
Dynamic modeling and state estimation of cable-conduit actuation
during interaction with non-passive environments

Stephen Buchanan, Fabrizio Sergi, Member, IEEE

Abstract— Remote actuation solutions such as cable-conduit
transmissions are beneficial in wearable robotics to reduce
dynamic loading on distal joints. However, these systems often
introduce high reflected impedance or require rigid sensors
for force control that hinder their integration in wearables.
Low impedance and ease of integration could be both obtained
by combining distributed cable strain sensing with dynamic
modeling to estimate output force and position.

In this paper, we present a new computational model to
analyze the dynamics of cable-conduit systems. The model
features bi-directional propagation of motion within the trans-
mission, which allows for simulation of human-interacting
systems where either or both the human and the robot can
be force or position sources. Moreover, we present a new
method for rapidly solving for the system of equations based
on iterative linearization of the system of nonlinear equations.
The model and solution method are validated in a physical
prototype through experiments involving physical interaction
with a human subject. Finally, we develop methods for model-
based estimation of cable tension given measurements from
multiple noisy strain sensors embedded in the transmission,
and quantify the accuracy achievable via different methods as
a function of the number and location of sensors.

Results demonstrate that the model accurately predicts
behavior observed in the prototype. Moreover, the newly devel-
oped iterative linearization solution method allows a 100-fold
increase of computation speed compared to a standard solver.
Finally, we demonstrate that cable tension can be estimated with
increasing accuracy when increasing the number of sensors, but
accuracy decreases if the output portion of the transmission is
not instrumented.

I. INTRODUCTION

Wearable human-interacting robots frequently employ re-
mote actuation, as remote actuation allows for the optimiza-
tion of actuator placement to minimally affect the dynamics
of the limb being manipulated [1].

Cable-conduit transmissions, which employ a fixed outer
sheath and mobile inner cable, are a common choice for
remote actuation due to their flexibility, low mass, and ability
to withstand large forces. However, the nested cable design
introduces non-negligible frictional losses and mechanical
compliance. Consequently, the transmission suffers from
diminished mechanical efficiency and backlash, leading to
input-dependent stability properties [2]. Moreover, friction
increases the reflected impedance of the system. While
friction can be reduced by proper design, these effects remain
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significant enough that the system exhibits poor tracking
performance without proper compensation.

Many existing human-interacting robots utilizing cable-
conduit transmissions employ only a single cable, allowing
the cable to be slackened when the desired torque is zero
[3], [4], [5]. However, single-cable systems can only apply
torque in one direction. While systems that use two cables
have bidirectional torque transfer capabilities, these systems
also require more careful control since slackening both cables
to achieve zero torque is not possible without complicated
and dedicated hardware solutions [6]. As such, usually distal
cable tension [7] or single-axis torque [8], [9] sensors are
used for feedback control.

Numerous specialized feedback laws for frictional effects
present in cable conduit systems have been proposed over the
years, including linear and non-linear formulations, such as
force control with integral feedback [10], position control
with approximation of backlash-like hysteresis [11], and
torque controllers [12], with double sheath configurations
[13]. However, all these controllers are based on simplified
models using Coulomb friction, which assume a constant
cable configuration or interaction with a passive environment.
Using a more accurate model in a feedback controller could
allow for improved system performance in applications in-
volving human-robot interaction.
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Fig. 1. Schematic of the cable-conduit dynamic model presented in this
paper, featuring all 3 operating modes (Position-Torque, Torque-Position,
Position-Position). Note the model’s ability to change the number of mobile
cable segments at both ends of the conduit, as appropriate.



Early dynamic models of the cable-conduit transmission
pursued a lumped-mass approach, approximating the inner
cable as a series of interconnected mass-spring-damper sys-
tems [2], [14]. These models provided reasonably accurate
estimations, but were constrained to constant curvature, pre-
tension and environment stiffness. These lumped-parameter
models were later improved upon by Palli & Melchiorri
[15] who used the dynamic Dahl friction model. Do et al.
[11], [16], [17] further improved the accuracy of friction
estimation by studying a wide array of models and selecting
a modified Bouc-Wen model.

Agrawal et al. [18], [19] proposed a distributed model
based on a set of partial differential equations for a cable
subject to arbitrary curvature. Their new formulation allowed
for the study of pull-pull cable systems, and reproduces
the phenomenon of partial movement within the cable,
where only one region of the cable is under motion. Their
derivation, however, constrained the model to the study of
systems that interact with passive environments and are
position-controlled at their input. These limitations are highly
restrictive for the study of practical systems. Typical input
actuators, such as DC motors, are torque regulated, not
position regulated which leads easier implementation of
force-control over position-control. Additionally, assuming
interaction with a passive environment imposes that motion
can only propagate in a single direction in the cable. Fig.
1 shows that when considering active environments motion
will need to propagate in both directions. Since human-robot
interaction focuses on the interaction with active environ-
ments, models of cable-conduit transmissions for human-
robot interaction must not assume monodirectional motion
propagation.

A beneficial use of a dynamic cable transmission model
is for the implementation of model-based control. In this
scenario, given measurements of some of the system states,
the controller can determine the exact amount of the inputs
required to satisfy a certain control objective (i.e. desired
force or position). Problems associated with model-based
control for cable transmissions are the limited capability to
measure the progression of states distributed through the ca-
ble in real-time. There have been many recent developments
on the measurement of cable tension and displacement along
the cable in real time, such as the measurement of curvature
through optics [20] , to measure bend radius, or custom Hall-
effect sensors [21] to measuring displacement, or the use of
piezoresistive sensors to measure cable strain [22], and even
on combing force and Hall-effect sensors to measure both
tension and curvature [23]. These studies incorporated state
measurements into standard feedback controllers, ranging
from basic closed loop PI controllers to Impedance control
or Force feedback controllers. However, it is unclear how
measurements from a redundant set of sensors located in
some nodes along the cable can be used to derive an estimate
of the entire set of system states, which would enable model-
based dynamic compensation.

Previous work [24] extended the model of Agrawal et al.
[18], [19] by developing a new formulation to solve for the

complete state of the cable-conduit system in the presence
of any two applied tensions or displacements. As such, the
model is capable of propagating motion from either side
of the cable, in both directions, concurrently, to describe
the interaction with non-passive environments. Moreover, we
previous present a new method for rapidly solving the system
of equations of cable-conduit systems based on iterative
linearization of the non-linear system of equations produced
by the model, which enables real-time simulation.

