

Using Bayesian Optimization to Identify Optimal Exoskeleton Parameters Targeting Propulsion Mechanics: A Simulation Study

GilHwan Kim and Fabrizio Sergi

Abstract—The long-term goal of this research is to develop methods for training propulsion during walking using robotic exoskeletons that customize their intervention based on the response of an individual.

In this study, we first determined the feasibility of modeling the relationship between propulsion mechanics and parameters of a robotic intervention applied at the hip and knee joints as a Gaussian process. Specifically, we used data obtained in a previous experiment that used pulses of torque applied at the hip and knee joint, at early and late stance, to establish the relationship between a 4D control parameter space and the resulting changes in hip extension and propulsive impulse at multiple strides following intervention. We estimated Gaussian models both at the group level and for each subject. Moreover, we used the estimated subject-specific models to simulate virtual human-in-the-loop optimization (HIL) experiments based on Bayesian optimization to establish the optimal settings of acquisition function and seed point selection methods.

The estimated subject-specific optimal conditions have large between-subject variability in the kinetic component of propulsion mechanics (propulsive impulse), with only 31% of subjects featuring a subject-specific optimal point in the surroundings (within a sphere of radius 20% of each dimension's range) of the group-level optimal point. Instead, variability of the effects on the kinematic component of propulsion (leg extension) were smaller (75% of the subjects within the surroundings of the group-optimal point). Virtual HIL experiments indicate that expected improvement is the most effective acquisition method, while no significant effect of seed point selection method was observed. Our study suggests that individualized training may be necessary for inducing desired effects in propulsive force generation during walking.

I. INTRODUCTION

Robot assisted gait training is becoming a common method for rehabilitation after neurological injury [1]. With the option of mechanical assistance to multiple joints, and several open parameters for the timing of assistance at each joint, controllers for gait training robots are defined by a large number of parameters, each likely corresponding to different outcomes of robotic training.

Propulsion is a primary subtask of walking [2]. Propulsion is determined by two primary components: propulsive force generation (provided primarily by ankle plantarflexor muscles), and push-off posture [3]. Our previous work addressed the relationship between robotic intervention and propulsion mechanics [4], however our previous statistical modeling methods were only valid at the group level. Subject-specific

G. Kim is with the Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; secretgh@udel.edu

F. Sergi is with the Department of Biomedical Engineering, University of Delaware, Newark DE, 19713, USA; fabs@udel.edu

*This work is supported in part by NSF-CMMI-1934650 and in part by NSF-CBET-1638007.

modeling is important to develop Human-In-the-Loop (HIL) strategies focused on inducing desired effects in individual subjects on specific features of propulsion mechanics.

To deal with the large number of parameters in robot-assisted gait training, real-time optimization methods, or Human-In-the-Loop optimization methods, have been introduced [5]. In human-robot interaction, HIL methods are used to identify parameters of a robot controller that are optimal in the sense of a specific cost function. In general, this is done by testing the value of the cost function, collecting data to quantify the subject response, and then iteratively updating the controller parameters in real-time to optimize the cost function.

Several successful implementations of HIL optimization exist, many using different algorithms [6]-[7], with one-dimensional (1D) gradient descent [8], 4D Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [7], and Bayesian optimization [6], [9] used in recent studies using exoskeletons supporting walking function. Most previous HIL optimization experiments focused on reducing metabolic cost, a factor with limited relevance in robot-assisted gait training, since the major objective of gait training is to induce desired changes in subjects' motor coordination with the ultimate goal of improving their motor function.

Moreover, on-going research about Bayesian optimization is focused on improving performance based on hyperparameter tuning [10], noise modeling [11], acquisition function definition [12], [13], [14], and definition of seed points [6], but it is currently unclear how these methods apply to HIL optimization methods in biomechanics.

In this work, we use Gaussian process modeling to establish the subject-specific relationship between exoskeleton control parameters and resulting features of gait describing propulsion mechanics [3], [15], [16]. Via Gaussian process modeling, we establish the relationship between pulse torque conditions and propulsion mechanics at multiple strides following pulsed torque application. We create a model of these relationships both at the group and subject-specific level, and evaluate how optimal conditions differ across subjects. Moreover, we run simulations using the estimated subject-specific Gaussian process models to establish convergence in virtual HIL experiments based on Bayesian optimization. Specifically, we establish the effect of two important factors, seed point selection method and acquisition function, in the speed and accuracy of convergence of Bayesian optimization targeting propulsion mechanics.

