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ABSTRACT

This paper presents path-dependent feedback controllers and esti-
mators with bounded tracking and estimation error guarantees for
discrete-time affine systems with time-varying delayed and missing
data, where the set of all temporal patterns for the missing or de-
layed data is constrained by a fixed-length language. In particular,
we propose two controller/estimator synthesis approaches based on
output feedback and output error feedback parameterizations such
that the tracking or estimation errors satisfy a property known as
equalized recovery, where the errors are guaranteed to satisfy a
recovery level at the start and the end of a finite time horizon, but
may temporarily increase (by a bounded amount) within the hori-
zon. To achieve this, we introduce a mapping of the fixed-length
delayed/missing data language onto a reduced event-based lan-
guage, and present designs with feedback gain matrices that adapt
based on the observed path in the reduced language, resulting in
improved performance. Furthermore, we propose a word observer
that finds the set of words (i.e., the delayed/missing data patterns)
in the original fixed-length language that are compatible with the
observed path. The effectiveness of the proposed approaches when
compared to existing approaches is demonstrated using several
illustrative examples.
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1 INTRODUCTION

Cyber-physical systems (CPS), e.g., self-driving vehicles, smart med-
ical devices and autonomous robot swarms, integrate networked
computation and physical processes, often with a shared communi-
cation channel. This channel is used to send measured data from sen-
sors to controllers that then determine the control input commands
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to the actuators to operate/regulate physical systems/processes.
However, missing data or delayed measurements caused by sensor
malfunctions or communication network congestion/losses [28, 35]
could degrade the control performance and potentially lead to un-
safe system behaviors. Thus, to guarantee the safe operation of
safety-critical CPS, there is a need for control and estimation algo-
rithms that are robust to delayed and/or missing data.

Literature review: The controller and estimator synthesis problem
for systems subject to missing or delayed data or measurements
have been extensively investigated in the context of networked con-
trol systems (e.g., [4, 28, 35]) as well as in emerging security prob-
lems involving denial of service or false data injection attacks (e.g.,
[1, 11, 32]). For missing and delayed data or measurements modeled
by probability distributions, extensions of the Kalman filter have
been proposed (e.g., [3, 17, 28]) to estimate the system state, includ-
ing the complete in-sequence information method in [34] and the
nonlinear Bayes filter in [31] that recalculates the state estimates
once the delayed measurement arrives at the current time. Similarly,
stabilizing or optimal controllers have been studied in this setting
of probabilistic data loss/delay models (e.g., [12, 26, 35]). However,
these works primarily aim to achieve the best expected or average
estimation/control performance, while safety-critical applications
often require worst-case estimation and tracking error guarantees.

Another modeling approach for time-varying missing and de-
layed data is to characterize the set of all admissible temporal pat-
terns of missing or delayed data, e.g., ‘data are delayed by at most 3
time steps, using automata [19] or fixed-length languages [14, 23—
25]. Theoretical analysis of observability, controllability and sta-
bilization for (noiseless) discrete-time linear systems subject to
missing and delayed data have been studied in [18, 19], and more
recently, finite-horizon controller and estimator design has been
considered in [14, 23-25], where the goal is to guarantee a property
known as equalized recovery, i.e., the tracking and estimation error
in the presence of missing and delayed data could have a more
relaxed upper bound within the finite horizon, but is guaranteed to
recover and return back to the initial bounds by the end of the hori-
zon. The notion of equalized recovery is an extension of equalized
performance in observer designs (e.g., [8, 9]) and set invariance in
control (e.g., [7]), which require that the estimation errors or state
bounds are invariant. In particular, [23, 24] developed a prefix-based
controller/estimator for systems with missing data, similar to the
setting we consider; however, this approach does not directly apply
to the delayed data case that we consider in this paper. Moreover,
when compared with results in [14] that does consider delayed data,
our approach allows for adaptation based on the observed path,
resulting in better equalized recovery performance.

A further relevant research area pertains to measurement sched-
uling in control systems (e.g., [2, 10]). However, this research differs
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from our setting where the data patterns are not scheduled but ad-
versarially chosen from the set of admissible patterns.

Contribution: In this paper, we design path-dependent finite-
horizon controllers and estimators that achieve equalized recovery
for time-varying affine systems when the output/measurement
data is prone to time-varying misses and delays (including out-of-
sequence data), where the temporal pattern of the delayed/missing
data phenomenon is constrained to a set of all possible patterns
using a fixed-length language. To tackle this problem, we propose
finite-horizon affine feedback laws based on two parameterization
approaches that are commonly used in the optimal control litera-
ture, that is with output feedback and output error (or disturbance)
feedback, that were found to be equivalent in the absence of miss-
ing or delayed data (e.g., [13, 29]). In particular, we extend existing
equalized recovery controllers/estimators for both parameteriza-
tions (e.g., [14, 23-25]), to allow time-varying and path-dependent
intermediate levels and consider more general polytopic sets for
describing the tracking or estimation error bounds.

Additionally, we construct a reduced event-based language with
unique event sequences and synthesize feedback gains for each of
these unique event sequences in the reduced language, instead of
each possible event sequence, in a manner that resolves conflicts
arising from the ambiguity between event sequences with only
partial observations of the sequence from the history of observed
data patterns/subsequences up to the current time, i.e., the observed
path. This enables our controllers/estimators to adapt based on the
observed path, resulting in marked improvements over existing
works [14, 25] that can only consider the worst-case missing or
delayed data pattern within the language. Moreover, the proposed
controllers/estimators are applicable for delayed data patterns, in
addition to missing data patterns that was considered in [23, 24].
Further, we design a word observer that can estimate the set of all
missing/delayed data patterns that are compatible with the observed
path at each time step, which can be useful for fault/attack pattern
identification and communication network optimization. These
improvements are illustrated in several simulation examples.