In this manuscript, we first cover a brief overview of the
model and linearization solver, then present new methods
developed for model-based estimation of cable tension, given
measurement from multiple noisy strain sensors distributed
within the transmission, and quantify the accuracy achievable
via different methods as a function of the number and
location of the sensors.

II. METHODS

A. Model formulation

We developed a dynamic model of the transmission based
on the assumption of an axially linear elastic cable. The
model formulation was fully presented in our previous work
[24]; here we briefly recall the main aspects to allow pre-
senting the novelty aspects included in this contribution.

The dynamic model is based on a finite element approach.
The cable is divided into N discrete segments, where system
parameters such as radius of curvature are approximated as
constant. When in tension, a given segment of cable expe-
riences frictional losses in tension due to contact between
cable and sheath. For an infinitesimal element of length dx,
tension at each node Ti creates a normal force Fn between
cable and conduit at a given point as a function of the radius
of curvature R(i), given by Fn ≈ TiR(i)−1dx. Normal force
Fn is assumed to be constant over the given segment’s length
∆x. Normal force can be multiplied by coefficient of friction
µ(vi), a function of segment velocity vi and direction of
motion Si = sign(vi) respectively, then integrated along the
cable. The result is that the ratio between the tension at the
two nodes of the cable segment Ti+1/Ti is given by:

Ti+1

Ti
= exp

(
µ(vi)Si∆x

R(i)

)
, (1)

as demonstrated by [19].
Additionally, since the cable is modeled as an elastic

element with spring constant Kc, Hooke’s Law provides a
relationship between the change in tension across a segment
due to friction and the change in length of the segment,

ui+1 − ui −
R(i)SiTi
Kcµ(vi)

[
exp

(
µ(vi)∆xSi

R(i)

)
− 1

]
= 0 (2)

where ui and Ti represent the displacement of and tension
at node i. These two equations fully define the state of all
moving segments in the cable, and are evaluated at each
timestep during simulation for segments i = 1 to k − 1.

During operation, before the cable is in tension, the tension
has to propagate along the cable form the motion source,
leaving some nodes stationary. If a node is stationary, its



tension and position cannot change from one iteration to the
next. When a stationary node k ± 1 is adjacent to the “last
moving node” (LMN) k, a boundary condition for the motion
of the mobile segment(s) of cable is given by

uk +
Tk∆x

2Kc
= uk±1 −

Tk±1∆x

2Kc
(3)

The equations above yield 2k − 1 equations while in
partial motion, or 2k−2 equations during mass motion (i.e.,
all segments are moving), but there are 2k free variables
(k each of position, tension) defining the cable state. To
solve the system, at least two additional constraint equations
are required. These equations specify either the exact value
of a variable (e.g. a known position, or tension), or relate
two variables in a way not linearly dependent with existing
equations (e.g. an equation representing a position-tension
relationship of a spring connected to the output of the
system). Furthermore, two modeled cables can be connected
to a load pulley in a pull-pull configuration by including
appropriate constraints on their end positions, allowing the
modeling of bidirectional motion as a single cable can only
provide monodiriectional motion by pulling force.

The equations above pertain to the static or dynamic
conditions within the cable. However, a key element of cable-
conduit system is the transition between these conditions -
i.e. motion propagation. Motion propagates through the cable
when a stationary node k± 1 on the cable becomes the new
LMN, k. This condition is verified when the difference in
cable tension at that node can overcome friction,

Tk±1Sk ≥ TkSk exp

(
µ(vi)∆xSk
R(n)

)
(4)

A change in LMN means that an additional segment would
have moved during the previous time instant, and requires
re-evaluation of the dynamic equations, iteratively, until the
assumed value of k coincides with the one derived based on
the dynamic equations. The LMNs reset to the first and last
node when motion stops or changes direction, since every
segment will be required to change direction at these instants.

Lastly, in the event that a segment becomes slack, (i.e. it
has non-positive tension), our model neglects any contribu-
tions from this segment until it is no longer slack, which
happens when its calculated tension is greater than zero.

1) Definition of inputs and outputs: To solve the system
of equations, we specify at least one position or force at
the input side, and one position or force at the output.
In theory, this could be done using any pair from the set
{u1, uN+1, T1, TN+1}. However, the system is fully defined
only if the input pair specifies at least one position vari-
able. Otherwise, the system of (1,2) requires an additional
equation that maps the total applied force to the cable to
its acceleration, a phenomenon that is not captured in our
quasi-static model, to calculate absolute positions instead
of relative ones. As such, we do not consider the couple
{T1, TN+1} for the purposes of this paper.

The possibility of imposing variables at both the input
and output side of the cable allows us to study interaction

with non-passive environment. As a result, the model cannot
assume motion will always propagate from the proximal
end of the cable to the distal end. To accommodate this,
the model introduces a second last moving node, k

′
, which

can propagate from the distal side of the cable back toward
the proximal end. When k and k

′
do not coincide, each

end of the cable is treated as a separate system and solved
independently, since no motion or tension can be transmitted
through non-moving nodes. When the two moving nodes k
and k

′
coincide, the cable begins to undergo mass motion

and is solved as a single system.
2) Friction modeling: Our model specifies the friction

coefficient µ for a given segment i as a function of that
segment’s velocity, vi, calculated at the previous timestep as

vi = (u̇i + u̇i+1)/2 (5)

Our friction model is based on a simple stiction model

µ(vi) :=

{
µs v̇i = 0

µd v̇i 6= 0
(6)

for all presented analyses, except where otherwise specified.

B. Linear solver formulation

The model exists as a set of nonlinear equations with a
unique numerical solution; however it is likely that a closed-
form solution for the system state variables will not be found.
In general, numerical solutions for nonlinear equations can
be found via iterative optimization. Two important properties
of this class of solvers are: i) no assurance that it will provide
a solution within desired tolerance bounds; ii) no guarantee
of convergence within a given number of iterations or within
a given computation time.

These properties are not desirable for any simulation,
and especially so for real-time applications. The possibility
of finding no solution, or worse, an incorrect solution, is
problematic for the robustness of any controller utilizing
that solver. Additionally, the time costs of such an algorithm
are unacceptable. In preliminary testing, the rate of solution
did not approach speeds needed for real-time control using
standard hardware.