II. METHODS

A. Data Collection

In previous research, sixteen healthy subjects participated in an experiment based on the application of pulses of torque to the hip and knee joint to modulate propulsion mechanics [4]. Torque conditions were defined as a combination of three parameters: pulse timing, hip pulse amplitude, and knee pulse amplitude (Fig. 1). Two levels were used for pulse timing: pulses were applied at 10% of the estimated gait cycle period (early stance), or 45% of the estimated gait cycle period (late stance). Levels for hip and knee pulse amplitude were defined as either zero torque, flexion, or extension (amplitude was set to 15 N·m for the hip joint, and 10 N·m for the knee joint for both flexion and extension). Sixteen conditions were tested, including all combinations of the factors above, with the exclusion of the combination of zero knee and hip torque. When pulses were applied to both joints, they were applied simultaneously. Each condition was repeated ten times per subject, with a random sequence. Pulses were applied to the right leg during single strides, and spaced by at least eight strides of no pulse application. Hip extension (HE) and propulsive impulse (PI) were assessed at multiple strides: prior to pulse application (stride -1), during pulse application (stride 0), and during the three strides following pulse application (stride 1, 2, 3). In previous work, our group used a linear mixed model to establish the relationship between factors including pulse pattern parameters (pulse timing, amount of torque pulses applied to hip and knee joints), subjects, and stride with propulsion mechanics, as defined by HE and PI [4].

B. Gaussian Process Modeling

We start our analysis with modeling the relationship between pulse torque conditions and propulsion mechanics as a Gaussian process. The dataset included 10 measurements of each outcome measure (HE and PI) per subject, resulting in a total of 160 data points per stride condition, and thus 800 data points per subject (12800 total measurements), referred to as measurements y_{HE} and y_{PI} . These measurements were indexed as a function of factors pulse timing (T), amplitude of hip and knee torque pulses (K and H), stride (S), subject (Sbj), and trial index (Rep), as

$$y_{HE} = y_{HE}(T, K, H, S, Sbj, Rep), \quad (1)$$

$$y_{PI} = y_{PI}(T, K, H, S, Sbj, Rep), \quad (2)$$

where $T \in (10, 45)$, $K \in (-10, 0, 10)$, $H \in (-15, 0, 15)$, $S \in (-1, \dots, 3)$, $Sbj \in (1, \dots, 16)$, and $Rep \in (1, \dots, 10)$.

We assumed that the Gaussian process model linking control parameters with the outcome measures of propulsion should follow the characteristics listed below:

- noise from outcome measures is normally distributed with zero mean ($\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$);
- noise is independent of the human response;
- the distribution of the human response under repeated exposure to the same pulse condition is normal;

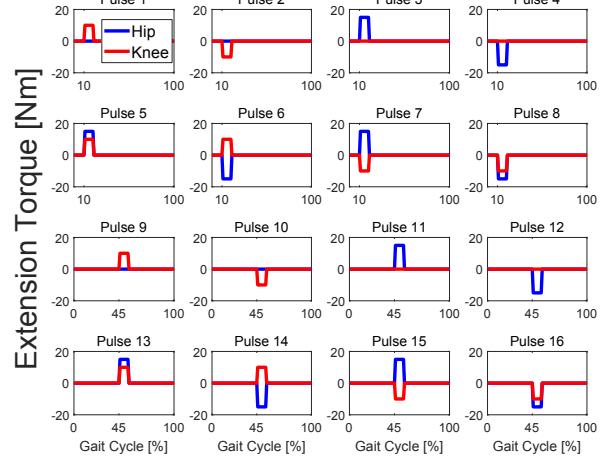


Fig. 1. Sixteen pulse torque conditions used in previous experiment [4]. Hip and Knee indicates amplitude of hip and knee pulse torque.

- the variance of the human response will be constant under different pulse conditions.

1) *Group-level Model Formulation:* Data in variables (1) and (2) were concatenated along the subject dimension obtaining variables $\tilde{y}_{HE}(T, K, H, S, Rep_G)$ for HE, and $\tilde{y}_{PI}(T, K, H, S, Rep_G)$ for PI, with 160 repetitions available for factor Rep_G (trial index for the group-level dataset).

The modified outcome measures (\tilde{y}_{HE} and \tilde{y}_{PI}) were expressed as the sum of an unknown Gaussian process G , and noise (ϵ) as follows:

$$\tilde{y}_{HE}(T, K, H, S, Rep_G) = G_{HE}(T, K, H, S) + \epsilon_{HE}, \quad (3)$$

$$\tilde{y}_{PI}(T, K, H, S, Rep_G) = G_{PI}(T, K, H, S) + \epsilon_{PI}. \quad (4)$$

The average in the measurements \tilde{y} was derived by average value among 160 repetitions per each condition. Under the zero-mean noise assumption, the average value of the unknown Gaussian process G is equal to the average in the measurements \tilde{y} . As such, the variance in the measurements \tilde{y} are expressed as a sum of model variance (variations in the true output arising from repeated exposure to the same conditions σ_G^2), and measurement error (variations in the measurements that are not associated to changes in the true value of the output σ_ϵ^2). Since the noise is constant for all values of pulse torque factors, the following relationships hold true:

$$\sigma_{\tilde{y}_{HE}}^2 = \sigma_{G_{HE}}^2 + \sigma_{\epsilon_{HE}}^2, \quad (5)$$

$$\sigma_{\tilde{y}_{PI}}^2 = \sigma_{G_{PI}}^2 + \sigma_{\epsilon_{PI}}^2. \quad (6)$$

These relationships were used to specify values for the model variance σ_G^2 used for the Gaussian process covariance function. Values of $\sigma_{\tilde{y}_{HE}}^2$ and $\sigma_{\tilde{y}_{PI}}^2$ were calculated as the maximum variance of $\tilde{y}_{HE}(T, K, H, S, Rep_G)$ along the Rep_G dimension, i.e. the one resulting from the combination of pulse parameters associated with the largest variance across subjects and repetitions.