2 PROBLEM FORMULATION

2.1 System Dynamics and Delayed Data
Language
System Dynamics: We consider a discrete-time affine time-varying

system subject to bounded process and measurement noise. The
model of the system dynamics is given by:

X1 = ApXg + Brug + Wiewge + fi,
zr = Crxp + Viog, (1)
Y, = {Zk—w(i)li +w(i) = k,i <k},

where x;. € R” is the system state at time k, up € R™ is the input
to the system, wy € R™v is the process noise, v € R™ is the
measurement noise, z; € R is the time-stamped observation or
measurement that is possibly affected by a time-delay attack or any
naturally occurring delay, Y, C R? is the set of all measurement
data that is received at time step k, w(i) is the time delay associated
with z; at the time step i and satisfies w (i) € Noa, and  is an upper
bound on the number of time steps that a packet is delayed by.
The discrete variable w(i) = 0 denotes that the i-th measurement
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is received without delay, while w(i) = a implies that the i-th
measurement is delayed by a steps. The system matrices A, B,
Ck, Wi, Vi and fi. are all known and of appropriate dimensions.
We assume that the process and measurement noises wy and vy
are unknown but polyhedrally constrained with wy € W = {w €
R™|Pyw < gy} and v € V = {v € R™|P,v < qp} for every
time step k, respectively. In addition, we suppose that the control
input uy is bounded with uy € U = {u € R™ | Pyu < q, }. Without
loss of generality, we assume that the initial time is k = 0.
Delayed Data Language [15]: Given a fixed length T, we consider
a delayed data model where delayed data patterns are restricted to
a set expressed by fixed-length language specifications, e.g., ‘the
i-th observation is delayed by at most m time steps’ or ‘at most m
delayed/missing measurements in a fixed interval’ The delayed data
patterns can be the result of naturally occurring delays or packet
dropouts due to communication network congestion or losses, or
caused by deliberate (cyber) attacks by an adversary or hacker.
Formally, our delayed data model is a fixed-length language £ =
{Wa }‘llel that specifies the set of allowable delay mode sequences
0 (0)wg (1)we(2) ... wqa(T — 1), where the a-th possible sequence
is called a word “W,,. Note that i + w(i) > T implies that the i-th
measurement is delayed beyond the horizon T, which is equivalent
to the case that the i-th measurement is missing. Thus, in our setting,
missing data can be considered as a special case of delayed data.

2.2 Equalized Recovery

One of the main objectives of this paper is to design a path-dependent
bounded-error estimator, where the estimation error is guaran-
teed to return/recover to the same bound that it started with af-
ter a fixed number of time steps, as an extension of the notion
of equalized performance in [8, 9]. Another problem of interest
is to synthesize a controller that can ensure that the states of
the closed-loop system remain within a certain distance from the
origin (i.e., stable in the sense of Lyapunov), while being sub-
jected to input constraints. Moreover, we can pose a similar prob-
lem for tracking control to track a given desired state trajectory
Xd.0s%Xd,1»---» %47 (and its corresponding ug o, ug 1, .., Uq, 71
such that x4 g41 = Agxg i + Biug i + fi), and the objective is to
guarantee that the bounds on the tracking error x 2 X - Xd k
recover to the initial error bound, with a potential temporary
(bounded) increase within the horizon due to missing/delayed data.

The bounded-error estimator and feedback control synthesis
problems can be formulated as a generic equalized recovery problem
for a transformed system:

Xe k1 = Arxe g+ Bepug k + Wewg + fe ks
zg = Crxg g+ Vivg, )
Ye o ={zgk-0@li+ w(i) =k,i <k},

where the transformed states x¢ , the transformed output z; i, the
set of available transformed outputs Yz ., the transformed input
ug k € Ug, Bk and fi i depend on the problem of interest.
Specifically, for the bounded-error estimator design problem,
the estimation error system for the state estimation error given by
Xg k £ x; — %4 can be found to be of the form in (2) with Be i 27
fex £, Uy £ R™, and the transformed output Zg k £ 24 — Ciy,



Path-Dependent Controller and Estimator Synthesis with Robustness to Delayed and Missing Data

where x(t) is a known signal obtained from the following observer:
Xper1 = AXp + Bug — te i + fio ®)

where the injection term ug j = U, i is the transformed input.
On the other hand, the constrained feedback controller synthesis
problem for the system with delayed and missing data in (1) is one
with the system dynamics of the form in (2) with B¢ £ B, fex 2 £,
ug £y, Ze ke 2z and Xg k £ X, as well as U £ 9. Further,
for the tracking control problem with a desired trajectory that
satisfies Xg k41 = Agxqk + Brug x + fr over a horizon T, the
corresponding tracking error system dynamics takes the form in
(2) with xg g L x - Xd k> Be k £ By, fe £, ug g Loy - Ud k>
Z§(t) = Zk — de,k’ and (L[§ = {uSz’k eR™ | ug g tugk € Uuj.
Formally, we consider the following equalized recovery property
that we wish to achieve with our proposed feedback controllers
and bounded-error estimators, which generalizes the definition in
[23] (where the polyhedral sets are chosen as hypercubes and the
intermediate level is time-invariant):

DEFINITION 1 (EQUALIZED RECOVERY). A controller/estimator is
said to achieve an equalized recovery level yy at timet = 0 with

recovery time T and intermediate levels yi ;. > p1 if for any x¢ o €

Xo = {x € R"Px < uiq}, we must have xek € X 2 (x e

R™|Px < py xq} for allk € [0,T] and xg 7 € Xo, where p1 and pij g
forallk € [0, T] are scalars, and Xo and X}, are polyhedral sets.

2.3 Problem Statement

We aim to design a path-dependent bounded-error estimator and/or
synthesize a path-dependent feedback controller, that satisfies equal-
ized recovery, which can be stated as follows:

PROBLEM 1 (CONTROLLER/ESTIMATOR DESIGN). Given the system
dynamics in (2), a desired recovery level 111, a recovery time T as a
time horizon and a delayed data model specified by a language L
as well as an initial state x¢ o satisfying xg o € Xo, find an optimal
affine feedback law ug . that minimizes a COSt]({ﬂz,k}Zzo) subject
topy e 2 p1, xg k € X, Yk € [0,T] and xg 7 € Xo (cf- Definition 1).

Specifically, we will address Problem 1 by investigating two
affine feedback laws in Section 3.2 that are commonly used in
the finite-horizon optimal control literature (e.g., [13, 29]), namely
with output feedback and output error feedback parameterizations.
Moreover, we design a word observer to estimate, at each step, the
set of all potential data patterns (i.e., words) from delayed data
language that are compatible with observed data patterns. This
will enable the identification of delayed data patterns that can, in
turn, be useful for communication network optimization or attack
mitigation.

PROBLEM 2 (WORD OBSERVER DESIGN). Given a delayed data
model described by a fixed-length language L, design a word observer
that can estimate the set of all potential words (i.e., delayed data
patterns) from the language L that are compatible with observed
data patterns/path at each time step k.

3 DESIGN APPROACH

In this section, we propose controller/observer design approaches to
solve Problems 1 and 2. We first construct an event-based language
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LF from the delayed data language £. Afterwards, path-dependent
controllers/estimators based on output feedback and output error
feedback will be designed, which will utilize the information from
the observed data pattern/path in the event-based language seen
so far to adapt their feedback gains. Moreover, for Problem 2, we
design an inverse mapping algorithm that returns the set of all
possible delayed data patterns that are compatible with observed
data patterns up to the current time.

3.1 Event-Based Language

Given a delayed data language £, containing all possible words cor-
responding to different allowable delayed/missing data patterns, an
event-based language £ is first constructed to capture the set of
indistinguishable event sequences that correspond to the different
delayed data patterns in L. To build the event-based language, the
following definitions are introduced first (with NZ as the set of nat-
ural numbers from a through b). For examples of this construction,
the readers are referred to [15, Section III-A].

