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Abstract— The long-term goal of this research is to develop
methods for training propulsion during walking using robotic
exoskeletons that customize their intervention based on the
response of an individual.

In this study, we first determined the feasibility of modeling
the relationship between propulsion mechanics and parameters
of a robotic intervention applied at the hip and knee joints
as a Gaussian process. Specifically, we used data obtained in
a previous experiment that used pulses of torque applied at
the hip and knee joint, at early and late stance, to establish
the relationship between a 4D control parameter space and the
resulting changes in hip extension and propulsive impulse at
multiple strides following intervention. We estimated Gaussian
models both at the group level and for each subject. Moreover,
we used the estimated subject-specific models to simulate virtual
human-in-the-loop optimization (HIL) experiments based on
Bayesian optimization to establish the optimal settings of
acquisition function and seed point selection methods.

The estimated subject-specific optimal conditions have large
between-subject variability in the kinetic component of propul-
sion mechanics (propulsive impulse), with only 31% of subjects
featuring a subject-specific optimal point in the surroundings
(within a sphere of radius 20% of each dimension’s range) of
the group-level optimal point. Instead, variability of the effects
on the kinematic component of propulsion (leg extension) were
smaller (75% of the subjects within the surroundings of the
group-optimal point). Virtual HIL experiments indicate that
expected improvement is the most effective acquisition method,
while no significant effect of seed point selection method was
observed. Our study suggests that individualized training may
be necessary for inducing desired effects in propulsive force
generation during walking.

I. INTRODUCTION

Robot assisted gait training is becoming a common method
for rehabilitation after neurological injury [1]. With the op-
tion of mechanical assistance to multiple joints, and several
open parameters for the timing of assistance at each joint,
controllers for gait training robots are defined by a large
number of parameters, each likely corresponding to different
outcomes of robotic training.

Propulsion is a primary subtask of walking [2]. Propulsion
is determined by two primary components: propulsive force
generation (provided primarily by ankle plantarflexor mus-
cles), and push-off posture [3]. Our previous work addressed
the relationship between robotic intervention and propulsion
mechanics [4], however our previous statistical modeling
methods were only valid at the group level. Subject-specific
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modeling is important to develop Human-In-the-Loop (HIL)
strategies focused on inducing desired effects in individual
subjects on specific features of propulsion mechanics.

To deal with the large number of parameters in robot-
assisted gait training, real-time optimization methods, or
Human-In-the-Loop optimization methods, have been intro-
duced [5]. In human-robot interaction, HIL methods are used
to identify parameters of a robot controller that are optimal in
the sense of a specific cost function. In general, this is done
by testing the value of the cost function, collecting data to
quantify the subject response, and then iteratively updating
the controller parameters in real-time to optimize the cost
function.

Several successful implementations of HIL optimization
exist, many using different algorithms [6]-[7], with one-
dimensional (1D) gradient descent [8], 4D Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [7], and Bayesian
optimization [6], [9] used in recent studies using exoskele-
tons supporting walking function. Most previous HIL opti-
mization experiments focused on reducing metabolic cost, a
factor with limited relevance in robot-assisted gait training,
since the major objective of gait training is to induce desired
changes in subjects’ motor coordination with the ultimate
goal of improving their motor function.

Moreover, on-going research about Bayesian optimization
is focused on improving performance based on hyperparam-
eter tuning [10], noise modeling [11], acquisition function
definition [12], [13], [14], and definition of seed points [6],
but it is currently unclear how these methods apply to HIL
optimization methods in biomechanics.

In this work, we use Gaussian process modeling to es-
tablish the subject-specific relationship between exoskeleton
control parameters and resulting features of gait describing
propulsion mechanics [3], [15], [16]. Via Guassian process
modeling, we establish the relationship between pulse torque
conditions and propulsion mechanics at multiple strides fol-
lowing pulsed torque application. We create a model of these
relationships both at the group and subject-specific level,
and evaluate how optimal conditions differ across subjects.
Moreover, we run simulations using the estimated subject-
specific Gaussian process models to establish convergence
in virtual HIL experiments based on Bayesian optimization.
Specifically, we establish the effect of two important factors,
seed point selection method and acquisition function, in the
speed and accuracy of convergence of Bayesian optimization
targeting propulsion mechanics.