2) *Group-level Model Estimation:* A Gaussian process model was estimated from eq. (3) and (4) to approximate the mean and variance of data \tilde{y}_α . In a Gaussian process, the variance is defined based on a covariance (or kernel) function $k_\alpha(x_i, x_j)$, which defines how variance propagates within a dimension, or in different dimensions of the model. In this work, we defined the covariance function based on most commonly used squared exponential covariance function as:

$$k_\alpha(x_i, x_j) = (\sigma_{\tilde{y}_\alpha}^2 - \sigma_{\epsilon_\alpha}^2) \exp \left[- \sum_{m=1}^4 \frac{\tilde{x}_m^\top \tilde{x}_m}{2 * l_{m,\alpha}^2} \right], \quad (7)$$

where x is set of pulse torque input parameters, $x = (T, K, H, S)$, $\tilde{x}_m = x_{im} - x_{jm}$, $l_{m,\alpha}$ is the m -th length scale hyperparameter ($l_{m,\alpha} \in (l_T, l_K, l_H, l_S)$), $\alpha \in (HE, PI)$. (i, j) are indices corresponding to two arbitrary points in the 4D domain of the parameters. Using the covariance function (7), the estimated mean value and variance of a point x_{n+1} , based on n measurements, are

$$\mu_\alpha(x_{n+1}) = p_\alpha^\top (K_\alpha + \sigma_{\epsilon_\alpha}^2 I)^{-1} Y_{\alpha,1:n}, \quad (8)$$

$$\sigma_\alpha^2(x_{n+1}) = k_\alpha(x_{n+1}, x_{n+1}) - p_\alpha^\top (K_\alpha + \sigma_{\epsilon_\alpha}^2 I)^{-1} p, \quad (9)$$

$$p_\alpha = [k_\alpha(x_{n+1}, x_1) \ k_\alpha(x_{n+1}, x_2) \ \dots \ k_\alpha(x_{n+1}, x_n)], \quad (10)$$

$$Y_{\alpha,1:n} = [y_{\alpha,1} \ \dots \ y_{\alpha,n}]^\top, \quad (11)$$

and

$$K_\alpha = \begin{bmatrix} k_\alpha(x_1, x_1) & \dots & k_\alpha(x_1, x_n) \\ \vdots & \vdots & \vdots \\ k_\alpha(x_n, x_1) & \dots & k_\alpha(x_n, x_n) \end{bmatrix}. \quad (12)$$

In our case, $n = 80$, referring to the fact that all observations ($Y_{\alpha,1:n}$) are used to estimate a Gaussian process model for G_{HE} and G_{PI} . After a model is estimated given the available n measurements, the estimated average value $\mu(x_{n+1})$ of all points in the domain is defined as the mean function $m(x)$ of input x .

As discussed above, (3) and (4) define the relationship between control parameters and output using Gaussian processes, i.e., $G_{HE}(x) \sim \mathcal{GP}(m(x), k(x, x'))$, where $k(x, x')$ is the kernel function. To ensure convexity, we assumed that optimizing hyperparameters in Gaussian process as linear regression problem. Since maximizing marginal likelihood and minimizing sum of squared error is equivalent in linear regression problem [17], the Gaussian processes was estimated by solving the following least-squares problems in

TABLE I
LOWER AND UPPER BOUNDS FOR ESTIMATED NOISE STANDARD
DEVIATION AND FOUR LENGTH SCALE HYPERPARAMETERS

	l_T [% gait cycle]	l_S [l]	l_K [N·m]	l_H [N·m]	σ_{ϵ_α}
LB	12	0	6	7	0
UB	40	1	15	20	$\max(\sigma_{\tilde{y}_\alpha})$

terms of the hyperparameters $l_{m,\alpha}$ and $\sigma_{\epsilon_\alpha}^2$:

$$\text{Find } l_{m,\alpha}, \sigma_{\epsilon_\alpha}^2 \text{ s.t. } \min \sum_{i=1}^n (\tilde{y}_{\alpha,i} - G_\alpha(x_i))^2. \quad (13)$$

To align our fitted model with observations emerging from our previous linear mixed model analysis, we set constraints on the hyperparameters optimized in (13) (Table I).