To formulate a faster solver for this dynamic model, we
take note of the form of equations described in Sec. IIA.
Those equations are nonlinear as a function of the unknown
states Ti, ui and their derivatives, solely because of the
presence of the sign function, which has node velocity as an
input. As such, we can introduce a simplification to bypass
the non-linearity introduced by the sign(vi) function. Despite
a continuous range of inputs, the sign function assumes only
three distinct values: 0 (for vi = 0), 1 (for vi > 0), and
−1 one (for vi < 0). Also, while there are 2N equations,
there are only N distinct arguments to the sign function, i.e.
one per each segment. The set of possible systems with the
equations of motion amounts to 3N , i.e. equals the number of
possible permutations of the values of the N sign functions
included in the equations. Such an exponential scaling with
the number of parameters, however, undesirable, as in the



case of a cable with only 5 segments, there would be as many
as 243 possible different systems of equations. However,
there are useful properties to exploit.

First, many of these permutations are physically impossi-
ble for this model. Consider a 5-segment cable whose sign
functions output the set [−1, 1, 1, 1,−1]. This configuration
cannot, in fact, exist - the lack of inertia in the model means
that wave propagation is impossible. As such, motion in the
cable must be described completely by 3 regions: i), one
moving in the same direction as node 1 and extending from
node 1 to the unknown node k, ii), one moving in the same
direction as the node N+1 and extending from node N+1 to
the unknown node k′, iii) one stationary region in the center
of the cable. This observation rules out several permutations
defined in terms of segment motion, reducing the number of
admissible permutations to a value n∗p = 2N+1+

∑N−1
j=1 4j

which scales polynomially with N . A derivation of this result
can be found in Appendix I.

Second, another simplification arises from the fact that
tension and displacement are unaltered within a stationary
section of the cable. As such, a configuration with two
distinct moving cable sections can be solved in a simplified
form by splitting the cable in two sections under mass
motion, which generates a linear system with less than 2N
equations.

As such, recalling that the only nonlinearity present was
the sign function, we start by assuming arbitrary initial
conditions for sign(vi), and proceed with solution of the
now linear, algebraic set of equations. We test the solution
(if one exists) for validity of the assumptions made, and
repeat (up to n∗p times) until all the assumptions are verified,
and thus the solution is considered to be the correct one.
While it doesn’t follow trivially that this solution method is
guaranteed to provide the unique solution of the system of
nonlinear equations, a proof is provided in Appendix II.

C. State estimation

While all states of the system can be estimated provided
a measurement of force or position at the input and out-
put, the sensing condition referenced above is not always
possible or desirable. In some applications, such as those
involving wearable robots, the use of a F/T sensor at the
distal end can be inconvenient as it would increase the
weight of the device and require rigid materials. However,
if distal measurements are completely missing, the system
is under-defined under mass motion, making solving for
the system states impossible. A solution to this problem
could be to include strain sensors along the cable, such as
carbon nanotubes [22], to measure local cable deformation or
curvature. This solution requires state estimation, where the
model is simulated by combining multiple redundant sensor
measurements to estimate the entire states of the system.

We developed a model-based state estimator by adapting
the linear solver referenced in Sec. IIB to allow for data to be
entered at any node along the cable, rather than only input
and output tension or displacement as discussed above. In
theory, any pair of inputs representing position and/or tension

measured at non-stationary nodes, when used as input to the
solver, is guaranteed to provide the correct estimate if the
direction of motion is known for the entire cable. However,
if measurements are available with uncertainty, and/or if the
direction of motion is not known a-priori, it is likely that
the states of the system will be estimated with error. To
reduce the effects of uncertainty, it may be convenient to
use a redundant set of sensors, and to combine repeated
model-based state estimations. Because fusion of the results
of multiple model-based state estimation methods will differ
based on whether the direction of motion is known or not, we
developed two different approaches. As it is often practical in
real world applications, in all our estimators we also always
assume to have perfect knowledge of the displacement of
the motor-side of the cable (i.e. u1). As such, each model-
based state estimation will be obtained by pairing a noisy
tension measurement available at a given cable node with
the measurement of u1.

1) Direction of motion known: In this case, we assume
that the direction of motion in all segments in the cable is
known with infinite accuracy. Assuming availability of m
tension measurements at nodes M = {i1, i2, ..., im}, at each
iteration, each measurement j = 1, 2, ...,m is paired with u1
to yield an estimate of the system states T (j) and u(j). For
each model-based estimation, the linear solver is confined to
solutions under the true direction of motion. The resulting
estimate of the system states is obtained by averaging the
independently estimated profiles T (j) and u(j).

2) Direction of motion unknown: In practice, we cannot
assume that we have knowledge of the direction of mo-
tion of each cable segment. Estimation performed without
knowledge of direction of motion is more likely to incur in
estimation errors, as use of incorrect values for parameters
Si in (1) and (2) leads to conducting state estimation using
an inaccurate system of equations of motion.

To estimate the system’s states when the direction of mo-
tion is not known, we obtain a first guess of the m estimates
T (j) and u(j) by running the model-based solver with the
available measurements, using as initial guess the direction
of motion estimated at the previous iteration. However, in
this case, the estimates are not forced to comply with the
assumed direction of motion, and the linear solver is repeated
until the assumed and calculated directions of motion match.
The output of this process is a set of estimated states T (j)

and u(j), and direction of motion vectors v(j), where each
element in v equals 0, -1 or 1. The coordinates of the last
moving node LMN(j) on either side of the cable are uniquely
associated to the direction of motion vectors v(j) as the
first and last node with estimated v(j) = 0. Given v(j),
the consensus on the direction of motion is established as
the median of all v(j) values, with an associated consensus
for the two LMN. When sensors are located in nodes
corresponding to a stationary region (comprised between two
last moving nodes), their readings are removed and not used
for sensor fusion. We developed four methods to combine
the estimates T (j) and u(j) with the direction of motion
consensus to estimate the system states, as described below.



The weight used is an average of individual sensor profiles
over multiple iterations further discussed in Sec. IIIC

Mean Average the profiles T (j) and u(j) as done for
the known direction of motion case.

