ing adaptive agents that are governed by the evolutionary principles
and can learn from experience [33, 37].

2 REALISM METRICS
One way to establish IABS realism is to ensure that simulated LOB
time series mimic stylized facts derived from real market histories.
Below we review several groups of such stylized facts for IABS
con�gurations, subsets of these stylized facts have been used to
justify environment realism in [22, 42, 51, 53].

2.1 Notation and de�nitions
For simplicity of presentation, we introduce some notation and
de�nitions that will be used throughout this paper. At time C , let 1C
be the best bid price, and let 0C be the best ask price. We de�ne the
mid-price as<C =

0C+1C
2 . Given a time scale �C , which can range

from milliseconds to months, the log return (or simply return) at
scale �C is de�ned as AC,�C = ln<C+�C � ln<C . Let f�C be return
volatility which can be calculated as standard deviation of price
returns.

Let G be the size of a new order placed into the LOB and let) be
the lifetime of an order until it is fully executed or cancelled. We
denote by 1C � � the price of a new buy limit order, and 0C + � the
price of a new sell limit order. Notice that � can be negative. Let+0
and+1 be the volumes available at the best bid and ask price respec-
tively. Partition the LOB price and volume time series into small
non-overlapping time intervals. For each time interval g , let `+g be
the average traded volume and fg,�C be the return volatility over g .
Furthermore, let % ( · ) denote the probability density function of a
given quantity.

2.2 Stylized facts about asset return
distributions

Multiple stylized facts about price return distributions were studied
in [18] for equity markets as well as in [6] for foreign exchange
and rates markets. We enumerate these statistical properties below
and present them as assertions regarding the relevant data:

• Absence of autocorrelations Linear autocorrelations
corr(AC+g,�C , AC,�C ) of asset returns over periods g longer than
20 minutes are insigni�cant.

• Heavy tails and aggregational normality The distribu-
tion of daily asset price returns shows fat tails; however, as
one increases the period of time �C over which these returns
are calculated, asset returns show slimmer tails. One way to
quantify deviation from normal distribution is to calculate
its kurtosis.

• IntermittencyAt anymicro or macro time scale, asset price
returns must display a high degree of volatility.

• Volatility clustering High-volatility events tend to clus-
ter in time. A quantity used to measure volatility cluster-
ing is the autocorrelation function of the squared returns
corr(A2C+g,�C , A

2
C,�C ). Empirical results on various equities in-

dicate that this quantity remains positive over several days,
which indicate periods of high volatility clustering [18].

• Long range dependence If one looks at the autocorre-
lation function of absolute returns as a function of time
lag 5 (g) = corr( |AC+g,�C |, |AC ,�C |), it is empirically shown
that 5 (g) decays according to the power law distribution
5 (g) ⇠ g�V with exponent V 2 [0.2, 0.4] [18].

• Gain/loss asymmetry Gain/loss asymmetry is prevalent
for equity price returns as stocks lose value faster than they
grow [18]. However, this trend is not as pronounced for
foreign exchange and rates products. Skewness is a metric
that can be used to quantify the asymmetry of probability
distribution about its mean.

• Volume/volatility positive correlationVolume and volatil-
ity are positively correlated. A linear regression relationship
`+g ⇠ U + Vfg,�C can be derived from the data [12].

• Asset returns/volatility negative correlation Asset re-
turns/volatility are negatively correlated.

• Asymmetric causal information�owCoarse-scaled volatil-
ity predicts �ne-scaled volatility better than �ne-scaled volatil-
ity predicts coarse scaled-volatility.

2.3 Stylized facts about volumes and order �ow
• Quote volumes Aggregate quote volumes at best bid +1
(and respectively volumes at best ask +0) are distributed
according to Gamma distribution [11] for W  1 , whence
% (+1 ) ⇠ exp�+1 + �1+W

1
.

• Quote sizes Quote sizes are roughly power-law distributed
[9]. For instance, Abergel et al. [1] show examples when
limit order sizes are distributed as % (G) ⇠ G�(1+`) with
exponent 1 + ` ⇡ 2 and market order sizes are distributed as
% (G) ⇠ G�(1+`) with exponent 1 + ` ⇡ 2.3 � 2.7. Deviating
from power-law behaviour, orders tend to have a round
number of shares (i.e. multiples of 10, 100, etc. are more
common than neighboring sizes).

