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Abstract. We show that all �avors of Heegaard Floer homology, link Floer homol-
ogy, and sutured Floer homology are natural. That is, they assign concrete groups
to each based 3-manifold, based link, and balanced sutured manifold, respectively.
Furthermore, we functorially assign isomorphisms to (based) di�eomorphisms, and
show that this assignment is isotopy invariant.

The proof relies on �nding a simple generating set for the fundamental group of
the �space of Heegaard diagrams,� and then showing that Heegaard Floer homology
has no monodromy around these generators. In fact, this allows us to give su�cient
conditions for an arbitrary invariant of multi-pointed Heegaard diagrams to descend
to a natural invariant of 3-manifolds, links, or sutured manifolds.
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1. Introduction

The Heegaard Floer homology groups, introduced by Ozsváth and Szabó [16], are
powerful invariants. They associate a (graded) abelian group to every 3-manifold,
knot, and sutured manifold. This group is initially well-de�ned only up to isomor-
phism, but in order to get more powerful invariants, one wants a naturally associated
group, not just a group up to isomorphism. We address that issue in this paper.

1.1. Motivation. To better understand what it means to have a naturally associated
group, we explain some of the naturality issues that arise in topology. Even though
the examples considered here are classical, they have strong analogies with the case
of Heegaard Floer homology. The reader familiar with naturality issues should skip
to Section 1.2 for the statement of our results.

When de�ning algebraic invariants in topology, it is essential to place them in a
functorial setting. For example, suppose we construct an algebraic invariant of topo-
logical spaces that depends on various choices, and hence only assigns an isomorphism
class of, say, groups to a space. We cannot talk about maps between isomorphism
classes of groups, or consider speci�c elements of an isomorphism class.

An early example of this phenomenon is provided by the fundamental group, which
depends on the choice of basepoint in an essential way. Indeed, given a space X
and basepoints p, q ∈ X, there is no �canonical� isomorphism between π1(X, p)
and π1(X, q); one has to specify a homotopy class of paths from p to q �rst. (The
word �canonical� is often used in an imprecise way in the literature, we will spec-
ify its precise meaning later in this section.) It follows that π1 can only be de�ned
functorially on the category of pointed topological spaces.

The naturality/functoriality issues that might arise are perfectly illustrated by sim-
plicial homology. First, one has to restrict to the category of triangulable spaces. Even
settling invariance up to isomorphism took several decades. The main question was
the following: Given triangulations T and T ′ of the space X, how do we compare the
groups H∗(T ) and H∗(T

′)? The �rst attempts tried to proceed via the Hauptvermu-
tung: Do T and T ′ have isomorphic subdivisions? We now know this is false, but
even if it were true, it would not provide naturality as the choice of isomorphism is
not unique. The issue of invariance and naturality was settled by Alexander's method
of simplicial approximation, which provides for any pair of triangulations T and T ′

of X an isomorphism β(T, T ′) : H∗(T ) → H∗(T
′). So how do we get the group H∗(X)
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out of this data? First, let us recall a de�nition due to Eilenberg and Steenrod
[6, De�nition 6.1].

De�nition 1.1. A transitive system of groups consists of

• a set M , and for every α ∈M , a group Gα,
• for every pair (α, β) ∈M ×M , an isomorphism πα

β : Gα → Gβ such that
(1) πα

α = IdGα
for every α ∈M ,

(2) πβ
γ ◦ πα

β = πα
γ for every α, β, γ ∈M .

A transitive system of groups gives rise to a single group G as follows: Let G be the
set of elements g ∈

∏
α∈M Gα for which πα

β (g(α)) = g(β) for every α, β ∈M .

Remark 1.2. For every α ∈ M , let pα :
∏

α∈M Gα → Gα be the projection. Then
pα|G : G → Gα is an isomorphism. In fact, G is a universal object, obtained as a
limit along the directed graph on M where there is a unique edge from α to β for
every (α, β) ∈M ×M . The assignment α 7→ Gα is a functor from M to the category
of groups, which is the diagram along which we take the limit. We could also have
taken the colimit, which is

∐
α∈M Gα/∼, where gα ∼ gβ for gα ∈ Gα and gβ ∈ Gβ if

and only if πα
β (gα) = gβ. The group structure on

∐
α∈M Gα/∼ is given by pointwise

multiplication of equivalence classes. Each embedding of Gα into
∐

α∈M Gα/∼ is an
isomorphism. It is easy to check that this satis�es the universal property for a colimit.

We call the πα
β canonical isomorphisms. So, if we are constructing some algebraic

invariant, and have isomorphisms for any pair of choices, we only call these isomor-
phisms �canonical� if they satisfy properties (1) and (2) above. An instance of a
transitive system of groups is given by taking M to be the set of all triangulations
of a triangulable space X, and for any pair (T, T ′) ∈ M ×M , let πT

T ′ = β(T, T ′).
Another example of a transitive system is given in the case of Morse homology by
Schwarz [22, Section 4.1.3], where one needs to compare homology groups de�ned
using di�erent Morse functions.
Classical homology was put in a functorial framework by the Eilenberg-Steenrod

axioms, whereas the gauge theoretic invariants of 3- and 4-manifolds are expected to
satisfy properties similar to the topological quantum �eld theory (TQFT) axioms of
Atiyah, called a �secondary TQFT.� Our motivating question is whether Heegaard
Floer homology �ts into such a functorial picture. Heegaard Floer homology is a
package of invariants of 3- and 4-manifolds de�ned by Ozsváth and Szabó [16, 17].
It follows from our work that each �avor of Heegaard Floer homology individually
satis�es the classical TQFT axioms, but it is important to note that the closed 4-
manifold invariant is obtained by mixing the various �avors, hence deviating from
Atiyah's original description.

In its simplest form, Heegaard Floer homology assigns an Abelian group ĤF (Y )
to a closed oriented 3-manifold Y , well-de�ned up to isomorphism. The construction
depends on a choice of Heegaard diagram for Y . Given two Heegaard diagrams H

and H′ for Y , our goal is to construct a canonical isomorphism ĤF (H) → ĤF (H′)
such that the set of diagrams, together with these isomorphisms form a transitive

system of groups, yielding a single group ĤF (Y ). We want to do this in a way that
every di�eomorphism d : Y0 → Y1 induces an isomorphism

d∗ : ĤF (Y0) → ĤF (Y1).
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For this (and also to get the canonical isomorphisms), one has to consider diagrams
embedded in Y , not only �abstract� ones. That is, we consider triples (Σ,α,β)
where Σ is a subsurface of Y that split Y into two handlebodies, and α, β ⊂ Σ
are attaching sets for the two handlebodies. Then the main question is: How do we

compare ĤF for diagrams that are embedded in Y di�erently?
The Reidemeister-Singer theorem provides an analogue of the Hauptvermutung in

the case of Heegaard splittings: Any two Heegaard splittings of Y become isotopic
after stabilizations. However, this isotopy is far from being unique. In fact, the fun-
damental group π1(S(Y,Σ)) of the space of Heegaard splittings equivalent to (Y,Σ)
is highly non-trivial. So we could have a loop of Heegaard diagrams {Ht : t ∈ [0, 1] }

of Y along which ĤF (Ht) has monodromy. Indeed, let us recall the following de�ni-
tion.

De�nition 1.3. Let Σ ⊂ Y be a Heegaard surface. Then the Goeritz group of the
Heegaard splitting (Y,Σ) is de�ned as

G(Y,Σ) = ker (MCG(Y,Σ) → MCG(Y )) .

In other words, G(Y,Σ) consists of automorphisms d of (Y,Σ) (considered up to
isotopy preserving the splitting) such that d is isotopic to IdY if we are allowed to
move Σ.

According to Johnson and McCullough [9], there is a short exact sequence

1 → π1(Di�(Y )) → π1(S(Y,Σ)) → G(Y,Σ) → 1.

Let H = (Σ,α,β, z) be a Heegaard diagram of Y . Ignoring basepoint issues, an
element of π1(S(Y,Σ)) coming from π1(Diff(Y )) acts trivially on the Heegaard Floer

homology ĤF (H) (as this is the action of idΣ, the endpoint of the loop), so this

descends to an action of G(Y,Σ) on ĤF (H). The 3-sphere has a unique genus g
Heegaard splitting for every g ≥ 0. At the time of writing of this paper, it is un-
known whether G(S3,Σ) is �nitely generated when the genus of Σ is greater than 2.
Understanding the group G(Y,Σ) for a general 3-manifold Y and splitting Σ seems
even more di�cult. So this path seems to lead to a dead end. Fortunately, Heegaard
Floer homology is invariant under stabilization, and the �fundamental group� of the
space of Heegaard diagrams modulo stabilizations is easier to understand, as we shall
see in this paper.

1.2. Statement of results. We prove that Heegaard Floer homology is an invariant
of based 3-manifolds in the following strong sense. (We ignore gradings and Spinc-
structures for the moment.)

De�nition 1.4. Let Man be the category whose objects are closed, connected, ori-
ented 3-manifolds, and whose morphisms are di�eomorphisms. Let Man∗ be the
category whose objects are pairs (Y, p), where Y ∈ |Man| and p ∈ Y is a choice of
basepoint, and whose morphisms are basepoint-preserving di�eomorphisms.
Also, let R-Mod be the category of R-modules for any ring R, and let k-Vect be

the category of vector spaces over k for any �eld k.

Recall that Ozsváth and Szabó de�ned four di�erent �avors of Heegaard Floer

homology, named ĤF , HF−, HF+, and HF
∞. We will write HF without decoration

to mean any of these four variants.
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Theorem 1.5. There are functors

ĤF , HF−, HF+, HF∞ : Man∗ → F2[U ]-Mod,

such that for a based 3-manifold (Y, p), the groups HF (Y, p) are isomorphic to the
various versions of Heegaard Floer homology de�ned by Ozsváth and Szabó [15, 16].
Furthermore, isotopic di�eomorphisms induce identical maps on HF .

Ozsváth and Szabó [15, 16] showed that the isomorphism class of HF (Y ) is an
invariant of the 3-manifold Y . The statement in Theorem 1.5 is stronger, in that it
says that HF (Y, p) is actually a well-de�ned group, not just an isomorphism class
of groups. The �rst step towards naturality was made by Ozsváth and Szabó [17,
Theorem 2.1], who constructed maps Ψ between HF (Σ,α,β) and HF (Σ,α′,β′) for a
�xed Heegaard surface Σ and equivalent �abstract� diagrams (Σ,α,β) and (Σ,α′,β′).
Furthermore, they also de�ned maps for stabilizations. In the present paper, we
explain how to canonically compare invariants of diagrams with di�erent embeddings
in Y. We also prove that the maps Ψ are isomorphisms and they satisfy conditions (1)
and (2) of De�nition 1.1. As it turns out, the additional checks are the following:
One has to show that the isomorphisms Ψ are indeed canonical in the sense explained
above, prove HF has no monodromy around the simple handleswap loop of Figure 4,
and show that the map on HF induced by a di�eomorphism d : (Σ,α,β) → (Σ,α′,β′)
isotopic to IdΣ agrees with the canonical isomorphism Ψ.
One surprise in Theorem 1.5 is the appearance of the basepoint. Indeed, we believe

that Theorem 1.5 is false for ĤF without the basepoint. To make this precise, we
look at the mapping class group.

De�nition 1.6. For a smooth manifold M , its mapping class group is

MCG(M) = Diff(M)/Diff0(M) = π0(Diff(M)),

where Diff(M) is the group of di�eomorphisms of X, and Diff0(M) is the subgroup
of di�eomorphisms isotopic to the identity, which is also the connected component
of the identity in Diff(M). Similarly, for a based smooth manifold (M, p), its based
mapping class group is

MCG(M, p) = Diff(M, p)/Diff0(M, p) = π0(Diff(M, p)),

where we consider maps that preserve the basepoint.

Corollary 1.7. For a based 3-manifold (Y, p), the group MCG(Y, p) acts naturally
on HF (Y, p) for any of the four variants of Heegaard Floer homology.

Proof. This follows immediately from Theorem 1.5 when restricted to automorphisms
of (Y, p). �

It is easy to construct examples where the action of the mapping class group is non-
trivial. For instance, for a 3-manifold manifold Y , the evident di�eomorphism that
exchanges the two factors of Y #Y (preserving a basepoint) will act via x⊗y 7→ y⊗x

on ĤF (Y #Y ) ∼= ĤF (Y )⊗ĤF (Y ), which is non-trivial if Y is su�ciently complicated.
Recall that, from the �bration Diff(Y, p) → Diff(Y ) → Y , there is a Birman exact

sequence for based mapping class groups for any connected manifold Y :

π1(Y ) → MCG(Y, p) → MCG(Y ) → 0.
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Thus, from an action of MCG(Y, p) on ĤF , we get an action of π1(Y ) on ĤF ; this
action of π1(Y ) is trivial if the action descends to an action of the unbased mapping
class group MCG(Y ). We do not expect this action of π1(Y ) to always be trivial.
However, it appears to factor through an action of H1(Y ).
For the other three variants, HF−(Y, p), HF+(Y, p), and HF

∞(Y, p), we do expect
the action of π1(Y ) on HF to be trivial, in analogy with the situation for monopole
Floer homology [11]. We will address the question of dependence of HF on the
basepoint in a separate paper.
There is also a version of Theorem 1.5 for links. Let Link be the category of

oriented links in S3, whose morphisms are orientation preserving di�eomorphisms
d : (S3, L1) → (S3, L2). Let Link∗ be the category whose objects are based oriented
links : pairs (L,p), where L ⊂ S3 is an oriented link and p = { p1, . . . , pn } ⊂ L
is a set of basepoints, exactly one on each component of L. The morphisms are
di�eomorphisms of S3 preserving the based oriented link.

