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Highlights
» Foliar sieve element features varied with growth environment and among species
» Foliar sieve element features covaried with features of multiple leaf systems
» Foliar sieve element volume correlated with photosynthetic capacity
» Foliar sieve element features correlated with leaf thickness

» Features of sieve elements correlated with those of other vascular cells

Abstract

In this review, a central position of foliar sieve elements in linking leaf structure and function is
explored. Results from studies involving plants grown under, and acclimated to, different
growth regimes are used to identify significant, linear relationships between features of minor
vein sieve elements and those of 1) leaf photosynthetic capacity that drives sugar synthesis, 2)
overall leaf structure that serves as the platform for sugar production, 3) phloem components that
facilitate the loading of sugars (companion & phloem parenchyma cells), and 4) the tracheary

elements that import water to support photosynthesis (and stomatal opening) as well as mass
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flow of sugars out of the leaf. Despite comprising only a small fraction of physical space within
the leaf, sieve elements represent a hub through which multiple functions of the leaf intersect. As
the conduits for export of energy-rich carbohydrates, essential mineral nutrients, and information
carriers, sieve elements play a central role in fueling and orchestrating development and function
of the plant as well as, by extension, of natural and human communities that depend on plants as

producers and partners in the global carbon cycle.

Keywords: foliar vasculature, minor veins, phloem, photosynthesis, sieve elements, tracheary

elements

Abbreviations: Companion cell (CC), phloem parenchyma cell (PC), vein density (VD)

1. Introduction

Compared to other leaf cells, sieve elements are diminutive with a small cross-sectional area
when viewed perpendicularly to the long axis of a vein (Esau 1977; Adams et al., 2013; Cohu et
al., 2013a, 2014; Muller et al., 2014a,b; Stewart et al., 2017a). Sieve elements also comprise the
smallest single tissue fraction of foliar veins (Cohu et al., 2013a, 2014; Muller et al., 2014a,b;
Stewart et al., 2016, 2019) or the leaf as a whole (Esau, 1977; Muller et al., 2014Db).
Nevertheless, the sieve element plays an outsize role in the leaf. During leaf emergence and
initial expansion, sieve elements of the newly formed primary and secondary, or major, veins are
conduits for the import of sugars that provide the fuel and structural building material for leaf
construction (Turgeon and Webb, 1973; Schmalstig and Geiger, 1987; Gagnon and Beebe,

1996). As the leaf expands, chloroplasts in foliar mesophyll cells become photosynthetically
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competent, stomata become functional, and sugar produced in the leaf exceeds the needs of the
leaf. At this point, the leaf undergoes transition from a sink for sugar (wherein consumption
exceeds production) to a source of sugar (wherein production exceeds consumption) and,
consequently, flow in the sieve elements reverses (Fellows and Geiger, 1974; Turgeon, 1989). In
some species, this physiological shift coincides with the maturation of an intricate network of
higher-order, or minor, veins that develops from the major veins into the mesophyll tissue during
expansion (Turgeon, 2006). Collectively, the cells in these minor veins (as well as major veins
in some species; see Turgeon, 2006) support active and regulated processes by which sugars are
moved from the sugar-producing mesophyll cells into the sugar-transporting phloem network
(Rennie and Turgeon, 2009; Zhang and Turgeon, 2018). The sieve elements within these minor
veins are the primary focus of this review. In many instances, we refer specifically to the
vascular cells of minor veins in herbaceous annual eudicots, such as sunflower (Fig. 1A; Stewart
et al., 2019; see also Wang and Canny, 1985) and Arabidopsis thaliana (Fig. 1B; Stewart et al.,
2019; see also Haritatos et al., 2000). In other cases, in which minor veins are not invoked, the
statements and discussion involve all the foliar vasculature (every order of vein from midrib to

the smallest veinlet).