II. METHODS
A. Data Collection

In previous research, sixteen healthy subjects participated
in an experiment based on the application of pulses of torque
to the hip and knee joint to modulate propulsion mechanics
[4]. Torque conditions were defined as a combination of three
parameters: pulse timing, hip pulse amplitude, and knee pulse
amplitude (Fig. 1). Two levels were used for pulse timing:
pulses were applied at 10% of the estimated gait cycle period
(early stance), or 45% of the estimated gait cycle period
(late stance). Levels for hip and knee pulse amplitude were
defined as either zero torque, flexion, or extension (amplitude
was set to 15 N-m for the hip joint, and 10 N-m for the
knee joint for both flexion and extension). Sixteen conditions
were tested, including all combinations of the factors above,
with the exclusion of the combination of zero knee and
hip torque. When pulses were applied to both joints, they
were applied simultaneously. Each condition was repeated
ten times per subject, with a random sequence. Pulses were
applied to the right leg during single strides, and spaced by
at least eight strides of no pulse application. Hip extension
(HE) and propulsive impulse (PI) were assessed at multiple
strides: prior to pulse application (stride -1), during pulse
application (stride 0), and during the three strides following
pulse application (stride 1, 2, 3). In previous work, our
group used a linear mixed model to establish the relationship
between factors including pulse pattern parameters (pulse
timing, amount of torque pulses applied to hip and knee
joints), subjects, and stride with propulsion mechanics, as
defined by HE and PI [4].

B. Gaussian Process Modeling

We start our analysis with modeling the relationship be-
tween pulse torque conditions and propulsion mechanics as a
Gaussian process. The dataset included 10 measurements of
each outcome measure (HE and PI) per subject, resulting in
a total of 160 data points per stride condition, and thus 800
data points per subject (12800 total measurements), referred
to as measurements ¥z and yp;. These measurements were
indexed as a function of factors pulse timing (1), amplitude
of hip and knee torque pulses (K and H), stride (.5), subject
(Sbj), and trial index (Rep), as

yHE:yHE<T7K7HaSaSbjaRep>7 (1)
yPI:yPI(T7K7HaSquj7Rep)a (2)

where T' € (10, 45), K € (-10, 0, 10), H € (-15, 0, 15),
Se(1,...,3),5e(,...,16), and Rep € (1, ..., 10).

We assumed that the Gaussian process model linking
control parameters with the outcome measures of propulsion
should follow the characteristics listed below:

e noise from outcome measures is normally distributed
with zero mean (e ~ N(0, 02));

« noise is independent of the human response;

« the distribution of the human response under repeated
exposure to the same pulse condition is normal;
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Fig. 1. Sixteen pulse torque conditions used in previous experiment [4].
Hip and Knee indicates amplitude of hip and knee pulse torque.

o the variance of the human response will be constant
under different pulse conditions.

1) Group-level Model Formulation: Data in variables (1)
and (2) were concatenated along the subject dimension
obtaining variables ¢y (T, K, H,S, Repe) for HE, and
yp1(T, K, H,S, Repg) for PI, with 160 repetitions available
for factor Repq (trial index for the group-level dataset).

The modified outcome measures (yyr and ypy) were
expressed as the sum of an unknown Gaussian process G,
and noise (€) as follows:

gHE(TvaHvsaRepG) = GHE'(TaKvHaS) +EHE1 (3)
QPI(T,K,H,S,RGPG):GP](T,K,H7S>+6}D]. “4)

The average in the measurements y was derived by average
value among 160 repetitions per each condition. Under
the zero-mean noise assumption, the average value of the
unknown Gaussian process G is equal to the average in the
measurements ¢. As such, the variance in the measurements
y are expressed as a sum of model variance (variations in
the true output arising from repeated exposure to the same
conditions aé), and measurement error (variations in the
measurements that are not associated to changes in the true
value of the output o). Since the noise is constant for all
values of pulse torque factors, the following relationships

hold true:
2 2

_ 2
O%ue = 9%Gur + Oenp» o)
2 2 2
O%p1r = 9Gpr T Ocpy- (6)

These relationships were used to specify values for the
model variance o2 used for the Gaussian process covariance
function. Values of O’%HE and ngz were calculated as the
maximum variance of §yp (T, K, H,S, Repg) along the
Repe dimension, i.e. the one resulting from the combination
of pulse parameters associated with the largest variance
across subjects and repetitions.



