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A graph TQFT for hat Heegaard Floer homology
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Abstract. We construct maps on hat Heegaard Floer homology for cobordisms

decorated with graphs. The graph TQFT allows for cobordisms with disconnected

ends. Our construction uses Juhász’s sutured Floer TQFT. We compute the maps for

several elementary graph cobordisms. As an application, we compute the action of

the fundamental group on hat Heegaard Floer homology.
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1. Introduction

Ozsváth and Szabó constructed a powerful set of invariants for closed 3-

manifolds, and cobordisms between them [14] [15]. To a closed, oriented

3-manifold Y , they constructed a finitely generated abelian group

ĤF (Y ),

as well as Z[U ]-modules HF−(Y ), HF+(Y ) and HF∞(Y ). We focus mostly

on ĤF in our present paper. Also, we work over the field F := Z/2Z.

To a compact, connected, and oriented cobordism W between two

connected 3-manifolds, Y0 and Y1, they constructed a linear map

F̂W : ĤF (Y1) → ĤF (Y2).

If W = W2 ∪Y W1, where Y is a closed, connected 3-manifold, then

F̂W = F̂W2 ◦ F̂W1 .

An important subtlety is that the construction of ĤF (Y ) requires a

choice of basepoint in Y . Similarly, the construction of F̂W implicitly relies

1 This research was supported by NSF grant DMS-1703685
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on choosing an arc in W , connecting the two basepoints in ∂W . To make

the dependence explicit, we will write ĤF (Y, p) and F̂W,γ for the groups

and maps defined with an auxiliary choice of basepoint p or arc γ.

1.1. Maps for graph cobordisms. The main construction of this paper

is an extension of Ozsváth and Szabó’s cobordism maps to the following

category:

Definition 1.1. The graph cobordism category Cob
Γ
3+1 has the following

objects and morphisms:

• The objects are pairs (Y,p), where Y is a closed and oriented 3-

manifold (possibly disconnected or empty), and p is a finite collection

of basepoints in Y , such that each component of Y has at least one

basepoint.

• A morphism from (Y0,p0) to (Y1,p1) is a pair (W,Γ) such that

(1) W is an oriented, compact cobordism from Y0 to Y1, and

(2) Γ ⊆ W is an embedded graph, such that Γ ∩ Yi = pi, Γ has no

valence 0 vertices, and pi ⊆ Γ are all valence 1.

Generalizing their construction of Heegaard Floer homology for singly

pointed 3-manifolds [14], Ozsváth and Szabó also defined a group ĤF (Y,p),

whenever (Y,p) is a closed, oriented 3-manifold with a finite collection

of basepoints [13]. The construction extends via a tensor product to

disconnected 3-manifolds, as long as each component of Y contains at least

one basepoint.

In this paper, we construct cobordism maps for graph cobordisms, and

prove the following:

Theorem 1.2. If (W,Γ) is a graph cobordism from (Y0,p0) to (Y1,p1), then

the construction of this paper gives a well-defined map

F̂W,Γ : ĤF (Y0,p0) → ĤF (Y1,p1),

satisfying the following:

(1) F̂[0,1]×Y,[0,1]×p = id
ĤF(Y,p)

.

(2) If (W,Γ) = (W2,Γ2) ∪ (W1,Γ1), then

F̂W,Γ = F̂W2,Γ2 ◦ F̂W1,Γ1 .
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(3) If (W,Γ): (Y0, p0) → (Y1, p1) is a cobordism such that Γ is a path

connecting p0 and p1, then F̂W,Γ coincides with the map of Ozsváth and

Szabó [15].

Theorem 1.2 implies that Heegaard Floer homology extends to a functor

from Cob
Γ
3+1 to the category of vector spaces over F. Our construction of

F̂W,Γ uses Juhász’s sutured Floer homology TQFT [8] [7].

1.2. Elementary graph cobordisms. In Sections 4 and 5, we compute

the maps for the following elementary graph cobordisms, whose underlying

4-manifolds are [0, 1]× Y :

(Γ-1) Free-stabilization cobordisms: The graph Γ consists of [0, 1]× p, for a

non-empty collection of basepoints p ⊆ Y , together with one half-arc

of the form [0, 12 ]× {p} or [12 , 1]× {p}, for some p 6∈ p.

(Γ-2) Merging and splitting cobordisms: Γ consists of [0, 1]×p, for a (possibly

empty) collection of basepoints p ⊆ Y , as well as one wye-shaped

component which merges or splits two basepoints.

(Γ-3) Spliced loop cobordisms: Γ consists of [0, 1] × p, for a non-empty

collection of basepoints p ⊆ Y , as well as one loop γ in {1
2} × Y ,

which intersects [0, 1]× {p} for exactly one p ∈ p.

(Γ-4) Broken path cobordisms: Γ consists of [0, 1] × p, for a (possibly

empty) collection of basepoints p ⊆ Y , together with one broken

arc
(
[0, 13 ] ∪ [23 , 1]

)
× {p}, for some p 6∈ p.