• Number of quotes in a �xed time window The number
of new quotes in a �xed time window can be approximated
by gamma or lognormal distributions [1].

• Quote inter-arrival times In the literature, LOB quote
inter-arrival times are suggested to be �t into exponential
[35], lognormal, and Weibull distributions [1].

• New quote prices Prices at which new quotes are placed,
are power-law distributed around the mid price [1]. Speci�-
cally, % (�) ⇠ ��(1+`) with 1 + ` ⇡ 1.6 [11].

• Cancellation time Lifetimes of both cancelled and executed
limit orders are power-law distributed, % () ) ⇠ )�(1+`) with
1 + ` ranging between 1.3 and 1.6 for both canceled and
executed limit orders [1].

• Time correlation of order �ow Individual agent’s order
placement decisions depend on other agents’ actions [42].

2.4 Stylized facts about non-stationary patterns
• Intraday volume patterns LOB quote and transaction vol-
umes are known to exhibit strong intraday patterns. For
instance, historical foreign exchange trading volumes can
be approximated by the "U-shaped" polynomial regional
sessions that correspond to New York, London, and Tokyo
trading [20]. Similarly, in most equity markets, volumes are
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highest at the beginning of the trading day, followed by a
period of lower activity, and then spike again at the end of
the trading day, which also suggests a "U-shaped" polyno-
mial approximation [9]. Note that making a transformation
from physical time to tick (or transaction) time may help
adjusting for intraday non-stationarity [4] for the purpose
of volume pro�le modeling.

• Seasonal volume patterns Some assets, especially those
for which consumer demand is seasonal (e.g., electricity fu-
tures), display strong seasonal volume patterns.

• Intraday sensitivity tomacro economic events/holidays
Due to product sensitivity to macro factors, volume spikes
are known to occur in foreign exchange and rates markets
during economic announcements. Equities trading is also
sensitive to economic events [36]. Additionally, lower trad-
ing volumes are observed on holidays throughout all asset
classes.

• Intraday volume/spread negative correlation Lower
spreads are typically observed during periods of higher trad-
ing volumes.

2.5 Stylized facts about order market impact
Market impact of order placement is a expected to grow as a func-
tion of order volume. For each time interval g , de�ne +buy,g and
+ask,g to be buy and sell order volumes in g respectively. De�ne
participation of volume in g as

%g =

��+buy,g �+ask,g ��
+buy,g ++ask,g

.

Note that 0  %g  1. Also de�ne �<g to be the observable mid-
price move in g . Discretize the range for %g into bins ⌫8 , 8 = 1, . . . ,#
such that ⌫8 = {g : 8�1#  %g  8

# }. For each ⌫8 , de�ne

"8 =
1
|⌫8 |

’
g 2⌫8

�<g and %8 =
1
|⌫8 |

’
g 2⌫8

�%g

to be the average price move and average participation of volume
in bins with similar volume participation. One can then �t a rela-
tionship of the form"8 ⇠ U%V8 through the data [3, 8, 22].

2.6 Stylized facts about cross asset correlations
When simulating multiple assets, cross asset correlation properties
must hold. For instance, equity index and its major constituents
must show high degree of correlation [18]. For futures, as an exam-
ple, asset price moves across term structure are highly correlated
and exhibits consistent patterns uncovered by Principal Compo-
nents Analysis (e.g., [6]). It is also worth noting that extreme re-
turns (e.g., 99th-percentile returns that occur during �nancial crises)
across various stocks or asset classes can be extremely correlated
while their average returns are not [18].

3 EXPERIMENTS WITH A MULTI-AGENT
SIMULATION

3.1 Simulation environment
In order to evaluate the ability of a given agent con�guration to
reproduce stylized facts about the market, we employ an agent-
based interactive discrete event simulation environment [15]. The
environment provides a selection of background agent types (such
as agent types described in Section 3.2), a NASDAQ-like exchange
agent which lists any number of securities for trade against a
LOB with price-then-FIFO matching rules, and a simulation ker-
nel which manages the �ow of time and handles all inter-agent
communication. Trading agents may not inspect the state of the
exchange directly, but must direct realistic messages to request
order book depth, obtain last trade prices, or place or cancel limit
orders through the kernel, which imposes delays for computational
e�ort and communication latency. Time proceeds in nanoseconds
and all securities are priced in cents.