DEFINITION 2 (EVENT [15]). An evente; ; = dod1ds . . .d; of time
stepi € Ng_l is a finite sequence of binary variables d; € {0, 1} for
alll € Né, where j € N(z)m_l is an index denoting the j-th potential
event at time step i. The binary variable d; = 1 denotes that the data
of time step | is available at current time step i (i.e., all received data
up until the current step i), while d; = 0 signifies that the data of
time step | is not available at current time step i. Moreover, an event
can be defined using e; ; = binary(j,i + 1) at time step i, where
the function binary returns a binary representation of the decimal
number j € Ngl“_l with i + 1 digits.

2i*1_q

DEFINITION 3 (EVENT SET [15]). An event set e; = {ei»j}jzo is

. . ;o NT-1
a set of all potential events at time stepi € Ny ™.

Intuitively, an event at time step i represents the information/data
that is available up until the time step i. Since any data from previ-
ous steps or current step only has two possibilities, i.e., received
or not received at the current time i € Ng_l, there are totally 2/+1
different cases. Therefore, the index j of e; j varies from 0 to 2i+1_1q,

DEFINITION 4 (EVENT SEQUENCE [15]). An event sequence, de-
noted Eq = eg,j,e1,j,€2,j, - - - €T-1,jr_,» IS @ Sequence of events corre-
sponding to a word Wy = {co(i)}l.T:_O1 from the fixed length language
L, where the subscripts j; for all i € Ng_l are determined by the
word W,.

In other words, an event sequence represents the information/data
that is available/accessible at each time step. For each allowable
delayed/missing data patterns (i.e., word) in a language £, we
can find its corresponding event sequence. As a result, the lan-
guage L = {W; }jl.fll containing all allowable delayed data patterns

can be mapped on a new event-based language £F = {80,}1)(131
containing all potential event sequences. In particular, for a word
Wo = 0(0)w(1)w(2) ...o(T — 1), the subscript ji (k € Ng_l) in
the corresponding event sequence Eq = eg,j,e1,j,€2,j, - - - €T-1,j7_,
(cf. Definition 4) can be constructed as

k
Jk= 2 Mgy Ve €N, (@)
=0
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where 1 ,,(x_¢) denotes an indicator defined as

1, wk-¢) <¢,
Lyk— = 5
@(k-f)st {o, wk—0) > t. ®
Note that the resulting event-based language £ = {& }IL\ could

have repeated event sequences (i.e., the mapping is sur}ectlve).
Thus, we will eliminate repeated event sequences in £ to obtain a

reduced event-based language LE (&, } l ¢ £F with unique

event sequences &/, for « € NllL l.

Having defined an event sequence, we next define the prefix
of an event sequence, which will be used later to describe our
controller/estimator design.

DEFINITION 5 (PREFIX OF AN EVENT SEQUENCE [15]). Foran event
sequence !, € LE andi < |8, the length i prefix of &/, is defined
as the event subsequence (81, )11 = €0, jo€1,j,€2,j, - - - €i—1,j;_;» where
|E,,| denotes the number of events in &,. The set of all non-empty
prefixes of &/, is denoted as Pref(E},).

In addition, we define an observed path based on the history of
observed transformed outputs, which we will relate to the event
sequences in the reduced event-based language whose prefixes
match the observed path in our design in the following section.

DEFINITION 6 (OBSERVED EVENT AND PATH). Given the history
ofobserved transformed outputs up to the current time step k, i.e.,
Ul _o Y, i, the observed event at each time step i is defined as e"bs =
it .. a,
dl.ojs € {0,1} foralll € NI where the binary variable d;’js =1
denotes that the data of time step | is available at time step i (i.e.,
zg ] € U}:o Y¢ j), whiled; | = 0 signifies that the data of time step | is
Yg, j). Then, the observed

path Szbs is defined as the observed event subsequence at time k

which is a finite sequence of binary variables

not available at time step i (i.e, zg | & Uj’:o

(that, by construction, must be a prefix of a reduced event sequence),
ie., Sl‘zbs = egbsefbsegbs e el‘zbs €Pref (&) for some &L, € LE .

3.2 Affine Feedback Designs

To solve Problem 1, we propose affine feedback controller and
estimator designs based on two commonly used affine feedback
parameterizations that can be found in the finite-horizon optimal
control literature, e.g., [13, 29], namely output feedback and output
error feedback parameterizations. Note that these two parameteri-
zations have been shown to be equivalent when there is no missing
or delayed data [13, Theorem 3.2]; however, it is unclear if this
equivalence still holds when there is missing or delayed data.

In addition, in contrast to the designs in [14, 25] where the worst-
case singleton language £* is used (worst according to the partial
ordering defined in [14, 25]), we allow the controller/estimator
gains to adapt to the current observed path (cf. Definition 6), i.e.,
the currently observed partial data patterns or event subsequence.
This path-dependent structure (also known as the prefix-based
approach in [23, 24]) has been shown to lead to better performance
than the worst-case language approach in [25] when some data may
be missing, and we will show in this paper that the performance
improvement is also applicable in our controller/estimator designs
with either delayed or missing data.
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3.2.1 Affine Feedback Parameterizations. In particular, we present
two path-dependent affine feedback laws based on commonly used
affine feedback parameterizations, where the path dependency
refers to the adaptation of the controller/estimator design based on
the currently observed data patterns or event sequence.

Output Feedback. Similar to the prefix-based output feedback de-
signs in [23, 24], we consider a feedback policy for the transformed
input ug that is affine in the observed transformed outputs up to the
current time {z¢ ; }f:() = U{‘C:o Y¢ ; and dependent on the currently

obs & _obs_obs obs obs
observed path/event subsequence £°% = ef”* el e)” ... e}

(cf. Definition 6), as follows:

obs k gzbs .
Uk = gk * Lico Fri Zio (©)
with e s = zg, ifzg; € Uj:O Ye )
’ 0, otherwise,

gobs bs

where F, k € R™*P and gk € R™ are gain matrices for this

output feedback parameterization. It is noteworthy that the output
feedback policy in (6) can equivalently be interpreted as

ob

”Ek‘gk +250ka ZE, i ()

obs

obs

with F k

in our controller/estlmator design with appropriate constraints on
the gain matrix as will be described in more detail in Section 3.2.2.