2. Relationship to Photosynthesis

One may expect coordination between photosynthetic activity and leaf components that interact
with photosynthesis. Coordination between stomatal opening and photosynthesis maximizes
production of photosynthate while limiting water loss (Lawson et al., 2018). Regarding foliar
vascular tissues, numerous studies have documented the important role of the water distribution

network (via the xylem) that supports the leaf and photosynthesis (for reviews, see Adams et al.,
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2018a; Brodribb and Buckley, 2018). In addition to coordination of water flux and
photosynthetic activity, the anatomical and ultrastructural infrastructure of the vasculature
exhibits acclimatory adjustments in concert with adjustments in maximal photosynthetic capacity
(Adams et al., 2013, 2016, 2018a; Cohu et al., 2013b; Stewart et al., 2016, 2017a,b). Whereas
relationships were reported between photosynthetic capacity and minor vein tracheary element
features, these were less significant than relationships between transpiration rate and water-
transport infrastructure (Cohu et al., 2013b; Adams et al., 2016, 2018a, 2018b). On the other
hand, relationships between photosynthetic capacity and sieve element numbers and/or volumes
were typically highly significant (Cohu et al., 2013b; Muller et al., 2014a; Adams et al., 2016,
2018a; Stewart et al., 2019). In other words, acclimatory changes in the capacity for
photosynthesis were typically most aligned with changes in sieve-element infrastructural
capacity.

To illustrate some of these relationships, Fig. 2 shows data from several studies of a
summer and a winter annual after acclimation to various growth light and temperature regimes.
For this comparison with photosynthesis expressed per unit leaf area, sieve element features are
scaled to the leaf level either (Fig. 2A) as the product of sieve element number per minor vein X
length of vein per leaf area (vein density) or (Fig. 2B) as the product of sieve element cross-
sectional area per minor vein X length of vein per leaf area, which approximates sieve element
volume per leaf area (Stewart et al., 2019). It had previously been shown that the number of
sieve elements per foliar minor vein, which is greater in winter annuals grown under high versus
low light intensities or grown under low versus high temperatures, can show significant, linear
relationships with photosynthetic capacity when vein density varies very little (Cohu et al.,

2013b). For comparisons of species with varying vein density, highly significant relationships
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were obtained for sieve element features scaled to the leaf level by multiplication of vein density
(Muller et al., 2014a; see also Stewart et al., 2019), as done here (Fig. 2A) for sunflower and A.
thaliana. The trait of a higher vein density in sunflower leaves compared to leaves of 4. thaliana
(Cohu et al., 2014) is likely important for a summer annual that experiences a greater rate of
transpirational water loss per unit leaf area during its growing season compared to a winter
annual. Similarly, species growing in more arid environments possessed greater foliar vein
density compared to species from more mesic habitats (Dunbar-Co et al., 2009; de Boer et al.,
2016), presumably resulting in enhanced distribution of water throughout the leaf (de Boer et al.,
2016).

The volume of minor-vein sieve elements per unit leaf area can likely serve as a proxy for
the flux capacity for photosynthate export. It is noteworthy that sieve-element volume exhibited
a single highly significant positive linear relationship with photosynthetic capacity with
overlapping data for sunflower and A. thaliana (Fig. 2B), whereas the sieve-element number
scaled to the leaf level exhibited two distinct relationships (each significant) with photosynthetic
capacity for the two species (Fig. 2A). This divergence between species was associated with a
greater number of sieve elements in the minor veins of 4. thaliana than those of sunflower (Cohu
et al., 2013a, 2014; Muller et al., 2014a; Fig. 1). One can conclude that the greater vein density
of sunflower did not compensate for the lower number of sieve elements per individual vein,
thereby causing sunflower to have lower numbers of sieve elements at the leaf scale. Each
individual sieve element is thus also larger in sunflower compared to 4. thaliana (Fig. 1), which
contributes to the single relationship with photosynthetic capacity for sieve element volume per

leaf area (Fig. 2B).