Figure 2: One-minute (top) and ten-minute (bottom) log re-
turn distributions for con�gs 1 and 2 (left) and con�gs 3 and
4 (right).

3.2 Background agents
In order to conduct experiments, we specify two ZI (value and
noise agents) and two strategic agent types (market maker and
momentum agents). Originally introduced in [24], the ZI agent
class includes a variety of agents that do not base their trading deci-
sions on the knowledge of LOB microstructure. They can, however,
have access to the exogenous price of an asset (e.g. value agents in
the implementation described below) which represents the agent’s
understanding of the outside world (e.g. earnings reports, macroe-
conomic events, etc) [50, 51]. This reference stream is called the
fundamental. We consider two ways of modeling the fundamental
price of an asset: (1) by a stochastic mean reverting process with
megashock events [14] which we further call a random fundamen-
tal; and (2) using a historical price series – which we call a historic
fundamental. In contrast, strategic agents’ decisions are governed
exclusively by LOB microstructure considerations.
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Noise Agents: Noise agents are designed to simulate the action
of retail traders to trade on demand (e.g. [30]). Each noise agent
trades once a day by placing a market order. The direction and the
size of the trade are chosen randomly. In order to model higher trad-
ing activity in the beginning and at the end of a trading day (also
known as intraday volume smile), noise agent arrival time is sam-
pled from a* -quadratic distribution over the interval [Copen, Cclose],
where Copen and Cclose are the start and end of the trading day, re-
spectively. This arrival distribution pattern represents human trader
propensity to be more active toward the beginning and the end of
the trading day, as observed by [20].

Value Agents: The value agents are designed to simulate the
actions of fundamental traders that trade according to their belief
of the exogenous value of a stock, but without any view of the LOB
microstructure. The external value of stock price is modeled by a
fundamental price stream. Each value agent arrives to the market
multiple times according to a Poisson process and chooses to buy or
sell a stock depending on whether it is cheap or expensive relative
to its noisy observation of a fundamental price. Once the side of
an order is determined, the value agent places a limit order at a
random level either inside the spread or deeper into the LOB. Value
agents assist LOB price formation by bringing external information
to the LOB and are conceptually related to informed traders widely
discussed in the literature (e.g. [30]).

Market maker agent: The market maker agent acts as a liquid-
ity provider by placing orders on both sides of LOB with a constant
arrival rate. At time C , the agent starts by cancelling any of its
unexecuted orders. It then looks at the LOB half-spread given by
BC =

0C�1C
2 and mid-price 0C+12

2 , and places new price quotes of con-
stant size  around the mid-price at levels<C � BC � # , . . . ,<C � BC
and<C +BC , . . . ,<C +BC +# , # levels deep into the LOB. This market
maker model is similar in spirit to that of [17, 50] with the distinc-
tion that out market maker does not use any reference price series
to determine its mid, and rather adapts to the LOB mid price that is
dictated by other market participants.

Momentum agents: The momentum agents base their trading
decision on observed LOB price trends. Our implementation com-
pares )1 past mid-price observations to )2 past observations with
)1 < )2 and places a buy order of random size, if the former exceeds
the latter and a sell order otherwise. Finally, the momentum agents
are con�gured to arrive to the market at a constant rate.

Market replay agent: The market replay agent works by pass-
ing historical orders for a given day and security into the simula-
tion exchange’s matching engine. At any given time in the sim-
ulation, absent any other trading agents, the order book exactly
replicates the historical order book at that time. Figure 3 illustrates
the main limitation of market replay: as opposed to the IABS sce-
nario wherein an experimental agent interacts withmultiple diverse
market participants via an exchange, the market replay scenario
only allows replay of historical data — the market does not respond
to the actions of the experimental agent, although the experimental
agent responds to the actions of the market.

3.3 Agent con�gurations
We present four di�erent agent con�gurations as described in Ta-
ble 1 and further evaluate them for realism. Our reasoning for

Market Replay Agent

Exchange

Experimental Agent

Historical Data

Exchange

Experimental Agent

Market Maker Agent

Noise Agents

Value Agents

Momentum Agents

Figure 3: Market replay (left) vs. IABS (right).