3) *Subject-specific Model Formulation:* Similarly as the group data, the outcome measures for each subject ($y_{Sbj,HE}$ and $y_{Sbj,PI}$) were expressed as the sum of an unknown subject-specific Gaussian process G_{Sbj} , and noise (ϵ_{Sbj}):

$$y_{Sbj,HE} = G_{Sbj,HE}(T, K, H, S) + \epsilon_{Sbj,HE}, \quad (14)$$

$$y_{Sbj,PI} = G_{Sbj,PI}(T, K, H, S) + \epsilon_{Sbj,PI}. \quad (15)$$

Measurements collected from each subject corresponded to the ten repeated measurements, collected at all combinations of the factors, resulting in 800 measurements. Similarly as done in the group-level model, noise was assumed to be constant for all values of pulse torque factors, hence variances of data and processes are linked by:

$$\sigma_{y_{Sbj,HE}}^2 = \sigma_{G_{Sbj,HE}}^2 + \sigma_{\epsilon_{Sbj,HE}}^2, \quad (16)$$

$$\sigma_{y_{Sbj,PI}}^2 = \sigma_{G_{Sbj,PI}}^2 + \sigma_{\epsilon_{Sbj,PI}}^2. \quad (17)$$

4) *Subject-specific Model Estimation:* Similarly as done for group-level model estimation, a Gaussian process was estimated from (14) and (15). The same kernel function defined in (7) was used for the definition of the subject-specific Gaussian models, with the difference that $\sigma_{\tilde{y}_\alpha}^2$ was defined as the variance resulting from the combination of pulse parameters with the largest within-subject variance across the ten repetitions. Because it is usually impractical to collect a sufficient number of observations from an individual subject to properly estimate subject-specific length-scale hyperparameters, we proceeded to specify for individuals the same values of parameters $l_{m,\alpha}$ estimated for the group. As such, based on the same assumption as group level Gaussian process, the subject-specific Gaussian processes $G_{Sbj,\alpha}$ was estimated solving the following least-squares problem:

$$\text{Find } \sigma_{\epsilon_{Sbj,\alpha}}^2 \text{ s.t. } \min \sum_{i=1}^n (y_{Sbj,\alpha,i} - G_{Sbj,\alpha}(x_i))^2. \quad (18)$$

5) *Quantifying Variability of Maxima in Subject-specific Models:* To quantify the variability of the optimal points in the estimated subject-specific Gaussian process models $G_{Sbj,HE}$ and $G_{Sbj,PI}$, we calculated the vectors x_{sbj}^* as the values of T , K , and H that maximized the estimated process value at stride 0 for different subjects, and δx_{sbj}^* as the values of T , K , and H that maximized the estimated change in outcome measure between stride 0 and stride -1 for different subjects. We thus established for how many subjects (n_w) the subject-specific optimal points fell within a sphere of radius r centered around the optimal points estimated using the group-level model (x^* and δx^*). The optimal point analysis was conducted on the non-dimensional domain where all

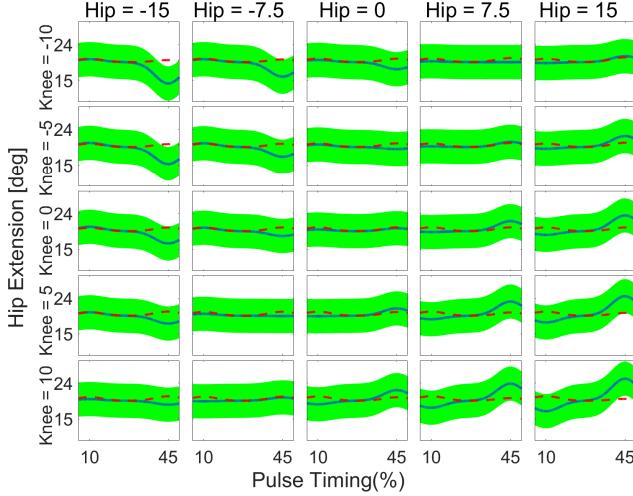


Fig. 2. Gaussian process model of group-level Hip Extension (HE) data. Pulse factors are indexed by the horizontal panel coordinate (hip torque), vertical panel coordinate (knee torque), x axis within a panel (pulse timing). The two lines in each panel indicate different levels of factor stride. Red dashed line: model at the stride before intervention (stride -1); blue line: model at the stride of intervention. Hip and Knee indicate the amplitude of torque pulses applied to hip joint and knee joint respectively. Extension torques are positive in hip and knee. At each point, shaded areas extend one standard deviation beyond the mean.

coordinates are comprised between 0 and 1 using a min-max normalization. The functions $n_w(r)$ were compared to establish variability of maxima in the two outcome measures.

C. Bayesian Optimization Simulation

Virtual HIL experiments were conducted to determine the convergence of Bayesian optimization for each subject-specific Gaussian process model, under different settings of the optimization algorithm. Each subject-specific Gaussian process model was assumed to be the human response (i.e., data generating process) when pulse torque assistance is applied. Three robotic control parameters (T , K , and H) are used as input parameters. In all conditions, the optimization algorithm did not have any knowledge about the subject-specific model at the beginning of each optimization. Two algorithm components were tested using a factorial design: *i*) acquisition function (three levels), and *ii*) and seed point selection method (three levels) are evaluated in terms of the number of iterations required for convergence. In total, the 9 combinations of the two components were tested in simulation, with twenty simulations repeated for each combination for each subject.