=0whenzs; ¢ Uk =0 Y¢ j, a fact that we will leverage

Output Error Feedback. Moreover, we propose an extension of the
output error feedback parameterization in [13, 14] to allow for path-
dependency based on currently observed path/event subsequence
SZI’S = eghsefbsegbs e ezbs (cf. Definition 6) when there is miss-
ing or delayed data. Specifically, this approach includes the design
of a Luenberger-like observer for transformed state as follows:

obs

E -
Sk+1 = AkSk + Be gk + fek L5 Ze ks ®)
with . Zg ke~ CrSk» ifzf,k € U}CZO Y§,j’
Zy k= :
Sk 0, otherwise,

Sobs
where L k k

the observed path 81‘317 S and ug . € R" is the transformed input

€ R™? is the Luenberger-like gain as a function of

with causal output error injection given by the following:
5019‘ Sohs .
upk = vt MYz ©)
Sobs Subs
where M, ¥ € R™P and v_*
ated with the currently observed path/event subsequence 81‘;}” at
time k for the output error feedback parameterization. Similar to
the previous parameterization, the observer and transformed input,
(8) and (9), can equivalently be interpreted as

€ R™ are gain matrices associ-

‘Sobs
Sk+1 = AgSk + Be rug k + f§,k +L.* (zg k= Crsp)s  (10)

((;obs
ug Zka +Z Mklj (Zér’i—cisi), (11)
obs obs
with L, & =0and Mkk = 0whenzs ; ¢ U o Yz, j» as described

in greater detail in Section 3.2.2.
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3.2.2 Constraints on Gain Matrices. In both parameterizations,
since we are interested in the offline design of path-dependent
gain matrices during the design phase, one may consider designing
these gain matrices for all possible (observed) paths/event subse-
quences. However, since the number of event subsequences grows
exponentially with time steps k, we propose to instead consider
doubles (F 1?, » gl‘:) or triplets (M a’ » Vz‘, LZ‘) for each unique event

sequence &, of the reduced event-based language LE which in
general is a much smaller subset of all possible paths/event subse-
quences. In fact, this is one of the main motivations for consider-
ing delayed/missing data languages to restrict the set of possible
paths/event subsequences.

Then, when the observed path &0bs s available at run time, we
only need to select the matrix gains (F o 9% ) or (M z‘ ,LZ‘)

corresponding to the &/, € £LE such that SZI’S = Pref(S&), ie

we will select the gain matrices at run time as follows:

52”” SZ'” a o obs ’
(Fe 5 9" ) e{(FE.g)EL™ =Pref(Eg)),  (12)
Sobs aobs obs
(M LE v ) e (M L%, v*) I8P = Pref (87)), (13)
where (F”‘, g“) and (M%, L%, v¥*) are stacked versions of (F]? P g,”c‘

and (M]‘éi, Lz’i, vl‘c”) as follows:

Ffy 0 o i
F%= s 0 ,9%=| o |v= ,
Fi_io Froyra 9T L V% 1 (14)
MOS 0
M%*= Do 0 ,L%= }
M7_ IR M%—I,T—l

However, since multiple event sequences in the reduced event-
based language LF may share the same prefixes, these doubles and
triplets cannot be designed independently, as it may result in im-
plementation conflicts. In other words, the same prefixes of length
k mean that these event sequences are not distinguishable from
the history of observed path/data patterns up to time k, SZbS, and
thus, the corresponding design gains up to time k must be the same
to avoid ambiguity in terms of which (F{' ,, g7') or (M’ ., v{¥, LY)
should be used, as discussed in detail in [24] To remedy thls we
need to design the gain matrices (F%,¢%) and (M%,L%,v¥) for
each event sequence &/, of the reduced event-based language LF
such that if two different event sequences are not distinguishable
until time k, then (F(k) 9(k)) and (M(k)’ (k) V&)) for both event

sequences should be constrained to be the same for all k € N§_1,
where the subscript (k) denotes the k-th row of the matrix.

Indistinguishability Constraints. To define these indistinguisha-
bility constraints, we will adopt the following definition from [24]:

DEFINITION 7 (PRINCIPLE BLOCK MINOR [24]). The i-th leading
principal block minor of a block matrix M € RA™¥YP  syritten as
BM;(M), is the n X p block matrix, BM;(M) = M:in, 1:ip, for all

€ [1, min(a, b)].

Using the above definitions, we impose the following constraint
due to indistinguishability of event sequences/trajectories in LE
for both affine feedback parameterizations:
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e € Pref(E)) N Pref(S’ﬂ)

& ve! &l e LE

cl(LEy= @ 1= = a™p

(%9l | g ) (F) = BM o (FP)
NG 11eln) = @) w1einy)

e € Pref(E)N Pref(SI’B)

= vag,%eLE’:
ary) | L1 [(BM e (M%) = BMe (MP) A (- (16)

=1 | (BM | (L%) = BM o (LP))A

(V) wtelny = VP w1eim)

»(15)

, M* L%
CH(LE ): {(

where the former is for the output feedback parameterization and
the latter for the output error feedback parameterization.
Intuitively, if any pair of event sequences shares the same prefix
of a particular length, they are indistinguishable at the correspond-
ing time step based on the received information. Since they are
indistinguishable (and future information is inaccessible in a causal
system), their associated submatrices and subvectors must be con-
strained to be the same to avoid conflicts during implementation.

Delayed/Missing Data Constraints. Moreover, as described in the
previous section, instead of using switched feedback laws in (6), (8)
and (9) due to the delayed/missing data, we will equivalently employ
the non-switched feedback laws in (7), (10) and (11) by imposing
appropriate constraints on F*, M% and L* for each event sequence
&l € LE associated with delayed/missing data patterns, where
all the entries in F¥, M® and L* corresponding to unavailable data
should also be set to zero. To construct this constraint on F&*, M%
and L%, we first define an event matrix associated with the event
sequence &/, € LE":

©
eo’go 0 ... 0
ei?jl el(l])1 . 0
E® = _ ’ . L 17)
L0 - (1-1)
er-tjro 6T-ijra o Cliro

where e( ).l specifies the (I+1)-th digit of event e; j;, i.e., dj (cf. Defi-

nition 2) Using this definition, we impose the following constraint
due to delayed and missing data:

Vi,j e NT :
I/ pE'\ _ L
D(LY)=1{F))- 1‘F((1 Dniti-Ee (i jpyn-t, =0 [+ (18)
U-1)p:(-E*(i,7))p-1)
Vi,j e NT
e MG eyt =0
Dl(LP)= |£F| <f pG—E G, ) v (19)

L)}
@1 LG tyne(ioB (i, jyynt,
G=D)p:G-E*(L.7))p-1)
where the superscripts I and II correspond to the output feedback
and output error feedback parameterizations, respectively.