The elementary graph cobordisms (Γ-1)–(Γ-4) are depicted in Figure 1.1.

1.3. The action of the fundamental group. Since a basepoint is implic-

itly used in the construction of the Heegaard Floer groups, the naturality

theorem of [9] implies only that elements of the based mapping class group

MCG(Y, p) induce well defined endomorphisms of Heegaard Floer homol-

ogy.

There is a fibration

Diff(Y, p) → Diff(Y )
evp
−−→ Y,

where evp denotes evaluation at p. The long exact sequence of homotopy

groups for this fibration gives a homomorphism

π1(Y, p) → MCG(Y, p).
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(Γ-1) (Γ-2)

(Γ-3) (Γ-4)

γ

Figure 1.1. The four elementary graph cobordisms in [0, 1]× Y .

By exactness, the image of π1(Y, p) in MCG(Y, p) is the kernel of the

forgetful map MCG(Y, p) → MCG(Y ).

Suppose p ∈ p and γ ∈ π1(Y, p). We write

γ∗ : ĤF (Y,p) → ĤF (Y,p)

for the induced endomorphism.

Using the graph TQFT, we prove the following:

Theorem 1.3. Suppose (Y,p) is a multi-pointed 3-manifold and p ∈ p. If

γ ∈ π1(Y, p), then the induced endomorphism γ∗ of ĤF (Y,p) satisfies

γ∗ = id+Φp ◦A[γ],

where A[γ] denotes the standard action of [γ] ∈ H1(Y ;Z)/Tors, and

Φp : ĤF (Y,p) → ĤF (Y,p)

is the broken path graph cobordism labeled (Γ-4) in Figure 1.1.

In Section 5, we identify the broken path graph cobordism Φp with

the basepoint action for the point p, which counts holomorphic disks on a

Heegaard diagram with multiplicity 1 at p. See Proposition 5.1.

Acknowledgments. I would like to thank Jianfeng Lin, Yajing Liu,

András Juhász, Ko Honda, Ciprian Manolescu, Marco Marengon and

Matthew Stoffregen for helpful conversations.
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2. Background

2.1. Heegaard Floer homology. Suppose (Y,p) is a multi-pointed 3-

manifold, s ∈ Spinc(Y ), and H = (Σ,α,β,p) is a Heegaard diagram

for (Y,p). Ozsváth and Szabó [13] construct chain complexes ĈF (H, s),

CF−(H, s), CF+(H, s) and CF∞(H, s), as follows. We focus on the case

that Y is connected. If Y is disconnected, then ĈF (H, s) is defined by

tensoring over F the complexes for each connected component.

The chain complex ĈF (H, s) is generated by intersection points x of the

two half dimensional tori

Tα = α1 × · · · × αg(Σ)+n−1 and Tβ = β1 × · · · × βg(Σ)+n−1,

in Symg(Σ)+n−1(Σ) (where n = |p|), which satisfy sp(x) = s. The

differential is given by the formula

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1
np(φ)=0

#(M(φ)/R) · y,

whereM(φ) denotes the moduli space of holomorphic disks in Symg(Σ)+n−1(Σ),

representing a given homotopy class φ ∈ π2(x,y).

We define

ĈF (H) =
⊕

s∈Spinc(Y )

ĈF (H, s). (2.1)

Although we mostly focus on ĈF in this paper, in Section 5, we

consider CF−, which we review presently. Write p = {p1, . . . , pn}, and

Rn := F[U1, . . . , Un]. The module CF−(H, s) is the free Rn-module with

generators x ∈ Tα ∩ Tβ with sp(x) = s. The differential on CF−(H, s) is

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1

#(M(φ)/R) · U
np1

(φ)
1 · · ·U

npn (φ)
n · y.

Unlike for ĈF , it is usually not possible to define a total complex

CF−(H) as a direct sum over all Spinc structures, analogous to equa-

tion (2.1), since CF− requires a stronger version of admissibility than ĈF ,

which cannot normally be simultaneously realized for all Spinc structures

on a single diagram [14, Section 4.2.2]. Hence, on CF−, we usually work

with one Spinc structure at a time.
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2.2. Sutured Floer homology. Sutured manifolds were defined by Gabai

[3] to study foliations on 3-manifolds. Juhász [8] defined an extension

of Heegaard Floer homology for sutured manifolds, called sutured Floer

homology. Juhász [7] also described a (3+1)-dimensional TQFT for sutured

Floer homology. In this section, we recall some background about sutured

manifolds and the sutured Floer homology TQFT.

The following is a slight restriction of Gabai’s original definition, but is

sufficient for our purposes:

Definition 2.1. A sutured manifold (M,γ) is a compact, oriented 3-

manifold M with boundary, together with a set of pairwise disjoint, simple

closed curves γ ⊆ ∂M (the sutures) which are oriented. The surface ∂M \γ

is partitioned into two sets of components, R+(γ) and R−(γ), which are

oriented so that the normal of R+(γ) points out of M , while the normal of

R−(γ) points into M . Finally, we require γ to be consistently oriented with

respect to the boundary orientation of R+(γ) and R−(γ).