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

For a relationship between photosynthetic capacity and the features of tracheary
elements, the situation was reversed in the following way. There was considerable overlap of the
data resulting in a single significant positive relationship between the number of tracheary
elements scaled to the leaf level (number per minor vein X vein density) and photosynthetic
capacity for the two species (Fig. 2C). On the other hand, there were two separate (but each
significant) positive relationships for the two species between tracheary element volume per leaf
area and photosynthetic capacity (Fig. 2D). This scenario indicates that (i) a lower number of
tracheary elements per vein (Fig. 1) and a greater vein density in sunflower compared to A.
thaliana resulted in the same number of tracheary elements per leaf area and (ii) individual
tracheary elements must also be larger in sunflower than in 4. thaliana (Fig. 1; see also Cohu et
al., 2014). To summarize, sieve elements were less numerous at the leaf scale but of larger
individual size, while tracheary elements were both similarly numerous (at the leaf scale) and of
larger individual size in the summer annual sunflower compared to the winter annual 4. thaliana.
This difference suggests a disproportionally greater emphasis on water transport in summer
annuals versus winter annuals by virtue of a combination of tracheary element number at the
scale of the individual vein, individual size of these water conduits, and vein density (cf. Cohu et

al., 2014).

3. Relationship to Leaf Thickness

We previously documented a significant linear relationship between the thickness of the layers of
the leaf’s palisade cells and (i) sieve element cross-sectional area per veins as well as (i) sieve
element number at the leaf scale (number per minor vein x vein density) for two summer and

two winter annuals (Cohu et al., 2014). These relationships are similarly significant for the



140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

thickness of the entire leaf shown here for sunflower and the winter annuals A. thaliana and
spinach (Fig. 3), indicating considerable coordination between overall leaf morphology and the
conduits for photosynthate export. It is noteworthy that the data points for the summer annual
clustered at a lower maximal leaf thickness as well as a lower maximal sieve element number at
the leaf scale and a lower maximal sieve element volume per leaf area. Furthermore, the two
winter annuals also varied in maximal leaf thickness and sieve element features at the leaf scale.
We previously showed that winter annuals, but not summer annuals, increase the number of
palisade layers when grown under cool temperature and high light compared to warm
temperature and moderate light (Cohu et al., 2014). The particularly thick leaves of spinach
could possibly also be associated with this species’ membership in the Chenopodioideae
(subfamiliy of Amaranthaceae) that includes many halophytes with succulent properties
(Piirainen et al., 2017). In any event, it is noteworthy that sieve-element infrastructure closely

mirrored these differences in leaf thickness.

4. Relationship Among Minor Vein Vascular Cell Types

Adjustments in sieve-element infrastructure features also closely mirror those of the other
vascular cell types (Fig. 4). At the scale of the individual minor vein, there were significant
linear relationships between cross-sectional area of sieve elements per minor vein and either (i)
cross-sectional area of all other phloem tissue per minor vein (companion and parenchyma cells;
Fig. 4A) or (ii) cross-sectional area of tracheary elements per minor vein (Fig. 4B). The
correlation coefficients for both relationships further increased when all three metrics were
scaled to the leaf level (Fig. 5) by multiplying cross-sectional areas per minor vein X vein

density, which results in volumes per leaf area (Stewart et al., 2019). While matching trends
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among adjustments in the various vascular cell types may partly be due to developmental
constraints, it should be noted that there are also functional ties. All minor-vein vascular tissues
make contributions to sugar loading and export through the sieve elements. The phloem
parenchyma and companion cells both facilitate the flux of sucrose and active loading (in those
species that employ active loading) into the sieve elements (Ayre and Turgeon, 2018). Likewise,
in addition to supplying water to the leaf in support of stomatal opening, the tracheary elements
supply water to the sieve elements in support of mass flow of sugars out of the leaf for
distribution to the rest of the plant (Carvalho et al., 2018; Hesse et al., 2019). This theme is

further considered in the following section.