3.2.3 Equalized Recovery Estimator/Controller Designs. Armed with
the description of the feedback laws and their corresponding con-
straints on the gain matrices, we now present our estimator/controller
synthesis designs for both proposed output feedback and output
error feedback parameterizations.
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Output Feedback. Since the design incorporates a finite horizon
(determined by the fixed-length language), we can stack the trans-
formed states, inputs, outputs and noise signals as follows:

xg = (x§,07" . ’xf,T) € RH(TJrl), ug = (u_f,()’" . ’ug,T—l) e RmT’
zg = (25,0, »28,7-1) €RPT, w=(wo, -+, wr_y) € R,
v = (v, - ,0r_1) € R™T, f=Ueo - fer-1) € R"T,

and rewrite the entire closed-loop trajectory of x¢ j corresponding
to (2) and (7) for each event sequence &/, € LE as:

o
o (20)
,

xg = PEyw+ P v+ PYxg o + Hil
ug = Pl,w+ Pl v+ Plixg o+

where

P%,, = G+ HF*(I - CHF*)~'CGW, P%, = HF*(I - CHF*)~1V,
P%,, = F*(I - CHF*)~1CGW, P%, = F*(I - CHF*) v,
P% = (I+HF*(I- CHF“)iIC)A, P% = F*(I- CHF*)"!CA,

i% = F*(I - CHF*)"'C(Gf + Hg%) + g%,

&
Weo - - 0 Voo 0 II;
w=| . |Lve| o A= 0,
0 Wers N AT
0 -0 0o .- 0
C 00
0 Al .0 AlBgy -+ 0
c=| . ¢ 6=l . . . |.H=| .. i
(') C. 0 Lo : . 0
o bT1 T T T T
Ay Ap Ay Bgo - ApBg 1

(21)

with A]l? = Ap_1Ag_3..-Aj and F¥ and g% in (14). Note that the
above formulation is in general not convex in the design variables
F% and g“. Nonetheless, [29] has shown that a suitable change
of variables (i.e., with Q-parametrization) can recast the above
formulation as one that is convex in the new variables Q% and r?,
defined as:

Q% =F%(I-CHF*)™,

r® = (I+Q%CH)g“%, (22)
where the original variables can be recovered as follows:
a a -1na
F* =(I+Q%*CH) Q% 23)

g* = (I+Q%CH) 'r* = (I + F*CH)r“.

Furthermore, [20, 22] has shown that gain matrix constraints that
satisfy a property known quadratic invariance remain invariant
under the change of variables (i.e., Q-parameterization).

However, in the context of estimator/controller synthesis with
delayed and missing data, there are two sets of gain matrix con-
straints that are needed, as described in Section 3.2.2, and it is
unclear if either set of constraints remains invariant under the Q-
parameterization. In fact, even if quadratic invariance can be proven,
it would only apply to delayed/missing data constraints and not
the indistinguishability constraints that must hold for different a’s.

Hence, in this paper, we restrict ourselves to a special case where
these sets of constraints can be shown to be remain invariant under
the change of variance using Q-parameterization:

ASSUMPTION 1. For each event sequence/path &), € LE the
corresponding lower triangular event matrix E* in (17) satisfies:

o —_ . . . (04 —_
E(i,j) =0,Yj > i, le(i,i) =0.
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This special case corresponds to the scenario with only missing
data patterns or where all delayed data are discarded (i.e., not used
for control or estimation) and treated as ‘missing.’ It is also notable
that this assumption is stronger than the skyline matrix structure
for which quadratic invariance holds [21]. Even so, while the change
of variables via Q-parameterization is invariant for the “sparsity”
constraints related to the delayed/missing data constraints in (18), it
is unclear if the indistinguishability constraints under this assump-
tion also remain invariant with Q-parameterization. The following
lemma essentially answers this question in the affirmative.

LEMMA 3.1. Suppose Assumption 1 holds. Then, any F* € DY (LE")
(cf- (18)) can be factorized as follows:

F* = F*(diag(E%) ® I), (24)
where F% is unconstrained, diag(E%) is a diagonal matrix with only
the diagonal elements of E* and ® is the Kronecker product.

Consequently, the closed-loop trajectory of x¢ i corresponding to
each event sequence 8!, € L can be obtained as in (20) withC and V
replaced by C* £ (diag(E*)®I)C andV* £ (diag(E%)®I)V, respec-
tively, and (F*, g%) has to satisfy (F*,g%) € CI(LE/) (cf- (15)) but
not DYLE'Y in (18). Moreover, the constraint (F*,g9%) € cl(LE)
can be equivalently imposed on Q% = F*(I — C*HF*)™! and r® =
(I + Q¥C*H)g% (cf. (22) with C* instead of C) as (Q%,r%) € C'IL,
where CU is defined as:

e € Pref(&L) ﬁPref(S"B)
’ ’ E .
CHI(.[:E/)Z o vl LE ] = V8a,8ﬁ el”
{(Q%, 1)} 2, (BMe)(Q%) = BMe)(QP))
AT :len) = (rﬁ)(1:|e|n))

25)

Proor. First, since Assumption 1 holds, the corresponding E*
matrix is lower triangular with some columns being zero. Then, it
can be relatively easily shown by basic block matrix multiplication
that any F¥ € DI(LE/) (cf. (18)) can be exactly factorized as:

F* = F*(diag(E%) ® I),
where F is a full block lower triangular matrix with no sparsity
constraints. Then, note that the stacked/time-concatenated control
law in (7) is of the form of

ug = g% + I:““(ng + Vo),

for some F* € DY(LE'). In the above, since F¥ is factorizable,

F*C = F*(diag(E%) ® I)C = F*C?,

F®V = F*(diag(E*) ® I)C = F*V“,
where we defined C* £ (diag(E*)®I)C and V¥ £ (diag(E*)®I)V.
Thus, in this case, we could interpret the new estimator/controller
synthesis with output feedback as one with output matrix C* and
feedthrough matrix V¥ and without the constraint DI(LE).

Finally, we can directly obtain the equivalence of imposing the

constraint on (F%,g%) € CHLE) (cf. (15)) and on (Q%*,r%) €
C(£E") (cf. (25)) by applying [23, Propositions 1 & 2]. O

Now, we present the estimator/controller synthesis approach
with output feedback parameterization that borrows ideas from
Q-parameterization to obtain a tractable optimization problem.
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THEOREM 3.2 (EQUALIZED RECOVERY ESTIMATOR/CONTROLLER
SYNTHESIS WITH DELAYED/MISSING DATA (OUTPUT FEEDBACK)).
Suppose Assumption 1 holds. For a system with delayed/missing data
patterns defined by a fixed-length language L given in (1), the affine
output feedback estimator/controller given in (6) and (12) solves Prob-
lem 1 (with a given recovery level u; and cost function J(-)) if the

following problem is feasible:
; ILE|
min _ J({uy'} )
Q“,r”‘,pf‘ 27a=1
subject to V((IT @ Pw)w < 17 ® qw, (IT ® Py)v < 1T ® qo,
Pxgo < g a € LEY:
(It ®Pu)(u? tug) <1t ®qu,