Theorem 1.8. There are functors

ĤFL : Link∗ → F2-Vect,

HFL
− : Link∗ → F2[U ]-Mod,

agreeing up to isomorphism with the link invariants de�ned by Ozsváth-Szabó and
Rasmussen [14,18,20]. Isotopic di�eomorphisms induce identical maps on HFL.

As in Corollary 1.7, Theorem 1.8 implies that MCG(S3, L,p) acts on HFL(L,p).
Again, one can ask whether this action is non-trivial, and in particular, whether the
basepoint makes a di�erence. For simplicity, consider the case of knots, in which case
there is an exact sequence

π1(S
1) → MCG(S3, K, p) → MCG(S3, K) → 0.

In this context, Sarkar [21] has constructed many examples where the action of π1(S
1)

on HFK (K, p) is non-trivial. More concretely, let σ ∈ MCG(S3, K, p) be the positive
�nger move (or Dehn twist) along K, de�ned on page 4 of [21]. Then it follows

from [21, Theorem 6.1] that the action of σ on ĤFL(Y,K, p) for prime knots up to 9
crossings is non-trivial more often than not.
There are several variants of Theorem 1.8. For instance, Ozsváth and Szabó [18,

Theorem 4.7] have de�ned the group HFK
−(Y,K, p) for K ⊂ Y a rationally null-

homologous knot, or HFL−(Y, L,p) for Y an integer homology sphere. There is also
more structure that can be put on the result. In particular, there is a spectral sequence
from HFK

−(Y,K, p) converging to HF
−(Y ). These invariants are again functorial.

We will unify the proofs of Theorems 1.5 and 1.8 in the more general setting
of balanced sutured manifolds. Let Sut be the category of sutured 3-manifolds and
di�eomorphisms, and let Sutbal be the full subcategory of balanced sutured manifolds.
(For de�nitions and details, see De�nitions 2.1 and 2.26 below.)

Theorem 1.9. There is a functor

SFH : Sutbal → F2-Vect,

agreeing up to isomorphism with the sutured manifold invariant de�ned by the �rst
author [10]. Isotopic di�eomorphisms induce identical maps on SFH .
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All Heegaard Floer homology groups discussed above decompose along Spinc struc-
tures, for example,

SFH (M, γ) =
⊕

s∈Spinc(M,γ)

SFH (M, γ, s).

In addition, each summand SFH (M, γ, s) carries a relative homological Zd(s)-grading,
where d(s) is the divisibility of the Chern class c1(s) ∈ H2(M). So for any x, y ∈
SFH (M, γ, s), the grading di�erence gr(x, y) is an element of Zd(s).
These gradings are natural in the following sense. Suppose that d : (M, γ) → (N, ν)

is a di�eomorphism. Then the induced map d∗ : SFH (M, γ) → SFH (N, ν) restricts
to an isomorphism

d∗|SFH (M,γ,s) : SFH (M, γ, s) → SFH (N, ν, d(s))

that preserves the relative homological grading. Completely analogous results hold
for the other versions of Heegaard Floer homology.
Now we outline the main technical tools behind the above results; for further details

we refer the reader to Section 2. To be able to treat the various versions of Heegaard
Floer homology simultaneously, we consider an arbitrary algebraic invariant F of
abstract (i.e., not necessarily embedded) diagrams of sutured manifolds in a given
class (e.g., knot complements in case F is knot Floer homology). An isotopy diagram
is a sutured diagram with attaching sets taken up to isotopy, we work with these to
avoid admissibility issues. Let G be the directed graph whose vertices are isotopy
diagrams, and we connect the vertices H and H ′ by an edge if either the α-curves
or the β-curves di�er by a sequence of isotopies and handleslides (called an α- or
β-equivalence), or if H ′ is obtained from H by a stabilization or a destabilization,
and there is an edge for every di�eomorphism d : H → H ′. We say that F is a weak
Heegaard invariant if for every edge e from H to H ′ there is an induced isomorphism

F (e) : F (H) → F (H ′).

A weak Heegaard invariant then gives rise to an invariant of sutured manifolds, well-
de�ned up to isomorphism.
To assign a concrete algebraic object to each sutured manifold in a given class, we

then de�ne the notion of a strong Heegaard invariant. Such an F has to commute
along certain distinguished loops in G. These loops include rectangles where opposite
edges are of the �same type,� and the aforementioned simple handleswap triangles
(involving an α-handleslide, a β-handleslide, and a di�eomorphism). Furthermore, a
strong Heegaard invariant has to satisfy the property that if e : H → H is a di�eo-
morphism isotopic to the identity of the Heegaard surface, then F (e) = IdF (H).
Given a sutured manifold (M, γ) in the given class, we obtain the invariant F (M, γ)

as follows. We take the subgraph G(M,γ) of G whose vertices are isotopy diagrams
embedded in (M, γ), and where we only consider di�eomorphisms that are isotopic to
the identity inM . Then our main result is Theorem 2.39, which states that given any
two paths in G(M,γ) from H to H ′ and a strong Heegaard invariant F , the composition
of F along these paths coincide. The proof of this occupies most of the paper, and
relies on a careful analysis of the bifurcations occurring in generic 2-parameter families
of gradient vector �elds on 3-manifolds. It easily follows that these compositions give
a canonical isomorphism F (H) → F (H ′), and we obtain F (M, γ) via De�nition 1.1.
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Potential applications of naturality include for example the possibility of distin-
guishing many more contact structures on a given 3-manifold Y by being able to tell
their contact elements apart in HF (Y ). Another consequence is that we can now de-
�ne maps on Heegaard Floer homology induced by di�eomorphisms and cobordisms.
The paper might also be of interest to 3-manifold topologists, as it sheds more light
on the space of Heegaard splittings and diagrams, potentially telling more about the
structure of the Goeritz group.

1.3. Acknowledgements. We are extremely grateful to Peter Ozsváth for numerous
helpful conversations, and for proving that Heegaard Floer homology is invariant
under simple handleswaps (Proposition 9.25). We would also like to thank Valentin
Afraimovich, Ryan Budney, Boris Hasselblatt, Matthew Hedden, Michael Hutchings,
Martin Hyland, Jesse Johnson, Robert Lipshitz, Saul Schleimer, and Zoltán Szabó
for their guidance and suggestions.
This project would not have been possible without the hospitality of the Tambara

Institute of Mathematical Sciences and the Mathematical Sciences Research Institute.
Most of the work was carried out while the �rst author was at the University of
Cambridge and the second author was at Barnard College, Columbia University.

2. Heegaard invariants

2.1. Sutured manifolds. Sutured manifolds were originally introduced by Gabai [7].
The following de�nition is slightly less general, in that it excludes toroidal sutures.

De�nition 2.1. A sutured manifold (M, γ) is a compact oriented 3-manifoldM with
boundary, together with a set γ ⊂ ∂M of pairwise disjoint annuli. Furthermore,
the interior of each component of γ contains a suture; i.e., a homologically nontrivial
oriented simple closed curve. We denote the union of the sutures by s(γ). In addition,
every component of R(γ) = ∂M \ Int(γ) is oriented. De�ne R+(γ) (respectively
R−(γ)) to be those components of ∂M \ Int(γ) whose orientations agree (respectively
disagree) with the orientation of ∂M , or equivalently, whose normal vectors point out
of (respectively in to) M . The orientation on R(γ) must be coherent with respect to
s(γ); i.e., if δ is a component of ∂R(γ) and is given the boundary orientation, then δ
must represent the same homology class in H1(γ) as some suture.
A sutured manifold (M, γ) is called proper if the map π0(γ) → π0(∂M) is surjective

and M has no closed components (i.e., the map π0(∂M) → π0(M) is surjective).

Convention 2.2. In this paper, we will assume that all sutured manifolds are proper,
in addition to not having any toroidal sutures.

To see the connection between sutured manifolds and closed 3-manifolds, observe
that if (M, γ) is a sutured manifold such that ∂M is a sphere with a single suture
(dividing ∂M into two disks), then the quotient of M where ∂M is identi�ed with a
point is a closed 3-manifold with a distinguished basepoint given by the equivalence
class of ∂M . For the other direction, we introduce the following de�nitions.

De�nition 2.3. Suppose thatM is a smooth manifold, and let L ⊂M be a properly
embedded submanifold. For each point p ∈ L, let NpL = TpM/TpL be the �bre of
the normal bundle of L over p, and let UNpL = (NpL \ {0})/R+ be the �bre of the
unit normal bundle of L over p. Then the (spherical) blowup of M along L, denoted
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Figure 1. The sutured manifolds Y (p, V ) and Y (K, p, q).

by BlL(M), is a manifold with boundary obtained from M by replacing each point
p ∈ L by UNp(L). There is a natural projection BlL(M) → M . For further details,
see Arone and Kankaanrinta [3].

For instance, if L ⊂M is a submanifold of codimension 1, then BlL(M) is the usual
operation of cutting M open along L.

De�nition 2.4. Let Y be a closed, connected, oriented 3-manifold, together with a
basepoint p and an oriented tangent 2-plane V < TpM . Then Y (p, V ) = (M, γ) is the
sutured manifold with M = Blp(Y ) and suture s(γ) = (V \ {0})/R+ in the resulting
S2 boundary component ofM . See the left-hand side of Figure 1. We orient s(γ) such
that if we lift it to V , then the lift goes around the origin in the positive direction.

There is a similar construction for links, as well.

De�nition 2.5. Let (Y,K, p, q) be an oriented knot with two basepoints. Then
Y (K, p, q) = (M, γ) is the sutured manifold with M = BlK(Y ) and s(γ) = UNpK ∪
UNqK, sitting inside the torus ∂M , as on the right-hand side of Figure 1. The
orientation of K induces an orientation of NK. We orient UNpK coherently with
NpK, while UNqK is oriented incoherently with NqK.
Similarly, if (Y, L,p,q) is a based oriented link with exactly one p and one q base-

point on each component of L, then we de�ne Y (L,p,q) to be the sutured manifold
(M, γ) with M = BlL(Y ) and sutures obtained for each component of L as above.

2.2. Sutured diagrams. With these examples in mind, we turn to de�nitions for
sutured Heegaard diagrams. Since in this paper we need to be careful about naturality
of the constructions, we are careful in our de�nitions, distinguishing, for instance,
between attaching sets and isotopy classes of attaching sets.

De�nition 2.6. Let Σ be a compact oriented surface with boundary. An attaching set
in Σ is a one-dimensional smooth submanifold δ ⊂ Int(Σ) such that each component
of Σ \ δ contains at least one component of ∂Σ. We will denote the isotopy class of
δ by [δ].

De�nition 2.7. The sutured manifold (M, γ) is a sutured compression body if there
is an attaching set δ ⊂ R±(γ) such that if we compress R±(γ) inside M along all the
components of δ, we get a surface that is isotopic to R∓(γ) relative to γ. We call δ
an attaching set for (M, γ).
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Figure 2. Handelsliding the curve δ1 over δ2 along the arc a gives δ′1.

De�nition 2.8. Given an attaching set δ in Σ, let C(δ) = (M, γ) be the sutured
compression body obtained by taking M to be Σ× [0, 1] and attaching 3-dimensional
2-handles along δ × {1}, while γ = ∂Σ× [0, 1]. In addition, let C−(δ) = R−(M, γ) =
Σ× {0} and

C+(δ) = R+(M, γ) = ∂C(δ) \ Int (C−(δ) ∪ γ) .

If δ and δ′ are both attaching sets in Σ, then we say they are compression equivalent,
and we write δ ∼ δ′, if there is a di�eomorphism d : C(δ) → C(δ′) such that d|C−(δ)

is the identity. This is an equivalence relation that descends to the isotopy classes of
attaching sets. So we will write [δ] ∼ [δ′] if δ ∼ δ′.

Observe that χ(C+(δ)) = χ(C−(δ)) + 2|δ|. So δ ∼ δ′ implies that |δ| = |δ′|.

Lemma 2.9. Let δ ⊂ Σ be an attaching set in a compact oriented surface with
boundary, and let C(δ) = (M, γ) be the corresponding sutured compression body.
Then π2(M) = 0.

Proof. Consider the Mayer-Vietoris sequence for the pair (Σ× I,H), where H is the
union of the handles attached to Σ× {1} along δ × {1}:

0 = H2(Σ× I)⊕H2(H) → H2(M) → H1((Σ× I) ∩H)
i
→ H1(Σ× I)⊕H1(H).

Of course, Hi(H) = 0 for i ∈ {1, 2}, and H2(Σ × I) = 0 as Σ has no closed compo-
nents. Since δ is an attaching set, the map π0(∂Σ) → π0(Σ \ δ) is surjective, so the
components of δ are linearly independent in H1(Σ) and so the map i is injective. It
follows that H2(M) = 0. In particular, every smoothly embedded 2-sphere S in M
is null-homologous; i.e., there is a submanifold N of M such that ∂N = S. If we
attach 2-handles to M along the components of γ, we obtain a compression body,
which embeds into a handlebody, and hence also into R3. In R3, the sphere S bounds
a ball, hence N is di�eomorphic to D3, and S is null-homotopic. �

De�nition 2.10. Let δ1 and δ2 be two disjoint simple closed curves in Σ, and �x an
embedded arc a from δ1 to δ2 whose interior is disjoint from all the δi and from ∂Σ.
Then a regular neighborhood of the graph δ1 ∪ a ∪ δ2 is a planar surface with three
boundary components: one is isotopic to δ1, the other is isotopic to δ2, and the third
is a new curve δ′1, which we call the curve obtained by handle-sliding δ1 over δ2 along
the arc a, see Figure 2.
Suppose δ and δ′ are two systems of attaching circles. We say that δ and δ′ are

related by a handleslide if there are components δ1 and δ2 of δ and a component δ′1
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of δ′ such that δ′1 can be obtained by handle-sliding δ1 over δ2 along some arc, and
δ′ = (δ \ δ1) ∪ δ′1. If D and D′ are isotopy classes of attaching sets, then they are
related by a handleslide if they have representatives δ and δ′, respectively, such that
δ and δ′ are related by a handleslide.