1) *Acquisition Function*: Expected Improvement (EI), Probability of Improvement (PoI), and Lower Confidence Bound (LCB) were used in this study. EI finds the next point which maximizes mean value improvement. This expected improvement is defined as

$$EI(x) = \mathbb{E}[\max(0, m(x^+) - f(x))], \quad (19)$$

where x^+ is the best point from data points explored so far and $m(x^+)$ is mean value of Gaussian process model value

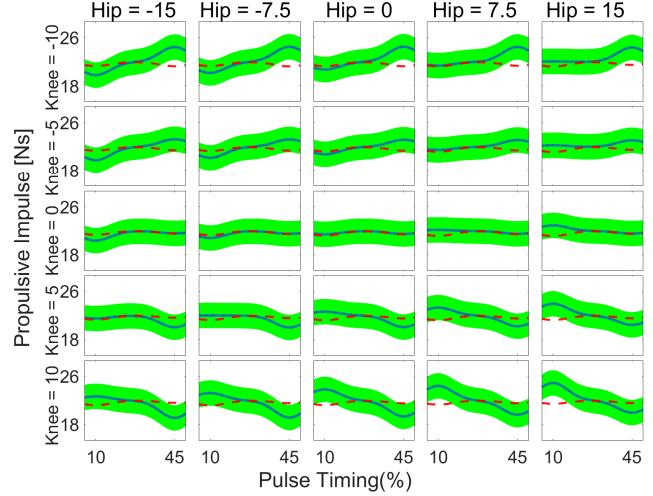


Fig. 3. Gaussian process model of group-level Propulsive Impulse (PI) data.

at point x^+ . PoI finds the next point which has the maximum probability of improvement as

$$PoI(x) = \mathbb{P}[\max(f(x) < m(x^+) - \gamma)], \quad (20)$$

where γ is margin. The LCB acquisition function selects the next point which maximizes the lower bound as

$$LCB(x) = \max(m(x) - \beta \cdot \sigma_x), \quad (21)$$

where σ_x is standard deviation at point x , and $\beta > 0$ is a heuristic trade-off ($\beta = 2$ in this work).

2) *Seed Point Selection Method*: Three seed point selection methods were used in this work. In the first method (*divide*), eight points are selected by dividing the parameter search space in eight regions (the domain for each parameter is divided into two equal parts), and then each of the eight points are selected randomly within each of the eight regions. In the second method (*random*), eight points are randomly defined in the search space. In the third method (*optimal*), the set of eight seed points is composed of seven random points in the search space, plus the optimal point of the group-level Gaussian process model.

3) *Virtual Optimization*: Virtual Bayesian optimization was conducted to maximize HE and PI at the stride of pulse application, and the outcome measure was defined as the number of iterations n_x and n_y required to achieve one of two convergence criteria.

If $\hat{x}_{opt,i}$ is the normalized coordinates optimal point estimated via virtual optimization after i iterations, and x_{opt} is the known optimal point for that subject, n_x was defined as the minimum value of i where the normalized difference x_{diff} between the two quantities is smaller than 10%, where

$$x_{diff,i} = \sqrt{\frac{1}{3} \sum_{q=1}^3 \left(\frac{\hat{x}_{opt,i} - x_{opt}}{p_{q,max} - p_{q,min}} \right)^2}, \quad (22)$$

where p is the range of each component of x .

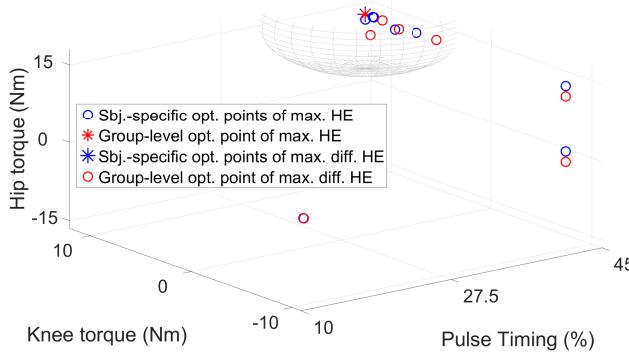


Fig. 4. Distribution of the optimal points of subject-specific models (circles) and of the group-level model (asterisks) for HE. The 20% range is indicated by a sphere centered around the optimal point of the group-level model.

The second convergence criterion was based on the value of the estimated outcome after a certain number of iterations. Specifically, n_y was defined as the minimum number of iterations where the normalized estimation error $f_{diff}(x_i)$ is smaller than 5% of the known subject-specific model maximum $G_{sbj,\alpha}(x^*)$, where

$$f_{diff}(x_i) = \sqrt{\left(\frac{\hat{f}(x_i) - G_{sbj,\alpha}(x^*)}{G_{sbj,\alpha}(x^*)} \right)^2}, \quad (23)$$

All simulations were run for 80 iterations. For each criterion, if no convergence was achieved within 80 simulations, n was set to 80.