26
(IT+1 ® P)x ?—.”2 ®q, PRTx5<,ulq’ =
§ ¢ = PE,w+PLv+ P x§0+Hu§,,
§ = Pjw+ P v+ P x50+uf,
( a, a) e CIH(LE ), uz > 1,
where
= (I + HQ*C%)GW PZ, = HQ*V®,
P2, = Q¥CYGW, PZ, = Qv
P = (I+ HQ*C®)A, P = QFCA, 27)

iy = QaCaGf +re, Rr = [Onan In] >

as well as C* £ (diag(E*) ® I)C and V* £ (diag(E%) ® I)V, while
the gain matrices F* and g% can be found from Q% and r* via (23)
and pg = [ygfo, ...,ygT]T. Moreover, we let 5 £ max, '”gk‘

Proor. This proof follows similar steps to the derivation in [23].
From the requirements for equalized recovery in Definition (1),
we must have Pxg p < pp pq for all k € [0,T] and Pxg 1 < g,
for all (worst-case) realizations of noise wg, v and initial state
uncertainty x¢ o. Then, using the change of variables in (22) (i.e.,
Q-parameterization) and the result from Lemma 3.1, we can directly
construct the robust optimization problem given in Theorem 3.2,
similar to [29, Section III-C]. Moreover, the original gain matrices
(F%*,g%) can be recovered from (23). O

Then, since the problem in Theorem 3.2 involves semi-infinite
constraints (i.e., for all constraints), we will leverage robust opti-
mization to convert the problem into the following linear program
with a finite number of constraints:

PROPOSITION 3.3 (ROBUSTIFIED EQUALIZED RECOVERY ESTIMA-
TOR/CONTROLLER SYNTHESIS WITH DELAYED/MIsSING DATA (OUT-
PUT FEEDBACK)). The semi-infinite optimization problem (26) in The-
orem 3.2 (that solve Problem 1 with a given recovery level j11 and cost
function J(-)) is equivalent to the following linear program:

min JUpg ‘LE/l)
Q"’,r“,,u;‘,l'l“ 2 a=1
subjectto 1% > 0, p > p1,
11 ®qw Hy ®q (Ir41 ®P)H 0 CraE . a
0% 1r®qov|<| mq |-| PRrH 0 [Q ¢ qu”
Hi1q Ir®qu It ®Py Lt d
I ® Py, 0 0 (IrT+1®P)J¢
I« 0 IT®P, 0= PRT],? s
0 0 p (IT ® Pu)]ua

(Qa’ ra) € CIH(LE,), (28)
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(1>

with J Py P xO]’ [Pﬂlfw P P,‘fo]: Ug =
(g0, »UqT-1) and the deﬁmtlons in (27).

Proor. This proposition can be proven by directly leveraging
techniques from robust optimization [5, 6] to find the robust coun-
terpart to the robust optimization problem in Theorem 3.2. O

REMARK 1. Note that even if Assumption 1 does not hold, the re-
placement of F* € DY(LE) with F* (diag(E*) ®1I) on the right hand
side of (24) will enable us to synthesize suboptimal equalized recovery
estimators/controllers with delayed/missing data using Theorem 3.2
and Proposition 3.3, as demonstrated in Section 4.1.

In addition to being applicable for feedback control and bounded-
error estimation with more general delayed data languages, when
compared to a prior work [23], the above results allows for path-
dependent and time-varying intermediate levels p5' (i.e., dependent
on « and time step k), which can lead to smaller tracking/estimation
errors at run time. Further, we can consider more general polytopes
than hypercubes in [23]. Moreover, the path-dependent gain matri-
ces can be selected at run time using (12).

Output Error Feedback. Next, we consider the estimator/controller
design based on output error feedback parameterization. We can
similarly stack the transformed states, inputs, outputs and noise
signals and rewrite the entire closed-loop trajectory of x¢ p corre-

sponding to (2) and (7) for each event sequence &/, € LE a

xg = xww+P§j‘vv+P“ x§0+szso+Hv +Gf,

(29)
ug = uwW"'PuvU"'P x50+Pusso+v ,
where
P2, = (I+ HM* + L*)C)T*W
P, = (HM% + GL¥)(I — CT*L%) —=T*L%)V,
p% = (I + (HM® + GL*)C)®*, P& =A-P% (30)
PZ, = MECT*W, P = M*(I - CT*L*)V,
P% = M*CP“, pg, =-P%,
with A, C, G, H, W and V in (21), M%*, L% and v* in (14), and ®*

and T'? are defined as!:

I, o --- 0
(ba,l (D(x,l'“
Y= 0 re= !
. : 0
a, T a, T a, T
%y 77 e O

where 7% = 0% ®7 0% and @F = A; - LIC;.

It is noteworthy that, similar to the output error feedback ap-
proach in [13], with a fixed sp and L%, the above formulation is
convex in our design variables M* and v*. Hence, no new reformu-
lation such as Q-parameterization is necessary and no additional
assumption similar to Assumption 1 is required.

Then, we present the estimator/controller design approach with
output error parametrization as the solution of the following:

THEOREM 3.4 (EQUALIZED RECOVERY ESTIMATOR/CONTROLLER
SYNTHESIS WITH DELAYED/MISSING DATA (OUuTPUT ERROR FEED-
BACK)). For a system with delayed/missing data patterns defined by a
fixed-length language L given in (1), the affine output error feedback
estimator/controller given in (8), (9) and (13) solves Problem 1 (with a

!Note that ®* and T'® are functions of a, since there are directly dependent on L%.
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given recovery level i1 and cost function J(-)) if the following problem
is feasible:

: ILE|
min
[\,{a’La’va’uzzx ]({”2 }0( 1 )
subject to Y((IT @ Py)w < 17 ® g, (IT ® Py)v < 17 ® qos

Pxgo < g a € LE/) :
(It ®Pu)(u? +tug) <11 ®qu,
(Ir+1 ® P)xf < pz ®4, PRTx? < g,
= p%,, w+P v+P Xz, 0+P% so+HvE +Gf,

(31)

§
= P% w+P? v+P x50+Pusso+v

<Ma,L“, ve) ec“wE’)ADH(LE ), 1§ = o,

with Ry = [OanT In],#g £
in (16), (19) and (30). Moreover, we let j15 i £ maxy ,ugk.