The main difference between Definition 2.1 and Gabai’s original defini-

tion is that we exclude toroidal sutures. We say that a sutured manifold

(M,γ) is balanced if χ(R+(γ)) = χ(R−(γ)). To a balanced sutured manifold

(M,γ) with no closed components, Juhász constructs an F-vector space

SFH (M,γ).

If Y is a closed, oriented 3-manifold, and p is a collection of basepoints,

then we write Y (p) for the sutured manifold (M,γ) where

M := Y \ intN(p)

and γ consists of one simple closed curve per component of ∂M . We note

that

SFH (Y (p)) = ĤF (Y,p),

since a Heegaard diagram for (Y,p) may be obtained from a diagram for

Y (p) by collapsing each suture to a basepoint.

Juhász also defines cobordism maps for sutured Floer homology [7]. He

uses the following notion of cobordism between sutured manifolds:

Definition 2.2. A cobordism of sutured manifolds

W = (W,Z, [ξ]) : (M0, γ0) → (M1, γ1)

is a triple such that
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(1) W is a compact, oriented 4-manifold with boundary,

(2) Z is a compact, codimension-0 submanifold of ∂W , and ∂W \ int(Z) =

−M0 tM1,

(3) [ξ] is an equivalence class of positive contact structures on Z, such that

∂Z is a convex surface with dividing set γi on ∂Mi, for i ∈ {0, 1}.

The notion of equivalence between contact structures used in Defini-

tion 2.2 can be found in [7, Definition 2.3].

If W : (M0, γ0) → (M1, γ1) is a cobordism between balanced sutured

manifolds, Juhász [7] constructs a well-defined map

FW : SFH (M0, γ0) → SFH (M1, γ1),

which is functorial in the following sense. If ξ is a [0, 1]-invariant contact

structure on [0, 1]× ∂M , such that {0, 1}× ∂M is convex, with dividing set

γ, then W = ([0, 1] × M, [0, 1] × ∂M, [ξ]) is a sutured manifold cobordism

from (M,γ) to itself. The induced cobordism map

FW : SFH (M,γ) → SFH (M,γ)

is the identity. Furthermore, if W decomposes as the composition of two

sutured manifold cobordisms W2 ◦W1, then

FW = FW2 ◦ FW1 .

See [7, Theorem 11.3].

We outline the construction of the sutured cobordism maps in Sec-

tion 2.4, after we outline one of its constituents, the contact gluing map.

2.3. The contact gluing map. We now recall Honda, Kazez, and Matić’s

contact gluing map for sutured Floer homology [6], as well as the contact-

handle formulation given by Juhász and the author [10].

Definition 2.3. Suppose that (M,γ) and (M ′, γ′) are sutured manifolds.

We say that (M,γ) is a sutured submanifold of (M ′, γ′) if M ⊆ int(M ′).

If (M,γ) is a sutured submanifold of (M ′, γ′), and ξ is a positive contact

structure on Z := M ′ \ int(M) which induces the dividing set γ ∪ γ′, then

Honda, Kazez and Matić [6] define a contact gluing map

ΦZ,ξ : SFH (−M,γ) → SFH (−M ′, γ′).
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In [10], Juhász and the author gave a reformulation of the contact gluing

map in terms of contact handles, which facilitates computations. Contact

handles were defined by Giroux [4]. See Ozbagci [11] for an exposition. We

take the following as the definition of a contact handle:

Definition 2.4. Suppose (M,γ) is a sutured submanifold of (M ′, γ′), and ξ

is a positive contact structure on Z := M ′ \ int(M), with dividing set γ∪γ′.

We say that (Z, ξ) is a contact handle of index k if there is a contact vector

field ν on Z that points into Z on ∂M , and out of Z on ∂M ′, as well as a

decomposition Z = Z0 ∪ h such that

(1) Z0 is diffeomorphic to [0, 1]× ∂M ,

(2) ν is non-vanishing on Z0, points into Z0 on {0}×∂M and out of Z0 on

{1}×∂M , and each flowline of ν is an arc from {0}×∂M to {1}×∂M ,

(3) h is smooth 3-ball with corners, and ξ is tight on h.

We have the following additional requirements, depending on k:

• (k = 0): h = D3 (with no corners) and h ∩ Z0 = ∅. The dividing set

on ∂h is a single circle.

• (k = 1): h = [0, 1] × D2, and h ∩ Z0 = {0, 1} × D2. The dividing set

on ∂h is a single closed curve, consisting of an arc on {0} × D2 and

{1} ×D2, and two longitudinal arcs on [0, 1]× ∂D2.

• (k = 2): h = [0, 1]×D2, and h ∩ Z0 = [0, 1]× ∂D2. The dividing set is

as in k = 1 case.

• (k = 3): h = D3 (with no corners), and h ∩ Z0 = ∂h. The dividing set

on ∂h is a single circle.