Lemma 2.11. If δ and δ′ are related by a handleslide, then δ ∼ δ′. Conversely, if
δ ∼ δ′, then [δ] and [δ′] are related by a sequence of handleslides.

Proof. The �rst part is immediate. For the second part, the proof of Bonahon [4,
Proposition B.1] for ordinary compression bodies can be adapted to this context. �

Remark 2.12. The proof of Juhász [10, Proposition 2.15] only gives a weaker result,
namely that if δ ∼ δ′, then the pairs (Σ, δ) and (Σ, δ′) become di�eomorphic after a
sequence of isotopies and handleslides.

De�nition 2.13. A sutured diagram is a triple (Σ,α,β), where Σ is a compact
oriented surface with boundary, and α and β are two attaching sets in Σ. An isotopy
diagram is a triple (Σ, [α], [β]), where (Σ,α,β) is a sutured diagram.

De�nition 2.14. Let (M, γ) be a sutured manifold. Then we say that (Σ,α,β) is
an (embedded) diagram of (M, γ) if

(1) Σ ⊂M is an oriented surface with ∂Σ = s(γ) as oriented 1-manifolds,
(2) the components of α bound disjoint disks to the negative side of Σ, and the

components of β bound disjoint disks to the positive side of Σ,
(3) if we compress Σ along α, we get a surface isotopic to R−(γ) relative to γ,
(4) if we compress Σ along β, we get a surface isotopic to R+(γ) relative to γ.

In other words, Σ cuts (M, γ) into two sutured compression bodies, with attaching
sets α and β, respectively (see De�nition 2.7).
Note that if [α′] = [α] and [β′] = [β], then (Σ,α′,β′) is also a sutured diagram of

(M, γ). So we say that (Σ, A,B) is an isotopy diagram of (M, γ) if there is a sutured
diagram (Σ,α,β) of (M, γ) such that A = [α] and B = [β].

Lemma 2.15. Let (M, γ) be a sutured manifold. Then there is a diagram of (M, γ).

Proof. The proof of Juhász [10, Proposition 2.13] provides a sutured Heegaard dia-
gram (Σ,α,β) such that Σ ⊂M . �

De�nition 2.16. Let (M, γ) be a sutured manifold. We say that the oriented surface
Σ ⊂ M is a Heegaard surface of (M, γ) if ∂Σ = s(γ) and Σ divides (M, γ) into two
sutured compression bodies.

De�nition 2.17. A sutured diagram (Σ,α,β) de�nes a sutured manifold (M, γ)
as follows. To obtain M , take Σ × [−1, 1] and attach 3-dimensional 2-handles to
Σ × {−1} along α × {−1} and to Σ × {1} along β × {1}. The annuli are taken to
be γ = ∂Σ × [−1, 1], with the sutures s(γ) = Σ × {0}. Then (M, γ) is well-de�ned
up to di�eomorphism relative to Σ. (Note that if we think of Σ as the middle level
Σ× {0} ⊂M , then (Σ,α,β) is a sutured diagram of M .)
If α′ is isotopic to α and β′ is isotopic to β, then the sutured manifold (M ′, γ′)

de�ned by (Σ,α′,β′) is di�eomorphic (relative to Σ) to the sutured manifold (M, γ)
de�ned by (Σ,α,β). So an isotopy diagram H de�nes a di�eomorphism type of
sutured manifolds that we will denote by S(H).
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Figure 3. The diagram (Σ2,α2,β2) is obtained from (Σ1,α1,β1) by
a stabilization.

2.3. Moves on diagrams and weak Heegaard invariants.

De�nition 2.18. We say that the isotopy diagrams (Σ1, A1, B1) and (Σ2, A2, B2) are
α-equivalent if Σ1 = Σ2 and B1 = B2, while A1 ∼ A2. Similarly, they are β-equivalent
if Σ1 = Σ2 and A1 = A2, while B1 ∼ B2.

De�nition 2.19. The sutured diagram (Σ2,α2,β2) is obtained from (Σ1,α1,β1) by
a stabilization if

• there is a diskD ⊂ Σ1 and a punctured torus T ⊂ Σ2 such that Σ1\D = Σ2\T ,
• α1 = α2 ∩ (Σ2 \ T ),
• β1 = β2 ∩ (Σ2 \ T ),
• α2∩T and β2∩T are simple closed curves that intersect each other transversely
in a single point.

In this case, we also say that (Σ1,α1,β1) is obtained from (Σ2,α2,β2) by a destabi-
lization. For an illustration, see Figure 3.
Let H1 and H2 be isotopy diagrams. Then H2 is obtained from H1 by a (de)stabi-

lization if they have representatives (Σ2,α2,β2) and (Σ1,α1,β1), respectively, such
that (Σ2,α2,β2) is obtained from (Σ1,α1,β1) by a (de)stabilization.

If d : Σ → Σ′ is a di�eomorphism of surfaces and C is an isotopy class of attach-
ing sets in Σ, then d(C) is de�ned as [d(γ)], where γ is an arbitrary attaching set
representing C.

De�nition 2.20. Given isotopy diagramsH1 = (Σ1, A1, B1) andH2 = (Σ2, A2, B2), a
di�eomorphism d : H1 → H2 is an orientation preserving di�eomorphism d : Σ1 → Σ2

such that d(A1) = A2 and d(B1) = B2.

Now we recall the notion of a graph, from a rather categorical viewpoint.

De�nition 2.21. A graph G consists of

(1) a class |G| whose elements are called the objects (or vertices) of the graph,
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(2) for each pair (A,B) ∈ |G| × |G|, a set G(A,B) whose elements are called the
morphisms (or arrows) from A to B.

De�nition 2.22. A morphism of graphs F : G → K between two graphs G and K
consists of

(1) a map F : |G| → |K|,
(2) for each pair (A,B) ∈ |G| × |G| of objects, a map

F : G(A,B) → K(F (A), F (B)).

Notice that every category is a graph, and every functor between categories is a
morphism of graphs.

De�nition 2.23. Let G be the graph whose class of vertices |G| consists of isotopy
diagrams and, for H1,H2 ∈ |G|, the edges G(H1, H2) can be written as a union of four
sets

G(H1, H2) = Gα(H1, H2) ∪ Gβ(H1, H2) ∪ Gstab(H1, H2) ∪ Gdi�(H1, H2).

The set Gα(H1, H2) consists of a single arrow if H1 and H2 are α-equivalent and is
empty otherwise. The set Gβ(H1, H2) is de�ned similarly using β-equivalence. The set
Gstab(H1, H2) consists of a single arrow if H2 is obtained from H1 by a stabilization
or a destabilization and is empty otherwise. Finally, Gdi�(H1, H2) consists of all
di�eomorphisms from H1 to H2. The graph G is thus the union of four subgraphs,
namely Gα, Gβ, Gstab, and Gdi�.

Note that the graphs Gα, Gβ, and Gdi� are in fact categories when endowed with
the obvious compositions. We have a version of the Reidemeister-Singer theorem.

Proposition 2.24. The isotopy diagrams H1, H2 ∈ |G| can be connected by an ori-
ented path if and only if they de�ne di�eomorphic sutured manifolds. Furthermore,
the existence of an unoriented path from H1 to H2 implies the existence of an oriented
one.

Proof. By Juhász [10, Proposition 2.15], if two diagrams de�ne di�eomorphic sutured
manifolds, then they become di�eomorphic after a sequence of isotopies, handleslides,
stabilizations and destabilizations. (Actually, the above mentioned result is stated for
balanced diagrams, but the same proof works for arbitrary ones.) Lemma 2.11 implies
that every handleslide is an α- or β-equivalence, which concludes the proof of the �rst
claim.
For the second claim, observe that if ∗ ∈ {α, β, stab, di� }, then G∗(H1, H2) 6= ∅ if

and only if G∗(H2, H1) 6= ∅. �

De�nition 2.25. Let S be a set of di�eomorphism types of sutured manifolds, and
let C be any category. We denote by G(S) the full subgraph of G spanned by those
isotopy diagrams H for which S(H) ∈ S. A weak Heegaard invariant of S is a
morphism of graphs F : G(S) → C such that for every arrow e of G(S) the image F (e)
is an isomorphism.

Observe that if F : G(S) → C is a weak Heegaard invariant and H1 and H2 lie in
the same path-component of G(S) (i.e., if S(H1) = S(H2)), then F (H1) and F (H2)
are isomorphic objects of the category C. In this language, we can state the main
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invariance results previously known. We �rst introduce some important sets of dif-
feomorphism types of sutured manifolds. We denote by [(M, γ)] the di�eomorhpism
type of (M, γ).

De�nition 2.26. A balanced sutured manifold is a proper sutured manifold (M, γ)
such that χ(R+(γ)) = χ(R−(γ)). Equivalently, by Juhász [10, Proposition 2.9], it is
a proper sutured manifold that has a diagram (Σ,α,β) with |α| = |β|. Then de�ne
the following types of sutured manifolds.

(1) Let Sman be the set of all [Y (p, V )], where Y is a closed, oriented, based
3-manifold, p ∈ Y , and V < TpM is an oriented tangent 2-plane.

(2) Let Slink be the set of all [S3(L,p,q)], where (L,p,q) is a based oriented link
in S3 with exactly one p and one q marking on each component of L.

(3) Let Sbal be the set of all [(M, γ)], where (M, γ) is a balanced sutured manifold.

Theorem 2.27 ([16]). The morphisms

ĤF , HF−, HF+, HF∞ : G(Sman) → F2[U ]-Mod

are weak Heegaard invariants of Sman (where the U-action is trivial on ĤF ).

Theorem 2.28 ([14,18,20]). The morphisms

ĤFL, HFL− : G(Slink) → F2[U ]-Mod

are weak Heegaard invariants of Slink.

Theorem 2.29 ([10]). The morphism

SFH : G(Sbal) → F2-Vect

is a weak Heegaard invariant of Sbal.

However, these theorems are not enough to give invariants in the stronger sense
of Theorems 1.5�1.9, which assign to M an object of C, rather than an isomorphism
class of objects of C. For that, we look for further structure in the graph G.

2.4. Strong Heegaard invariants.

De�nition 2.30. Let Hi = (Σi, [αi], [βi]) be isotopy diagrams for 1 ≤ i ≤ 4. A
distinguished rectangle in G is a subgraph

H1
e //

f
��

H2

g

��
H3

h // H4

of G that satis�es one of the following properties:

(1) Both e and h are α-equivalences, while f and g are β-equivalences.
(2) Both e and h are α-equivalences or β-equivalences, while f and g are both

stabilizations.
(3) Both e and h are α-equivalences or β-equivalences, while f and g are both

di�eomorphisms. In this case, we necessarily have Σ1 = Σ2 and Σ3 = Σ4. We
require, in addition, that the di�eomorphisms f : Σ1 → Σ3 and g : Σ2 → Σ4

are the same.
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(4) The maps e, f , g, and h are all stabilizations, such that there are disjoint discs
D1,D2 ⊂ Σ1 and disjoint punctured tori T1, T2 ⊂ Σ4 satisfying Σ1\(D1∪D2) =
Σ4 \ (T1 ∪ T2), and such that Σ2 = (Σ1 \D1) ∪ T1 and Σ3 = (Σ1 \D2) ∪ T2.

(5) The maps e and h are stabilizations, while f and g are di�eomorphisms.
Furthermore, there are disks D ⊂ Σ1 and D

′ ⊂ Σ3 and punctured tori T ⊂ Σ2

and T ′ ⊂ Σ4 such that Σ1 \ D = Σ2 \ T and Σ3 \ D
′ = Σ4 \ T

′, and the
di�eomorphisms f , g satisfy f(D) = D′, g(T ) = T ′, and f |Σ1\D = g|Σ2\T .

Remark 2.31. In case (1), Σi = Σj for i, j ∈ { 1, . . . , 4 }, so a distinguished rectangle
in this case is of the form

(Σ, A,B) //

��

(Σ, A′, B)

��
(Σ, A,B′) // (Σ, A′, B′).

In case (2), we necessarily have Σ1 = Σ2 and Σ3 = Σ4. Without loss of generality,
consider the situation when both e and h are α-equivalences. Then we have a rectangle

(Σ, [α], [β]) //

��

(Σ, [α], [β])

��

(Σ′, [α′], [β′]) // (Σ′, [α′], [β′])

such that there is a disk D ⊂ Σ and a punctured torus T ⊂ Σ′ with Σ \D = Σ′ \ T .
Furthermore, we can assume that α = α′ ∩ (Σ′ \ T ) and β = β′ ∩ (Σ′ \ T ), while
α = α′ ∩ (Σ′ \ T ). Since α′ ∼ α′, the curves α′ ∩ T and α′ ∩ T are isotopic.

In case (4), the fact that all four diagrams contain S = Σ1 \ (D1 ∪D2) implies that
αi ∩ S = αj ∩ S and βi ∩ S = βj ∩ S for every i, j ∈ { 1, . . . , 4 }.

De�nition 2.32. A simple handleswap is a subgraph of G of the form

H1

e

!!
H3

g

OO

H2
f

oo

such that

(1) Hi = (Σ, [αi], [βi]) are isotopy diagrams for i ∈ { 1, 2, 3 },
(2) e is an α-equivalence, f is a β-equivalence, and g is a di�eomorphism,
(3) there is a punctured genus two surface P ⊂ Σ in which the above triangle

is conjugate to the triangle in Figure 4; i.e., there is a di�eomorphism that
throws P ∩Hi onto the pictures in the green circles, sending the α-circles in
P to the two red circles, and the β-circles in P to the two blue circles,

(4) in Σ \ P the diagrams H1, H2, and H3 are identical.