[ﬂgo, ...,,ugT]T and the definitions

Proor. The estimator/controller design follows similar steps to
the design in [14]. It is straightforward to observe that the estima-
tor/controller solves Problem 1 by construction with the additional
indistinguishability and delay/missing data constraints in (16) and
(19) on the matrix gains, as described in Section 3.2. o

Similar to Theorem 3.2, the problem in Theorem 3.4 also involves
semi-infinite constraints (i.e., for all constraints), and thus, we resort
to robust optimization to convert the problem into the following
optimization problem with a finite number of constraints:

PROPOSITION 3.5 (ROBUSTIFIED EQUALIZED RECOVERY ESTIMA-
TOR/CONTROLLER SYNTHESIS WITH DELAYED/MISSING DATA (OUT-
PUT ERROR FEEDBACK)). The semi-infinite optimization problem (31)
in Theorem 3.2 (that solve Problem 1 with a given recovery level 1)
is equivalent to the following linear optimization problem:

min ()
]wa’La’va’#éx,Ha 2a=1

subjectto TI% > 0, g > py,

Ir®qw] [ ®q] [IT+18P 0 Hv*+P% so+Gf
M 1r®qo | <| jng |=| PRy 0 [(IT®P ) (V& +P% 50)+ L u
1i1q 1T®qu 0 u usS0 mTUqd
IT ® Py 0 0 (IT+1 ®f)Jx
om*| o Ir®P, 0|=| PRpj® |,
0 0 P (It ® P,)J%
(M®, L% v*) e CII(LE’) A DII(LE/) (32)
withj;g 2 [pe, P2, P2 J¢ & [PE, P&, P%)ug =

(ug,0,-+* »uq1-1) and the deﬁmtlons in 30)

ProoF. Similar to the proof of Proposition 3.3, this result can
be directly obtained by finding the robust counterpart to the ro-
bust optimization problem in Theorem 3.4 using tools from robust
optimization [5, 6]. O

When compared with the output feedback parameterization, this
estimator/controller synthesis approach does not require the satis-
faction of Assumption 1, hence the resulting estimator/controller is
optimal for a more general class of systems with delayed/missing
data. Moreover, in comparison with a prior work [14], we consider
time-varying and path-dependent intermediate levels ,u i s well
as a prefix-based/path-dependent design that enables adaptatlon of
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Algorithm 1: ‘W bs
Data: Observed Path

= WordObsv(E9%, L)

azbs _ (dobS)(dabsdobS) (d(())’is . dObS)
Language L
Output: Set of Compatible Words W} bs

1 function WordObsv ((e;,j, )iTz_Ol)

2 Initialize ’Wlfbs ={e}; (where ew(0) = w(0))
3 fori=0toT -1do

" for & € WPs do

5 W’ =0,

6 for{=itoi+wdo

7 w(i) =€-

8 if <k dohs = 1 then
9 W’ = W’ U {ow(i)};
10 L break;

1 else if { > k then

12 | W =W Ulaw();
13 erobs =W’

u | Wb = webs n g

15 return Wbs

the gain matrices based on the observed path, Szbs, that, in turn,
leads to improved performance. Moreover, the path-dependent gain
matrices can be selected at run time using (13).

Note, however, that the optimization problem in Proposition 3.5
still has bilinear terms, but is fortunately relatively sparse, hence
off-the-shelf solvers, e.g., IPOPT [30], can return optimal solutions
very quickly. Moreover, as assumed in [13] and as discussed in detail
in [14, Section IV-C], we can fix L% and s (by choosing sy = 0 and
Ly such that A — L. Cy, for all k are Hurwitz and have eigenvalues
with sufficiently small magnitudes) to obtain a computationally
tractable linear program without any loss of optimality.

3.3 Word Observer

In addition, given the observed path/event subsequence at each time
step k, i.e., Szbs = e(‘]’bs . el‘zbs with e"bs dzbosd?lisdfzs .. .d;’ll?s
(cf. Definition 6), we propose a word observer that will map Szbs
to the set of all words that are compatible with observed sequence
"Wlf bs_which can be useful for fault or attack pattern identification.
= WordObsv(Szbs,L) =
InvMap(Szbs) N L. It can be shown that the inverse mapping of
the observed path finds the set of all words, i.e., InvMap(Szbs) =

w(0)w(1)...

In particular, we want to find Wlfbs

(T — 1), where w(i) for each i € Ng_l is given by:

. bs _ k
(i) € N‘,;’ .y lfd?’[s =0 forall £ € NY, 33)
{¢; =i}, otherwise,

with 7 being the minimum ¢ € Nk such that dObs = land @ is
the maximum delay. Intuitively, £; is the earliest tlme step at each

the data from time step i is available in Ui:O Y;. Moreover, if the
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data at time step i is not received by the current time step k, then
this data could be delayed by an interval between k — i + 1 and the
maximum delay @. It should be noted that in (33), the second case
results in a set of words, implying that the mapping from Szb S to

WOPS is one-to-many. This makes sense because if a data is not
available at any time step within Uf:o Y;, it can be considered as
delayed by any number of time steps up to the maximum delay .
The algorithm of the word observer is given in Algorithm 1.

3.4 Implementation Strategy

There are multiple different ways, in which the constructed equal-
ized recovery estimators/controllers can be implemented. First,
considering the situation that a T-length delayed/missing data pat-
tern occurs periodically, the same gains can be chosen for each
period because by construction of the equalized recovery estima-
tors/controllers, the tracking or estimation error bound at the last
time step of the period is enforced to be the same at the initial
step of the period. In addition, in the case where there is no de-
layed/missing data, equalized performance (i.e., equalized recovery
with T = 1 [8]) can be achieved by using the corresponding gains.
Then, when a delayed/missing data is detected, we can switch to the
equalized recovery estimator/controller associated with a T-length
language where the first data is delayed/missing. Subsequently, after
the fixed recovery time T, we can switch the equalized recovery esti-
mator/controller to the equalized performance estimator/controller
again until another delayed/missing data is observed. Moreover,
in the event that the initial tracking or estimation error does not
satisfy the equalized recovery/performance level, the proposed
estimator/controller can also be combined with any asymptotic
estimator/controller (or a modified version of the proposed estima-
tor/controller with a larger initial level), where the latter is used
until the desired equalized level is achieved.

4 EXAMPLES AND DISCUSSION

In this section, the performance of the proposed controllers and
estimators is validated and compared with the approaches in [24]
and [33]. The examples using our proposed estimator are all run
using MATLAB 2017a. For the output feedback parameterization
in (28) that is a linear program, we use Gurobi [16] as the solver,
while for the robustified problem in (32) with output error feedback,
the IPOPT solver [30] is used since the optimization problem (32)
involves many sparse matrices. Moreover, the parameters of sy in
(32) will be set to zero for all of the presented examples because it
was observed in [14] that the value of sy has no effect on the per-
formance of the controller/estimator. Moreover, both measurement
and process noises in all of the following examples are bounded by
hypercubes, i.e. W]l < Hw, V]l < 0.

4.1 Bounded-Error Estimator for Batch Reactor
Process (Comparison with [33])

To demonstrate the capability of the estimator proposed in this
paper when compared to [33] in the presence of output delays, we
consider the batch-reactor process in [27], which is a continuous-
time fourth order two-input-two-output system. Using the c2d
command in MATLAB with a sampling time of Ts = 0.05 seconds,
the model is discretized, yielding the following system matrices:
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12 [ ]Guarantees 1 [JGuarantees

12
L
08
0.6

0.4

[l (t) = 2(t)]

0.2

Time Index

(c) Estimator from [33].