We now state the description from [10] of the contact gluing maps of

Honda, Kazez and Matić when M ′ \M is a contact handle.

If Z is a contact 0-handle, we extend the Heegaard surface into Z0 using

the flow of ν, and then add a disk to the Heegaard surface which lies in h

and intersects ∂D3 along the sutures. We add no new alpha or beta curves.

The map on sutured Floer homology is the tautological one.

If Z is a contact 1-handle, we extend Σ into Z0 using the flow of ν,

and then attach a band to the boundary of the Heegaard surface, which is

contained in h and intersects the boundary along the dividing set. We add

no alpha or beta curves. Similar to the contact 0-handle map, the map on

sutured Floer homology is the tautological one.
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If Z is a contact 2-handle, we extend the Heegaard surface into Z0 using

the flow of ν, as before. Now ∂h intersects ∂Z in an annulus. Let c denote

the core of the attaching annulus. The curve c may be taken to intersect the

dividing set in two points. Let λ+ denote the subarc of c which intersects

R+, and let λ− denote the subarc which intersects R−. If (Σ,α,β) is a

diagram for (M,γ), we may obtain a diagram for (M ′, γ′) by adjoining a

band to ∂Σ, and adding a new alpha curve α, and a new beta curve β. The

curves α and β have a single intersection point in the band region, as in

Figure 2.1. Outside of the band region, β consists of λ+, projected onto

Σ \ β, and α consists of λ−, projected on Σ \α. The map

ΦZ,ξ : CF (Σ,β,α) → CF (Σ ∪B,β ∪ {β},α ∪ {α})

is given by x 7→ x × c. According to [10, Lemma 3.13], the map ΦZ,ξ is a

chain map, and hence induces a homomorphism on homology groups.

Σ

contact
2-handle

∂Σ

Σ

β

α
c

Figure 2.1. A contact 2-handle on Heegaard diagrams.

Finally, suppose Z is a contact 3-handle, and let S ⊆ ∂M denote the 2-

sphere which is filled in by Z. Let S′ denote a 2-sphere in int(M) obtained

by pushing S into int(M). The contact 3-handle map is defined as the

composition of the 4-dimensional 3-handle map for the 2-sphere S′ (which

leaves the disjoint union of (M ′, γ′) and B3), followed by the canonical

isomorphism

SFH (M ′, γ′)⊗ SFH (B3) ∼= SFH (M ′, γ′).

2.4. Sutured cobordism maps. We now outline the construction of the

sutured cobordism maps. Suppose

W = (W,Z, [ξ]) : (M0, γ0) → (M1, γ1),

is a cobordism of sutured manifolds, as in Definition 2.2. First, we remove

some number of tight, contact 3-balls from Z, and add them to (M0, γ0)

or (M1, γ1), so that each component of W intersects a component of M0
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and M1 non-trivially. This does not affect the sutured Floer homology of

(M0, γ0) or (M1, γ1), as there is a canonical isomorphism

SFH (M0 tB3, γ0 ∪ γ) ∼= SFH (M0, γ0),

where γ ⊆ B3 denotes a single closed curve.

Juhász calls a sutured cobordism W special if Z = [0, 1]× ∂M0 and ξ is

[0, 1]-invariant. The cobordism map for a special cobordism is defined to

be a composition of 1-handle, 2-handle and 3-handle maps, similar to the

ones described by Ozsváth and Szabó [15].

If

W = (W,Z, [ξ]) : (M0, γ0) → (M1, γ1)

is a general sutured manifold cobordism, one may obtain a special cobor-

dism

Ws = (W, [0, 1]× ∂M1, ξ1) : (M0 ∪ Z, γ1) → (M1, γ1),

where ξ1 is a [0, 1]-invariant contact structure on ∂M1 × [0, 1]. The cobor-

dism map FW is defined as the composition

FW := FWs ◦ΦZ,ξ. (2.2)

3. Construction of the graph TQFT

Suppose (W,Γ) is a graph cobordism from (Y0,p0) to (Y1,p1). We define a

sutured manifold cobordism

W(W,Γ) = (W (Γ), Z(Γ), [ξ(Γ)]) : Y0(p0) → Y1(p1),

as follows. We define the 4-manifold W (Γ) to be W \ intN(Γ), and the 3-

manifold Z(Γ) to be ∂W (Γ) ∩ ∂N(Γ). We give ∂Z(Γ) the same sutures

as Y (p0) and Y (p1), for which we write γZ . We take ξ(Γ) to be the

unique tight contact structure with dividing set γZ , whose well definedness

we sketch presently. The 3-manifold Z(Γ) is homeomorphic to a disjoint

union of connected sums of S1 ×S2, with some number of 3-balls removed.

The sutures consist of a single closed curve on each copy of S2 in ∂Z(Γ).

