Quantum Topol., DRAFT, 1-23 Quantum Topology
(© European Mathematical Society

A graph TQFT for hat Heegaard Floer homology

Ian Zemke !

Abstract. We construct maps on hat Heegaard Floer homology for cobordisms
decorated with graphs. The graph TQFT allows for cobordisms with disconnected
ends. Our construction uses Juhész’s sutured Floer TQFT. We compute the maps for
several elementary graph cobordisms. As an application, we compute the action of
the fundamental group on hat Heegaard Floer homology.

Mathematics Subject Classification (2010). 57M27, 57R58.

Keywords. Heegaard Floer homology, TQFTs, 3-manifold invariants, 4-manifold
invariants

1. Introduction

Ozsvath and Szabd constructed a powerful set of invariants for closed 3-
manifolds, and cobordisms between them [14] [15]. To a closed, oriented
3-manifold Y, they constructed a finitely generated abelian group

HF(Y),

as well as Z[U]-modules HF~(Y)), HFT(Y) and HF*(Y). We focus mostly
on HF in our present paper. Also, we work over the field F := Z/27Z.

To a compact, connected, and oriented cobordism W between two
connected 3-manifolds, Yy and Y7, they constructed a linear map

Fy: HF (Y1) — HF (Ys).
If W =Wy Uy Wi, where Y is a closed, connected 3-manifold, then
F\W == F\WQ o F\Wl .

An important subtlety is that the construction of fIF(Y) requires a
choice of basepoint in Y. Similarly, the construction of Fy implicitly relies
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on choosing an arc in W, connecting the two basepoints in OW. To make
the dependence explicit, we will write HF(Y,p) and Fy ., for the groups
and maps defined with an auxiliary choice of basepoint p or arc +.

1.1. Maps for graph cobordisms. The main construction of this paper
is an extension of Ozsvath and Szabd’s cobordism maps to the following
category:

Definition 1.1. The graph cobordism category Cobg_H has the following
objects and morphisms:

e The objects are pairs (Y,p), where Y is a closed and oriented 3-
manifold (possibly disconnected or empty), and p is a finite collection
of basepoints in Y, such that each component of Y has at least one
basepoint.

e A morphism from (Y, py) to (Y1,p;) is a pair (W,I") such that

(1) W is an oriented, compact cobordism from Yj to Y7, and

(2) I' € W is an embedded graph, such that I'NY; = p,, I" has no
valence 0 vertices, and p; C I' are all valence 1.

Generalizing their construction of Heegaard Floer homology for singly
pointed 3-manifolds [14], Ozsvéth and Szabd also defined a group EF(Y, P),
whenever (Y,p) is a closed, oriented 3-manifold with a finite collection
of basepoints [13]. The construction extends via a tensor product to
disconnected 3-manifolds, as long as each component of Y contains at least
one basepoint.

In this paper, we construct cobordism maps for graph cobordisms, and
prove the following;:

Theorem 1.2. If (W,T) is a graph cobordism from (Yo, py) to (Y1,p;), then
the construction of this paper gives a well-defined map

ﬁw,r: ﬁ(Yo,Po) - EF(YhPQa

satisfying the following:

(1) Floajxv,0,1)xp = g5y p)-
(2) If (W,T) = (Wa,T'2) U (W1, 1), then

Fwr = Fw,r, o Fw, r,.
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(3) If (W, I'): (Yo,p0) — (Y1,p1) is a cobordism such that T is a path
connecting po and pi, then Fyr coincides with the map of Ozsvdth and

Szabo [15].

Theorem 1.2 implies that Heegaard Floer homology extends to a functor
from Cobg 41 to the category of vector spaces over F. Our construction of
Fw,r uses Juhdsz’s sutured Floer homology TQFT [8] [7].

1.2. Elementary graph cobordisms. In Sections 4 and 5, we compute
the maps for the following elementary graph cobordisms, whose underlying
4-manifolds are [0,1] x Y

(T-1) Free-stabilization cobordisms: The graph I" consists of [0, 1] x p, for a
non-empty collection of basepoints p C Y, together with one half-arc
of the form [0, %] x {p} or [%, 1] x {p}, for some p ¢ p.

(I-2) Merging and splitting cobordisms: T consists of [0, 1] xp, for a (possibly
empty) collection of basepoints p C Y, as well as one wye-shaped
component which merges or splits two basepoints.

(T-3) Spliced loop cobordisms: T consists of [0,1] x p, for a non-empty
collection of basepoints p C Y, as well as one loop v in {%} xY,
which intersects [0, 1] x {p} for exactly one p € p.

(I-4) Broken path cobordisms: I' consists of [0,1] x p, for a (possibly
empty) collection of basepoints p C Y, together with one broken

arc ([0, %] U [2,1]) x {p}, for some p & p.
The elementary graph cobordisms (I'-1)—(I"-4) are depicted in Figure 1.1.

1.3. The action of the fundamental group. Since a basepoint is implic-
itly used in the construction of the Heegaard Floer groups, the naturality
theorem of [9] implies only that elements of the based mapping class group
MCG(Y, p) induce well defined endomorphisms of Heegaard Floer homol-
ogy.