5. Sieve Elements Transport More Than Sugars

Most of the water that passes through the foliar tracheary elements of C3 and Cs plants is lost to
the atmosphere through transpiration, an inevitable consequence of stomatal opening that is
required for adequate diffusion of carbon dioxide into the leaf to support photosynthetic
production of sugars. This loss of water also contributes to cooling of leaves and prevention of
heat damage under high ambient temperatures and when there is a steep water potential gradient
between leaf and atmosphere. Only a negligible fraction of the water that enters a leaf is
consumed in metabolism (such as water splitting for photosynthesis, catabolic hydrolysis of
molecules, etc.). The major fraction of the remaining water fluxes from tracheary elements to
phloem and ultimately into sieve elements as it follows a water potential gradient fueled by the
concentration of solutes (sugars) in these sugar conduits (HOItta et al., 2006; Nikinmaa et al.,
2013). Although these fates are mutually exclusive, their consequences are inherently linked

since stomatal opening is required for the production of sugars in quantities suitable for export
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and the export of sugars from leaves is required for continued growth and maintenance of water-
acquiring roots. Moreover, sugar export from leaves, expression of associated genes, and
allocation to roots can be enhanced under water-limited conditions (e.g., Durand et al., 2016),
which suggests the fraction of water allocated to the sieve elements works synergistically, rather
than competitively, with the fraction allocated to support stomatal opening. However, to our
knowledge, the proportion of water transferred to the phloem versus that lost to the atmosphere
has not been quantified, but it is likely that several factors related to plant genotype (evolutionary
history), developmental stage, environmental conditions (e.g., water and nutrient availability)
during plant development, and prevailing environmental conditions at any given time contribute
to determining the relative fate of water delivered to the leaf via the xylem.

The function of sieve elements is consistent with the significant positive relationship
between cross-sectional areas per vein (Fig. 4B) and volumes per leaf area (Fig. 5B) of tracheary
elements and sieve elements. Sugars and associated water influx into sieve elements create
positive pressure at the source that, coupled with sugar unloading and water efflux in distant sink
tissues (and the resultant lowering of pressure within the phloem), drives mass flow of the sugar-
laden sap. This water-circulatory system between xylem and phloem continuously cycles water
back and forth between roots and shoots (van Bel, 2003; Holtté et al., 2006), driven by newly
produced photosynthate during the day and sugars remobilized from stored starch at night
(Fondy and Geiger, 1982; Schleucher et al., 1998; Weise et al., 2003). Foliar sieve elements are
thus active in sugar export 24 h a day, thereby keeping the rest of the plant supplied with energy
and building material, regardless of photoperiod length (Mengin et al., 2017; Sharkey, 2017).

Since the primary function of the mature leaf is to produce and export energy-rich

carbohydrate, coordination should be expected between photosynthetic activity and the phloem
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cells that participate in sugar export from the leaf. In addition to sieve elements, these include
cells that facilitate loading of photosynthate (all three species examined here are apoplastic
loaders) via sucrose efflux channels (SWEET proteins; Chen et al., 2012; Eom et al., 2015; Ayre
and Turgeon, 2018), ATPases (that pump protons into the apoplastic space; Offler et al., 2003;
Sondergaard et al., 2004; Gaxiola et al., 2007; Falhof et al., 2016; Ayre and Turgeon, 2018), and
sucrose-proton symporters (that move sucrose into the companion cells and, in some species, the
sieve elements; Srivastava et al., 2008; Rennie and Turgeon, 2009; Slewinski et al., 2013; Duan
et al., 2014; Ayre and Turgeon, 2018). The data presented here demonstrate coordination
between adjustments in the anatomical bases of photosynthesis and of sugar export during leaf
development. Up- and downregulation of photosynthetic function, i.e., light- and CO;-saturated
maximal rate of photosynthesis per leaf area is associated with up- and down-sizing of leaf
infrastructure for photosynthesis as can be assessed, e.g., as leaf thickness (Demmig-Adams et
al., 2017). It may be possible to incorporate more photosynthetic protein into a single existing
chloroplast and more chloroplasts into an existing palisade cell (that could expand in length;
Amiard et al., 2005). However, major adjustments in photosynthetic capacity are often
associated with infrastructural change during leaf development, such as insertion of additional
palisade cell layers (Amiard et al., 2005; Dumlao et al., 2012; Cohu et al., 2014; Adams et al.,
2016, 2018a).