It is well known that up to isotopy, relative to ∂Z(Γ), there is a unique

tight contact structure on Z(Γ) which has dividing set γZ . The case when

Z(Γ) = B3 follows from a result of Eliashberg [2]. The general case follows

by decomposing Z(Γ) along a collection of convex 2-spheres, until one
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obtains a disjoint union of tight, punctured 3-spheres, using convex surface

theory [1] [5].

Without further ado, we define

F̂W,Γ := FW(W,Γ).

4. Elementary graph cobordisms in [0, 1] × Y

In this section, we compute the maps induced by the elementary graph

cobordisms shown in Figure 1.1, with the exception of the broken path

cobordism, which is considered in Section 5.

4.1. Free-stabilization cobordisms. In this section we compute the

maps for the free-stabilization cobordisms, which are labeled (Γ-1) in

Figure 1.1. Let

W+
p :=

(
[0, 1]× Y,Γ+

p

)
: (Y,p) → (Y,p ∪ {p})

denote the free-stabilization graph cobordism which adds the basepoint p,

and let W−
p denote the free-stabilization graph cobordism which removes

p.

We define

S+
p := F̂W+

p
and S−

p := F̂W−

p
. (4.1)

If H is a Heegaard diagram for (Y,p), we may form a Heegaard diagram

H(p) for (Y,p ∪ {p}) by adding the basepoint p, encircled by a new pair

of alpha and beta curves, α and β, as in Figure 4.1. After a sequence of

handleslides, we may assume that α and β are immediately adjacent to

another basepoint p0 ∈ p. The placement of basepoints makes it easy to

verify that

ĤF (H(p)) ∼= ĤF (H)⊗ V, (4.2)

where V is the 2-dimensional vector space F1/2 ⊕ F−1/2. We write θ+ for

the top degree generator of V , and θ− for the bottom degree generator.

Lemma 4.1. With respect to the isomorphism from equation (4.2), the maps

S+
p and S−

p satisfy

S+
p (x) = x× θ+ and S−

p (x× θ) =

{
x if θ = θ−

0 if θ = θ+.
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αβ

θ+

θ−

pp0

Figure 4.1. The diagram H(p), obtained by adding a basepoint p to a diagram H.

Proof. We first consider S+
p . We may perform an index 0/1 handle cancel-

lation to decompose the graph cobordism W+
p as follows:

(1) A 0-handle B4, containing an arc a, which intersects ∂B4 in a single

point.

(2) A 1-handle cobordism which merges (S3, p) with (Y,p), away from p.

We may similarly decompose W−
p into a 3-handle cobordism followed by a

4-handle cobordism.

The graph cobordism map for (B4, a) : ∅ → (S3, p) is easily seen to send

the generator of ĤF (∅) ∼= F to the generator of ĤF (S3) ∼= F, and similarly

for the 4-handle cobordism in the opposite direction. The main claim now

follows for S+
p , since the stated formula coincides with the definition of the

1-handle map [7, Section 7]. The proof of S−
p is similar. �

4.2. Merge and split cobordisms. We now compute the merge and split

cobordism maps, which are labeled (Γ-2) in Figure 1.1. Suppose that p1
and p2 are two points in Y , λ is a path connecting p1 to p2, and p0 is a point

along λ. Suppose that p is a (possibly empty) collection of basepoints in

Y \ {p0, p1, p2}. Write

Wmerge
λ : (Y,p ∪ {p1, p2}) → (Y,p ∪ {p0})

for the graph cobordism which merges p1 and p2 into p0, along the path λ.

Similarly write

Wsplit
λ : (Y,p ∪ {p0}) → (Y,p ∪ {p1, p2})

for the graph cobordism which splits p0 into the pair p1 and p2. Write

Spλ := F̂Wsplit
λ

and Mλ := F̂Wmerge
λ

.
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Lemma 4.2. Let H be a Heegaard diagram for (Y,p∪{p0}), and let Hp1,(p2) be

the Heegaard diagram for (Y,p∪{p1, p2}) obtained by relabeling p0 as p1, and

adding new alpha and beta curves which bound small disks containing p2, as in

Figure 4.2. Furthermore, assume that λ is embedded in the Heegaard surface,

as shown in Figure 4.2. With respect to the isomorphism in equation (4.2),

we have

Spλ(x) = x× θ− and Mλ(x× θ) =

{
x if θ = θ+

0 if θ = θ−
.

αβ

θ+

θ−

p2p1

λ

Figure 4.2. The diagram Hp1,(p2), considered in Lemma 4.2.

Proof. We begin with the split cobordism Wsplit
λ . Write (Z, ξ) for the

contact portion of the boundary of the sutured manifold associated to

Wsplit
λ . The contact manifold (Z, ξ) is a thrice punctured, tight 3-ball.

We glue Z to the boundary S2 of Y (p∪{p0}) associated to p0. The special

cobordism (Wsplit
λ )s is a product cobordism. Hence, by equation (2.2),

F̂Wsplit
λ

coincides with the contact gluing map ΦZ,ξ. The contact manifold

(Z, ξ) is a contact 2-handle, so the gluing map takes the form described

in Section 2.3 (see specifically Figure 2.1). The description of the contact

gluing map immediately gives the stated formula for Spλ. See Figure 4.3.