There is a fibration

Diff(Y, p) — Diff(Y) =2,

where ev,, denotes evaluation at p. The long exact sequence of homotopy
groups for this fibration gives a homomorphism

m(Y,p) — MCG(Y,p).
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(T-3) (I'-4)

Figure 1.1. The four elementary graph cobordisms in [0,1] x Y.

By exactness, the image of m1(Y,p) in MCG(Y,p) is the kernel of the
forgetful map MCG(Y,p) - MCG(Y).
Suppose p € p and v € 71 (Y, p). We write

~ve: HF(Y,p) — HF(Y,p)

for the induced endomorphism.
Using the graph TQFT, we prove the following:

Theorem 1.3. Suppose (Y,p) is a multi-pointed 3-manifold and p € p. If
v € m1(Y,p), then the induced endomorphism v, of HF (Y, p) satisfies

Ve =1d+Pp 0 Ay,
where Ay denotes the standard action of [y] € Hy(Y;Z)/ Tors, and
®,: HF(Y,p) — HF(Y,p)
is the broken path graph cobordism labeled (I'-4) in Figure 1.1.

In Section 5, we identify the broken path graph cobordism @, with
the basepoint action for the point p, which counts holomorphic disks on a
Heegaard diagram with multiplicity 1 at p. See Proposition 5.1.

Acknowledgments. 1 would like to thank Jianfeng Lin, Yajing Liu,
Andras Juhdsz, Ko Honda, Ciprian Manolescu, Marco Marengon and
Matthew Stoffregen for helpful conversations.
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2. Background

2.1. Heegaard Floer homology. Suppose (Y,p) is a multi-pointed 3-
manifold, s € Spin“(Y), and X = (X,a,8,p) is a Heegaard diagram
for (Y,p). Ozsvéth and Szab6 [13] construct chain complexes CF(H,s),
CF~(H,s), CFT(H,s) and CF>®(H,s), as follows. We focus on the case
that Y is connected. If Y is disconnected, then CF(%,s) is defined by
tensoring over F the complexes for each connected component.

The chain complex 6?(7—[, s) is generated by intersection points x of the
two half dimensional tori

To =01 XX Qg(2)+n—1 and T,B =1 XX Bg(E)—‘rn—h

in Sym?®*"=1(%) (where n = |p|), which satisfy sp(x) = s. The
differential is given by the formula

ox= 3 S HMO)/R) -y,
yEToNTs pem2(x,y)
w(g)=1
np(¢):O

where M(¢) denotes the moduli space of holomorphic disks in Sym? (B)+n-1 (%),
representing a given homotopy class ¢ € ma(x,y).
We define
CF(H)= @ CF(#,5s). (2.1)

s€Spin(Y)

Although we mostly focus on CF in this paper, in Section 5, we
consider CF~, which we review presently. Write p = {p1,...,pn}, and
R,, := F[Uy,...,U,]. The module CF~(H,s) is the free R,-module with
generators x € T, N Tg with s,(x) = s. The differential on CF™ (H,s) is

ox= S S #M@)/R) U @y,
yYETLNTs pET2(x,y)
u(e)=1

Unlike for E'F, it is usually not possible to define a total complex
CF™(H) as a direct sum over all Spin® structures, analogous to equa-
tion (2.1), since CF ™ requires a stronger version of admissibility than 6?,
which cannot normally be simultaneously realized for all Spin® structures
on a single diagram [14, Section 4.2.2]. Hence, on CF~, we usually work
with one Spin® structure at a time.
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2.2. Sutured Floer homology. Sutured manifolds were defined by Gabai
[3] to study foliations on 3-manifolds. Juhdsz [8] defined an extension
of Heegaard Floer homology for sutured manifolds, called sutured Floer
homology. Juhész [7] also described a (3+1)-dimensional TQFT for sutured
Floer homology. In this section, we recall some background about sutured
manifolds and the sutured Floer homology TQFT.

The following is a slight restriction of Gabai’s original definition, but is
sufficient for our purposes:

Definition 2.1. A sutured manifold (M,~) is a compact, oriented 3-
manifold M with boundary, together with a set of pairwise disjoint, simple
closed curves v C OM (the sutures) which are oriented. The surface OM \ vy
is partitioned into two sets of components, R, (y) and R_(v), which are
oriented so that the normal of Ry (y) points out of M, while the normal of
R_(v) points into M. Finally, we require 7 to be consistently oriented with
respect to the boundary orientation of R4 () and R_ ().

The main difference between Definition 2.1 and Gabai’s original defini-
tion is that we exclude toroidal sutures. We say that a sutured manifold
(M,~) is balanced if x(R+ (7)) = x(R-(7)). To a balanced sutured manifold
(M,~) with no closed components, Juhdsz constructs an F-vector space

SFH(M, ).