So P ∩α1 consists of closed curves α1 and α2 and P ∩ β1 consists of closed curves
β1 and β2 such that αi ∩ βi = ∅ for i ∈ {1, 2}, while both α1 ∩ β2 and α2 ∩ β1
consist of a single point. The arrow e from H1 to H2 corresponds to handle-sliding α2
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Figure 4. A simple handleswap. The green curve is the boundary of
the punctured genus two surface P that is obtained by identifying the
circles marked with corresponding letters (namely, B and D). We draw
the α curves in red and the β curves in blue.

over α1 along the dashed arc a. The arrow f from H2 to H3 corresponds to handle-
sliding β2 over β1 along the dashed arc b. Finally, the di�eomorphism g maps H3 to
H1 by performing Dehn twists around the dashed curves depicted in the lower left
corner of Figure 4; namely a left-handed Dehn twist along the large dashed curve and
right-handed Dehn twists around the smaller ones.

De�nition 2.33. Let S be a set of di�eomorphism types of sutured manifolds. A
strong Heegaard invariant of S is a weak Heegaard invariant F : G(S) → C that
satis�es the following axioms:

(1) Functoriality: The restriction of F to Gα(S), Gβ(S), and Gdi�(S) are functors
to C. Furthermore, if e : H1 → H2 is a stabilization and e′ : H2 → H1 is the
corresponding destabilization, then F (e′) = F (e)−1.

(2) Commutativity: For every distinguished rectangle

H1
e //

f
��

H2

g

��
H3

h // H4

in G(S), we have F (g) ◦ F (e) = F (h) ◦ F (f).
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(3) Continuity: If H ∈ |G(S)| and e ∈ Gdi�(H,H) is a di�eomorphism isotopic
to IdΣ, then F (e) = IdF (H).

(4) Handleswap invariance: For every simple handleswap

H1

e

!!
H3

g

OO

H2
f

oo

in G(S), we have F (g) ◦ F (f) ◦ F (e) = IdF (H1).

Note that in (3), if H = (Σ,α,β) and et : Σ → Σ for t ∈ [0, 1] is an isotopy from
e to IdΣ, then (Σ, et(α), et(β)) represents the same isotopy diagram as H. Hence
et ∈ Gdi�(H,H) for every t ∈ [0, 1].

Theorem 2.34. The following are strong Heegaard invariants:

(1) Sutured Floer homology, SFH , is a strong Heegaard invariant of Sbal.

(2) The Heegaard Floer homology invariants ĤF , HF
+, HF

−, and HF
∞ are

strong Heegaard invariants of Sman.

(3) The link Floer homology groups ĤFL and HFL
− are strong Heegaard invariants

of Slink.

We will prove Theorem 2.34 in Section 9.

2.5. Construction of the Heegaard Floer functors. We next explain how The-
orem 2.34 lets us associate, for instance, a group SFH (M, γ) to a balanced sutured
manifold (M, γ).

De�nition 2.35. Suppose that H1 and H2 are two isotopy diagrams for (M, γ) with
Hi = (Σi, Ai, Bi), and let ιi : Σi → M be the inclusion for i ∈ {1, 2}. Then a
di�eomorphism d : H1 → H2 is isotopic to the identity in M if ι2 ◦ d : Σ1 → M is
isotopic to ι1 : Σ1 →M relative to s(γ).

De�nition 2.36. Let (M, γ) be a sutured manifold. Then G(M,γ) is the subgraph
of G whose vertex set1 |G(M,γ)| consists of all isotopy diagrams of (M, γ). The set of
edges between H1, H2 ∈ |G(M,γ)| is de�ned by

G(M,γ)(H1, H2) = Gα(H1, H2) ∪ Gβ(H1, H2) ∪ Gstab(H1, H2) ∪ G0
di�(H1, H2),

where Gα, Gβ, and Gstab are as before, and G0
di�(H1, H2) is the set of di�eomorphisms

from H1 to H2 isotopic to the identity in M .

We will prove the following stronger version of Proposition 2.24 in Section 7.1.

Proposition 2.37. Let (M, γ) be sutured manifold. In the graph G(M,γ), any two
vertices can be connected by an oriented path.

De�nition 2.38. Given a weak Heegaard invariant F : G(S) → C and an oriented
path η in G(S) of the form

H0
e1−→ H1

e2−→ · · ·
en−→ Hn,

1Observe that |G(M,γ)| is a set, not a proper class, as we de�ned a sutured diagram for (M,γ) to
be a submanifold of M .
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de�ne F (η) to be the isomorphism

F (en) ◦ · · · ◦ F (e1) : F (H0) → F (Hn).

For a weak Heegaard invariant, the isomorphism F (η) from F (H0) to F (Hn) might
depend on the choice of the path η. However, according to the following theorem,
this ambiguity disappears if we require F to be a strong Heegaard invariant and we
restrict our attention to the subgraph G(M,γ).

Theorem 2.39. Let S be a set of di�eomorphism types of sutured manifolds contain-
ing [(M, γ)]. Furthermore, let F : G(S) → C be a strong Heegaard invariant. Given
isotopy diagrams H, H ′ ∈ |G(M,γ)| and any two oriented paths η and ν in G(M,γ)

connecting H to H ′, we have
F (η) = F (ν).

Remark 2.40. Another interpretation of Theorem 2.39 is that if we extend G(M,γ) to a
2-complex with 2-cells corresponding to the various polygons in De�nition 2.33, the
result is simply-connected.

Theorem 2.39 is one of the most important and deepest results of this paper. We
will prove it in Section 8, and develop the necessary technical tools in Sections 4�7.

De�nition 2.41. Let S be a set of di�eomorphism types of balanced sutured mani-
folds containing [(M, γ)], and let F : G(S) → C be a strong Heegaard invariant. If H
and H ′ are isotopy diagrams of (M, γ), then let

FH,H′ = F (η),

where η is an arbitrary oriented path connecting H to H ′. By Theorem 2.39, the map
FH,H′ does not depend on the choice of η.

Corollary 2.42. Suppose that H, H ′, H ′′ ∈ |G(M,γ)|. Then

FH,H′′ = FH′,H′′ ◦ FH,H′ .

Motivated by De�nition 1.1, we obtain a natural invariant of sutured manifolds
from a strong Heegaard invariant as follows. As usual, we denote the category of
abelian groups by Ab.

De�nition 2.43. Let S be a set of di�eomorphism types of balanced sutured mani-
folds, and let F : G(S) → Ab be a strong Heegaard invariant. Fix a balanced sutured
manifold (M, γ) with [(M, γ)] ∈ S, and suppose that H and H ′ are isotopy diagrams
of (M, γ). We say that the elements x ∈ F (H) and y ∈ F (H ′) are equivalent, in
short x ∼ y, if y = FH,H′(x). By Theorem 2.39, this is an equivalence relation on
the disjoint union

∐
H∈|G(M,γ)|

F (H). The equivalence class of an element x ∈ F (H) is

denoted by [x]. Under the natural addition operation, these equivalence classes form
an abelian group that we call F (M, γ). Furthermore, let IH : F (H) → F (M, γ) be
the isomorphism that maps x to [x].
If φ : (M, γ) → (M ′, γ′) is a di�eomorphism, then we de�ne

F (φ) : F (M, γ) → F (M ′, γ′)

as follows. Pick an isotopy diagram H = (Σ, A,B) of (M, γ), and let d = φ|Σ. Then
H ′ = d(H) is an isotopy diagram of (M ′, γ′), and d is a di�eomorphism from H to
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H ′, so it induces a map F (d) : F (H) → F (H ′). We de�ne the isomorphism F (φ) as
IH′ ◦ F (d) ◦ (IH)

−1. So we have a commutative diagram

F (H)
F (d)

//

IH
��

F (H ′)

IH′

��
F (M, γ)

F (φ)
// F (M ′, γ′).

Proposition 2.44. In the above de�nition, the isomorphism F (φ) does not depend
on the choice of isotopy diagram H of (M, γ).

Proof. Suppose that H1 = (Σ1, A1, B1) and H2 = (Σ2, A2, B2) are isotopy diagrams
of (M, γ). Let d1 = d|Σ1 and d2 = d|Σ2 , and write H ′

1 = d1(H1) and H ′
2 = d2(H2).

Then we have to show that

IH′
1
◦ F (d1) ◦ (IH1)

−1 = IH′
2
◦ F (d2) ◦ (IH2)

−1.

Since (IH2)
−1 ◦ IH1 = FH1,H2 and (IH′

2
)−1 ◦ IH′

1
= FH′

1,H
′
2
, this amounts to proving that

(2.45) FH′
1,H

′
2
◦ F (d1) = F (d2) ◦ FH1,H2 .

Pick a path η in G(M,γ) of the form

D0
e1−→ D1

e2−→ · · ·
en−→ Dn,

such that D0 = H1 and Dn = H2. There is a corresponding path η′ in G(M,γ) from H ′
1

to H ′
2 of the form

D′
0

e′1−→ D′
1

e′2−→ · · ·
e′n−→ D′

n,

obtained as follows. For every i ∈ { 1, . . . , n }, let D′
i = φ(Di), and let hi : Di → D′

i be
the restriction of φ toDi. If ei is an α-equivalence, β-equivalence, or stabilization, then
we denote by e′i be the corresponding α-equivalence, β-equivalence, or stabilization
from D′

i−1 to D
′
i. Furthermore, if ei is a di�eomorphism isotopic to the identity, then

we take

e′i = hi ◦ ei ◦ h
−1
i−1,

this is also isotopic to the identity. Consider the following subgraph of G(S):

D0
e1 //

h0=d1
��

D1
e2 //

h2

��

. . .
en // Dn

hn=d2
��

D′
0

e′1 // D′
1

e′2 // . . .
e′n // D′

n.

By construction, each small square is either a distinguished rectangle, or a commuting
rectangle of di�eomorphisms. The functor F commutes along the former by the
Commutativity Axiom of strong Heegaard invariants, and along the latter by the
Functoriality Axiom for Gdi�(S). Hence, F also commutes along the large rectangle,
giving exactly equation (2.45). �

Let Sutbal, Sutman, and Sutlink denote the full subcategories of Sut whose objects
have di�eomorphism types lying in Sbal, Sman, and Slink, respectively.
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Proof of Theorem 1.9. By Theorem 2.34, the morphism F = SFH is a strong Hee-
gaard invariant of Sbal. Given isotopy diagrams H and H ′ of the balanced sutured
manifold (M, γ), Theorem 2.39 gives an isomorphism FH,H′ : F (H) → F (H ′). These
isomorphisms are canonical according to Corollary 2.42. Hence, the groups F (H) and
the isomorphisms FH,H′ form a transitive system, and we obtain the limit

SFH (M, γ) = F (M, γ)

as in De�nition 2.43. A di�eomorphism φ between balanced sutured manifolds induces
an isomorphism F (φ) as in De�nition 2.43, and these are well-de�ned according to
Proposition 2.44. So we have all the ingredients for a functor SFH : Sutbal → F2-Vect.
What remains to show is that isotopic di�eomorphisms induce identical maps

on SFH , or equivalently, that for any di�eomorphism φ : (M, γ) → (M, γ) isotopic
to Id(M,γ), we have F (φ) = IdSFH (M,γ). Let H be an isotopy diagram of (M, γ), and
we write d = φ|H and H ′ = φ(H). By de�nition, F (φ) = IH′ ◦ F (d) ◦ (IH)

−1. So this
is the identity if and only if

F (d) = (IH′)−1 ◦ IH = FH,H′ .

This is true since d is isotopic to the identity, hence it corresponds to an edge of G(M,γ)

between H and H ′, and so if we take the path η from H to H ′ to be the single edge d,
then F (d) = F (η) = FH,H′ . �

Lemma 2.46. Let (Y, p) be a based 3-manifold, and let V0 and V1 be oriented 2-planes
in TpY . Suppose that φ, ψ : (Y, p) → (Y, p) are di�eomorphisms such that dφ(V0) = V1
and dψ(V0) = V1 in an oriented sense; furthermore, both φ and ψ are isotopic to IdY
through di�eomorphisms �xing p. Then φ and ψ are isotopic to each other through
di�eomorphisms �xing p and mapping V0 to V1.