We now compute the merge map. Note that the merge cobordism is

obtained by turning around the split cobordism. A Morse theory argument

(see [10, Lemma 6.7]) shows that sutured cobordism associated to Wmerge
λ

has the following description:

(1) A contact 1-handle which merges the two boundary components asso-

ciated to p1 and p2. This turns the pair of boundary components into

a single boundary component, and adds an S1 × S2 summand.

(2) A 4-dimensional 2-handle which cancels the S1 × S2 summand.

The stated formula for the merge map follows from an easy holomorphic

triangle computation in the S1 × S2 summand. See Figure 4.4. �
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p0

Σ

p1 θ− p2

contact
2-handle

α

β

Figure 4.3. The map for a split cobordism coincides with a contact 2-handle map. The

boundary circles represent the sutures of the manifolds Y (p∪{p0}) and Y (p∪{p1, p2}).

4.3. Spliced loop cobordisms. We now investigate the spliced loop

cobordism, labeled (Γ-3) in Figure 1.1.

Lemma 4.3. If Wγ = ([0, 1] × Y,Γγ) : (Y,p) → (Y,p) is a spliced loop

cobordism, then

F̂Wγ
= A[γ],

where A[γ] denotes the standard action of H1(Y ;Z)/Tors on ĤF (Y,p).

Proof. Let p ∈ p denote the basepoint connected to the strand with the

spliced loop. Write (Z, ξ) for the contact portion of the boundary of the

sutured cobordism associated to Wγ . The contact manifold (Z, ξ) has a

component which consists of a twice punctured copy of S1 × S2, one of

whose boundary components is glued to the boundary S2 in Y (p) for p.

The manifold (Z, ξ) may be decomposed into a contact 1-handle, which

splits the suture for p into two circles (and adds no alpha or beta curves),

as well as a contact 2-handle, which merges the two sutures together, and

adds an alpha and beta curve. The resulting 3-manifold is (Y#S1×S2,p).

Similar to Figure 4.3, the induced map is given by

ΦZ,ξ(x) = x× θ−. (4.3)

Let γ0 ⊆ Y#S1 × S2 denote a curve which is supported in the S1 × S2

summand, and represents a generator of H1(S1 × S2). According to [12,

Proposition 6.4], the map A[γ0] is given by

A[γ0](x× θ+) = x× θ− and A[γ0](x× θ−) = 0. (4.4)

There is also a 1-handle cobordism from (Y,p) to (Y#(S1 × S2),p),

whose associated cobordism map is given by

F1(x) = x× θ+. (4.5)
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contact
1-handle

p1 θ− p2

p1 θ− p2

p0

Σ

4-dimensional
2-handle

isotopy

θ+

θ+

θ+

Figure 4.4. Computing the merge map. On the left side, an index 0 holomorphic

triangle is shown.

Combining equations (4.3), (4.4) and (4.5), we obtain

ΦZ,ξ(x) = A[γ0](F1(x)).

The special cobordism associated to Wγ consists of a 2-handle, which

cancels the new S1×S2 summand. The 2-handle is attached along a framed

knot K whose underlying unframed knot is the splice γ ∗ γ0. The framing
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is irrelevant, since for any choice of integral framing on γ ∗ γ0, there is a

canonical diffeomorphism between (Y#S1 × S2)(K) and Y . Hence

F̂Wγ
= FK ◦A[γ0] ◦ F1. (4.6)

By definition, the right hand side of equation (4.6) represents Ozsváth and

Szabó’s map for the identity cobordism, twisted by the induced element

[γ0] of H1([0, 1] × Y ;Z)/Tors. The class in H1(Y ;Z) induced by the loop

γ0 coincides with [γ], so the map induced by F̂Wγ
is exactly A[γ]. �

5. The broken path cobordism

We now investigate the broken path cobordism, labeled (Γ-4) in Figure 1.1.

Let us write Bp for the induced cobordism map.

We first describe our candidate map. If p ∈ p and H is a Heegaard

diagram for (Y,p), then there is a map

Φp : ĈF (H) → ĈF (H),

given by the formula

Φp(x) =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1
np(φ)=1

np′ (φ)=0, p′∈p\{p}

#(M(φ)/R) · y.

By counting the ends of moduli spaces of index 2 holomorphic disks which

cover p exactly once, we see that Φp is a chain map. By counting the ends

of moduli spaces of index 2 holomorphic disks which cover p exactly twice,

we obtain

Φ2
p = ∂ ◦H +H ◦ ∂,

where H is the map which counts index 1 holomorphic disks representing

classes φ with np(φ) = 2 and np′(φ) = 0 for all p′ ∈ p \ {p}.