If Y is a closed, oriented 3-manifold, and p is a collection of basepoints,
then we write Y (p) for the sutured manifold (M,~) where

M =Y \int N(p)

and ~ consists of one simple closed curve per component of dM. We note
that
SFH(Y (p)) = HF(Y,p),

since a Heegaard diagram for (Y, p) may be obtained from a diagram for
Y (p) by collapsing each suture to a basepoint.

Juhdsz also defines cobordism maps for sutured Floer homology [7]. He
uses the following notion of cobordism between sutured manifolds:

Definition 2.2. A cobordism of sutured manifolds
W= (W) Zv [6]) (M()a’YO) — (Mlale)

is a triple such that
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(1) W is a compact, oriented 4-manifold with boundary,
(2) Z is a compact, codimension-0 submanifold of OW, and OW \int(Z) =
— My L My,

(3) [£] is an equivalence class of positive contact structures on Z, such that
0Z is a convex surface with dividing set v; on 9M;, for i € {0,1}.

The notion of equivalence between contact structures used in Defini-
tion 2.2 can be found in [7, Definition 2.3].

If W: (Mo,v) — (Mi,7) is a cobordism between balanced sutured
manifolds, Juhdsz [7] constructs a well-defined map

Py : SFH(My, o) — SFH(My, 1),

which is functorial in the following sense. If £ is a [0, 1]-invariant contact
structure on [0, 1] x 9M, such that {0,1} x OM is convex, with dividing set
v, then W = ([0,1] x M, [0,1] x 9M, [£]) is a sutured manifold cobordism
from (M,~) to itself. The induced cobordism map

Fy: SFH(M,~) — SFH(M,~)

is the identity. Furthermore, if W decomposes as the composition of two
sutured manifold cobordisms W5 o W, then

FW == FW2 OFW1'

See [7, Theorem 11.3].
We outline the construction of the sutured cobordism maps in Sec-
tion 2.4, after we outline one of its constituents, the contact gluing map.

2.3. The contact gluing map. We now recall Honda, Kazez, and Matié¢’s
contact gluing map for sutured Floer homology [6], as well as the contact-
handle formulation given by Juhdsz and the author [10].

Definition 2.3. Suppose that (M,~) and (M’,~’) are sutured manifolds.
We say that (M,~) is a sutured submanifold of (M',~") if M C int(M’).

If (M,~) is a sutured submanifold of (M’,~’), and ¢ is a positive contact
structure on Z := M’ \ int(M) which induces the dividing set v U~/, then
Honda, Kazez and Mati¢ [6] define a contact gluing map

®yc: SFH(—M,~) — SFH(—M',~").
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In [10], Juhdsz and the author gave a reformulation of the contact gluing
map in terms of contact handles, which facilitates computations. Contact
handles were defined by Giroux [4]. See Ozbagci [11] for an exposition. We
take the following as the definition of a contact handle:

Definition 2.4. Suppose (M, ~) is a sutured submanifold of (M’,~"), and &
is a positive contact structure on Z := M’ \ int(M ), with dividing set vU~'.
We say that (Z,€) is a contact handle of index k if there is a contact vector
field v on Z that points into Z on M, and out of Z on OM’, as well as a
decomposition Z = Zy U h such that

(1) Z, is diffeomorphic to [0,1] x OM,

(2) v is non-vanishing on Zy, points into Zy on {0} x M and out of Z, on
{1} x OM, and each flowline of v is an arc from {0} x IM to {1} x IM,

(3) h is smooth 3-ball with corners, and ¢ is tight on h.

We have the following additional requirements, depending on k:

e (k=0): h = D3 (with no corners) and hN Zy = (). The dividing set
on Oh is a single circle.

e (k=1): h=1[0,1 x D?, and h N Zy = {0,1} x D2. The dividing set
on Oh is a single closed curve, consisting of an arc on {0} x D? and
{1} x D?, and two longitudinal arcs on [0, 1] x dD?.

e (k=2): h=10,1] x D% and hN Zy = [0,1] x 9D?. The dividing set is
as in k =1 case.

e (k=3): h=D? (with no corners), and h N Zy = dh. The dividing set
on Oh is a single circle.

We now state the description from [10] of the contact gluing maps of
Honda, Kazez and Mati¢ when M’ \ M is a contact handle.

If Z is a contact O-handle, we extend the Heegaard surface into Zy using
the flow of v, and then add a disk to the Heegaard surface which lies in A
and intersects D? along the sutures. We add no new alpha or beta curves.
The map on sutured Floer homology is the tautological one.