A similar principle is apparently at work with respect to leaf vascular infrastructure. It is
unclear to what extent existing phloem cells involved in sugar loading may be able to insert
additional SWEET proteins, ATPases, or sucrose-proton symporters. However, the data shown
here clearly indicate that more and/or larger cells are formed during the development of leaves

that feature a greater photosynthetic capacity. This infrastructure expansion may increase the

10
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membrane area available for placement of proteins that facilitate phloem loading as well as
plasmodesmatal passages for sugar flux (see discussion in Adams et al., 2013, 2016, 2018a,b;
Cohu et al., 2013b). The greater leaf-level volume of sugar-export conduits (sieve elements),
and water conduits (tracheary elements) during acclimation to different growth environments
presumably favors greater flux volumes. The selective pressure underlying the lowering of
photosynthetic capacity (and number of photosynthetic proteins) in growth environments that
permit, or require, less photosynthetic activity is understood to be the considerable cost of
protein synthesis and turnover (Ishihara et al 2017). The selective pressures that resulted in the
accompanying downsizing of sugar- and water-transport infrastructure are less well understood.
What is clear is that there is tight coordination in the anatomy of multiple leaf components across
species and environments (Adams et al., 2016, 2018a). For the case of photosynthesis,
coordination of functional and anatomical aspects is orchestrated via transcriptional control by
high-hierarchy gene regulators that respond to environmental cues and, in turn, control hundreds
of other regulators (see, e.g., Demmig-Adams et al., 2018). A key example for the transduction
of environmental cues are redox-modulated transcription factors (Hiiner et al., 2016). Change in
the growth environment typically leads to the generation of redox signals in the chloroplast
(Demmig-Adams et al., 2014a,b, 2018) that are also relayed to the transcriptional control of
nuclear genes (via redox-based chloroplast-nucleus retrograde signaling; Leister, 2019; Unal et
al., 2020). It is likely that these same controls also coordinate function and anatomical features
of sugar- and water-transport systems with those involved in the photosynthetic production of
sugars.

In addition to photosynthate and water, a range of other molecules utilize the sieve

elements to move from the leaves to other parts of the plant (van Bel, 2003). Many essential
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elements are remobilized from leaves to growing sinks. These mobilized substances include
various molecules containing nitrogen (e.g., amino acids, urea, nitrate; van Bel, 1990; Gaufichon
et al., 2013; Bohner et al., 2015; Tegeder and Hammes, 2018; Tegeder and Masclaux-Daubresse,
2018; Babst et al., 2019; Ninan et al., 2019; Sample and Babst, 2019), phosphate, sulfate, and
potassium (Khan and Choudhuri, 1992; Ning et al., 2013; Jeong et al., 2017), and the mineral
micronutrients iron, zinc, copper, sodium, and chloride (Jeschke and Pate, 1995; Romheld and
Schaaf, 2004; Shi et al., 2012; Barunawati et al., 2013; Pearce et al., 2014), although the
mobilization of the latter seen in herbaceous plants does not appear to occur in evergreen trees
during autumn (Shi et al., 2011).

In addition to transporting energy carriers, nutrients, and building blocks, sieve elements
transport information carriers used for long-distance signaling (for a recent, comprehensive
review, see Koenig and Hoffmann-Benning, 2020). These include at least five classes of
phytohormones, multiple lipids, many proteins, and messenger RNAs (some coding for proteins
transported in the phloem). These information carriers orchestrate a coordinated response of all
plant organs during development and/or in response to changes in environmental conditions
(Koenig and Hoffmann-Benning, 2020). Redox signals generated in chloroplasts and
mitochondria (Demmig-Adams et al., 2014a,b, 2018) tie developmental and environmentally-
induced changes in the leaf’s energy metabolism to long-distance signaling by way of, for
example, redox modulation of the synthesis, sequestration, and transport of various
phytohormones (Foyer and Noctor, 2009; Demmig-Adams et al., 2013; Hiiner et al., 2016;
Schippers et al., 2016; Srivastava et al., 2017; Tognetti et al., 2017).