Four two-way ANOVA, one for each outcome measure (combination of convergence criterion – $n(x)$ and $n(y)$ – and propulsive metric – HE and PI – were conducted to quantify the effects of the two factors (i.e., acquisition function, three levels, and seed point selection methods, three levels) on convergence speed.

III. RESULTS

A. Gaussian Process Modeling

1) *Group-level Model*: Results for group-level Gaussian process modeling are shown in Fig. 2 and Fig. 3. The process variances σ_G^2 calculated from group-level propulsion were equal to 4.31 deg^2 for HE and $2.12 \text{ N}^2\text{s}^2$. Estimated noise standard deviation and hyperparameter values are listed in Table II.

2) *Subject-specific Results*: The means of the distribution of subject-specific process variances $\sigma_{G_{sbj}}^2$ were equal to 69.04 deg^2 and $33.86 \text{ N}^2\text{s}^2$ for HE and PI, respectively. The

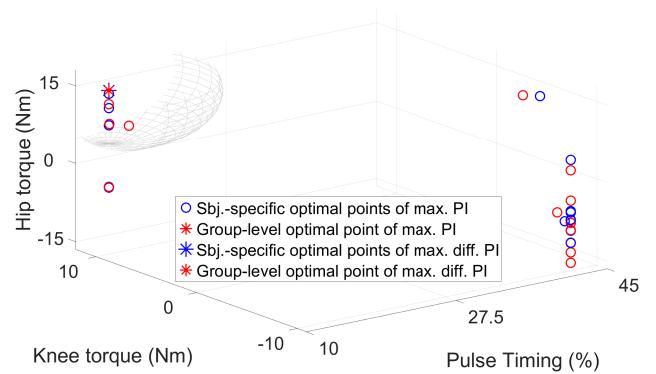


Fig. 5. Distribution of the points of sixteen subject-specific models (circles) and of the group-level model (asterisk dots) for PI. 20 % difference are indicated by grid sphere around optimal point of group-level model.

number of optimal points for subject-specific models within percentage difference of the group-level model is shown in Fig. 6. The optimal points are for maximal outcomes during stride 0 and maximum change in outcome (between stride 0 and stride -1) for each subject-specific model. The optimal points for the subject-specific models are shown in Fig. 4 and Fig. 5 for HE and PI, respectively. 12 subject-specific Gaussian process models have optimal points that have a percentage difference of less than 20 % compared to the optimal point of group-level Gaussian process model for HE (Fig. 4). For propulsive impulse case (Fig. 5), only 5 optimal points of subject-specific Gaussian process model were located within 20% difference from the optimal point of group-level Gaussian process model. For PI, the minority of subjects exhibited subject-specific optimal points within a reasonable neighborhood of the group-level optimal point. In fact, a larger number of optimal points of subject-specific models in PI case were located in late stance (45 %) than early stance (10 %) where optimal point of group-level model was located.

B. Bayesian Optimization Simulation

Virtual Bayesian optimization experiments achieved convergence within 80 iterations in 80.58 % of runs (94.40 ± 6.06 % when using EI, 85.57 ± 13.94 % when using PoI, 61.77 ± 26.66 % when using LCB). The results of the ANOVA analysis are reported in Table III and Fig. 7. Based on the

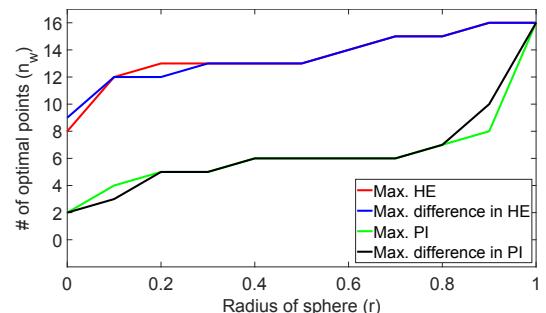


Fig. 6. Number of subjects (n_w) whose subject-specific model maxima are within a specified distance (r) from the group-level model maximum.

	l_T [% gait cycle]	l_S [l]	l_K [N·m]	l_H [N·m]	σ_{ϵ_α}
HE	26.71	0.73	6.17	7.43	0.21 deg
PI	12.18	0.50	8.66	11.73	0.78 Ns

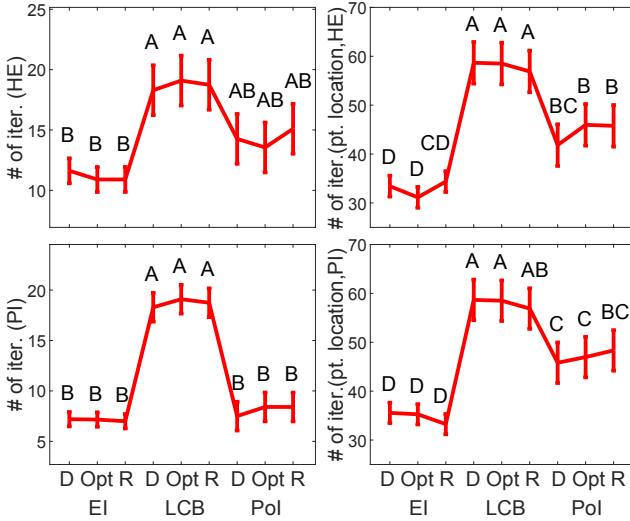


Fig. 7. 2-way ANOVA interaction plot with post-hoc test results. D, Opt, and R in x-axis indicate the *divide* method, *optimal* method, and *random* method for seed point selection method respectively. Pairs of groups that share the same letter label are not significantly different.