If Z is a contact 1-handle, we extend ¥ into Z; using the flow of v,
and then attach a band to the boundary of the Heegaard surface, which is
contained in h and intersects the boundary along the dividing set. We add
no alpha or beta curves. Similar to the contact 0-handle map, the map on
sutured Floer homology is the tautological one.
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If Z is a contact 2-handle, we extend the Heegaard surface into Z; using
the flow of v, as before. Now Oh intersects 0Z in an annulus. Let ¢ denote
the core of the attaching annulus. The curve ¢ may be taken to intersect the
dividing set in two points. Let A, denote the subarc of ¢ which intersects
R, and let A\_ denote the subarc which intersects R_. If (X, e, 3) is a
diagram for (M,~), we may obtain a diagram for (M’,~') by adjoining a
band to 9%, and adding a new alpha curve «, and a new beta curve 5. The
curves o and S have a single intersection point in the band region, as in
Figure 2.1. Outside of the band region, § consists of A;, projected onto
¥\ B, and « consists of A\_, projected on ¥\ a. The map

Oy CF(E,8,a) = CF(2UB,BU{B8},aU{a})

is given by x + x x ¢. According to [10, Lemma 3.13], the map ®;, is a
chain map, and hence induces a homomorphism on homology groups.

oy contact
2-handle

Figure 2.1. A contact 2-handle on Heegaard diagrams.

Finally, suppose Z is a contact 3-handle, and let S C OM denote the 2-
sphere which is filled in by Z. Let S’ denote a 2-sphere in int(M) obtained
by pushing S into int(M). The contact 3-handle map is defined as the
composition of the 4-dimensional 3-handle map for the 2-sphere S” (which
leaves the disjoint union of (M’,~') and B3), followed by the canonical
isomorphism

SFH(M',+') ® SFH(B®) = SFH(M',~').

2.4. Sutured cobordism maps. We now outline the construction of the
sutured cobordism maps. Suppose

W= W, Z,I[¢]): (Mo, o) = (M1,7),

is a cobordism of sutured manifolds, as in Definition 2.2. First, we remove
some number of tight, contact 3-balls from Z, and add them to (Mjy,~o)
or (My,71), so that each component of W intersects a component of M



10 Tan Zemke

and M; non-trivially. This does not affect the sutured Floer homology of
(Mo,70) or (My,v1), as there is a canonical isomorphism

SFH (Mg U B3 vy U~y) = SFH(My,v),

where v C B? denotes a single closed curve.

Juhdsz calls a sutured cobordism W special if Z = [0,1] x 9My and & is
[0, 1]-invariant. The cobordism map for a special cobordism is defined to
be a composition of 1-handle, 2-handle and 3-handle maps, similar to the
ones described by Ozsvath and Szabé [15].

If

W= (W,Z,[¢]): (Moy,v0) = (My,71)

is a general sutured manifold cobordism, one may obtain a special cobor-
dism
WS = (W [07 1] X 8M1,§1): (MO U Z)’yl) — (Mlyﬁyl)a

where &; is a [0, 1]-invariant contact structure on dM; x [0, 1]. The cobor-
dism map F)y is defined as the composition

FW = FWS e} (DZ,ﬁ- (22)

3. Construction of the graph TQFT

Suppose (W,T") is a graph cobordism from (Yp, py) to (Y1,p;). We define a
sutured manifold cobordism

W(W,T) = (W(I), Z(I'), [§(I)]): Yo(po) = Yi(p1),

as follows. We define the 4-manifold W (I') to be W \ int N(I'), and the 3-
manifold Z(I") to be OW(I') N ON(I"). We give 0Z(I") the same sutures
as Y(py) and Y(p;), for which we write vz. We take £(I') to be the
unique tight contact structure with dividing set vz, whose well definedness
we sketch presently. The 3-manifold Z(I') is homeomorphic to a disjoint
union of connected sums of S! x S§2, with some number of 3-balls removed.
The sutures consist of a single closed curve on each copy of S? in dZ(T).
It is well known that up to isotopy, relative to dZ(I"), there is a unique
tight contact structure on Z(I') which has dividing set vz. The case when
Z(T') = B3 follows from a result of Eliashberg [2]. The general case follows
by decomposing Z(I') along a collection of convex 2-spheres, until one
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obtains a disjoint union of tight, punctured 3-spheres, using convex surface
theory [1] [5].
Without further ado, we define

Fwr = Fyyw,r)-

4. Elementary graph cobordisms in [0,1] X Y

In this section, we compute the maps induced by the elementary graph
cobordisms shown in Figure 1.1, with the exception of the broken path
cobordism, which is considered in Section 5.

4.1. Free-stabilization cobordisms. In this section we compute the
maps for the free-stabilization cobordisms, which are labeled (I-1) in
Figure 1.1. Let

Wy = ([0,1] x Y, T) « (V.p) = (Y,pU {p})

p

denote the free-stabilization graph cobordism which adds the basepoint p,
and let W, denote the free-stabilization graph cobordism which removes
.
We define
S = wy and S = Fy. (4.1)

If H is a Heegaard diagram for (Y, p), we may form a Heegaard diagram
Hp) for (Y,p U {p}) by adding the basepoint p, encircled by a new pair
of alpha and beta curves, a and 8, as in Figure 4.1. After a sequence of
handleslides, we may assume that « and § are immediately adjacent to
another basepoint pg € p. The placement of basepoints makes it easy to
verify that

HF(H () = HE(H) ®V, (4.2)

where V is the 2-dimensional vector space Fy /o @ F_;/5. We write 6 for
the top degree generator of V', and #~ for the bottom degree generator.