Some of these signals originate in the sieve elements of the leaves. For instance, plastids

of sieve elements (and those of companion cells) are sites of jasmonic acid synthesis (Hause et

12
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al., 2003), and both jasmonic acid and its precursor 12-oxo-phytodienoic acid (OPDA) are
exported from the leaf via the sieve elements (Koenig and Hoffmann-Benning, 2020). Jasmonic
acid signaling is an example of how environmental cues from biotic and abiotic stressors (Ali
and Baek, 2020; Pérez-Alonso et al., 2021) are transduced to an internal response, such as
formation of reactive oxygen species that oxidizes fatty acids of membrane phospholipids to
derivates such as OPDA and jasmonic acid (Demmig-Adams et al., 2017), which act as gene
regulators. Both OPDA and jasmonic acid can trigger wall/membrane invagination of phloem
transfer cells in leaf minor veins (Amiard et al., 2007). In turn, the level of such invaginations
was correlated with photosynthetic capacity in several species (Adams et al., 2014, 2016, 2018a).
Changes in calcium (Ca?") level contribute to the induction of jasmonic acid synthesis as
a component of plant defense (Choi et al., 2017; Howe et al., 2018). Toyota et al. (2018) showed
that cytosolic calcium levels increased markedly in phloem cells of sink leaves within one or two
min after a source leaf was subjected to wounding or herbivory that impacted phloem cells. This
finding demonstrates that signaling for induction of jasmonic acid synthesis can be propagated

rapidly throughout a plant via the phloem.

6. From Sieve Elements to Larger Scales

Sieve elements not only link multiple functions of the leaf and connect the various organs of the
whole plant, but could, by extension, also be seen as a nexus for the terrestrial biosphere and
humanity (Adams, 2018). Synthesis and distribution of energy-rich compounds throughout the
plant provide the basis for primary production in the major terrestrial biomes (Field et al., 1998)

as well as in terrestrial agriculture (Weinzettel et al., 2019). In addition, a large fraction of
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carbon is sequestered in plants and soil (Raven and Karley, 2006) as an important component of
the global carbon cycle.

Foliar sieve element infrastructure can thus be expected to vary with increases and
decreases in primary production in response to contributors to climate change (e.g., rising
atmospheric levels of carbon dioxide, elevated temperatures) and their impacts on large-scale
phenomena including altered precipitation patterns, rising sea level, forest fires, insect and
pathogen outbreaks, etc. and their complex effect on plant productivity. While some of these
factors induce increased carbon sequestration by plants (Nemani et al., 2003; Norby et al., 2005;
Fu et al., 2018), many result in reduced levels of sequestration and some result in net carbon
emission (Cox et al., 2000; Ciais et al., 2005; Olofsson et al., 2011; Rohrs-Richey et al., 2011;
Koebsch et al., 2013; Appenzeller, 2015; Bjorkman and Niemel4, 2015; Han et al., 2015; Hof
and Svahlin, 2016; Jones, 2016; Ramsfield et al., 2016; Loehman et al., 2017; Wolton et al.,
2017; Wyka et al., 2017; Smart et al., 2020; Enriquez-de-Salamanca, 2020; Witze, 2020; Doyle
etal., 2021; Liu et al., 2021; Martinez and Ardon, 2021) that further contributes to the rise in

atmospheric carbon dioxide.
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Figure Legends

Fig. 1. Light microscopic images of minor vein cross sections from leaves of (A) sunflower
(Helianthus annuus L. cv. Soraya) and (B) Arabidopsis thaliana (L. Heynh. Columbia-0) that
developed under 1000 umol photons m™2 s™! (9-h photoperiod) at leaf temperatures of 25-27°C)
(and 20°C during the night). In each image, a blue arrow indicates the location of a tracheary
element (one of two in the sunflower vein and one of five in the A. thaliana vein), a dark green
arrow indicates the location of a sieve element (one of two in the sunflower vein and one of eight
in the 4. thaliana vein), and the light green arrows point to a companion cell (CC) and a phloem
parenchyma cell (PC) in each image. For details concerning the preparation and analysis of such

cross sections, see Stewart et al. (2019; see also Cohu et al., 2014).