Proof. This follows from the fact that the Grassmannian M of oriented 2-planes
in TpY is homeomorphic to S2 and is hence simply-connected, together with an isotopy
extension argument as follows.
Let {φt : t ∈ I } and {ψt : t ∈ I } be isotopies from IdY to φ and ψ, respectively,

through di�eomorphisms �xing p. Since the Grassmannian M is simply-connected,
there is a 2-parameter family of 2-planes Vt,u < TpY for (t, u) ∈ I × I such that
Vt,0 = dφt(V0) and Vt,1 = dψt(V0) for every t ∈ I, while V0,u = V0 and V1,u = V1 for
every u ∈ I. The 2-planes Vt,u form a vector bundle ν over I × I. Since ν is trivial,
there is a family of isomorphisms it,u : V0 → Vt,u for (t, u) ∈ I×I such that i0,u = IdV0

for every u ∈ I, and it,0 = (dφt)|V0 and it,1 = (dψt)|V1 for every t ∈ I. We can extend
this to a 2-parameter family of isomorphisms jt,u : TpY → TpY such that jt,u|V0 = it,u
for every (t, u) ∈ I×I, while j0,u = IdTpY for every u ∈ I, and jt,0 = dφt and jt,1 = dψt

for every t ∈ I. By the h-principle, there is a neighborhood U of p and a family of
di�eomorphisms ht,u : (U, p) → (Y, p) such that dht,u = jt,u for every (t, u) ∈ I × I,
and ht,0 = φt|U and ht,1 = ψt|U for every t ∈ I. Using the relative isotopy extension
theorem, we obtain a 2-parameter family of di�eomorphism gt,u : (Y, p) → (Y, p) such
that g0,u = IdY for every u ∈ I, and gt,0 = φt and gt,1 = ψt for every t ∈ I;
furthermore, gt,u|U = ht,u for every (t, u) ∈ I × I. Then the family { g1,u : u ∈ I }
provides an isotopy from g1,0 = φ to g1,1 = ψ. �

Proof of Theorem 1.5. Let HF be one of the four variants of Heegaard Floer homol-
ogy, and let Man∗,V be the category of based 3-manifolds with a choice of oriented
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tangent 2-plane at the basepoint. A morphism from the object (Y, p, V ) to (Y ′, p′, V ′)
is a di�eomorphism φ : (Y, p) → (Y ′, p′) such that dφ(V ) = V ′ in an oriented sense.
As for Theorem 1.9, by Theorem 2.34, we get a functor HF 1 : Sutman → Ab. Com-
posing with the functor (Y, p, V ) 7→ Y (p, V ) from De�nition 2.4 gives a functor
HF 2 : Man∗,V → Ab. As in the proof of Theorem 1.9, we obtain that isotopic mor-
phisms induce identical maps, where we say that two morphisms from (Y, p, V ) to
(Y, p, V ′) are isotopic if they can be connected by a path of morphisms from (Y, p, V )
to (Y, p, V ′).
Each �ber of the forgetful functor Man∗,V → Man∗ is a sphere, which is simply-

connected, so HF 2(Y, p, V ) has no monodromy along any loop of oriented 2-planes
in TpY . More precisely, �x a based manifold (Y, p) ∈ Man∗, and let M be the
Grassmannian of oriented 2-planes in TpY . Our goal is to construct a canonical
isomorphism from HF 2(Y, p, V0) to HF 2(Y, p, V1) for any pair (V0, V1) ∈ M × M .
Take an arbitrary morphism φ from (Y, p, V0) to (Y, p, V1), and such that φ is isotopic
to IdY through di�eomorphisms �xing p. Then we claim that the isomorphism

HF 2(φ) : HF 2(Y, p, V0) → HF 2(Y, p, V1)

is independent of the choice of φ. Indeed, by Lemma 2.46, if ψ is another choice,
then φ and ψ are isotopic through di�eomorphisms �xing p and mapping V0 to V1,
and hence HF 2(φ) = HF 2(ψ). We denote this isomorphism by iV0,V1 . So the groups
HF 2(Y, p, V ) for V ∈ M and the isomorphisms IV0,V1 for (V0, V1) ∈ M ×M form a
transitive system, and hence we can take the limit HF (Y, p). We have shown that HF 2

factors through a functor HF : Man∗ → Ab.

In fact, for each of ĤF , HF−, HF+, and HF
∞, Theorem 2.34 gives a functor in a

richer target category, as in the statement of the theorem. �

Proof of Theorem 1.8. As for Theorem 1.9, we get a functor HFL1 : Sutlink → Ab for
both variants of link Floer homology. Composing with the map

(S3, L,p,q) 7→ S3(L,p,q)

introduced in De�nition 2.5 gives a functor HFL2 : Link∗∗ → Ab, where Link∗∗ is the
category of oriented links with two (distinguished) basepoints on each component.
The �bre of the forgetful map Link∗∗ → Link∗ over a based link (L,p) is homeomorphic
to R|L| and hence contractible, so � as in the proof of Theorem 1.5 � the morphism
HFL2 factors through a functor HFL : Link∗ → Ab. Again, the invariant takes values
in a somewhat richer category than Ab. �

Finally, we indicate how to obtain Spinc-re�ned versions of the above results. Let F
be a strong Heegaard invariant de�ned on a set S of di�eomorphism types of balanced
sutured manifolds. Fix a sutured manifold (M, γ) such that [(M, γ)] ∈ S. Suppose
that for every isotopy diagram H of (M, γ) and every s ∈ Spinc(M, γ), we are given
an abelian group F (H, s) such that

F (H) =
⊕

s∈Spinc(M,γ)

F (H, s).

In addition, we assume that if e is an edge of G(M,γ) from H to H ′, then F (e)|F (H,s) is
an isomorphism between F (H, s) and F (H ′, s). Then the limit F (M, γ) will split as
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Figure 5. Two di�eomorphic diagrams, both de�ning manifolds dif-
feomorphic to (S1 × S2) # (S1 × S2), for which di�erent identi�cations

induce di�erent maps on ĤF .

a direct sum
⊕

s∈Spinc(M,γ) F (M, γ, s) in a natural way. Relative homological gradings

on the summands F (M, γ, s) can be treated in a similar manner.

3. Examples

In this section, we give several examples that illustrate some of the issues that arise
when one tries to de�ne Heegaard Floer homology in a functorial manner.

Example 3.1. This example shows why it does not su�ce to work with abstract (i.e.,
non-embedded) Heegaard diagrams to obtain canonical isomorphisms, and hence a
functorial invariant of 3-manifolds. See the diagrams

H = (Σ, {α1, α2 }, { β1, β2 }, z) and H′ = (Σ′, {α′
1, α

′
2 }, { β

′
1, β

′
2 }, z

′)

in Figure 5. Both de�ne sutured manifolds di�eomorphic to (S1×S2)#(S1×S2) . The
diagrams H and H′ are clearly di�eomorphic. Choose a di�eomorphism d : H → H′.
Observe that there is an involution f : H → H such that f(α1) = α2, f(β1) = β2,
and f(z) = z, obtained by π rotation about the axis perpendicular to the surface
and passing through z. Then d ◦ f is also an identi�cation between H and H′. How-

ever, the di�eomorphisms d and d ◦ f induce di�erent isomorphisms between ĤF (H)

and ĤF (H′). Indeed, ĤF (H) ∼= (Z2)
4, and f∗ swaps the two Z2 terms lying in the

�middle� homological grading. This is why in the graph G(M,γ) we only consider dia-
grams embedded in (M, γ), and edges corresponding only to di�eomorphisms isotopic
to the identity in M . Otherwise, Theorem 2.39 would not hold.

Example 3.2. Consider the diagram H = (Σ,α,β, z) of S1 × S2 shown in Figure 6.
Here, S1×S2 is represented by the region bounded by the two concentric spheres with
common center O, and we identify the points of the outer and inner spheres that lie
on a ray through O. The Heegaard surface Σ is represented by the horizontal annulus;
after gluing the outer and inner boundary circles we get a torus. There is a single
α-circle and a single β-circle; they intersect in two points a and b. In the diagram,
the dashed line represents an axis A passing through the basepoint z. If we rotate Σ
about A by an angle πt for some t ∈ [0, 1], we get an automorphism dt of S

1 × S2.
Notice that d1(Σ,α,β, z) = (Σ,α,β, z) and d1(a) = b and d1(b) = a; furthermore, dt
�xes the basepoint z for every t ∈ [0, 1]. Since ĤF (Σ,α,β, z) is generated by a and b,

it appears that ĤF has non-trivial monodromy around the loop of diagrams dt(H).
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Figure 6. A diagram of S1 × S2 for which an orientation reversing

isotopy swaps the two generators of ĤF .

Figure 7. A diagram of L(3, 1) with no basepoint, together with an

isotopy that permutes the 3 generators of ĤF .

However, d1|Σ is orientation reversing. This shows that we need to consider oriented
Heegaard surfaces in G(M,γ) to obtain naturality.

Example 3.3. Next, consider the diagram H = (Σ,α,β) of the lens-space L(p, 1)
illustrated in Figure 7 for p = 3. In particular, Σ is the torus obtained by identifying
the opposite edges of the rectangle [0, 1]× [0, 1], the curve α is a line of slope 0 and β

is a line of slope p. Then α∩β consists of p points a0, . . . , ap−1 that generate ĤF (H).
For t ∈ [0, 1], let Ht be the diagram of L(p, 1) obtained by translating β horizontally
by t/p. Then H0 = H1, so we obtain a loop of diagrams for L(p, 1). Notice that

ĤF (Ht) has non-trivial monodromy, as it maps ai to ai+1 for 0 ≤ i ≤ p − 1, where
ap = a0. Non-trivial monodromy makes it impossible to assign a Heegaard Floer
group to L(p, 1) independent of the choice of diagram. This example is ruled out by
requiring that there is at least one basepoint, and isotopies of the α and β curves
cannot pass through the basepoints. Note that a choice of basepoint is necessary to
assign a Spinc structure to each generator.
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Figure 8. A doubly pointed diagram of S1 × S2. A π-rotation in
the S1-direction swaps the basepoints and induces a non-trivial auto-

morphism of ĤF , while being trivial on HF
+ and HF

− in the torsion
Spinc-structure.

Example 3.4. Here we also consider a genus one Heegaard diagram H = (Σ,α,β, z)
of S1 × S2, but with two basepoints z = {z1, z2}, see Figure 8. Heegaard Floer
homology for multi-pointed Heegaard diagrams was introduced in [18, Section 4].
Again, we draw the diagram on [0, 1]×[0, 1]. We have two α-curves: α1 = {1/4}×[0, 1]
and α2 = {3/4} × [0, 1]. Furthermore, βi is a small Hamiltonian translate of αi such
that α1 ∩ β1 consists of two points that we label a, b, and α2 ∩ β2 consists of two
points x, y. We also arrange that β2 is a translate of β1 by the vector (1/2, 0). We
choose two basepoints, namely z1 = (0, 1/2) and z2 = (1/2, 1/2). For t ∈ [0, 1], let
dt be the di�eomorphism of Σ given by dt(u, v) = (u + t/2, v). (This extends to
S1 × S2 as rotation by πt in the S1-direction.) Let Ht = dt(H) for t ∈ [0, 1], then
H1 = H0, so we have a loop of doubly pointed diagrams of S1 × S2. Notice that

ĤF (Σ,α,β, z1, z2) is generated by the pairs {a, x}, {a, y}, {b, x}, and {b, y}. The
di�eomorphism d1 swaps the generators {a, y} and {b, x}, and swaps the basepoints

z1 and z2. Hence, to have naturality for ĤF , we need to work with based 3-manifolds
and based di�eomorphisms. However, if s0 denotes the torsion Spinc-structure on
S1 × S2, a straightforward computation shows that

HF
−(H, s0) ∼= Z[U1, U2]/(U1 − U2)〈 {a, x}, {a, y}+ {b, x} 〉

as a Z[U1, U2]-module, and d1 acts trivially on it. Compare this with our discussion

in the introduction that the basepoint moving map can be non-trivial on ĤF but is
trivial on HF

−.

Example 3.5. Even if we isotope the α- and β-curves in the complement of the base-

point, one might obtain a loop of diagrams such that ĈF has non-trivial holonomy
around it. However, as we shall prove, there is no holonomy if we pass to homology.
We describe a diagram H of S1 × S2 as follows, cf. Figure 9. Let Σ be the torus

represented by [0, 1] × [0, 1], take α to be {1/2} × [0, 1], and let β be a Hamiltonian
translate of α such that α ∩ β consists of four points a0, . . . , a3, and β is invariant
under translation by (0, 1/2). Let dt be translation by (0, t/2) for t ∈ [0, 1], and let
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Figure 9. A Heegaard diagram of S1×S2. If we translate the β-curve
in the vertical direction by 1/2 we get a non-trivial automorphism of
the chain complex that is trivial on the homology.

Ht = (Σ, α, dt(β), z). By construction, H0 = H1. Since d1(ai) = ai+2 (where i + 2 is

to be considered modulo 4), we see that d1 acts non-trivially on ĈF (H). However,

as ĤF (H) is generated by a0 + a2 and a1 + a3, the induced action on homology is
trivial.

More generally, suppose that (Σ,α,β, z) is a Heegaard diagram, α ∈ α and β ∈ β.
Furthermore, suppose that there is a regular neighborhood N ≈ α× [−1, 1] of α such
that β ⊂ N and β is transverse to the �bers {p} × [−1, 1] for every p ∈ α. Then we
can apply a ��nger move� inside N that is the identity outside N and preserves α∪β
setwise, and hence permutes the points of α ∩ β. Even though this isotopy acts
non-trivially on the chain level, it is trivial on the homology level.

4. Singularities of smooth functions

In this section, we recall some classical results about singularities of smooth real
valued functions following Arnold et al. [2]. The reader familiar with singularity
theory can safely skip to Section 5. This part is the beginning of the proof of The-
orem 2.39 on strong Heegaard invariants that culminates in Section 8. The reader
interested in the proof of Theorem 1.5, the application of Theorem 2.39 to Heegaard
Floer homology, should skip to Section 9.

De�nition 4.1. Let f be a smooth function on the manifold M . A point p ∈ M is
said to be a critical point of f if dfp = 0.

De�nition 4.2. Let En be the set of germs at 0 of smooth functions f : Rn → R. Let
Dn be the group of germs of di�eomorphisms g : (Rn, 0) → (Rn, 0). The group Dn

acts on En by the rule g(f) = f ◦ g−1. Two function-germs f , f ′ ∈ En are said to be
equivalent if they lie in the same Dn-orbit.
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The equivalence class of a function germ at a critical point is called a singularity.
A class of singularities is any subset of the space En that is invariant under the action
of the group Dn.

De�nition 4.3. A critical point is said to be nondegenerate (or aMorse critical point)
if the second di�erential (or Hessian) of the function at that point is a nondegenerate
quadratic form. The class of non-degenerate critical points is called A1.

Theorem 4.4 (Morse Lemma). In a neighborhood of a nondegenerate critical point
a ∈Mn of the function f : Mn → R, there exists a coordinate system in which f has
the form

f(x) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2n + f(a).

In the above theorem, k is called the index of the nondegenerate critical point
a, and will be denoted by I(a). If two elements of En have nondegenerate critical
points at zero, then they are equivalent if and only if they have the same index. More
generally, for an arbitrary critical point, I(a) is the index of the second di�erential
of the function at a.