Lemma 4.1. With respect to the isomorphism from equation (4.2), the maps
S} and S, satisfy

x if0=0"
0 if6=06+.

p

St(x)=xx0" and Sp(xxﬁ):{
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Po

Figure 4.1. The diagram # ), obtained by adding a basepoint p to a diagram H.

Proof. We first consider S;{ . We may perform an index 0/1 handle cancel-
lation to decompose the graph cobordism W; as follows:

(1) A 0-handle B*, containing an arc a, which intersects 9B in a single
point.

(2) A 1-handle cobordism which merges (S2,p) with (Y, p), away from p.

We may similarly decompose W, into a 3-handle cobordism followed by a
4-handle cobordism.

The graph cobordism map for (B4, a): 0 — (S3,p) is easily seen to send
the generator of HF () 2 F to the generator of HF (S3) = F, and similarly
for the 4-handle cobordism in the opposite direction. The main claim now
follows for S;‘ , since the stated formula coincides with the definition of the
I-handle map [7, Section 7]. The proof of S is similar. O

4.2. Merge and split cobordisms. We now compute the merge and split
cobordism maps, which are labeled (I'-2) in Figure 1.1. Suppose that p;
and po are two points in Y, A is a path connecting p; to ps, and pg is a point
along \. Suppose that p is a (possibly empty) collection of basepoints in
Y \ {po,p1,p2}. Write

W;\nerge: (Y, p U {p17p2}) — (Y, P @) {pO})

for the graph cobordism which merges p; and ps into pg, along the path .
Similarly write

WIPE: (Y, p U {po}) = (Y. p U {p1,p2})
for the graph cobordism which splits py into the pair p; and p,. Write

Spy = Fwipm and My 1= Fyymerse.
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Lemma 4.2. Let H be a Heegaard diagram for (Y, pU{po}), and let H,, p,
the Heegaard diagram for (Y,pU{p1,p2}) obtained by relabeling py as p1, and

)be

adding new alpha and beta curves which bound small disks containing pa, as in
Figure 4.2. Furthermore, assume that A is embedded in the Heegaard surface,
as shown in Figure 4.2. With respect to the isomorphism in equation (4.2),

we have
x if=0"
Spy(x) =xx60" and My(xx0)= .
px() /\( ) {O if6=6-
9~
153 e
oI
A
9+

Figure 4.2. The diagram H considered in Lemma 4.2.

P1,(p2)>

Proof. We begin with the split cobordism W;plit. Write (Z,¢) for the
contact portion of the boundary of the sutured manifold associated to
W/S\plit. The contact manifold (Z,¢) is a thrice punctured, tight 3-ball.
We glue Z to the boundary S? of Y(pU{po}) associated to py. The special
cobordism (W;iP*) is a product cobordism. Hence, by equation (2.2),

By

(Z,€) is a contact 2-handle, so the gluing map takes the form described
in Section 2.3 (see specifically Figure 2.1). The description of the contact
gluing map immediately gives the stated formula for Sp,. See Figure 4.3.

We now compute the merge map. Note that the merge cobordism is
obtained by turning around the split cobordism. A Morse theory argument
merge

(see [10, Lemma 6.7]) shows that sutured cobordism associated to Wy
has the following description:

spiic coincides with the contact gluing map ®z¢. The contact manifold
A

(1) A contact 1-handle which merges the two boundary components asso-
ciated to p; and p,. This turns the pair of boundary components into
a single boundary component, and adds an S! x S? summand.

(2) A 4-dimensional 2-handle which cancels the S! x $? summand.

The stated formula for the merge map follows from an easy holomorphic
triangle computation in the S! x §? summand. See Figure 4.4. 0
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contact

2-handle
—_—

Figure 4.3. The map for a split cobordism coincides with a contact 2-handle map. The
boundary circles represent the sutures of the manifolds Y (pU{po }) and Y (pU{p1,p2}).

4.3. Spliced loop cobordisms. We now investigate the spliced loop
cobordism, labeled (I'-3) in Figure 1.1.

Lemma 4.3. If W, = ([0,1] x Y,I',): (Y,p) — (Y,p) is a spliced loop
cobordism, then
Fw, = Ap),

where Al denotes the standard action of Hy(Y;Z)/ Tors on HE(Y,p).

Proof. Let p € p denote the basepoint connected to the strand with the
spliced loop. Write (Z,€) for the contact portion of the boundary of the
sutured cobordism associated to W,. The contact manifold (Z,§) has a
component which consists of a twice punctured copy of S' x S2, one of
whose boundary components is glued to the boundary S? in Y (p) for p.
The manifold (Z,£) may be decomposed into a contact 1-handle, which
splits the suture for p into two circles (and adds no alpha or beta curves),
as well as a contact 2-handle, which merges the two sutures together, and
adds an alpha and beta curve. The resulting 3-manifold is (Y#S! x S?,p).
Similar to Figure 4.3, the induced map is given by

(I)Z,E(X) =xx0". (43)

Let 79 € Y#S' x S? denote a curve which is supported in the S! x 2
summand, and represents a generator of H;(S' x S?). According to [12,
Proposition 6.4], the map A, is given by

Ape(x x 07) =xx 0" and A, (xx607)=0. (4.4)

Yol

There is also a 1-handle cobordism from (Y,p) to (Y#(S' x S?),p),
whose associated cobordism map is given by

Fi(x)=xx0". (4.5)
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WA

l contact
1-handle

T

4-dimensional
2-handle

@ 1sotopy

Figure 4.4. Computing the merge map. On the left side, an index 0 holomorphic
triangle is shown.