Mean-R Average the profiles T (j) and u(j) only con-
sidering nodes where v(j) agrees with the
consensus.

W Mean Apply a weighted average of the profiles T (j)

and u(j), using as weights measurements of
sensor-specific estimation accuracy (see Sec.
IIIC).

W Mean-R Apply a weighted average to profiles T (j)

and u(j) only considering nodes where the
estimated v(j) agrees with the consensus.

III. METHODS VALIDATION

A. Model validation

Previous work [24] developed a test platform to include a
cable-conduit transmission between a DC motor and a handle
constrained to apply torques along the flexion/extension axis
of a human wrist (Fig. 2). In this scenario, the human would
apply effort to accomplish motion and the remote actuator
would be controlled so as to display desired force/torque at
the point of interaction to display virtual dynamic environ-
ments.

In the platform, the cable mounting plates can slide to
regulate pretensioning of the system. The system has a fixed
transmission ratio R of approximately 5, specified by the
ratio of radii between the load and motor pulleys. Torque is
supplied by a DC motor (Maxon motors RE35, 90 W, p/n:
273756 ). Torque from the motor is measured via current
sensing. For static tests, the load pulley can be locked to its
support structure by a bolt such that the applied torque can be
measured by the 6 channel force/torque sensor (ATI mini40,
resolution 0.5 mNm, 4 Nm at full-scale output). Position can

Fig. 2. Top: Rendering of test apparatus. The system is comprised of a
motor (2) and its pulley (1), which drives two steel inner cables (3) through
their conduits (5), causing motion of the load pulley (6) and of the handle
(7). Mobile conduit supports (4) pretension the cable, and load torque is
measured by a load cell (8). Bottom: Photograph of the physical prototype.

be measured at both ends via encoders present at both the
actuator (2000 cpt) and load shaft (10000 cpt).

Each cable consists of a 2 m wound steel wire sheath
with HDPE liner with an approximate inner diameter of
1.75 mm (Lexco Cable 408187), and an inner cable with a
7x19 stranded stainless steel core coated in nylon to a final
outer diameter of 0.75 mm (Sava Cable 210149). The cables
are arranged in a pull-pull configuration used to allow for
bidirectional transmission of motion and force.

1) Parameter estimation: The model has eight parameters
describing the mechanical properties of the system. Cable
length, curvature radius, and both pulley radii were mea-
sured directly. The elastic coefficient of the inner cable was
estimated by a measurement of the stretch-vs-force relation-
ship for both cables in parallel with output pulley blocked.
Pretension is calibrated using a spring stretched to prescribed
lengths to move the cable mounts. The friction coefficients
were estimated by minimizing the difference between model
and physical results during a separate experiment. Table I
lists the values provided to the model for each experiment,
unless otherwise specified, where L represents cable length
and K represents cable stiffness.

TABLE I
SYSTEM PARAMETERS USED FOR MODEL SIMULATION

L R(x) rinput rload K T0 µd µs
2 m 0.28 m 20 mm 104 mm 2 kN

m 10 N 0.21 0.63

2) Experiment 1: Sensitivity to parameter changes: In
Experiment 1, we aimed to check that the model reacts
correctly to changes in relevant physical parameters such
as cable pre-tension and radius of curvature. To do so, the
load pulley was locked, and the motor applied a torque
alternatively ramping up and down with a slope of ±0.1
Nm/s to a maximum of ±0.125 Nm then dwelling for 0.5 s
before reversing direction.

Under this paradigm, we studied variations in pretension.
Pretension in the cables was set to 4 levels by using a spring
stretched to different lengths to adjust the position of one
cable mounting plate. The motor then applied its prescribed
torque profile for 30s. The model was given the prescribed
motor torque profile and fixed load angle as inputs. Only
the pretension variable was changed in the model between
trials. The results of this experiment are visible in Fig. 3. In
agreement with (1), increased pretension is associated with
increased friction, dead-width, and loss in torque transfer.
This effect is visible both in the experiment and the model.
From a quantitative standpoint, the output torque root-mean-
square (rms) error obtained between model estimate and
measurements is equal to 50 mNm, 10 mNm, 12 mNm, and
17 mNm for low, med-low, med-high, and high pretension
parameters, respectively, with values equal to 20%, 5%,
8%, and 37% of the peak value. For comparison, a model
neglecting distributed friction effects (i.e. output torque To =
rload/rinTi) would yield rms error values of 197 mNm, 244
mNm, 271 mNm, and 322 mNm, respectively. Overall, this
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Fig. 3. Exp. 1: physical system and modeled behavior when pretension in
the cables is varied. The model reproduces the trends in behavior introduced
by variations in pretension correctly.

highlights the importance of modeling friction within the
cable-conduit system

3) Experiment 2: Position-force mode: In Experiment 2,
we validated our model’s capability of capturing interaction
with an active environment. Here, the motor is controlled to
apply a torque τm (newton-meters) in response to the angular
displacement of the output θo (in radians), given by

τm(θ) :=


min(− 1

2 (θ + 0.05), 0.2) θ < −0.05

0 |θ| ≤ 0.05

max(− 1
2 (θ − 0.05),−0.2) θ > 0.05

(7)

During the experiment, the participant moved the handle
periodically, imposing an amplitude of roughly 40 deg peak-
to-peak. The trajectory imposed by the human and the
corresponding requested motor torque were then input to
the model which repeated the experiment in simulation in
force-position mode, allowing to compare model estimates
and experimental measurements of torque and position at
the output and input pulley, respectively. Model parameters
were left unchanged from Experiment 1. Fig. 4 shows the

-20 -10 0 10 20

Handle Position [deg]

-2

-1

0

1

2

N
o

rm
a
liz

e
d
 T

o
rq

u
e

 [
N

m
]

Real Output Torque

Model Output Torque

Input Torque

Deadband

Prescribed Field

Fig. 4. Exp. 2: A comparison of the prescribed error-reduction tunnel
and the measured torque when implemented naively with remote actuation.
Accurate prediction of this behavior will allow for compensation of the
effect.

-0.2 -0.1 0 0.1 0.2

Motor Torque [Nm]

-2.0

0.0

2.0

O
u

tp
u

t 
T

o
rq

u
e

 [
N

m
]

-100 -50 0 50 100

Motor Angle [deg]

-20

0

20

O
u

tp
u

t 
A

n
g

le
 [

d
e

g
]

0 5 10 15 20

Time (s)

-0.2

0

0.2

N
o

rm
. 