2) Group-level Model Estimation: A Gaussian process
model was estimated from eq. (3) and (4) to approximate
the mean and variance of data ¢,. In a Gaussian process, the
variance is defined based on a covariance (or kernel) function
ko(x;,2;), which defines how variance propagates within
a dimension, or in different dimensions of the model. In
this work, we defined the covariance function based on most
commonly used squared exponential covariance function as:

], )

where x is set of pulse torque input parameters, x =
(T,K,H,S), Zm = Tim—Tjm, lm,qo is the m-th length scale
hyperparameter (1, o € (Ir,lx,lm,ls)), « € (HE, PI).
(i,4) are indices corresponding to two arbitrary points in the
4D domain of the parameters. Using the covariance function
(7), the estimated mean value and variance of a point 1,
based on n measurements, are

4 =T
Z2>:nlm
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k(o 2y) = (03, — o2.)exp [—
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ta(Tni1) = o (Ko + 02 1) Yo 1m, (8)
0% (Tnt1) = ka(Tni1, Tny1) — Po (Ko + 02 1)7'p, (9)

Pa = [koz(l'n—i-lyxl) k(x(xn+17x2) . ka(xn—&-laxn)L

(10)
Yoim = a1 -+ Yam] ' (11)
and
ko(x1,21) ko(x1, )
K, = : (12)
ko(zn,x1) ko(Tn, Tn)

In our case, n 80, referring to the fact that all
observations (Y, 1.,,) are used to estimate a Gaussian process
model for Gy and Gp;. After a model is estimated given
the available n measurements, the estimated average value
1(Zn41) of all points in the domain is defined as the mean
function m(z) of input z.

As discussed above, (3) and (4) define the relationship
between control parameters and output using Gaussian pro-
cesses, i.e., Gyp(r) ~ GP(m(z), k(z,2’)), where k(x,z’)
is the kernel function. To ensure convexity, we assumed that
optimizing hyperparameters in Gaussian process as linear
regression problem. Since maximizing marginal likelihood
and minimizing sum of squared error is equivalent in linear
regression problem [17], the Gaussian processes was esti-
mated by solving the following least-squares problems in

TABLE I
LOWER AND UPPER BOUNDS FOR ESTIMATED NOISE STANDARD
DEVIATION AND FOUR LENGTH SCALE HYPERPARAMETERS

[ [[ 17 [% gaitcycle] [ Is [0 | Ix INm] [ [y [N-m] | Oc,, |
LB 12 0 6 7 0
UB 40 1 15 20 maX(Ugu)

terms of the hyperparameters [, , and 052&1

Find 1, o, afa s.t. minZ(gja’i — Gaolz:))% (13)
i=1

To align our fitted model with observations emerging from
our previous linear mixed model analysis, we set constraints
on the hyperparameters optimized in (13) (Table I).

3) Subject-specific Model Formulation: Similarly as the
group data, the outcome measures for each subject (ysp;, mE
and ysp;, pr) were expressed as the sum of an unknown
subject-specific Gaussian process Gsp;, and noise (esp;):

ysvj,aE = Gsvj,up(T, K,H,S) + €spj e, (14)

ysvj,pr = Gewjp1(T, K, H,S) + €svj p1- (15)

Measurements collected from each subject corresponded
to the ten repeated measurements, collected at all combina-
tions of the factors, resulting in 800 measurements. Similarly
as done in the group-level model, noise was assumed to
be constant for all values of pulse torque factors, hence
variances of data and processes are linked by:

2 2

— 2
UySbj,HE - aGSbj,HE + Ubej,HE’ (16)
2 2 2
ysvipr — 9Gsvipr + Ocsvjpr- a7

4) Subject-specific Model Estimation: Similarly as done
for group-level model estimation, a Gaussian process was
estimated from (14) and (15). The same kernel function
defined in (7) was used for the definition of the subject-
specific Gaussian models, with the difference that 05@ was
defined as the variance resulting from the combination of
pulse parameters with the largest within-subject variance
across the ten repetitions. Because it is usually impractical to
collect a sufficient number of observations from an individual
subject to properly estimate subject-specific length-scale
hyperparameters, we proceeded to specify for individuals the
same values of parameters [,, , estimated for the group. As
such, based on the same assumption as group level Gaussian
process, the subject-specific Gaussian processes G gpj,o Was
estimated solving the following least-squares problem:

: 2
Find oc_ -,

n
s.t. min Z(ySbj,a,z‘ — GSbj,a(xi))z. (18)

i=1
5) Quantifying Variability of Maxima in Subject-specific
Models: To quantify the variability of the optimal points
in the estimated subject-specific Gaussian process models
Gsyj,nE and Ggyj pr, we calculated the vectors x;‘bj as the
values of T', K, and H that maximized the estimated process
value at stride O for different subjects, and dz7, ; as the values
of T, K, an H that maximized the estimated change in
outcome measure between stride O and stride -1 for different
subjects. We thus established for how many subjects (n,,) the
subject-specific optimal points fell within a sphere of radius
r centered around the optimal points estimated using the
group-level model (z* and dx*). The optimal point analysis
was conducted on the non-dimensional domain where all
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Fig. 2. Gaussian process model of group-level Hip Extension (HE) data.
Pulse factors are indexed by the horizontal panel coordinate (hip torque),
vertical panel coordinate (knee torque), = axis within a panel (pulse timing).
The two lines in each panel indicate different levels of factor stride. Red
dashed line: model at the stride before intervention (stride —1); blue line:
model at the stride of intervention. Hip and Knee indicate the amplitude
of torque pulses applied to hip joint and knee joint respectively. Extension
torques are positive in hip and knee. At each point, shaded areas extend one
standard deviation beyond the mean.

coordinates are comprised between 0 and 1 using a min-
max normalization. The functions n,,(r) were compared to
establish variability of maxima in the two outcome measures.

C. Bayesian Optimization Simulation

Virtual HIL experiments were conducted to determine
the convergence of Bayesian optimization for each subject-
specific Gaussian process model, under different settings of
the optimization algorithm. Each subject-specific Gaussian
process model was assumed to be the human response (i.e.,
data generating process) when pulse torque assistance is
applied. Three robotic control parameters (7, K, and H) are
used as input parameters. In all conditions, the optimization
algorithm did not have any knowledge about the subject-
specific model at the beginning of each optimization. Two
algorithm components were tested using a factorial design:
i) acquisition function (three levels), and ii) and seed point
selection method (three levels) are evaluated in terms of
the number of iterations required for convergence. In total,
the 9 combinations of the two components were tested
in simulation, with twenty simulations repeated for each
combination for each subject.

1) Acquisition Function: Expected Improvement (EI),
Probability of Improvement (Pol), and Lower Confidence
Bound (LCB) were used in this study. EI finds the next point
which maximizes mean value improvement. This expected
improvement is defined as

El(z) = E[max(0,m(z") — f(x))], (19)

where x is the best point from data points explored so far
and m(2") is mean value of Gaussian process model value
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Fig. 3. Gaussian process model of group-level Propulsive Impulse (PI)
data.

at point 2T Pol finds the next point which has the maximum
probability of improvement as

Pol(z) = Plmaz(f(z) < m(xt) — )],

where ~y is margin. The LCB acquisition function selects the
next point which maximizes the lower bound as

—~

(20)

LCB(z) = mazx(m(z) — 8- 04), 21

where o, is standard deviation at point z, and 8 > 0 is a
heuristic trade-off (8 = 2 in this work).

2) Seed Point Selection Method: Three seed point selec-
tion methods were used in this work. In the first method
(divide), eight points are selected by dividing the parameter
search space in eight regions (the domain for each parameter
is divided into two equal parts), and then each of the eight
points are selected randomly within each of the eight regions.
In the second method (random), eight points are randomly
defined in the search space. In the third method (optimal), the
set of eight seed points is composed of seven random points
in the search space, plus the optimal point of the group-level
Gaussian process model.

3) Virtual Optimization: Virtual Bayesian optimization
was conducted to maximize HE and PI at the stride of pulse
application, and the outcome measure was defined as the
number of iterations n, and n, required to achieve one of
two convergence criteria.

If Z,p¢,; is the normalized coordinates optimal point es-
timated via virtual optimization after ¢ iterations, and .
is the known optimal point for that subject, n, was defined
as the minimum value of 7 where the normalized difference
Zqifr between the two quantities is smaller than 10%, where

3 ~ 2

1 Zopt,i — Lopt )
Taiffi = |7 D | B ) (22)
W 3 (pq,mam - pq,min

q=1

where p is the range of each component of z.
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Fig. 4. Distribution of the optimal points of subject-specific models (circles)
and of the group-level model (asterisks) for HE. The 20% range is indicated
by a sphere centered around the optimal point of the group-level model.

The second convergence criterion was based on the value
of the estimated outcome after a certain number of iterations.
Specifically, n, was defined as the minimum number of
iterations where the normalized estimation error fg;ys(;)
is smaller than 5% of the known subject-specific model
maximum G o (2*), where

f(@i) = Gapjale*)
Gsbj,a(x*) ’

All simulations were run for 80 iterations. For each crite-
rion, if no convergence was achieved within 80 simulations,
n was set to 80.