Combining equations (4.3), (4.4) and (4.5), we obtain

Dz6(x) = Apg) (F1(x))-

The special cobordism associated to W, consists of a 2-handle, which
cancels the new S! x §? summand. The 2-handle is attached along a framed
knot K whose underlying unframed knot is the splice v * 7. The framing
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is irrelevant, since for any choice of integral framing on v * 7o, there is a
canonical diffeomorphism between (Y#S! x §2)(K) and Y. Hence

F\W"f = FKOA[’YO] OFl. (46)

By definition, the right hand side of equation (4.6) represents Ozsvath and
Szabd’s map for the identity cobordism, twisted by the induced element
[v0] of H1(]0,1] x Y;Z)/ Tors. The class in H;(Y;Z) induced by the loop
Yo coincides with [y], so the map induced by F\WW is exactly Ap. d

5. The broken path cobordism

We now investigate the broken path cobordism, labeled (I'-4) in Figure 1.1.
Let us write B, for the induced cobordism map.

We first describe our candidate map. If p € p and H is a Heegaard
diagram for (Y, p), then there is a map

®,: CF(H) — CF(H),
given by the formula

Pp(x) = ) Y. #M)/R)y.
yETaNTg pEm2(x,y)
n(d)=1
np(¢)=1
n, (6)=0,p"€p\{p}

By counting the ends of moduli spaces of index 2 holomorphic disks which
cover p exactly once, we see that ®, is a chain map. By counting the ends
of moduli spaces of index 2 holomorphic disks which cover p exactly twice,
we obtain

®>=00H+ Hod,

where H is the map which counts index 1 holomorphic disks representing
classes ¢ with n,(¢) =2 and n, (¢) =0 for all p’ € p\ {p}.
In this section, we prove the following:

Proposition 5.1. If (Y,p) is a multi-pointed 3-manifold and p € p, then
B, = ®,,

as endomorphisms of EF(Y, p).
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To prove Proposition 5.1, it is helpful to consider the minus version of
the Heegaard Floer chain complexes. Write p = {p1,...,pn}. We now
describe an algebraic interpretation of ®,, in terms of the chain complex
CF~(Y,p,s), which we recall is finitely generated and free over the ring

R, :=F[Ui,...,Uy).

Given a Heegaard diagram # of (Y, p), the intersection points x € T, N Tg
with sp(x) = s give a free basis of CF~ (H,s) over R,,. The complex
E’F(’H,s) is obtained by setting Uy = Uy = --- = U,, = 0, or equivalently by
taking a tensor product with the ring F, with the trivial action of U;.

We may write the differential of CF~ (H,s) as a square matrix, using the
basis of intersection points. The map ®,, is given by taking this matrix,
differentiating each entry with respect to U;, and setting Uy = --- = U,, = 0.

More generally, suppose (C~,07) is a free, finitely generated chain
complex over the ring R,, with some chosen basis. Write (C, ) for the
chain complex obtained by setting Uy = --- = U, = 0. We may define a
map

@Uiia—)a,

by taking the matrix for 07, and differentiating each entry with respect to
U;, and then setting all variables to be zero.

Lemma 5.2. (1) Suppose (C{,0;) and (Cy ,05 ) are free, finitely generated
chain complexes over R,,, with fized bases, and F: C;7 — C5 is an R,-
equivariant chain map. Write F': Ch7 — Cs for the induced map. Then

®y, 0 F+Fody, ~0.

(2) Suppose that p = {p1,...,pn} is a collection of basepoints on Y. The
map ®,: CF(H) — CF(H) is natural, in the sense that if H and H' are
two diagrams for (Y,p) then

Wa a0 @p = @0 Wy gy,
where Wyy_3y denotes the naturality map from CF(H) to CF(H').

Proof. The second statement follows from the first, since the naturality
maps on CF are restrictions of the naturality maps on CF™.
To prove the first claim, we take the equation

0=0 oF+Fo0,
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and differentiate it with respect to U;. Using the Leibniz rule for products
of matrices, and then setting U; = --- = U,, = 0, we obtain

Fo<I>U1,+<I>UioF:§o?'\’—|—j7’\’o§,

as maps from Ci to Cs. Here, F’ denotes the map obtained by taking
the matrix for F', and differentiating each entry with respect to U;, and F’
denotes the map resulting from setting Uy =--- = U, = 0. g

We prove an additional lemma, which concerns modifying the graph by
adding an extra strand:

Lemma 5.3. Suppose that (W,I") and (W,T") are two graph cobordisms, such
that TV is obtained by adding an interior leaf to I', i.e. a new edge e,
contained in int(W), such that eNT consists of a single point. See Figure 5.1.
Then

Fyr = Fyr.