T
o

rq
u

e
 [

N
m

]

0 5 10 15 20

Time [s]

-20

0

20

N
o

rm
. 

A
n

g
le

 [
d

e
g

]

Model

Measured

Input

Fig. 5. Exp. 2: Simulated and measured error-reduction tunnel behavior.
Torques and pulley angles have been scaled by the transmission ratio R in
the lower plots.

hysteresis present in rendering of this virtual dynamic envi-
ronment imposed by the transmission, both as captured by
the experiment and simulation. Fig. 5 presents position and
torque relationships both in the experiment and simulation.
Overall, the figures suggest a qualitative match between
experiments and simulations. For this experiment, the rms
error in estimating the output torque was equal to 264
mNm, or 15.5% of the peak measured output torque. For
comparison, a model neglecting distributed friction effects
would yield an rms value of 539 mNm, or 31.7% of the
peak measured torque.

While the model improves the estimate of output torque
compared to ideal transmission models, there is a numerical
discrepancy between the model and physical results. Some
of this error can be attributed to shortcomings of the over-
simplified stiction model used. We analyzed the behavior
of the model in presence of a viscous friction term, and
verified that the residuals (sum of squares of difference in
torque values between simulated and experimental data) are
reduced by about 50% (Fig. 6). It is expected that the use of
a more advanced model will further reduce the residuals.

B. Linear solver validation

To test the relationship between the solution obtained
using our simplified solver and iterative optimization based
numerical packages, we compared the output of the solver
described in Section IIB with the one obtained from the
same model using MatLab’s fsolve function. Both models
implemented one cable with locked output connected via a
spring (stiffness of 40 N/m) to a wall at i = N +1 and were

-30 -20 -10 0 10 20 30

Handle Velocity [deg/sec]

-0.2

-0.1

0

0.1

0.2

M
e
a

n
 M

o
d
e
l 
R

e
s
id

u
a
l 
[N

m
]

Sticton Model

Sticton + Viscous Model

Fig. 6. Exp. 2: Comparison between model residuals, and their linear fits
to velocity, with and without inclusion of a viscous friction term.



0 10 20 30 40 50 60

Number of Segments Simulated

10
0

10
3

10
5

S
im

u
la

ti
o
n

 R
a
te

 (
H

z
)

Linear-Assumed

Nonlinear

Fig. 7. Rate of model simulations (expressed as iterations per second)
obtainable on the same computer, using either the presented solution method
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simulated with a sinusoidal input position (amplitude of 0.15
cm) from the motor at i = 1. The simulation used parameters
from Table I, but with an increased preload of 40 N to offset
slacking in the passive models. Both models were simulated
over a range of parameter N (number of segments), up to
60, to observe their simulation rate at different number of
segments.

The outputs of the implemented linear solver were identi-
cal to those of the non-linear solver within machine precision
in all conditions, including mass motion, partial motion,
mono- and bi-directional motion propagation (maximum er-
ror < 10−9 N), confirming the accuracy of the implemented
solver. The results in Fig. 7 show that our linear solver
outperforms the nonlinear solver by over two orders of
magnitude in terms of computation speed on a desktop PC1,
even when MATLAB’s solver is programmed to use the
previous solution as initial conditions for the next iteration.
Since most control loops run at 1 kHz, the standard solver
is not fast enough to run even a single segment simulation
quickly enough, however our novel solver can simulate in
real time up to a 40 segment cable within the window
provided by a controller cycle. This analysis demonstrates
that the linear solver is amenable for real-time simulation
and control.

C. State estimation under measurement noise

We conducted a set of virtual validation experiments to
validate the possibility of estimating cable tension based on
measurements distributed along the cable. In these virtual
experiments, we used the model to simulate the evolution of
the system (considered as the “true value” of the system
states), and compared the “true value” of the states to
those estimated based on available sensor measurements. The
model was simulated featuring a ten-segment cable, subject
to sinusoidal input position (amplitude: 1 cm, frequency:
1 Hz, simulated at 100 samples per cycle), with a 10 N
preload, in blocked output conditions with the same physical
parameters as in Table I.

1Dell Precision T1700 Workstation, containing an Intel Xeon E3-1226v3
clocked to 3.30 GHz. MATLAB bench command reports the following
reference times: LU: 0.1821s, FFT: 0.1256s, ODE: 0.0518s, Sparse: 0.1037s,
2-D: 0.2465s, 3-D: 0.2947s.

Sensor measurements were simulated for each node, as-
sumed to arise from zero-mean guassian noise, with standard
deviation comprised equal to 10% of the true value of the
measurement. Simulated measurements were repeated 2000
times. For all repetitions, we ran the model-based estimators
described in Sec. II were implemented, and quantified the
absolute error between the model-generated true value of
cable tension and values estimated based on measurements
from noisy sensors.

To determine the effect of sensor noise and location on
state estimation accuracy, we considered first the possibility
of obtaining measurements from each sensor, one at a time.
The results obtained from this analysis are primarily used
to establish the appropriate weighting to use to each sensor
estimate for sensor fusion. In addition, to evaluate state
estimation in realistic sensing conditions and the possibility
of sensor fusion, we also considered the following config-
urations, for every admissible value of the total number of
sensors m ∈ (1, 11):

1) Even - with m sensors evenly spaced throughout the
cable (i.e. one each p nodes), starting from the proximal
or distal node.

2) Distal - m sensors only included at each node at the
distal end of the cable.

3) Both - m sensors present at each node at both the
proximal and distal ends of the cable (m/2 at the
proximal end, m/2 at the distal end).

We present the results of the analysis separately in the two
following sections.

1) Single-sensor estimation: We conducted single-sensor
estimation, estimated cable profiles Ti and ui from individual
sensor j, at two iterations corresponding to mass motion,
one for positive and one for negative cable displacement.
A representation of sensor-based estimate averaged over the
2000 estimations and showing the different in error between
the positive and negative cable displacement iterations can
be seen in Fig. 8.