Fig. 2. Relationship between photosynthetic capacity and (A,C) cell number per minor vein x
minor vein density (VD) and (B,D) cell volume per leaf area of (A,B) sieve elements and (C,D)
tracheary elements in leaves of Arabidopsis thaliana (green symbols) and/or sunflower
(Helianthus annuus; orange symbols). The characterized minor veins constituted the third and
fourth order in leaves of A. thaliana and the sixth and seventh order in leaves of sunflower. Both
species were grown under four different growth regimes of 400 or 1000 umol photons m 2 s! (9-
h photoperiod) at leaf temperatures of 25-27°C or 14-16°C (and 20°C or 12.5°C, respectively,
during the night). Additionally, 4. thaliana was grown under 100 or 1000 zmol photons m 2 s!
(9-h photoperiod) at a leaf temperature of 20°C (and 12°C at night), and sunflower was grown
under 100 and 750 umol photons m 2 s~! (12-h photoperiod) at a leaf temperature of 27-28°C

(and 22°C at night). Data from Cohu et al. (2013a,b, 2014), Adams et al. (2016, 2018a), Stewart

et al. (2017a,b), and Polutchko et al. (2018, 2021). Lines of fit with shaded 95% confidence
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intervals for (A,D) A. thaliana (green lines and shading) and sunflower (orange lines and

shading) separately or (B,C) combined (black lines and gray shading).

Fig. 3. Relationship between leaf thickness and sieve element (A) cross-sectional area per minor
vein and (B) cell number per minor vein x minor vein density (VD) in leaves of Arabidopsis
thaliana (green symbols), sunflower (Helianthus annuus; orange symbols), and spinach
(Spinacia oleracea; dark green symbols). In spinach, the characterized minor veins constituted
the fourth and fifth order veins. All species were grown under four different growth regimes of
400 or 1000 umol photons m 2 s™! (9-h photoperiod) at leaf temperatures of 25-27°C or 14-16°C
(and 20°C or 12.5°C, respectively, during the night). See the legend of Fig. 2 for additional
details regarding the minor veins characterized in sunflower and 4. thaliana as well as additional
growth conditions for A. thaliana. Data from Cohu et al. (2013a,b, 2014), Adams et al. (2016,
2018a), and Stewart et al. (2016, 2017a,b). Lines of fit with 95% confidence intervals (black

lines and gray shading).

Fig. 4. Relationship between the cross-sectional areas per minor vein of (A) companion cells +
phloem parenchyma cells (CC + PC) and sieve elements and (B) tracheary elements and sieve
elements in leaves of Arabidopsis thaliana (green symbols), sunflower (Helianthus annuus,
orange symbols), and spinach (Spinacia oleracea; dark green symbols). See the legends of Figs.
2 and 3 for additional details. Data from Cohu et al. (2013a,b, 2014), Adams et al. (2016,
2018a), Stewart et al. (2017a,b), and Polutchko et al. (2021). Lines of fit with 95% confidence

intervals (black lines and gray shading).
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Fig. 5. Relationship between the volumes per leaf area of (A) companion cells + phloem
parenchyma cells (CC + PC) and sieve elements and (B) tracheary elements and sieve elements
in leaves of Arabidopsis thaliana (green symbols), sunflower (Helianthus annuus; orange
symbols), and spinach (Spinacia oleracea; dark green symbols). See the legends of Figs. 2 and 3
for additional details. Data from Cohu et al. (2013a,b, 2014), Adams et al. (2016, 2018a),
Stewart et al. (2017a,b), and Polutchko et al. (2021). Lines of fit with 95% confidence intervals

(black lines and gray shading).
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