The most important characteristic of a class of singularities is its codimension c in
the space En of function-germs. In fact, a generic function has only nondegenerate
critical points of codimension c = 0. Degenerate critical points occur in an irremovable
manner only in families of functions depending on parameters. Thus, in a family of
functions depending on l parameters there may occur (in such a manner that it cannot
be removed through a small perturbation of the family) only a family of singularities
for which c ≤ l.

De�nition 4.5. A deformation with base Λ = Rl of the germ f ∈ En is the germ at
zero of a smooth map F : Rn × Rl → R such that F (x, 0) ≡ f(x).

A deformation F ′ is equivalent to F if

F ′(x, λ) = F (g(x, λ), λ),

where g is the germ at zero of a smooth map (Rn ×Rl, 0) → (Rn, 0) with g(x, 0) ≡ x,
representing a family of di�eomorphisms depending on λ ∈ Rl.

The deformation F ′ is induced from F if

F ′(x, λ) = F (x, θ(λ)),

where θ : (Rl′ , 0) → (Rl, 0) is a smooth germ of a mapping of the bases.

De�nition 4.6. A deformation F (x, λ) of the germ f(x) is said to be versal if every
deformation F ′ of f(x) can be represented in the form

F ′(x, λ′) = F (g(x, λ′), θ(λ′)),

where g(x, 0) ≡ x and θ(0) = 0; i.e., every deformation of f(x) is equivalent to a
deformation induced from F .

A versal deformation for which the base Λ has the smallest possible dimension is
called miniversal.

Proposition 4.7. Let f(x) ∈ En be a germ of a critical point. We denote by I∇f the
ideal of En generated by all partial derivatives fi = ∂f/∂xi of f , and let Qf = En/I∇f .
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If ϕ1, . . . , ϕl project to a basis of Qf , then

F (x, λ) = f(x) +
l∑

j=1

λjϕj

is a miniversal deformation of the germ f(x).

A versal deformation is unique in the following sense.

Theorem 4.8. Every `-parameter versal deformation of a germ f is equivalent to
a deformation induced from any other `-parameter versal deformation by a suitable
di�eomorphism of their bases.

LetK be a subset of En invariant under the action of Dn; i.e., a class of singularities.
Furthermore, let P ⊂ En be the germs at 0 of polynomials in R[x1, . . . , xn]. A normal
form for the class K is a map Φ: B → P from a �nite dimensional linear �parameter
space� B to the space of polynomial germs satisfying three conditions:

• Φ(B) intersects all Dn-orbits in K,
• the preimage of every Dn-orbit in B is �nite, and
• Φ−1(En \K) lies in some hypersurface in B.

Theorem 4.9. In a generic 1-parameter family of smooth functions, the only degen-
erate critical points that appear have normal form

f(x) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 + x3n + f(a).

The class of such singularities is called A2.
In addition, in 2-parameter families singularities of the form

f(x) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 ± x4n + f(a)

might also appear. The class of such singularities is called A±
3 .

As a corollary of Proposition 4.7, a miniversal deformation of a singularity of
type A1 is given by

F (x, λ) = −x21 − · · · − x2k + x2k+1 + . . . x2n + λ,

where λ ∈ R. So such singularities are stable, i.e., they cannot be removed by small
perturbations.

Miniversal deformations of type A2 singularities are given by the formula

F (x, λ) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 + x3n + λ1xn + λ2,

where the parameter λ = (λ1, λ2) ∈ R2. So every generic 1-parameter deformation of
a type A2 singularity is equivalent to one induced from this, and so has normal form

−x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 + x3n + λ1(t)xn + λ2(t).

The concrete value of the constant term λ2(t) does not a�ect the types of singularities
appearing in the family, so from a qualitative point of view we can assume that
λ2(t) ≡ 0. Then, in this family, for λ1 < 0 we have two nondegenerate critical points
of indices k and k+1 that cancel each other at λ1 = 0, and the germs have no critical
points for λ1 > 0. Hence, we will sometimes refer to a type A2 singularity of index k
as an index k�(k+1) birth-death singularity (death if λ1(t) is decreasing, and birth if
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Figure 10. Bifurcation diagrams of the singularities A+
3 and A−

3

for n = 1.

λ1(t) is increasing). In 2-parameter families, type A2 singularities appear along curves
in the parameter space Λ (in the above normal form given by the formula λ1 = 0).

Finally, type A±
3 singularities have miniversal deformation

F (x, λ) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 ± x4n + λ1x
2
n + λ2xn + λ3

with parameter λ ∈ R3. These �rst appear in a non-removable manner in 2-parameter
families. To study the bifurcation set in Λ = R2 for a generic 2-parameter deformation
Λ → En, we again disregard the constant term, and consider

−x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1 ± x4n + λ1x
2
n + λ2xn.

For generic values of λ, this may have

• three nondegenerate critical points, of indices k, k+1, and k for A+
3 and k+1,

k, and k + 1 for A−
3 ; or

• one nondegenerate critical point, of index k for A+
3 and k + 1 for A−

3 .

When the polynomial ±4x3n+2λ1xn+λ2 has multiple roots, the behaviour is di�erent.
The discriminant is the cuspidal curve

∆ = {λ ∈ Λ : 8λ31 ± 27λ22 = 0 }.

For λ ∈ ∆ \ {0}, the germ F (x, λ) has an A1 and an A2 singularity, while for λ = 0,
it has an A±

3 singularity. Sometimes, we will refer to an A+
3 singularity of index k

as an index k�(k + 1)�k birth-death-birth, while an A−
3 singularity of index k as

an index (k + 1)�k�(k + 1) birth-death-birth. For the bifurcation diagrams of the
singularities A+

3 and A−
3 , see Figure 10. Note that, in case of A+

3 , for λ1 < 0 and λ2 =
0, the values of two critical points coincide, which is a type of bifurcation that we
disregard. There is an analogous bifurcation for A−

3 singularities in case λ1 > 0
and λ2 = 0.

Now we apply the above discussion to global 1- and 2-parameter families of smooth
real valued functions on manifolds. For a generic 1-parameter family of smooth func-
tions { fλ : λ ∈ Λ }, there is a discrete subset D ⊂ Λ such that for every λ ∈ Λ \ D



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 29

the function fλ has only nondegenerate critical points, while for λ ∈ D it has a sin-
gle degenerate critical point of type A2, where two nondegenerate critical points of
neighboring indices collide.

For a generic 2-parameter family { fλ : λ ∈ Λ }, there is a subset D ⊂ Λ such
that fλ has only nondegenerate critical points for λ ∈ Λ \ D. In addition, D is a
union of embedded curves that have only cusp singularities and intersect each other
in transverse double points. At a regular point λ ∈ D, the function ft has a single
degenerate critical point of type A2. If λ is a double point of D, then ft has two
degenerate critical points of type A2. Finally, at each cusp of D, the function ft has
a single degenerate critical point of type A±

3 .

5. Generic 1- and 2-parameter families of gradients

Next, we summarize the results of Palis and Takens [19] and Vegter [23] on the
classi�cation of global bifurcations that appear in generic 1- and 2-parameter fam-
ilies of gradient vector �elds on 3-manifolds. In Section 6, we will translate the
codimension-1 bifurcations to moves on Heegaard diagrams, while codimension-2 bi-
furcations translate to loops of Heegaard diagrams. Note that the bifurcation theory
of gradients is much richer than the corresponding theory for smooth functions, due
to the tangencies that can appear between invariant manifolds of singular points.

5.1. Invariant manifolds. First, we review some classical de�nitions and results of
Anosov et al. [1, Section 4].

De�nition 5.1. An invariant manifold of a vector �eld is a submanifold that is
tangent to the vector �eld at each of its points.

If v is a smooth vector �eld on a manifold M with a singularity at p (i.e., v is
zero at p), then the linear part Lpv of v at p is an endomorphism of TpM . In local
coordinates x = (x1, . . . , xn) around p, the linear part of v is Ax, where A = ∂v

∂x

∣∣
x=0

and ∂v
∂x

is the Jacobian matrix whose (i, k) entry is ∂vi
∂xk

.
The space TpM can be written as a direct sum of three Lpv-invariant subspaces,

namely T s, T u, and T c, such that every eigenvalue of Lpv|T s has negative real part,
every eigenvalue of Lpv|Tu has positive real part, and every eigenvalue of Lpv|T c has
real part zero. Indeed, T s, T u, and T c are spanned by the generalized eigenvectors
of Lpv corresponding to eigenvalues with negative, positive, and zero real parts, re-
spectively. Here, the superscripts s, u, and c correspond to �stable,� �unstable,� and
�center.�

De�nition 5.2. We say that v has a hyperbolic singularity at p if none of the eigen-
values of Lpv are purely imaginary; i.e., if T c = 0.

Theorem 5.3 (Center manifold theorem). Let v be a Cr+1 vector �eld on M with a
singular point at p. Let T s, T u, and T c be the subspaces of the splitting corresponding
to the operator Lpv.

Then the di�erential equation ẋ = v(x) has invariant manifolds Ws, Wu, and Wc

of class Cr+1, Cr+1, and Cr, respectively, that go through p and are tangent to T s,
T u, and T c, respectively, at p. Solutions with initial conditions on Ws (respectively,
Wu) tend exponentially to p as t→ +∞ (respectively, t→ −∞).
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Here, Ws is called the (strong) stable manifold and Wu the (strong) unstable
manifold of the singular point p. The behavior of the phase curves on the center
manifold Wc is determined by the nonlinear terms. If v is C∞, then Ws and Wu can
be chosen to be C∞, whereas the center manifold is only �nitely smooth. In addition,
the choice of Wc might not be unique.

Theorem 5.4 (Reduction Principle). Suppose a di�erential equation with C2 right-
hand side has a singular point p. Let T s, T u, and T c be the invariant subspaces
corresponding to the map Lpv. Then, in a neighborhood of the singular point p, the
equation under consideration is topologically equivalent to the direct product of two
equations: the restriction of the original equation to the center manifold, and the
�standard saddle�

ȧ = −a, ḃ = b, a ∈ T s, b ∈ T u.

This theorem can be used to study both individual equations and families of equa-
tions; a family ẋ = v(x, ε) being equivalent to the equation ẋ = v(x, ε), ε̇ = 0.

The following discussion has been taken from Palis and Takens [19].

De�nition 5.5. We say that a smooth vector �eld v on M has a saddle-node at p
(or a quasi-hyperbolic singularity of type 1) if dimT c = 1 and v|Wc has the form
v = ax2 ∂

∂x
+O(|x|3) with a 6= 0 for some center manifold Wc through p.

If vµ, belonging to a one-parameter family {vµ} of vector �elds, has a saddle-node
at p, we say that it unfolds generically if there is a center manifold for the family
{vµ} passing through p (at µ = µ) such that vµ, restricted to this center manifold,
has the form

vµ =
(
ax2 + b(µ− µ)

) ∂

∂x
+O

(
|x3|+ |x · (µ− µ)|+ |µ− µ)|2

)
,

with a, b 6= 0.

For example, if f : M → R has an A2 singularity at p, then the ∇f has a saddle-
node at p.

De�nition 5.6. A point p ∈M is called a quasi-hyperbolic singularity of type 2 of a
vector �eld v if dimT c = 1 and there is a center manifold Wc of class Cm such that
on Wc, there is a local Cm-coordinate x with v|Wc = x3 · v1(x)

∂
∂x

with v1(0) 6= 0.

For example, if f : M → R has an A±
3 singularity at p, then ∇f has a quasi-

hyperbolic singularity of type 2 at p.

De�nition 5.7. Let p be a singular point of the vector �eld v on M . Furthermore,
let the maximal �ow of v be ϕ : D →M , where D ⊂M×R is the �ow domain. Then
the unstable set of p is

W s(p) = {x ∈M : lim
t→∞

ϕ(x, t) = p },

and the stable set of p is

W u(p) = {x ∈M : lim
t→−∞

ϕ(x, t) = p }.

If p is a hyperbolic singular point of v, then both W s(p) and W u(p) are injectively
immersed submanifolds of M with tangent spaces TpW

s(p) = T s and TpW
u(p) =

T u, respectively. So, in this case, the stable and unstable sets W s(p) and W u(p)
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Figure 11. The stable and unstable sets of a saddle-node singular-
ity are manifolds with boundary. This �gure also illustrates the non-
uniqueness of the center manifold.

coincide with the stable and unstable manifolds Ws and Wu of the singular point p,
respectively.
If p is a saddle-node, W s(p) is an injectively immersed submanifold with boundary.

This boundary is the strong stable manifold of p, and is denoted by W ss(p). Note
that TpW

ss(p) = T s. Similarly, W u(p) is an injectively immersed submanifold with
boundary the strong unstable manifold W uu(p), see Figure 11. In the terminology of
Theorem 5.3, we have W ss(p) = Ws and W uu(p) = Wu.

5.2. Bifurcations of gradient vector �elds on 3-manifolds. Let M be compact
3-manifold. A gradient vector �eld X = gradg(f) on M is associated with a Rie-
mannian metric g and a smooth function f : M → R by the relation g(X, Y ) = df(Y )
for all smooth vector �elds Y onM . Since f is strictly increasing along regular orbits
of X, the vector �eld gradg(f) has no periodic orbits or other kinds of recurrence. The
singular points of X coincide with the critical points of f . Since the linear part LpX
of X at a singularity p is symmetric with respect to g, all eigenvalues of LpX are real.
(In suitable coordinates LpX is the Hessian matrix of f at the singular point).

De�nition 5.8. A gradient vector �eld X on M is Morse-Smale if

(H) all singular points of X are hyperbolic, and
(T) all stable and unstable manifolds are transversal.

The Morse-Smale vector �elds constitute an open and dense subset of the setXg(M)
of all gradient systems on a closed manifold M . In addition, a gradient system is
structurally stable if and only if it is Morse-Smale.