We quantified the error function eij computed as the
absolute estimation error of tension at node j when sensor
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Fig. 8. Estimated vs. true tension using single-sensor estimation for two
iterations (rows), when the direction of motion is known (top), or unknown
(bottom). Lines indicate the mean of 2000 repetitions, shaded areas indicate
the 95% confidence interval.



was at node i, which can be seen in Fig. 9, and the between-
node average, for each sensor, ēi.

Results show that the estimation error is not sensitive to
sensor location for the known direction case, as described
in Sec. IICx, while estimation error decreases when sensors
are distal along the cable in the unknown direction case, with
mean sensor values of 0.37 N for sensor 11 compared to 1.6
N for sensor 1. The estimated functions ēi were used for the
weighted average procedure described in Sec IIC.

2) Sensor fusion: We tested separately the different sensor
fusion methods based on whether the direction of motion is
known, or unknown.

a) Direction of motion known: For all sensing condi-
tions, the logic used for estimating the tension and displace-
ment profiles is a simple average of the estimates provided
by each sensor, as described in Sec. IIC. Results from the
three configuration options overlapped as a function of the
number of sensors as reported in Fig. 10. In this case, the
error is only determined by the number of sensors used, and it
is independent of their location, with the difference between
configurations less than 0.01 N, which has negligible on the
overall estimation error.

b) Direction of motion unknown: Because estimation
accuracy are likely affected by the “true” motion condition,
we considered separately two cases, one where the cable is
in mass motion, and the other one, where the cable is in
partial motion.
Mass Motion - We applied the sensor fusion methods
discussed in Sec. IIC to the three configuration options,
and repeated state estimation using 2000 simulated sensor
measurements, in the same two iterations described above
(Fig. 10), corresponding to a mass motion condition.

Results of the mass-motion analysis are displayed in Fig.
11, which reports the average estimation error across the
2000 repetitions. Results indicate that error decreases with
the number of sensors for all configurations and sensing
modes, as expected (average improvement between 1 and
11 sensors: 0.35 N). When comparing errors measured
with different configurations but under the same number of

2 4 6 8 10

2

4

6

8

10K
n
o
w

n
 D

ir
e
c
ti
o
n

S
e
n
s
o
r

0.28

0.29

0.3

0.31

0.32

2 4 6 8 10
Node

2

4

6

8

10

U
n
k
n
o
w

n
 D

ir
e
c
ti
o
n

S
e
n
s
o
r

0

0.5

1

1.5

2

2.5

2 4 6 8 10
0.28

0.29

0.3

0.31

0.32

M
e
a
n
 A

b
s
 E

rr
 (

N
)

2 4 6 8 10

Sensor

0

0.5

1

1.5

2

2.5

M
e
a
n
 A

b
s
 E

rr
 (

N
)

Fig. 9. (Left) Absolute error eij measured at node j using a a sensor
located at node i for the known direction case (top), and the unknown
direction case (bottom). (Right) Between-node mean of absolute error ēi.
Note the scales for both rows are different.
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sensors, errors in the Distal configuration are consistently
smaller than the corresponding ones obtained with the other
two options (average improvement of 0.2 N between Distal
and Even and 0.07 N between Distal and Both). The decrease
in error as a function of number of sensors is smaller when
using the Distal configuration, compared to the other two
(Distal: 0.02 N, Even: 0.67 N, Both: 0.37 N). As per Fusion
method, the smallest error is afforded by the W Mean method
(W Mean: 0.42 N, Mean-R: 0.47 N, Mean: 0.49 N, W Mean-
R: 0.57 N).

For the optimal sensing condition (Distal), however, the
best results are obtained using the Mean or W Mean fusion
methods when using a low number of sensors (2-5) (mean
error: 0.38 N for both), while the simple Mean fusion method
affords the most accurate estimation when using a high
number of sensors (6-11) (mean error: 0.33 for Mean, 0.35
for W mean).

Based on this analysis, there is little support for advanced
fusion methods such as the weighted mean, or those based
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Fig. 11. Estimation error in the unknown direction case for two iterations
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(rows), and estimation method (overlay). Iterations are the same as those
considered in Fig. 8.



on removal of certain sensors, provided that sensors can be
employed to measure tension in the distal nodes. Overall, it
appears very important to be able to instrument the distal
nodes: estimation error obtained in the Distal configuration
using m sensors is similar (within 0.01 N) to the one obtained
in the Both configuration with 2m sensors - suggesting
that proximal tension measurements introduce negligible
improvement in estimation capabilities.
Partial Motion - We then tested whether the presented
estimation methods would provide accurate estimates of the
system states also when the system was not in mass motion
(partial motion). As such, we simulated 2000 repeated esti-
mations of the system states at two iterations, where the last
moving node was at node 8, and motion was only present
in the proximal location of the cable (true value of tension
profile shown in Fig. 12, top rows). We included all sensor
configurations reported above, with the exception of the
Distal configuration. This configuration was not implemented
here due to the fact that the sole use of distal sensors would
not help with state estimation, as sensors would fall in a
stationary region of the cable and not be usable to estimate
cable tension.

Results of the partial motion analysis are reported in Fig.
12, which reports the average estimation error across the
2000 repetitions. Results indicate that error decreases with
the number of sensors for all unweighted sensing modes
(average improvement between 1 and 11 sensors: 0.17 N
Unweighted vs −5.6 N Weighted).

When comparing errors measured using different sensing

Fig. 12. State estimation during partial motion. (top) Estimated vs. true
tension using single-sensor estimation for two iterations (rows). (center and
bottom) Estimation error in the unknown direction as a function of the
number of sensors (x axis), their location (rows), and estimation method
(overlay). The Distal configuration is removed due to the potential for
motion sections to have no distal nodes.

configurations under the same number of sensors, errors in
the Even configuration are smaller than the corresponding
ones obtained with the Both configuration in all UW con-
ditions, while they are larger in the W conditions (average
improvement of 0.15 N in Even compared to Both in UW
conditions, average improvement of 6.4 N in Both compared
to Even in W conditions).

As per fusion method, the smallest error is afforded by the
Mean-R method (W Mean: 4.7 N, Mean-R: 0.52 N, Mean:
0.54 N, W Mean-R: 5.9 N) across sensing configurations.

Overall, optimal estimation conditions are obtained under
the Even sensing condition and Mean-R processing method
(estimation error: 0.53 N), but similar performance is ob-
tained under the Mean method (estimation error: 0.55 N).