Figure 4: Stylized facts for con�gs 1 and 2 (left), and con�gs
3 and 4 (right). (top) Distributions of return autocorrelation.
(center) Average autocorrelation of square returns as a func-
tion of time lag. (bottom) Volume/volatility correlation distri-
butions.

introducing progressively more complex con�guration design is
the following. Since it is known that some stylized facts can be
modeled exclusively by agents in the ZI family (i.e. [22]) we want to
introduce minimal strategic behavior on top of zero intelligence, in
order to gain insights into which LOB properties we can reproduce
and which will require more sophisticated agent modeling (possibly
by introducing learning agents).

An additional dimension that we want to assess are random
and historic approaches to modeling fundamental time series for
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the purpose of simulated realism. We expect that using a historic
fundamental will be more realistic when looking at price returns,
and want to evaluate the degree of agent diversity that is needed
for the use of historic price fundamental to be realistic in terms of
other stylized facts.

Finally, the market replay agent con�guration is expected to be
most realistic in terms of stylized facts by de�nition. However, mar-
ket replay does not constitute a true IABS as interactions between
multiple agents are not present, as depicted in Figure 3.

Con�g Agents Fundamental ZI/Strategic
1 5000 noise, 100 value Random ZI
2 5000 noise, 100 value,

1 market maker, 25 momentum
Random Both

3 5000 noise, 100 value Historic ZI
4 5000 noise, 100 value,

1 market maker, 25 momentum
Historic Both

5 1 market replay Historic not IABS
Table 1: Agent con�gurations.

4 EXPERIMENTAL RESULTS
To assess the realism of the �rst four IABS con�gurations, we exam-
ine stylized facts relating to asset returns and order �ow described
in Sections 2.2 and 2.3 respectively.

4.1 Stylized facts about asset return
distributions

To derive historical asset return distributions, we analyze minutely
intraday log returns of 30 randomly sampled U.S. exchange-traded
equities for each trading day of 2011. The set of equities is resampled
each trading day and is drawn uniformly across all stocks from all
exchanges.

• Heavy tails and aggregation normality.
Con�g 3 is the most realistic as it exhibits the heaviest tails.
This realism can be attributed to con�g 3 being closest to
historical data. The addition of a market maker appears to
reduce volatility of returns, as seen with con�gs 2 and 4,
making them less realistic (Figure 2).

• Absence of autocorrelations Con�g 3 is the most realistic.
Con�g 4 is also realistic but to a lesser degree. (Figure 4).

• Volatility clustering.The average autocorrelation of square
returns decays for both historical and simulated data in all
con�gurations as time lag increases. The volatility clustering
of con�g 2 is most similar to historical data (Figure 4).

• Volume/volatility correlation.None of the con�gs exhibit
volume/volatility correlation properties similar to historical
data. (Figure 4).

4.2 Stylized facts about volumes and order �ow
To derive historical distributions, we consider order book histori-
cal data for IBM stock traded on the NASDAQ exchange for each
trading day of June 2019 from 9:30 am to 4:30 pm.

• Number of quotes in a �xed time window. Figure 5 (top)
show the distribution for number of quotes occuring in a �ve-
minute window for the simulated vs. the historical data. The

Figure 5: Order �ow stylized facts for con�gs 1 and 2 (left)
and con�gs 3 and 4 (right) as compared with empirical data
(top) Number of quotes in a �ve-minute window. (center)
Quote interarrival times. (bottom) Intraday quote volume
pro�les.

number of quotes is normalized to the total daily quotes for
easier visual comparison. We �nd that gamma distribution
produces a good �t for all curves.

• Intraday quote volume patterns. Quadratic curves have
been �tted to the quote volume in a given 5-,minute period
throughout the day to demonstrate the "U-shaped" pattern
of historical intraday quote volumes (see Figure 5 (center) ).
The data was normalized to the mean volume. We �nd the
simulated data reproduces the volume “smile” well.

• Quote interarrival times. Figure 5 (bottom) show the dis-
tribution of quote interarrival times for simulated data as
well as the historical data. The historical data �ts a Weibull
distribution well. Large support at zero interarrival time
leads to poor �t for the simulated data in all con�gurations.

4.3 Stylized facts realism: summary
In summary, con�gurations 2 and 4 with diverse mix of ZI and
strategic agent populations can replicate stylized facts about order
�ows better. This agrees with our intuition as in realitymany groups
of market agents react to limit order book information.

Con�guration 3 can replicate stylized facts about asset return
distributions best as value agents in this con�guration are driven
by historic fundamental and it is closest to historic market replay.
We, however, want to underline that the agent homogeneity in
con�guration 3 is likely to be a limitation for realistic order book
simulations as our analysis of order �ow stylized facts illustrates.