De�nition 5.9. A k-parameter family of gradients {Xµ} on a compact manifold
M is a family of pairs (gµ, fµ) for µ ∈ Rk, where {gµ} is a k-parameter family of
Riemannian metrics and {fµ} is a k-parameter family of real-valued functions on M ,
such that Xµ = gradgµ(f

µ).
We assume that both gµ and fµ, and hence Xµ, depend smoothly on (µ, x) ∈

Rk×M . The set of such pairs is endowed with the strong Whitney topology; i.e., the
topology of uniform convergence of gµ, fµ and all their derivatives on compact sets.
The resulting topological space of k-parameter families is denoted by Xg

k(M).
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De�nition 5.10. A parameter value µ ∈ Rk is called a bifurcation value for the
family {Xµ} in Xg

k(M) if Xµ fails to be a Morse-Smale system. Hence Xµ has at
least one orbit of tangency between stable and unstable manifolds, or at least one
non-hyperbolic singular point.
The bifurcation set of a family {Xµ} in Xg

k(M) is the subset of Rk consisting of all
bifurcation values of {Xµ}.

Note that, in dimension three, if a stable manifold and an unstable manifold do
not intersect transversely at a point x, then they are actually tangent at x. Indeed,
stable and unstable manifolds always contain the �ow direction, and any two linear
subspaces of R3 containing a �xed vector are either transverse or tangent (in the sense
that one is contained inside the other).

5.2.1. Generic 1-parameter families of gradients in dimension 3. We now turn to the
results of Palis and Takens [19], following the notation of Vegter [23].

De�nition 5.11. Let v be a vector �eld on a 3-manifold M . Two invariant sub-
manifolds A and B of v have a quasi-transversal tangency if their intersection has a
connected phase curve γ that is not a single point, and at some (and hence every)
point r ∈ γ, the following two conditions hold:

(QT-1) dim(TrA+ TrB) = 2; so we have three cases:
(a) dimA = 2 and dimB = 2,
(b) dimA = 1 and dimB = 2,
(c) dimA = 2 and dimB = 1.

(QT-2) In case (QT-1a), we impose the condition that the tangency between A and B
is as generic as possible in the following sense. Let S be a smooth 2-dimensional
cross-section for v, containing r. Take coordinates (x1, x2) on a neighborhood
of r in S, in which A∩S = {x2 = 0}, while B∩S is of the form {x2 = F (x1)}
for some smooth function F . Condition (QT-1) amounts to F (0) = 0 and
dF
dx1

(0) = 0. In addition, we require that

d2F

dx21
(0) 6= 0.

For an open and dense set of 1-parameter families of gradients, it is easy to describe
the bifurcation diagram: It consists of isolated points in the parameter space R

at which one of the conditions appearing in the characterization of Morse-Smale
gradients is violated �in the mildest possible manner.� For a generic family {Xµ} ∈
Xg

1 (M), at each bifurcation value µ ∈ R exactly one of the following two possibilities
holds:

(NH) Failure of condition (H). The vector �eld Xµ has exactly one generically un-
folding saddle-node p, all other singular points are hyperbolic, and all stable
and unstable manifolds are transversal. By convention (here and later), at
saddle-nodes the set of stable and unstable manifolds required to be trans-
verse includes W ss(p) and W uu(p) as well as W s(p) and W u(p).

(NT) Failure of condition (T). All singular points of Xµ are hyperbolic, and there
is a single non-transversal orbit of intersection γ of the unstable manifold
W u(pµ1) of p

µ
1 and the stable manifold W s(pµ2) of p

µ
2 that is quasi-transversal

and satis�es the additional non-degeneracy conditions below.
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(ND-1) This condition expresses the �crossing at non-zero speed� of W u(pµ1) and
W s(pµ2) as the parameter passes the value µ, where pµ1 and pµ2 are the
saddle points of Xµ near pµ1 and pµ2 , respectively. For this, we choose
paths σu, σs : R → M with σu(µ) ∈ W u(pµ1), σ

s(µ) ∈ W s(pµ2), and
σu(µ) = σs(µ) = r ∈ γ. We require that

σ̇u(µ)− σ̇s(µ) 6= 0 mod
(
TrW

u(pµ1) + TrW
s(pµ2)

)
.

When dimW u(pµ1) = 1 and dimW s(pµ2) = 2, we impose the following addi-
tional conditions. The case when dimW u(pµ1) = 2 and dimW s(pµ2) = 1 have
the same conditions, but with the sign of Xµ reversed.

(ND-2) The contracting eigenvalues of the linear part of Xµ at pµ1 are di�erent
(this is generic for gradients because only real eigenvalues occur). This
implies that there is a unique 1-dimensional invariant manifoldW ss(pµ1) ⊂
W s(pµ1) such that Tpµ1

W ss(pµ1) is the eigenspace of Lpµ1
Xµ corresponding

to the strongest contracting eigenvalue. We callW ss(pµ1) the strong stable
manifold of pµ1 .

(ND-3) For some r ∈ γ, let Er ⊂ TrW
s(pµ2) be a 1-dimensional subspace comple-

mentary to Xµ(r). Let Xµ
t for t ∈ R be the �ow of Xµ. Then we require

that
lim

t→−∞
(dXµ

t )r(Er) = Tpµ1
W ss(pµ1).

(ND-4) The stable and unstable manifolds of any singularity p∗ 6∈
{
pµ1 , p

µ
2

}
are

transversal to W ss(pµ1).

The possibilities occurring in cases (NH) and (NT) are shown schematically in
Figure 12. Note that in case (NT), we have I(pµ1), I(p

µ
2) ∈ {1, 2} and I(pµ1) ≤ I(pµ2)

by condition (QT-1) of quasi-transversality.

5.2.2. Generic 2-parameter families of gradients in dimension 3. This section sum-
marizes results of Vegter [23]; also see Carneiro and Palis [5] for the classi�cation of
generic 2-parameter families of gradients in arbitrary dimensions.
The instabilities (NH) and (NT) of Section 5.2.1 may also occur in an open and

dense class of 2-parameter gradient families on M . The corresponding parameter
values form smooth curves in the parameter space R2. Moreover, for a generic family
{Xµ} ∈ Xg

2 (M), at an isolated value µ of the parameter, exactly one of the following
situations may occur. (These cases are described in more detail shortly.)

(A) The vector �eld Xµ has exactly two quasi-transversal orbits of tangency be-
tween stable and unstable manifolds, satisfying analogues of conditions (ND-
1)�(ND-4), while all singularities are hyperbolic.

(B) The vector �eld Xµ has exactly one non-hyperbolic singularity, which is a
saddle-node, and exactly one quasi-transversal orbit of tangency between sta-
ble and unstable manifolds that satis�es analogues of conditions (ND-1)�(ND-
4).

(C) The vector �eld Xµ has exactly two non-hyperbolic singularities, which are
saddle-nodes, while all stable and unstable manifolds intersect transversally.

(D) The vector �eld Xµ has exactly one non-hyperbolic singularity, which is quasi-
hyperbolic of type 2, while all stable and unstable manifolds are transversal.
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Figure 12. Generic codimension-1 singularities of gradient vector
�elds. The vertical direction in these pictures is the direction of the
Morse function, so the gradient �ow always goes upwards. The critical
points are shown schematically, indicating only the stable and unsta-
ble manifolds. The top row shows the possibilities in case (NH): an
index 0-1, an index 1-2, and an index 2-3 saddle-node. Here the stable
and unstable manifolds are manifolds with boundary. In the bottom
row, we see a quasi-transversal orbit of tangency, shown in red, be-
tween W u(p1) and W s(p2). There are three cases, from left to right:
I(p1) = I(p2) = 1, or I(p1) = I(p2) = 2, or I(p1) = 1 and I(p2) = 2.

(E) All singular points of Xµ are hyperbolic, and a single degenerate orbit of
tangency occurs between W u(pµ1) and W s(pµ2) that violates exactly one of
the conditions (QT-1), (QT-2), (ND-3), or (ND-4) in the �mildest possible
manner.� Observe that it does not make sense to consider violation of condi-
tion (ND-1); it can be replaced by a similar condition for 2-parameter families.
Condition (ND-2) also holds for generic 2-parameter families, since the set of
linear gradients on R2 having two equal eigenvalues has codimension 2. Hence,
generically, a pair of equal contracting eigenvalues at pµ1 does not occur to-
gether with an orbit of tangency.

If Xµ has a non-hyperbolic singular point p ∈ M , as in cases (B)�(D), the set of
stable and unstable manifolds also includes W ss(p) and W uu(p), respectively.
Next, we consider the bifurcation sets in R2 near parameter values µ for which we

have one of the situations described above. Such a parameter value is in the closure of
smooth curves in R2 that correspond to the occurrence of bifurcations that may also
occur in 1-parameter families. The 1-parameter families limiting on µ corresponding
to tangencies with invariant manifolds of far-away singularities are called secondary
bifurcations. We do not list the cases that arise from the ones below by reversing the
sign of Xµ, which simply amounts to swapping superscripts �u� and �s.�
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Figure 13. The possibilities for two nondegenerate orbits of
tangency between hyperbolic singular points from case (A).
The top row shows the possibilities in case (A1), while the bottom row
illustrates case (A2). In this �gure, each critical points is index 1, with
stable manifold consisting of a curve and unstable manifold consisting
of a disk. The orbits of tangencies are shown in red.

(A1) There are four hyperbolic singular points pµ1 , . . . , p
µ
4 of Xµ such that the or-

bits of tangency are contained in W u(pµ1) ∩ W s(pµ2) and W u(pµ3) ∩ W s(pµ4),
respectively. We allow pµ1 = pµ3 or pµ2 = pµ4 , or both. Note that I(pµi ) ∈ {1, 2}
for every i ∈ { 1, . . . , 4 }, and necessarily I(pµ1) ≤ I(pµ2) and I(pµ3) ≤ I(pµ4).
See the top row of Figure 13 for schematic drawings of the possibilities when
each pµi has index 1. Generically, the bifurcation set consists of two smooth
curves that intersect transversely at µ, cf. Figure 21.

(A2) There are three hyperbolic singular points pµ1 , p
µ
2 , and p

µ
3 of Xµ such that the

orbits of tangency are contained in W u(pµ1) ∩W
s(pµ2) and W

u(pµ2) ∩W
s(pµ3),

respectively. Again, each pµi has index 1 or 2, and

I(pµ1) ≤ I(pµ2) ≤ I(pµ3).

See the bottom row of Figure 13 for an illustration. The bifurcation set consists
of �ve codimension-1 strata meeting at µ, cf. Figure 22.

(B1) The vector �eld Xµ has one saddle-node pµ and one quasi-transverse orbit
of tangency between W u(pµ1) and W s(pµ2), where p

µ
1 and pµ2 are hyperbolic

saddle-points of Xµ; see Figure 14 for one case. The bifurcation set consists
of two curves that intersect transversely at µ, cf. Figure 23.

(B2) The vector �eld Xµ has a saddle-node pµ and a hyperbolic saddle-point pµ

whose stable manifold has one quasi-transverse orbit of tangency with the
unstable manifold of pµ. Secondary bifurcations are, among others, due to the
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Figure 14. Codimension-2 bifurcations that involve a saddle-node. As
in Figure 13, we have drawn schematic possibilities showing only the
stable and unstable manifolds. In the case of an index 1-2 saddle-node,
the stable and unstable manifolds are each half-planes. The red lines
show quasi-transverse orbits of tangency between di�erent singulari-
ties. The green lines are �ows that are transverse intersections between
stable and unstable manifolds.

occurrence of tangencies between W u(pµ∗) and W s(pµ) for each saddle point
pµ∗ 6= pµ such that W u(pµ∗)∩W

s(pµ) 6= ∅; suppose there are s of these. For an
illustration of one case, see Figure 14. Then the bifurcation diagram consists
of s+ 3 codimension-1 strata meeting at µ, cf. Figure 24.

(B3) The vector �eld Xµ has a saddle-node pµ and a quasi-transverse orbit of
tangency between W ss(pµ) and W u(pµ), where pµ is a saddle-point of Xµ, see
Figure 14. The bifurcation set consists of 3 codimension-1 strata meeting at µ,
cf. Figure 25.

(C) For an open and dense class of 2-parameter families {Xµ} of Xg
2 (M), we have

a pair p1, p2 of saddle-nodes occurring at isolated values µ of the parameter.
For an illustration, see Figure 14. There are two curves Γ1 and Γ2 in the
parameter plane corresponding to the occurrence of exactly one saddle-node
of Xµ near p1 and p2, respectively. Generically, these curves are transversal,
cf. Figure 26.

(D) In a neighborhood of the central bifurcation value µ, the bifurcation diagram
consists of parameter values µ for which Xµ, and hence fµ, has a degenerate
singular point near p. For an open and dense class of 2-parameter families {fµ}
for which grad(fµ) has a quasi-hyperbolic singularity of type 2, there are µ-
dependent local coordinates (x, y, z) in which fµ can be written as

±x4 + µ1x
2 + µ2x± y2 ± z2,

having a singularity of type A±
3 . So the bifurcation diagram near µ is the

well-known cusp, cf Figure 28. The pair of curves having µ in their closure
corresponds to the occurrence of exactly one saddle-node near p. For an
illustration, see Figure 15.
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Figure 15. Local codimension-2 bifurcation of type (D). We have
drawn the bifurcation diagram for an A−

3 singularity, and indicated the
dynamics on the two sides of the bifurcation set.

Figure 16. The dynamics at a bifurcation of type (E1).