In this section, we prove the following:

Proposition 5.1. If (Y,p) is a multi-pointed 3-manifold and p ∈ p, then

Bp = Φp,

as endomorphisms of ĤF (Y,p).
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To prove Proposition 5.1, it is helpful to consider the minus version of

the Heegaard Floer chain complexes. Write p = {p1, . . . , pn}. We now

describe an algebraic interpretation of Φpi
in terms of the chain complex

CF−(Y,p, s), which we recall is finitely generated and free over the ring

Rn := F[U1, . . . , Un].

Given a Heegaard diagram H of (Y,p), the intersection points x ∈ Tα ∩Tβ

with sp(x) = s give a free basis of CF−(H, s) over Rn. The complex

ĈF (H, s) is obtained by setting U1 = U2 = · · · = Un = 0, or equivalently by

taking a tensor product with the ring F, with the trivial action of Ui.

We may write the differential of CF−(H, s) as a square matrix, using the

basis of intersection points. The map Φpi
is given by taking this matrix,

differentiating each entry with respect to Ui, and setting U1 = · · · = Un = 0.

More generally, suppose (C−, ∂−) is a free, finitely generated chain

complex over the ring Rn, with some chosen basis. Write (Ĉ, ∂̂) for the

chain complex obtained by setting U1 = · · · = Un = 0. We may define a

map

ΦUi
: Ĉ → Ĉ,

by taking the matrix for ∂−, and differentiating each entry with respect to

Ui, and then setting all variables to be zero.

Lemma 5.2. (1) Suppose (C−
1 , ∂−

1 ) and (C−
2 , ∂−

2 ) are free, finitely generated

chain complexes over Rn, with fixed bases, and F : C−
1 → C−

2 is an Rn-

equivariant chain map. Write F̂ : Ĉ1 → Ĉ2 for the induced map. Then

ΦUi
◦ F̂ + F̂ ◦ΦUi

' 0.

(2) Suppose that p = {p1, . . . , pn} is a collection of basepoints on Y . The

map Φp : ĈF (H) → ĈF (H) is natural, in the sense that if H and H′ are

two diagrams for (Y,p) then

ΨH→H′ ◦Φp ' Φp ◦ΨH→H′ ,

where ΨH→H′ denotes the naturality map from ĈF (H) to ĈF (H′).

Proof. The second statement follows from the first, since the naturality

maps on ĈF are restrictions of the naturality maps on CF−.

To prove the first claim, we take the equation

0 = ∂− ◦ F + F ◦ ∂−,
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and differentiate it with respect to Ui. Using the Leibniz rule for products

of matrices, and then setting U1 = · · · = Un = 0, we obtain

F ◦ΦUi
+ΦUi

◦ F = ∂̂ ◦ F̂ ′ + F̂ ′ ◦ ∂̂,

as maps from Ĉ1 to Ĉ2. Here, F ′ denotes the map obtained by taking

the matrix for F , and differentiating each entry with respect to Ui, and F̂ ′

denotes the map resulting from setting U1 = · · · = Un = 0. �

We prove an additional lemma, which concerns modifying the graph by

adding an extra strand:

Lemma 5.3. Suppose that (W,Γ) and (W,Γ′) are two graph cobordisms, such

that Γ′ is obtained by adding an interior leaf to Γ, i.e. a new edge e,

contained in int(W ), such that e∩Γ consists of a single point. See Figure 5.1.

Then

FW,Γ = FW,Γ′ .

Proof. The complements of Γ and Γ′ are diffeomorphic, so the claim is

immediate from the construction of the cobordism maps in Section 3. �

e

(W,Γ) (W,Γ′)

Figure 5.1. Adding an interior leaf to a graph cobordism.

Remark 5.4. The relation in Lemma 5.3 is called the trivial strand relation

in [16].

Proof of Proposition 5.1. To disambiguate terms, let us write Φ
(Y,p)
p and

B
(Y,p)
p for the endomorphisms Φp and Bp of ĤF (Y,p).

As a first step, we show the claim when the component of Y which

contains p also contains another basepoint p0. In this case, the B
(Y,p)
p

is equal to S+
p ◦ S−

p , where S+
p and S−

p denote the free-stabilization and
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destabilization maps considered in Section 4.1. We may use the diagram

H(p) shown in Figure 4.1. Using Lemma 4.1, we obtain

B(Y,p)
p (x× θ+) = 0 and B(Y,p)

p (x× θ−) = x× θ+. (5.1)

On the other hand, using the diagram in Figure 4.1, the only holomorphic

curves of index 1 which have multiplicity 1 on p and multiplicity 0 on p0
have domain consisting of the bigon going over p. Using this diagram, we

see that Φ
(Y,p)
p coincides with equation (5.1). Hence, the claim follows if

there is another basepoint in the component of Y which contains p.

We now consider the case when p is the only basepoint in its component

of Y . In this case, we argue by adding an interior leaf to the graph, as

shown in Figure 5.2. According to Lemma 5.3, this does not change the

cobordism map. We decompose the broken path cobordism as follows:

(1) A free-stabilization cobordism, adding a new basepoint p0.

(2) A broken path cobordism from (Y, {p, p0}) to (Y, {p, p0}) (which is

broken over p).