Get Real: Realism Metrics for Robust
Limit Order Book Market Simulations ICAIF ’20, October 15–16, 2020, New York, NY, USA

Figure 6: Market replay (left) and Con�guration 4 (right) -
with and without POV execution agent, executing at 1% (top
row), 10% (middle row) and 50% (bottom row) of transacted vol-
ume at 1 minute intervals between 11:00 AM and 11:30 AM.
Market replay G-axis is truncated and ~-axis expanded for
clarity. The thick blue line represents the median, with 50%
and 90% quantiles indicated by the shaded regions.

4.4 Market impact experiment
We design an execution experiment that demonstrates that despite
the use of historical fundamental by the value agents, IABS in
con�guration 4 is able to simulate realistic market impact dynamics
of a large order execution. In this experiment, we compare market
replay to interactive agent-based simulation (IABS) in con�guration
4 for evaluating the price impact of limit order placement in a
simulated market.

In particular, we carry out an experiment simulating a percentage
of volume (POV) strategy typically used in practice. A POV algo-
rithm is de�ned by a percentage level Z 2 (0, 1], a wake-up period,
a direction (buy or sell) and a target quantity. At each wake-up, the
total transacted volume since the previous wake-up+g is computed,
then a market order of size Z · +g is placed in the speci�ed direc-
tion. This continues until the trader has reached the target quantity.
In our experiment, we place POV orders for Z 2 {0.01, 0.1, 0.5}
between 11:00AM and 11:30AM for both market replay and con�g-
uration 41, using 120 random seeds and 20 dates for IBM for con�g
3 with the same dates in market replay.

Figure 6 visualizes the price impact of order execution that starts
at 11:00AM with the arrival of the POV order and continues for
the duration of an order until 11:30 AM. In both market replay and

1For this experiment the arrival rate of the value agents was reduced by a factor ⇡ 1.4
as a more realistic impact trace was desired.

con�guration 4 (IABS), the mid-price deviates from the baseline
con�guration without the POV order. The key di�erence is in how
the mid-price evolves after the �rst order is placed. In the case of
market replay, spikes in the normalized di�erence between the mid-
prices are observed as a result of the new orders in the historical
order book being replayed. IABS, on the other hand, allows for
the adaptation of the agents to the new observed mid-price which
results in a di�erent mid-price evolution that is not reproduced
using market replay only. Note that in the IABS con�guration, the
presence of price impact remains past the end of the order execu-
tion at 11:30 AM which aligns with permanence of market impact
described in [2, 5], demonstrating behavior that is not reproducible
using market replay only. We note also that the price impact in-
creases as a function of the percentage level Z , as is observed in
real markets.

5 CONCLUSION AND DISCUSSION
In this paper, we provided a catalog of known stylized facts regard-
ing LOB microstructure behavior with respect to market realism.
We evaluated four experimental con�gurations of agent types—ZI
agents that follow random fundamental, ZI agents that follow his-
toric fundamental, ZI and strategic agents that follow a random
fundamental and ZI and strategic agents that follow a historic fun-
damental. We found that a diverse mix of ZI and minimal strategic
behavior agent types and use of historic fundamental result in more
realistic LOB simulation. We also demonstrated that using historic
time series as a fundamental reference stream for the value agents
is not a limiting factor in simulating emergent phenomena (such
as market impact of trading) and allows simulated price series to
diverge signi�cantly from their historic trajectories.

Although we observed that the con�gurations with more diverse
ZI and strategic agent populations and historic fundamental lead
to statistics that more closely mimic real markets, we acknowledge
that there is much room for improvement. In particular, order �ow
correlation and interarrival time properties were not well repro-
duced. Related literature suggests that correlated order behaviors,
especially herding or clustering behaviors, require adaptation of
one agent’s behavior in response to other agents’ actions and will
possibly require the introduction of online learning agents [42]. For
example, ref. [33] details comparisons of non-learning and learning
agents and concludes that agents capable of learning and adaption
to other agent �ows are better able to replicate stylized facts about
long range dependence and correlation between volume and volatil-
ity. Moreover, in real markets, rational agents evolve over time by
learning to expand e�ective and cull ine�ective trading strategies
[37]. Hence, we believe that furnishing autonomous LOB agents
with the ability to learn from experience will be a step towards
making simulated environments more robust.
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