ANOVA analysis, the seed point selection method had no significant effect on the outcome measure in any condition. Instead, the choice of an acquisition function showed to be associated with the number of iterations required for convergence ($p < 0.001$ in all conditions tested). Specifically, EI was the only acquisition function type that was estimated to have negative coefficient in the linear model when using *random* method and PoI as neutral level of the factors, indicating that its effect is to decrease the number of iterations to obtain convergence. Post-hoc tests were conducted to distinguish the significant difference among groups under different combinations of acquisition functions and seed point selection methods (Fig. 7). Post-hoc tests indicate that within the same group of acquisition function types, there exist no significant differences ($p > 0.001$ for all comparisons). Moreover, post-hoc tests comparing different acquisition functions showed that EI was significantly better than LCB in all conditions tested, and afforded a significantly greater accuracy in identifying optimal control parameters compared to PoI.

TABLE III
TWO WAY ANOVA TEST RESULTS FOR NUMBER OF ITERATIONS TO
ESTABLISH CONVERGENCE

Source	HE		Point location (HE)	
	F ratio	Prob> F	F ratio	Prob> F
Acq. func.	27.9950	< 0.001	150.1179	< 0.001
Seed pt.	0.0702	0.9322	0.2270	0.7969
Interaction	0.2350	0.9187	1.2166	0.3017
Source	PI		Point location (PI)	
	F ratio	Prob> F	F ratio	Prob> F
Acq. func.	100.9153	< 0.001	137.0745	< 0.001
Seed pt.	0.2063	0.8136	0.1297	0.8784
Interaction	0.1021	0.9818	0.5217	0.7198

IV. DISCUSSION AND CONCLUSIONS

In this study, we determined the feasibility of using Gaussian process modeling to describe the relationship between propulsion mechanics and parameters of an intervention delivered by a robotic exoskeleton (hip torque pulse amplitude, knee torque pulse amplitude, and timing of the pulses), at multiple strides following intervention. To estimate parameters of a Gaussian process, we estimated the noise variance and tuned the hyperparameters of a Gaussian process describing the response at the group level. Based on the group-level Gaussian process model, we estimated subject-specific models and quantified variability of optimal conditions of these subject-specific models. Moreover, we used the subject-specific models as data-generating process for virtual HIL Bayesian optimization simulations. In the virtual Bayesian optimizations, we established how many iterations would be required for convergence of a hypothetical experiment, and quantified the effects of different acquisition functions and seed point selection methods on convergence speed.

The results of group-level Gaussian process model (Fig. 2 and Fig. 3) demonstrate that it is feasible to construct a model between the 4D space of control parameters and outcomes using a Gaussian process with estimated noise variance. In agreement with the results of the previous study [4], hip extension torque increases HE in late stance but decreases HE in early stance; knee extension and hip extension pulse torque increase PI in early stance; knee extension pulse torque decreases PI in late stance. The variability of optimal points for subject-specific models is moderate in HE and high in PI. Specifically for the PI case, the maxima of subject-specific models fell within 20% normalized distance from the optimal point for group-level model only in the minority of cases (5/16). This indicates that the optimal point for group-level model is likely to be distant from the optimal point for subject-specific models. In this case, in fact, optimal points for subject-specific models are separated in two clusters of optimal points in early and late stance. Our analysis for HE highlights a smaller variability of subject-specific optimal conditions (12/16 subject-specific optimal points within a 20% normalized distance from the group-optimal point). This observation is more aligned with previous work targeting reduction in metabolic cost, where a similar variability of subject-specific points was observed [6].

In contrast with previous research selecting seed points by dividing the search space in N regions and randomly selecting seed points from all the N regions [6], seed point selection method is not estimated to make a significant difference in a single pulse torque application experiment ($p > 0.12$ for the different conditions tested, Table III). This result is consistent in both HE and PI cases. However, the type of acquisition function used for optimization did significantly contribute to the number of iterations required to achieve convergence in all cases of outcome measures (HE and PI) and point locations ($p < 0.001$). Since the interaction term between types of acquisition function and seed point selection methods was not significant ($p > 0.1$).

for all conditions tested), the optimal acquisition function (in terms of convergence speed) of HIL Bayesian optimization is estimated to be EI. Therefore, our expectation toward HIL Bayesian optimization setting is that EI will require the smallest number for iterations for convergence regardless of seed point selection methods.