Findings obtained via the partial motion analysis are not
fully in agreement with those obtained in the mass motion
analysis. In both cases, the simple Mean sensor fusion
method performs optimally or close-to-optimally. However,
the sensing configuration Even, which is not efficient for
mass motion, affords the best estimation performance in the
partial motion analysis.

IV. DISCUSSION AND CONCLUSION

We have developed and validated a novel cable-conduit
transmission model capable of describing interaction of
robots with active environments. The simulated model was
determined to be accurate, computationally faster than stan-
dard nonlinear models, and effective as a state estimator.

Regarding the model accuracy, the simulated results of our
model qualitatively match effects observed in experiments
conducted with a benchtop cable-conduit transmission pro-
totype involving non-passive human interaction.

While the model was sufficiently accurate, its formulation
based on a set of nonlinear differential equations made it
difficult its integration in real-time simulators needed for
model-based feedback control, or for real-time sensing of
the cable configuration. To overcome this limitation, we
developed a new form of an iterative linear solver, based
on assumption of directions of motion for all cable seg-
ments, solution of the linear system of equations given the
assumptions, and final evaluation of whether the obtained
solution is compatible with the assumed directions of motion.
The iterative linear solver showed to be accurate in solving
the system equations, with the difference between the linear
and nonlinear solver within machine precision (10−9 N).
The main advantage of the developed iterative linear solver
is that this formulation provided a considerable increase
in computation speed (roughly two orders of magnitude)
compared to nonlinear solvers, capable of running a 40-
segment cable in real-time at 1kHz.

Finally, regarding the possibility of using the model to
perform sensor fusion and estimate in real time the states
of the transmission, our analysis showed that under realistic
sensor noise conditions (10% error), the model can be
used to estimate the states with acceptable accuracy using
simple algorithms that integrate measurements from multiple
sensors distributed along the cable.



As per optimal sensing and estimation methods, it was
observed that the best method for fusing individual sensor
measurements was the sample mean. Based on our analysis,
it is not obvious which is the optimal sensor configuration
condition. Under mass motion, the optimal sensor configura-
tion resulted to be the one with most sensors located in the
distal end of the cable, while under partial motion (proximal
side of the cable moving), the optimal sensor configuration
turned to be the one with evenly distributed cable. This result
is in part expected given the fact that when a section of the
cable is stationary, the model can not make use of tension
reading (expected to be constant) from those sensors to solve
for the system states.

The model is not without limitations. Some of the ob-
served inaccuracy can be attributed to the simplified friction
model. We expect that including friction models specifically
designed for cable-conduit transmissions [17] will allow for
more accurate predictions of engagement behavior as well
as capture trends resulting from other unmodeled frictional
effects. While the inclusion of more advanced friction mod-
els, such as the inclusion of viscous friction, was shown
in previous work to provide more accurate predictions of
engagement behavior of a physical system, the estimator
and model are robust enough to capture the desired behavior
of the system while minimizing model complexity. Further-
more, allowing for variable-length segments as a function
of their instantaneous radius of curvature will allow for
optimization of the computational complexity of the model.
This will be of benefit for wearable applications, where
regions of large curvature are usually only near human joints.

Future work involves integrating this model and available
sensor technologies into a state estimator to be used in
real-time control applications, and developing new sensing
techniques to further take advantage of the computational
capabilities now available.
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APPENDIX I: DERIVATION OF THE NUMBER OF
PERMUTATIONS FOR LINEAR ITERATIVE SOLVER

We here provide a derivation for the result described in
Sec. IIB, where the total number of feasible permutations of
velocity sign values within the cable n∗p, was determined as,

n∗p = 2N + 1 +
N−1∑
j=1

4j (8)

A cable can either be in mass motion or in partial motion.
Partial motion can result from motion on only one side
of the cable, or motion of both sides of the cable with a
stationary section of the cable in the center. Given a number
of segments N , there are 2N configurations for mass motion.
In fact, the direction of motion may not change at all (1
condition), or it may change within the cable at either of the
segments from 2 to N (N −1 conditions), and there are two
directions of motion. Also, there is one configuration where
the entire cable is stationary. The number of configurations
associated with partial motion are instead given by the
summation term included in (8), a described below.

In fact, there are 4(N − 1) configurations where only one
side of the cable is stationary. These configurations result
from the fact that there exist N -1 choices for the last moving
segment, with two choices for side of cable and direction of
motion of the moving section. Using a similar argument,
proceed to count recursively the number of configurations
where the two extremal sections of the cable are in motion,
and a central section is stationary. In fact, there are 4(N−2)
configurations where one central segment is stationary (N−1
choices for the stationary segment in the center, 2 choices for
direction of motion and side of cable with positive direction),
4(N − 3) choices where two segments are stationary, giving
the final summation term of 4*1 (1 choice for the entire
central section of the cable stationary – N − 2 segments –
with the two extremal segments moving in any combination
of direction). The combination of all the terms listed above
is given in (8).

APPENDIX II: CORRESPONDENCE BETWEEN SOLUTIONS
OF LINEAR AND NON-LINEAR SOLVERS

To begin proving the solution method, we first recall the
exact nature of the model equations. There are two types of
equations, those solely in tension variables, and those both
in tension and displacement variables.

We will start focusing on the n equations in n + 1
unknowns, the Ti states, that only include tension variables.
By our problem setup, we ensure we have at least one tension
known2. The n equations take the general form

0 = Tif(sign(mean(ui,t−ui,t−1, ui+1,t−ui+1,t−1)))−Ti+1

(9)

2We permit position-position to be an input as well. However, we can
proceed assuming we know at least one variable without losing generality
since we ensure our full system has enough constraints to fully define
the unknowns. Specifically, Position-Position provides information about
tensions through the position equation

where f is an arbitrary nonlinear function, Ti, ui,t are tension
and displacement state variables at the discrete time instant
t. The important feature of this functional form is that all
states appearing inside a nonlinear function are within a sign
function as well.