Proof. The complements of I' and I" are diffeomorphic, so the claim is
immediate from the construction of the cobordism maps in Section 3. [

=1 |— =

(W, T) (W, 1)

Figure 5.1. Adding an interior leaf to a graph cobordism.

Remark 5.4. The relation in Lemma 5.3 is called the trivial strand relation
in [16].

Proof of Proposition 5.1. To disambiguate terms, let us write <I>Z()Y’p) and
BY® for the endomorphisms ®, and B, of HF(Y, p).

As a first step, we show the claim when the component of Y which
contains p also contains another basepoint py. In this case, the B,(gy’p)

is equal to S o S, where S and S, denote the free-stabilization and
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destabilization maps considered in Section 4.1. We may use the diagram
H(p) shown in Figure 4.1. Using Lemma 4.1, we obtain

Y, _ Y, -\ —
B}(, Pl(x x ) =0 and B}(O Plxx07)=xx6". (5.1)

On the other hand, using the diagram in Figure 4.1, the only holomorphic
curves of index 1 which have multiplicity 1 on p and multiplicity 0 on pq
have domain consisting of the bigon going over p. Using this diagram, we
see that <I>§,Y’p) coincides with equation (5.1). Hence, the claim follows if
there is another basepoint in the component of Y which contains p.

We now consider the case when p is the only basepoint in its component
of Y. In this case, we argue by adding an interior leaf to the graph, as
shown in Figure 5.2. According to Lemma 5.3, this does not change the
cobordism map. We decompose the broken path cobordism as follows:

(1) A free-stabilization cobordism, adding a new basepoint py.

(2) A broken path cobordism from (Y,{p,po}) to (Y,{p,po}) (which is
broken over p).

(3) A basepoint merging cobordism, which merges p and py along a path
A

Figure 5.2. Computing the broken path cobordism map by adding an interior leaf.

Hence
B}()Ym) = M, o BI()Y»{P,?O}) o S;;] (52)
By the proof when there are at least 2 basepoints, equation (5.2) gives
q)l(ij) =M, o (I);S)Ya{PJ?O}) o S;; (53)
If we can show
Y, {p, + _ o+ Y,
q)é {p.po}) o St =810 (I)z(o 2 (5.4)

then we can manipulate equation (5.3) to obtain
BéY,p) = M, o q)éYy{p,po}) ° S;:)
= My o S, o ®l¥P) (5.5)
— (I)éY,p)7
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since M) o S;FO = id, as the corresponding cobordism is the identity
graph cobordism, with an extra interior leaf. Hence, it suffices to prove
equation (5.4).

Consider the 2-variable polynomial ring F[U, Up], where U is associated
to p, and Uy is associated to py. Note that E’F(Y, {p,po},s) is obtained
from CF~(Y,{p,po},s) by setting U = Uy = 0. Similarly, E’F(Y,p,s) is also
obtained from CF~ (Y, p)®§F[Uy] by setting U = Uy = 0. Hence, by part (1)
of Lemma 5.2, to show equation (5.4), it suffices to show that the map S;“O
can be extended to an F[U, Up]-equivariant map from CF~ (Y, p,s) ®r F[Uo]
to CF~ (Y, {p.po}.5).

Let H be a diagram for (Y, p), and consider a diagram #,,,) like the one
shown in Figure 4.1, but with the basepoint py encircled by the new alpha
and beta circles. There is an obvious isomorphism of modules

CF_(H(PO)75) = CF_(H,S) QF <9+>9_> QF F[UO]

Furthermore, Ozsvéath and Szabé [13, Equation 20] prove that there is an
almost complex structure so that the differential on CF ™ (H,,), s) takes the
form

BH(pO)(XXGJr) = Oy (x)®0"  and Oty (xX07) = O (x)@0™+(Up+Up, ) xx07T.
(5.6)

Equation (5.6) implies that the map x — x®67, extended equivariantly over

F[U, Up], gives an F[U, Up]-equivariant chain map from CF~(H,s) ® F[Uo]

to CF ™ (H(p),5), which restricts to St when we set U = Uy = 0. Part (1)

of Lemma 5.2 implies equation (5.4), which allows us to perform the

manipulation from equation (5.5), completing the proof. O

6. The action of the fundamental group

We are now ready to compute the action of the fundamental group on

—

HF(Y,p).

Theorem 6.1. The action of v € m(Y,p) on TJF(Y, p) is given by the
formula
Y = id +A[’Y] o (I)p,

where A, denotes the action of Hy(Y';Z)/ Tors.

As a helpful first step, we prove the relation shown in Figure 6.1.
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Figure 6.1. A local relation satisfied by the graph cobordisms.

Lemma 6.2. The graph cobordism maps satisfy the local relation shown in
Figure 6.1.