Four two-way ANOVA, one for each outcome measure
(combination of convergence criterion — n(xz) and n(y))
— and propulsive metric — HE and PI — were conducted
to quantify the effects of the two factors (i.e., acquisition
function, three levels, and seed point selection methods, three
levels) on convergence speed.

faigr(x:) = (23)

ITII. RESULTS
A. Gaussian Process Modeling

1) Group-level Model: Results for group-level Gaussian
process modeling are shown in Fig. 2 and Fig. 3. The process
variances o2 calculated from group-level propulsion were
equal to 4.31 deg? for HE and 2.12 N2s2. Estimated noise
standard deviation and hyperparameter values are listed in
Table II.

2) Subject-specific Results: The means of the distribution
of subject-specific process variances aéw were equal to
69.04 deg? and 33.86 N%s? for HE and PI, respectively. The

TABLE II
LENGTH SCALE HYPERPARAMETER VALUES AND ESTIMATED NOISE
STANDARD DEVIATION

[ [ Ir [% gaitcycle] [ Is[1 [ lxg [Nm] [ Ig [Nm] | oo, |
HE 26.71 0.73 6.17 7.43 0.21 deg
PI 12.18 0.50 8.66 11.73 0.78 Ns
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Fig. 5. Distribution of the points of sixteen subject-specific models (circles)
and of the group-level model (asterisk dots) for PI. 20 % difference are
indicated by grid sphere around optimal point of group-level model.

number of optimal points for subject-specific models within
percentage difference of the group-level model is shown in
Fig. 6. The optimal points are for maximal outcomes during
stride 0 and maximum change in outcome (between stride 0
and stride -1) for each subject-specific model. The optimal
points for the subject-specific models are shown in Fig. 4
and Fig. 5 for HE and PI, respectively. 12 subject-specific
Gaussian process models have optimal points that have a
percentage difference of less than 20 % compared to the
optimal point of group-level Gaussian process model for
HE (Fig. 4). For propulsive impulse case (Fig. 5), only 5
optimal points of subject-specific Gaussian process model
were located within 20% difference from the optimal point
of group-level Gaussian process model. For PI, the minority
of subjects exhibited subject-specific optimal points within
a reasonable neighborhood of the group-level optimal point.
In fact, a larger number of optimal points of subject-specific
models in PI case were located in late stance (45 %) than
early stance (10 %) where optimal point of group-level model
was located.

B. Bayesian Optimization Simulation

Virtual Bayesian optimization experiments achieved con-
vergence within 80 iterations in 80.58 % of runs (94.40+6.06
% when using EI, 85.57+£13.94 % when using Pol, 61.77+
26.66 % when using LCB). The results of the ANOVA
analysis are reported in Table III and Fig. 7. Based on the
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ANOVA analysis, the seed point selection method had no
significant effect on the outcome measure in any condition.
Instead, the choice of an acquisition function showed to
be associated with the number of iterations required for
convergence (p < 0.001 in all conditions tested). Specif-
ically, EI was the only acquisition function type that was
estimated to have negative coefficient in the linear model
when using random method and Pol as neutral level of the
factors, indicating that its effect is to decrease the number
of iterations to obtain convergence. Post-hoc tests were
conducted to distinguish the significant difference among
groups under different combinations of acquisition functions
and seed point selection methods (Fig. 7). Post-hoc tests
indicate that within the same group of acquisition function
types, there exist no significant differences (p > 0.001 for all
comparisons). Moreover, post-hoc tests comparing different
acquisition functions showed that EI was significantly better
than LCB in all conditions tested, and afforded a significantly
greater accuracy in identifying optimal control parameters
compared to Pol.

TABLE III
Two WAY ANOVA TEST RESULTS FOR NUMBER OF ITERATIONS TO
ESTABLISH CONVERGENCE

HE Point location (HE)

Source Fratio [ Prob> [F] Fratio [ Prob> [F]
Acq. func. 27.9950 < 0.001 150.1179 < 0.001
Seed pt. 0.0702 0.9322 0.2270 0.7969
Interaction 0.2350 0.9187 1.2166 0.3017
PI Point location (PI)

Source Fratio [ Prob> [F]| F ratio [ Prob> [F]|

Acq. func. 100.9153 < 0.001 137.0745 < 0.001
Seed pt. 0.2063 0.8136 0.1297 0.8784
Interaction 0.1021 0.9818 0.5217 0.7198