Figure 1: Estimator comparison for batch reactor process ex-
ample with W;,, = 21210.

1.0795 —0.0045 0.2896 —0.2367 0.0006 —0.0239
A= —0.0272 0.8101 —0.0032 0.0323 B= 0.2567 0.0002
T 1 0.0447 0.1886 0.7317 0.2354 |* ~ ~ |0.0837 —0.1346 |’
0.0010 0.1888 0.0545 0.9115 0.0837 —0.0046
1 0 1 -1 T
o P ],f_[o 0 0 0] ,V=I,w=0.

The time horizon of T = 5 is considered, with a maximum
possible output delay of 2 steps within T, except at the last step,
which is always on time. This results in a delayed data model
that can be expressed as the fixed-length language containing
3% words, i.e. £ = {‘W4,...,'Ws1}, and we can find the corre-
sponding event-based language £F and reduced language LE
from Definitions 2—4. The measurement noise bound r, = 0.05 is
assumed, which corresponds to 5 standard deviations of A (0, 0.012).
Solving the robustified problem (32) with the cost function J(-) =

a=1
mediate level maxk,a(,ugk) = 0.6912 for ||X||e (i-e., with (P, q) for

E’
Zzzo ZlL ! Hy . and p1 = 0.33, we obtain the maximum inter-

describing Xy and X} as hypercubes).

We compare the run-time results of our proposed approaches
with a design from [33] that employs Kalman filtering with out-
put delays. We initialize the simulation with x(0) = [1,1,1,1]7
and randomly generate initial state error and noise signals using
truncated zero-mean normal distributions with covariance matrices
Py = (p1/5)214, Q=0andR = (r]v/S)ZIz, where yi1, 17, correspond
to the values that are 5 times their standard deviations. The true
delay pattern followed by the plant is W, = 21210, and the
simulation is run 50 times. Figure 1 depicts the trajectories (and
their guaranteed error bounds) for the proposed estimators when
using output feedback and output error feedback, as well as for the
estimator from [33]. The results show the estimation errors from
the proposed approaches staying within the guaranteed bounds,
as expected. Moreover, they also minimize the error at the end of
the horizon in all 50 runs, whereas the estimator from [33] has tra-
jectories that far exceed the guaranteed bounds from the proposed
estimators. Note that for the output feedback design, Assumption 1
does hold; hence the obtained estimator is suboptimal, as discussed
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12 [ JGuarantees 12 [ ]Guarantees

10 1 2 3 4 5 6 7 ] 1 2 4 5 6 7
Time Index Time Index

(a) Output feedback estimator. (b) Output error feedback estimator.

[ IGuarantees

[la(t) — &(t)

Time Index

(c) Estimator in [24].

Figure 2: Estimator comparison for adaptive cruise control
example with missing data at k = 1.

in Remark 1. In contrast, the output error feedback estimator does
not require the assumption to hold and is optimal, which demon-
strates the advantage of the output error feedback design when
there is delayed data, whereas the two parameterizations are equiv-
alent when there is no missing or delayed data.

4.2 Bounded-Error Estimator for Adaptive
Cruise Control (Comparison with [24])

Missing data patterns in a finite horizon setup can be considered
as a special case where the missing output is “delayed" beyond the
horizon. Hence, in this example, we compare our approaches with
another equalized recovery estimator by [24] which is only applica-
ble for missing data scenarios. Using the same model and simulation
parameters for adaptive cruise control in [24], weset T =6, y1 = 1
and the language as £ = {060000, 006000, 000600, 000060} that is
equivalent to the missing data specifications given in [24]. Solving
the problems in (28) and (32), we obtain maxy ”gk = 1.1498 for
both designs, which matches the result in [24]. However, due to
the time-varying property of yg‘ & inour approach, the interme-
diate error bounds do not remain at maximum value, as opposed
to the approach in [24], providing a less conservative solution.
The simulation is performed with the true output pattern being
Wsim = 060000, implying that the data is missing at k = 1. Figure
2 shows that the estimation errors of our approaches are indeed
lower than those from [24], which was presumably made possible
by the time-varying recovery levels.

4.3 Controller Synthesis for Lane-Keeping

Next, we demonstrate the use of our design framework for lane
keeping. As in [23], we represent the lane-keeping system with a
continuous-time double integrator system:

uér’t + We,

0
1

. Joo1 0
Xer Tl —po|*Ett s
zf,t =x§,t+vt,

(34)
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(a) Data missing at k = 0, 1 (b) Data missing at k = 6, 7

Figure 3: Tracking control for lane keeping using the out-
put error feedback approach. The boxes represent the maxi-
mum bounds of the deviation from the center line.

where Xgp = [x¢, %¢]" includes the deviation x; from the center of
the lane as well as the lateral velocity x;, while the outputs of the
system are noisy measurements of the state x¢ ;. The process and
measurement noises are bounded by hypercubes with #,, = 0.05
and 17, = 0.1 respectively, whereas the (P, g) pair for Xy and X}, is
chosen to represent regular hexagonal sets. Using a sampling time
of Ts = 0.1 seconds, the system in (34) is converted to a discrete-
time system. The missing-data language with a fixed horizon T = 12
is chosen to represent two consecutive missing outputs within the
first 11 steps of the finite horizon T. Using the proposed approach,
a tracking controller is designed that tries to follow the center-line
of the road. Specifically, the output error feedback controller is
applied to two examples for different true missing data patterns—
one in which the first two measurements are missing, and second
in which 7th and 8th measurements in the horizon are missing. The
resulting trajectories of the deviations from the center line for 5
different runs are plotted in Figure 3, where each run corresponds
to different values of the random noises and initial states. It can be
observed that the system is able to track the reference trajectory
when using the proposed output error feedback controller.

5 CONCLUSIONS

In this paper, we proposed path-dependent finite-horizon feedback
controllers and bounded-error estimators that achieve equalized
recovery for time-varying affine systems subject to delayed obser-
vations or missing data. By modeling the delayed/missing data as
a fixed-length language and constructing a reduced event-based
language with unique event sequences, we synthesized equalized re-
covery controllers/estimators whose feedback gains can be adapted
based on the observed path, i.e., the history of observed data pat-
terns up to the current time step. The proposed controller/estimator
is an extension of existing works in [14, 23-25] and can cater to
more generic delay/missing data patterns as well as allows for path-
dependent and time-varying intermediate recovery levels and more
general polytopic sets for describing the tracking or estimation
error bounds. Moreover, we designed a word observer that can
return the set of all words that are compatible with observed data
patterns/path, and demonstrated the effectiveness of our approach
via several illustrative examples.
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