(3) A basepoint merging cobordism, which merges p and p0 along a path

λ.

Figure 5.2. Computing the broken path cobordism map by adding an interior leaf.

Hence

B(Y,p)
p = Mλ ◦ B(Y,{p,p0})

p ◦ S+
p0
. (5.2)

By the proof when there are at least 2 basepoints, equation (5.2) gives

Φ(Y,p)
p = Mλ ◦Φ(Y,{p,p0})

p ◦ S+
p0
. (5.3)

If we can show

Φ(Y,{p,p0})
p ◦ S+

p0
= S+

p0
◦Φ(Y,p)

p , (5.4)

then we can manipulate equation (5.3) to obtain

B(Y,p)
p = Mλ ◦Φ(Y,{p,p0})

p ◦ S+
p0

= Mλ ◦ S+
p0

◦Φ(Y,p)
p

= Φ(Y,p)
p ,

(5.5)
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since Mλ ◦ S+
p0

= id, as the corresponding cobordism is the identity

graph cobordism, with an extra interior leaf. Hence, it suffices to prove

equation (5.4).

Consider the 2-variable polynomial ring F[U,U0], where U is associated

to p, and U0 is associated to p0. Note that ĈF (Y, {p, p0}, s) is obtained

from CF−(Y, {p, p0}, s) by setting U = U0 = 0. Similarly, ĈF (Y, p, s) is also

obtained from CF−(Y, p)⊗FF[U0] by setting U = U0 = 0. Hence, by part (1)

of Lemma 5.2, to show equation (5.4), it suffices to show that the map S+
p0

can be extended to an F[U,U0]-equivariant map from CF−(Y, p, s)⊗F F[U0]

to CF−(Y, {p, p0}, s).

Let H be a diagram for (Y, p), and consider a diagram H(p0) like the one

shown in Figure 4.1, but with the basepoint p0 encircled by the new alpha

and beta circles. There is an obvious isomorphism of modules

CF−(H(p0), s)
∼= CF−(H, s)⊗F 〈θ

+, θ−〉 ⊗F F[U0].

Furthermore, Ozsváth and Szabó [13, Equation 20] prove that there is an

almost complex structure so that the differential on CF−(H(p0), s) takes the

form

∂H(p0)
(x×θ+) = ∂H(x)⊗θ+ and ∂H(p0)

(x×θ−) = ∂H(x)⊗θ−+(Up+Up0)·x×θ+.

(5.6)

Equation (5.6) implies that the map x 7→ x⊗θ+, extended equivariantly over

F[U,U0], gives an F[U,U0]-equivariant chain map from CF−(H, s) ⊗ F[U0]

to CF−(H(p0), s), which restricts to S+
p0

when we set U = U0 = 0. Part (1)

of Lemma 5.2 implies equation (5.4), which allows us to perform the

manipulation from equation (5.5), completing the proof. �

6. The action of the fundamental group

We are now ready to compute the action of the fundamental group on

ĤF (Y,p).

Theorem 6.1. The action of γ ∈ π1(Y, p) on ĤF (Y,p) is given by the

formula

γ∗ = id+A[γ] ◦Φp,

where A[γ] denotes the action of H1(Y ;Z)/Tors.

As a helpful first step, we prove the relation shown in Figure 6.1.
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+ =

Figure 6.1. A local relation satisfied by the graph cobordisms.

Lemma 6.2. The graph cobordism maps satisfy the local relation shown in

Figure 6.1.

Proof. We view the local relation as taking place in a cylinder [0, 1] × Y .

Let p1 and p2 be two basepoints of Y , corresponding to the two bottom

points in the local relation, and let λ ⊆ Y be the corresponding path

connecting them. We may view the left cobordism of Figure 6.1 as a free-

destabilization, followed by a basepoint splitting cobordism. The middle

cobordism is a basepoint merge, followed by a free-stabilization. The right

hand side is the identity. Hence, it is sufficient to check

Spλ ◦ S−
p2

+ S+
p2

◦Mλ = id . (6.1)

Equation (6.1) is easily verified from Lemmas 4.1 and 4.2. �

We now prove the formula for the π1-action:

Proof of Theorem 6.1. We focus on the case when Y has a single basepoint,

to simplify the notation. The diffeomorphism map γ∗ coincides with the

graph cobordism map for ([0, 1]× Y, γ̂), where

γ̂ := {(t, γ(t)) : t ∈ [0, 1]} ⊆ [0, 1]× Y.

We apply the local relation from Figure 6.1 to the graph γ̂, as shown in

Figure 6.2. We obtain the sum of the two graph cobordisms shown on the

right side of Figure 6.2. We may identify the right most term with the map

Φp ◦A[γ] using Lemma 4.3 and Proposition 5.1. The proof is complete. �



22 Ian Zemke

γ̂
= +

γ∗ id Φp ◦A[γ]

Figure 6.2. Obtaining the formula for the π1-action by applying the local relation from

Figure 6.1 to the graph γ̂.
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