This study has limitations. First, human data is noisy, and the structure of non-eliminated noise is reflected in the data. As shown in Fig. 2 and Fig. 3, the model at the stride before intervention (red dashed line) have changes with control input parameters, which is impossible as a change in output cannot anticipate a change in input. This result indicates that our optimization procedure for estimating hyperparameters and noise variance may need to be improved, or that the relationship between input parameters and improvement of outcome measures (HE and PI) should be considered to cancel out noise from stride at intervention (stride 0) and stride before intervention (stride -1) Gaussian process models. Furthermore, since multiple repeated measurements are taken at different time points, human response may change over time. As such, the use of a covariance function that effectively reflects dynamic changes [18] in subject response may provide a better prediction of human response. Also, Bayesian optimization simulation result will be consistent with different condition of maximum number of iteration. As shown in Fig. 7, using EI as acquisition function will result smallest number of iterations to establish convergence compare to other acquisition functions (PoI and LCB) even when 40 iterations are considered to be maximum number of iterations. In this study, 80 iterations were considered, which is realistic for this specific application based on single stride outcome evaluation, but likely not realistic for HIL applications involving minutes of evaluation per condition.

Overall, our study identified a new method based on Gaussian process modeling to estimates the relationship between exoskeleton control parameters and specific features of propulsion mechanics, and established the effects of seed point selection method and acquisition function types in number of iterations for convergence. These results provide a foundation for planning new HIL robotic gait training methods that target propulsion mechanics.

REFERENCES

- [1] L. J. Holanda, P. M. Silva, T. C. Amorim, M. O. Lacerda, C. R. Simão, and E. Morya, “Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review,” *Journal of neuroengineering and rehabilitation*, vol. 14, no. 1, pp. 1–7, 2017.
- [2] L. N. Awad, M. D. Lewek, T. M. Kesar, J. R. Franz, and M. G. Bowden, “These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits,” *Journal of NeuroEngineering and Rehabilitation*, vol. 17, no. 1, pp. 1–16, 2020.
- [3] H. Hsiao, B. A. Knarr, J. S. Higginson, and S. A. Binder-Macleod, “The relative contribution of ankle moment and trailing limb angle to propulsive force during gait,” *Human movement science*, vol. 39, pp. 212–221, 2015.
- [4] R. L. McGrath and F. Sergi, “Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints,” in *2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)*. IEEE, 2019, pp. 874–879.
- [5] W. Felt, J. C. Selinger, J. M. Donelan, and C. D. Remy, “Body-in-the-loop: Optimizing device parameters using measures of instantaneous energetic cost,” *PLOS One*, vol. 10, no. 8, p. e0135342, 2015.
- [6] Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop optimization of hip assistance with a soft exosuit during walking,” *Science Robotics*, vol. 3, no. 15, p. eaar5438, 2018.
- [7] J. Zhang, P. Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee, C. G. Atkeson, and S. H. Collins, “Human-in-the-loop optimization of exoskeleton assistance during walking,” *Science*, vol. 356, no. 6344, pp. 1280–1284, 2017.
- [8] J. R. Koller, D. H. Gates, D. P. Ferris, and C. D. Remy, “Body-in-the-loop optimization of assistive robotic devices: A validation study,” in *Robotics: Science and Systems*, 2016, pp. 1–10.
- [9] M. Kim, Y. Ding, P. Malcolm, J. Speeckaert, C. J. Siviy, C. J. Walsh, and S. Kuindersma, “Human-in-the-loop bayesian optimization of wearable device parameters,” *PloS one*, vol. 12, no. 9, p. e0184054, 2017.
- [10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” in *Advances in neural information processing systems*, 2012, pp. 2951–2959.
- [11] B. Letham, B. Karrer, G. Ottino, E. Bakshy *et al.*, “Constrained bayesian optimization with noisy experiments,” *Bayesian Analysis*, vol. 14, no. 2, pp. 495–519, 2019.
- [12] J. Kim and S. Choi, “On local optimizers of acquisition functions in bayesian optimization,” *arXiv preprint arXiv:1901.08350*, 2019.
- [13] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy, “Botorch: Programmable bayesian optimization in pytorch,” *arXiv preprint arXiv:1910.06403*, 2019.
- [14] H. Wang, B. van Stein, M. Emmerich, and T. Back, “A new acquisition function for bayesian optimization based on the moment-generating function,” in *2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)*. IEEE, 2017, pp. 507–512.
- [15] C. L. Peterson, J. Cheng, S. A. Kautz, and R. R. Neptune, “Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking,” *Gait & posture*, vol. 32, no. 4, pp. 451–456, 2010.
- [16] M. G. Bowden, C. K. Balasubramanian, R. R. Neptune, and S. A. Kautz, “Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking,” *Stroke*, vol. 37, no. 3, pp. 872–876, 2006.
- [17] M. R. Osborne, “Least squares methods in maximum likelihood problems,” *Optimization Methods and Software*, vol. 21, no. 6, pp. 943–959, 2006.
- [18] F. M. Nyikosa, M. A. Osborne, and S. J. Roberts, “Bayesian optimization for dynamic problems,” *arXiv preprint arXiv:1803.03432*, 2018.