IV. DISCUSSION AND CONCLUSIONS

In this study, we determined the feasibility of using Gaus-
sian process modeling to describe the relationship between
propulsion mechanics and parameters of an intervention de-
livered by a robotic exoskeleton (hip torque pulse amplitude,
knee torque pulse amplitude, and timing of the pulses), at
multiple strides following intervention. To estimate parame-
ters of a Gaussian process, we estimated the noise variance
and tuned the hyperparameters of a Gaussian process de-
scribing the response at the group level. Based on the group-
level Gaussian process model, we estimated subject-specific
models and quantified variability of optimal conditions of
these subject-specific models. Moreover, we used the subject-
specific models as data-generating process for virtual HIL
Bayesian optimization simulations. In the virtual Bayesian
optimizations, we established how many iterations would be
required for convergence of a hypothetical experiment, and
quantified the effects of different acquisition functions and
seed point selection methods on convergence speed.

The results of group-level Gaussian process model (Fig. 2
and Fig. 3) demonstrate that it is feasible to construct a model
between the 4D space of control parameters and outcomes
using a Gaussian process with estimated noise variance. In
agreement with the results of the previous study [4], hip
extension torque increases HE in late stance but decreases
HE in early stance; knee extension and hip extension pulse
torque increase PI in early stance; knee extension pulse
torque decreases PI in late stance. The variability of optimal
points for subject-specific models is moderate in HE and high
in PI. Specifically for the PI case, the maxima of subject-
specific models fell within 20% normalized distance from the
optimal point for group-level model only in the minority of
cases (5/16). This indicates that the optimal point for group-
level model is likely to be distant from the optimal point for
subject-specific models. In this case, in fact, optimal points
for subject-specific models are separated in two clusters of
optimal points in early and late stance. Our analysis for HE
highlights a smaller variability of subject-specific optimal
conditions (12/16 subject-specific optimal points within a
20% normalized distance from the group-optimal point). This
observation is more aligned with previous work targeting
reduction in metabolic cost, where a similar variability of
subject-specific optimal points was observed [6].

In contrast with previous research selecting seed points
by dividing the search space in N regions and randomly
selecting seed points from all the N regions [6], seed point
selection method is not estimated to make a significant
difference in a single pulse torque application experiment
(p > 0.12 for the different conditions tested, Table III).
This result is consistent in both HE and PI cases. However,
the type of acquisition function used for optimization did
significantly contribute to the number of iterations required
to achieve convergence in all cases of outcome measures
(HE and PI) and point locations (p < 0.001). Since the
interaction term between types of acquisition function and
seed point selection methods was not significant (p > 0.1



for all conditions tested), the optimal acquisition function (in
terms of convergence speed) of HIL Bayesian optimization
is estimated to be EI. Therefore, our expectation toward
HIL Bayesian optimization setting is that EI will require the
smallest number for iterations for convergence regardless of
seed point selection methods.

This study has limitations. First, human data is noisy, and
the structure of non-eliminated noise is reflected in the data.
As shown in Fig. 2 and Fig. 3, the model at the stride before
intervention (red dashed line) have changes with control
input parameters, which is impossible as a change in output
cannot anticipate a change in input. This result indicates that
our optimization procedure for estimating hyperparameters
and noise variance may need to be improved, or that the
relationship between input parameters and improvement of
outcome measures (HE and PI) should be considered to
cancel out noise from stride at intervention (stride 0) and
stride before intervention (stride -1) Gaussian process mod-
els. Furthermore, since multiple repeated measurements are
taken at different time points, human response may change
over time. As such, the use of a covariance function that
effectively reflects dynamic changes [18] in subject response
may provide a better prediction of human response. Also,
Bayesian optimization simulation result will be consistent
with different condition of maximum number of iteration.
As shown in Fig. 7, using EI as acquisition function will
result smallest number of iterations to establish convergence
compare to other acquisition functions (Pol and LCB) even
when 40 iterations are considered to be maximum number
of iterations. In this study, 80 iterations were considered,
which is realistic for this specific application based on single
stride outcome evaluation, but likely not realistic for HIL
applications involving minutes of evaluation per condition.

Overall, our study identified a new method based on
Gaussian process modeling to estimates the relationship
between exoskeleton control parameters and specific features
of propulsion mechanics, and established the effects of seed
point selection method and acquisition function types in
number of iterations for convergence. These results provide
a foundation for planning new HIL robotic gait training
methods that target propulsion mechanics.
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