Proof. We view the local relation as taking place in a cylinder [0,1] x Y.
Let p; and py be two basepoints of Y, corresponding to the two bottom
points in the local relation, and let A C Y be the corresponding path
connecting them. We may view the left cobordism of Figure 6.1 as a free-
destabilization, followed by a basepoint splitting cobordism. The middle
cobordism is a basepoint merge, followed by a free-stabilization. The right
hand side is the identity. Hence, it is sufficient to check

SpyoS,, + 5} oMy =id. (6.1)
Equation (6.1) is easily verified from Lemmas 4.1 and 4.2. O
We now prove the formula for the 7i-action:

Proof of Theorem 6.1. We focus on the case when Y has a single basepoint,
to simplify the notation. The diffeomorphism map ~. coincides with the
graph cobordism map for ([0,1] x Y,7), where

7= {(t(8) € 0,1} € 0.1] x V.

We apply the local relation from Figure 6.1 to the graph 7, as shown in
Figure 6.2. We obtain the sum of the two graph cobordisms shown on the
right side of Figure 6.2. We may identify the right most term with the map
®,, 0 Af, using Lemma 4.3 and Proposition 5.1. The proof is complete. [
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VY ld (I)p (e} A[,y]

Figure 6.2. Obtaining the formula for the m;-action by applying the local relation from
Figure 6.1 to the graph 7.

References

Vincent Colin. “Chirurgies d’indice un et isotopies de spheres dans les
variétés de contact tendues”. In: C. R. Acad. Sci. Paris Sér. I Math.
324.6 (1997), pp. 659-663. 1SsN: 0764-4442. por: 10.1016 /S0764 -
4442(97)86985-6. URL: https://doi.org/10.1016 /S0764-4442(97)
86985-6.

Yakov Eliashberg. “Contact 3-manifolds twenty years since J. Mar-
tinet’s work”. In: Ann. Inst. Fourier (Grenoble) 42.1-2 (1992), pp. 165-
192. 1SsN: 0373-0956. URL: http://www.numdam.org /item ?id =
ATF_1992_42_1-2_165_0.

David Gabai. “Foliations and the topology of 3-manifolds”. In: J.
Differential Geom. 18.3 (1983), pp. 445-503. 1SsN: 0022-040X. URL:
http://projecteuclid.org/euclid.jdg/1214437784.

Emmanuel Giroux. “Convexité en topologie de contact”. In: Com-
ment. Math. Helv. 66.4 (1991), pp. 637—-677.

Ko Honda. “Gluing tight contact structures”. In: Duke Math. J. 115.3
(2002), pp. 435-478. 1ssN: 0012-7094. por: 10.1215/S0012-7094-02-
11532-4. URL: https://doi.org/10.1215/S0012-7094-02-11532-4.

Ko Honda, William Kazez, and Gordana Mati¢. “Contact structures,
sutured Floer homology and TQFT”. e-print, arXiv:0807.2431. 2008.
Andras Juhasz. “Cobordisms of sutured manifolds and the functorial-
ity of link Floer homology”. In: Adv. Math. 299 (2016), pp. 940-1038.
1SsN: 0001-8708.

Andréds Juhdsz. “Holomorphic discs and sutured manifolds”. In: Al-
gebr. Geom. Topol. 6 (2006), pp. 1429-1457. 1SSN: 1472-2747.
Andras Juhdsz, Dylan Thurston, and lan Zemke. “Naturality and
mapping class groups in Heegaard Floer homology”. e-print, arXiv:
1210.4996. 2012.



A graph TQFT for hat Heegaard Floer homology 23

Andras Juhasz and Ian Zemke. “Contact handles, duality, and su-
tured Floer homology”. In: Geom. Topol., to appear ().

Burak Ozbagci. “Contact handle decompositions”. In: Topol. Appl.
158.5 (2011), pp. 718-727.

Peter S. Ozsvéath and Zoltan Szabd. “Holomorphic disks and three-
manifold invariants: properties and applications”. In: Ann. of Math.
(2) 159.3 (2004), pp. 1159-1245.

Peter S. Ozsvath and Zoltan Szabé. “Holomorphic disks, link invari-
ants and the multi-variable Alexander polynomial”. In: Algebr. Geom.
Topol. 8.2 (2008), pp. 615-692.

Peter Ozsvath and Zoltdn Szabd. “Holomorphic disks and topological
invariants for closed three-manifolds”. In: Ann. of Math. (2) 159.3
(2004), pp. 1027-1158.

Peter Ozsvath and Zoltan Szabé. “Holomorphic triangles and invari-
ants for smooth four-manifolds”. In: Adv. Math. 202.2 (2006), pp. 326—
400.

Tan Zemke. “Graph cobordisms and Heegaard Floer homology”. e-
print, arXiv:1512.01184. 2015.

Department of Mathematics
Princeton University
Princeton, NJ 08544, USA

e-mail: izemke@math.princeton.edu



	Introduction
	Background
	Construction of the graph TQFT
	Elementary graph cobordisms in [0,1]x Y
	The broken path cobordism
	The action of the fundamental group