Given our specific functional form, and the nature of the
sign function, it’s apparent that Eqn. 9 can only take the
forms given by

0 = Tif(ki,j)− Ti+1 (10)

where ki,j is the value resulting from the sign function
having value j for segment i. Let us assume every possibility
for the arguments of the nonlinearity. For a two-node system,
the following options are admissible:

0 =f(1)Ti − Ti+1

0 =f(0)Ti − Ti+1

0 =f(−1)Ti − Ti+1

(11)

Choosing assumption j = [k1,j , k2,j , ..., kN,j ] from the set of
all possible assumptions spanning allowable permutations of
the sign functions, we place the equation in matrix form then
augment with the constraint from the known value, T1 = τ ,
to give us the linear system[

0
τ

]
=

[
f(k1,j) −1

1 0

]
·
[
T1
T2

]
(12)

which, for our system, has the straightforward solution for a
given assumption j

T1,j = τ

T2,j = f(k1,j)τ
(13)

We then refer this closed-form solution to our other set of
equations dealing in node displacements (Given in the second
half of Eqn. 11) to obtain node displacements corresponding
to assumption j, and use these displacements to calculate
values for the quantity we previously assumed the sign of,
segment velocity.

Now, we can compare our assumed values under assump-
tion j to the true value. We require only that for every
segment i, the assumed signs, ki,j equal their post calculated
values, ki,j = k+i,j . When this condition is true, we have
equivalence, for each i, of the nonlinear system equations
and our simplified system, since

f(sign(mean(ui,t − ui,t−1, ui+1,t − ui+1,t−1))) = f(ki,j)
(14)

This is a consequence of what the assumption means:
when we assume motion is toward the proximal end, friction
must act toward the distal end, and in the absence of other
forces, this means that tension increases over the segment.
Mathematically, this manifests itself by the exponential quan-
tity being greater than 1. When we assume motion toward
the distal end, the inverse is true and the argument to the
exponential being negative makes it output a quantity less
than one.

If our assumption was incorrect, the solution obtained for
the position equation would contradict with the information



about tensions gained via assumption, and the model will
produce node velocities that imply segment velocities whose
signs do not match those previously assumed.

To prove the uniqueness of our solution, assume a single
segment, bounded by two nodes, of some cable moving in the
positive direction at the current time instant (i.e. S1 = 1).
We measure a tension τ at the input, and a displacement
from 0 to x between the previous and current timestep at the
output. Let us incorrectly choose to assume the cable moved
in the negative direction (i.e S1 = −1). Then 1 > f(−1).
From our position equations, we have

0 = u1 − x+ τ
R

kcµ
(S1)(f(−1)− 1)

→ u1 = x− τD1,−1

(15)

where D is a positive constant combining all terms in the
tension coefficient, RSi

kcµ
(f(−1) − 1). We calculate the sign

of the velocity’s segment as

sign(v1) = sign(
1

2
(u1,t − u1,t−1) + (u2,t − u2,t−1))

sign(v1) = sign(((x− τD1,−1)− u1,t−1) + (x− 0))

sign(v1) = sign(2x− τD1,−1 − u1,t−1)

(16)

However, we can place a conservative upper bound on both
quantities on the right. Since the term τD1,−1 represents the
change in length due to the frictional losses in a segment, if
τD1,−1 ≥ x then that cable segment would be slack at the
current time, since the displacement of both nodes relative
to the segment is toward the middle. This is a contradiction
if τ 6= 0, the presence of that measurement means the cable
is not slack; and if τ = 0, this term still obeys our desired
bound (since it is identically zero). Fig. S1 visualizes this
relationship. Since Node 2’s position is known, when we
visualize this relationship, it becomes clear that violation of
the stated bound results in a segment length less than the
slack length. Therefore, it is true that τD1,−1 < x.

We could present a similar appeal to bound u1,t−1, but
there is a stronger argument available. Consider the state of

Slack Length

x

τD1,-1<x

Segment
Stretch

Slack Length

x

τD1,-1>x

Segment
Slack

Fig. S1. Visualization of the bounding of the quantity τD1,−1. When the
quantity exceeds the bound, the final length of the cable segment is less
than its rest length and is therefore slack. This contradicts the fact that τ
used to calculate this quantity is nonzero, and thus claims that the cable is
not slack.

the cable at the previous time: we have defined our coordinate
system such that u2,t−1 = 0. Let’s align this to a coordinate
system x̄ of the true position of a node with respect to
the conduit, rather than relative displacements, such that
x̄2,t−1 = 0 as well. In this coordinate system, x̄1,t−1 =
u1,t−1 − Lsegment, where Lsegment is the cable segment’s
slack length. The current length of the segment is expressed
as x̄2,t−1−x̄1,t−1 = (0)−(u1,t−1−Lsegment). For the cable
to be non-slack, we require that x̄2,t−1− x̄1,t−1 ≥ Lsegment.
Clearly this is only the case when u1,t−1 ≤ 0. Therefore,
with frames defined as we have here, the previous position of
Node 1, u1,t−1 is strictly nonpositive since the model cannot
produce slack segments. Fig. S2 visualizes this relationship.
Since choosing a different reference frame in this 1-D system
results only in offsetting all quantities by a constant, we can
extend this result to any frame without loss of generality.

Therefore, if we define γ ≡ τD1,−1 +u1,t−1 we can state
the inequality γ < x and simplify the equation above into

sign(v1) = sign(2x− γ)

sign(v1) = 1
(17)

This is a contradiction on the incorrectly made assumption
that sign(v1) = −1.

We can trivially reject the second possible incorrect as-
sumption of sign(v1) = 0, by appealing to the changes in
measured tensions and positions. Recall that when a segment
is not in motion, its state variables are retained from the
previous time step. However, our closed-form solution here
indicates that u1 = u2 if k1,j = 0. This is in general a
contradiction of its own, unless x = 0 and u1,t−1 = 0,
which alternatively contradicts our construction that the true
motion was in the positive direction.

Since the proof has symmetry with the opposite motion
case, we can be assured that this mathematical formulation
rejects incorrect assumptions made in either direction.

Additionally, since there can only be one true solution
of the non linear system, and we have equivalence of any
valid assumption scheme and the original non linear system,
we know that once we find a single valid solution, all other
solutions will be invalid and we can stop without considering
unchecked solutions.

0-Lsegment

x

u1,t-1<0 u1,t-1>0 Slack Length

Fig. S2. Visualization of the bounding of the quantity u1,t−1. If this
quantity were to take on any positive value, the length of the segment would
be less than its rest length at the previous time, and therefore slack.