(E1) We have dimW u(pµ1) = dimW s(pµ2) = 1, violation of (QT-1). Secondary bi-
furcations may be present due to occurrence of an orbit of tangency between
W s(pµ2) and an unstable manifold (of dimension 2) intersecting W s(pµ1), or
between W u(pµ1) and a stable manifold (of dimension 2) intersecting W u(pµ2),
see Figure 16. For µ close to µ, let Dµ

r be a continuous family of smooth discs
contained in a level set of fµ such that W u(pµ1) ∩D

µ
r = {r}. Let Uµ

1 , . . . , U
µ
n

be the intersections of Dµ
r with unstable manifolds having non-empty intersec-

tions withW s(pµ1). Similarly, Sµ
1 , . . . , S

µ
m denote intersections of Dµ

r and stable
manifolds meeting W u(pµ2). The corresponding bifurcation diagram consists
of n+m curves in the parameter plane, having µ in their closure, cf. Figure 29.
For parameter values µ on these curves we have either W s(pµ2) ∩D

µ
r ∈ Uµ

i for
some i ∈ { 1, . . . , n }, or W u(pµ1) ∩D

µ
r ∈ Sµ

j for some j ∈ { 1, . . . ,m }.
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(E2) We have d2F µ/dx2 = 0, violation of (QT-2), where F µ is the function F
de�ned in (QT-2) for the vector �eld vµ. For an open and dense class of
2-parameter families, we have (d3F µ/dx3)(0) 6= 0, while the family {F µ} is
a versal unfolding of F µ. The latter condition implies the existence of local
coordinates (µ, x) near (µ, r) in which (µ, r) corresponds to (0, 0) ∈ R2 × R,
such that F µ(x) = x3 + µ1x + µ2. The bifurcation values form a cusp in the
parameter space R2.

(E3) Situation of case (QT-1b), where limt→−∞ dXµ
t (Er) is the eigenspace of the

linear part at pµ1 corresponding to the weakest contracting eigenvalues, which is
violation of (ND-3). Let Dµ

r be as in case (E1). Then Dµ
r contains Uµ

1 , . . . , U
µ
n

that are intersections of Dµ
r and unstable manifolds meeting W s(pµ1). Sec-

ondary bifurcations occur for parameter values µ for which W s(pµ2) ∩ Dµ
2 is

tangent to Uµ
i for some i ∈ { 1, . . . , n }.

(E4) The vector �eld Xµ has an orbit of tangency as in case (QT-1b), and ex-
actly one hyperbolic saddle pµ∗ di�erent from pµ1 and pµ2 such that W u(pµ∗)
and W ss(pµ1) are not transversal, which is violation of (ND-4). In this case,
we have secondary bifurcations for parameter values µ for which one of the
following occur:
(a) W u(pµ1) ∩D

µ
r ∈ W s(pµ2) ∩D

µ
r ,

(b) W u(pµ∗) ∩D
µ
r is tangent to W s(pµ2) ∩D

µ
r .

5.3. Sutured functions and gradient-like vector �elds. In this section, we in-
troduce sutured functions, which are smooth functions on a sutured manifold with
prescribed boundary behavior. Then we de�ne and study gradient-like vector �elds
for sutured functions.

De�nition 5.12. Let (M, γ) be a sutured manifold, and �x a di�eomorphism

d : γ → s(γ)× [−1, 1]

such that d(p) = (p, 0) for every p ∈ s(γ), and d maps γ ∩R±(γ) to s(γ)×{±1}. We
also �x a vector �eld v0 along R(γ) that points intoM along R−(γ) and points out of
M along R+(γ). A sutured function on (M, γ) is a smooth function f : M → [−1, 1]
such that

(1) f−1(±1) = R±(γ),
(2) v0(f) > 0,
(3) f |γ = π2 ◦ d, where π2 is the projection s(γ)× [−1, 1] → [−1, 1].

Notice that, for a �xed choice of d and v0, the space of sutured functions on (M, γ) is
convex, hence contractible. Furthermore, the space of pairs (d, v0) is also contractible,
though we will always assume implicitly that we are working with a �xed choice (d, v0).
For a sutured function f , we denote by C(f) the set of critical points of f ; i.e.,

C(f) = { p ∈M : dfp = 0 }.

By conditions (2) and (3), the set C(f) lies in the interior of M . The following
de�nition was motivated by Milnor [13, De�nition 3.1].

De�nition 5.13. Let f be a sutured function on (M, γ). A vector �eld v on M is a
gradient-like vector �eld for f if
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(1) v(f) > 0 on M \ C(f),
(2) C(f) has a neighborhood U such that v|U = gradg(f |U) for some Riemannian

metric g on U ,
(3) v|γ = ∂/∂z, where z is the [−1, 1]-coordinate on γ.

Remark 5.14. Note that Milnor [13, De�nition 3.1] de�ned gradient-like vector �elds
for a Morse function f on an n-manifold M . Instead of condition (2), he required
that for any critical point p of f , there are coordinates (x1, . . . , xn) in a neighborhood
U of p such that

f = f(p)− x21 − · · · − x2λ + x2λ+1 + · · ·+ x2n

and v has coordinates (−x1, . . . ,−xλ, xλ+1, . . . , xn) throughout U . When studying
families of smooth functions, as we have seen, more complicated singularities can
arise. We could require that around such a singularity, v is the Euclidean gradient in
a local coordinate system in which the singularity is in normal form. But then it is
unclear whether the space of gradient-like vector �elds is contractible, as the space of
such local coordinate systems is rather complicated. Hence, we have chosen to work
with condition (2), as the space of metrics is clearly contractible. As a tradeo�, one
has to resort to such results as Theorems 5.3 and 5.4 to understand the invariant
manifolds of v near a singular point.

Let FV(M, γ) be the space of pairs (f, v), where f is a sutured function on (M, γ)
and v is a gradient-like vector �eld for f . We endow FV(M, γ) with the C∞-topology.

De�nition 5.15. A Morse function on (M, γ) is a sutured function f : M → [−1, 1]
such that all critical points of f are non-degenerate. For a Morse function f and
i ∈ { 0, 1, 2, 3 }, let Ci(f) be the set of critical points of f of index i.

By (2), every gradient-like vector �eld v of a Morse function has only hyperbolic
singular points. In particular, we can talk about the stable and unstable manifolds
W s(p) and W u(p) of a singular point p of v. If we also want to refer to the vector
�eld v, then we write W u(p, v) and W s(p, v). Note that the Morse index I(p) of the
critical point p ∈ C(f) agrees with dimW s(p). Indeed, in a suitable coordinate system
around p, the linearization Lpv coincides with the Hessian of f at p. Furthermore,
notice that every point

x ∈M \
⋃

p∈C(f)

(W u(p) ∪W s(p))

lies on a compact �ow-line connecting R−(γ) and R+(γ).

De�nition 5.16. We say that (f, v) ∈ FV(M, γ) satis�es the Morse-Smale condition
if v is Morse-Smale in the sense of De�nition 5.8. We denote the subspace of Morse-
Smale pairs in FV(M, γ) by FV0(M, γ).

If (f, v) ∈ FV0(M, γ), then f is a Morse function on (M, γ). Furthermore, for every
p, q ∈ C(f), the intersection W u(p) ∩W s(p) is a manifold of dimension I(p) − I(q)
that we denote by W (p, q). In particular, W (p, q) = ∅ if I(p)− I(q) < 0.

Remark 5.17. Notice that for (f, v) ∈ FV(M, γ), the condition thatW u(p) andW s(q)
intersect transversally is automatically satis�ed if at least one of p or q has index 0
or 3. For a pair (f, v) ∈ FV(M, γ) where f is a Morse function, the Morse-Smale
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condition can be violated by having �ows between critical points of index 1, �ows
between critical points of index 2, or an orbit of tangency in W u(p) ∩ W s(q) for
p ∈ C1(f) and q ∈ C2(f). In addition, �ows from index 2 to index 1 critical points
generically appear in 2-parameter families.

De�nition 5.18. We say the pair (f, v) ∈ FV(M, γ) is codimension-1 if (f, v) 6∈
FV0(M, γ), but v appears as Xµ for some 1-parameter family {Xµ} ∈ Xg

1 (M) that
is generic in the sense of Section 5.2.1. We denote the space of codimension-1 pairs
by FV1(M, γ), and the union FV0(M, γ) ∪ FV1(M, γ) by FV≤1(M, γ).
In an analogous manner, we say that (f, v) ∈ FV(M, γ) is codimension-2 if (f, v) 6∈

FV≤1(M, γ), but v appears as Xµ for some 2-parameter family {Xµ} ∈ Xg
2 (M) that

is generic in the sense of Section 5.2.2. We denote the space of codimension-2 pairs
by FV2(M, γ). Finally, we set

FV≤2(M, γ) =
⋃

i∈{ 0,1,2 }

FV i(M, γ).

The following proposition implies that every gradient-like vector �eld is actually a
gradient for some Riemannian metric. The advantage of gradient-like vector �elds is
that they are easier to manipulate than metrics, which is useful in actual construc-
tions.

Proposition 5.19. Let (f, v) ∈ FV(M, γ). Then the space G(f, v) of Riemannian
metrics g on M for which v = gradg(f) is non-empty and contractible.

Proof. By de�nition, there is a metric g on a neighborhood U of C(f) such that
v|U = gradg(f |U). Pick a smaller neighborhood V of C(f) such that V ⊂ U . We are
going to extend g|V to the whole manifold M such that v = gradg(f) everywhere.
Such a metric g on M satis�es g(vx, vx) = vx(f) > 0 and g(vx, wx) = 0 for every
x 6∈ C(f) and wx ∈ ker(dfx). So the extension g on M is uniquely determined
by a choice of metric on the 2-plane bundle ker(df)|M\V that smoothly extends the
metric given on ker(df)|V \C(f). For this, pick an arbitrary metric on ker(df)|M\V and
piece it together with g|U\C(f) using a partition of unity subordinate to the covering
{U,M \ V } of M . Hence G(f, v) 6= ∅.
The space G(f, v) is contractible because it is convex. Indeed, if g0, g1 ∈ G(f, v),

then gi(v, w) = w(f) for every vector �eld w onM and i ∈ {0, 1}. Let gt = (1−t)g0+
tg1 for t ∈ I be an arbitrary convex combination of g0 and g1. Then gt(v, w) = w(f)
for every w on M ; i.e., v = gradgt(f). �

Corollary 5.20. The space FV(M, γ) is contractible.

Proof. Let F(M, γ) be the space of sutured functions and G(M, γ) the space of Rie-
mannian metrics on (M, γ), respectively. Both F(M, γ) and G(M, γ) are contractible.
Consider the projection

π : F(M, γ)× G(M, γ) → FV(M, γ)

given by π(f, g) = (f, gradg(f)); this is a Serre �bration. For (f, v) ∈ FV(M, γ), the
�ber is g−1(f, v) = G(f, v), which is contractible by Proposition 5.19. Hence the base
space FV(M, γ) is also contractible. �
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6. Translating bifurcations of gradients to Heegaard diagrams

We will now translate the singularities of Sections 5.2.1 and 5.2.2 in terms of Hee-
gaard diagrams. Loosely speaking, each generic gradient gives a Heegaard diagram,
each codimension-1 singularity gives a move between Heegaard diagrams, and each
codimension-2 singularity gives a contractible loop of Heegaard diagrams. The codi-
mension-1 and codimension-2 singularities give moves and loops of moves, respec-
tively, that are more complicated than the ones appearing in the de�nition of weak
and strong Heegaard invariants; in Section 7 we will see how to simplify these families.
The overall idea is that to construct a Heegaard splitting from the gradient of a

generic Morse function (not necessarily self-indexing), take one compression body
to be a small neighborhood of the union of all �ows starting at R−(γ) or index 0
critical points and ending at index 1 critical points. The other compression body is
then isotopic to a small neighborhood of the �ows starting at index 2 critical points
and ending at R+(γ) or at index 3 critical points. To further construct the α- and
β-curves of a Heegaard diagram, we take the intersection of the Heegaard surface
with the unstable manifolds of some of the index 1 critical points and with the stable
manifolds of some of the index 2 critical points.
This Heegaard splitting extends naturally across codimension-1 and codimension-2

singularities, as long as there is not a �ow from an index 2 to an index 1 critical point.
In each case, we will analyze how the corresponding Heegaard diagrams change.

6.1. Separability of gradients. We now introduce separability, our main technical
tool for obtaining Heegaard splittings compatible with gradient-like vector �elds that
have at most codimension-2 degeneracies. In the sections that follow, we explain how
to enhance these Heegaard splittings to Heegaard diagrams for generic gradients, to
moves between diagrams for codimension-1 gradients, and to loops of diagrams for
codimension-2 gradients.

De�nition 6.1. We say that the pair (f, v) ∈ FV≤2(M, γ) is separable if

• it is not codimension-2 of type (E1); i.e., if for every pair of non-degenerate
critical points p ∈ C2(f) and q ∈ C1(f), we have W

u(p) ∩W s(q) = ∅; and
• if it is codimension-2 of type (C) (i.e., it has two birth-death singularities at p
and at q), then f(p) 6= f(q).

(This second condition is codimension-3, and hence generic for 2-parameter families.)

De�nition 6.2. Suppose that (f, v) ∈ FV≤2(M, γ). Then we partition C(f) into two
subsets, namely C01(f, v) and C23(f, v), as follows. We add C0(f)∪C1(f) to C01(f, v)
and C2(f) ∪ C3(f) to C23(f, v).
Now suppose that f has a critical point p of type A2. If p is an index 0-1 birth-death,

then p ∈ C01(f, v). If p is an index 2-3 birth-death, then p ∈ C23(f, v).
Consider the case when p is an index 1-2 birth-death critical point of f . If (f, v) is

codimension-1 of type (NH), then we can add p to either C01(f, v) or C23(f, v). If (f, v)
is codimension-2 of type (B1), then we add p to C01(f, v) if I(p1) = I(p2) = 1, and
to C23(f, v) if I(p1) = I(p2) = 2. If (f, v) is codimension-2 of type (B2) or (B3), then
we add p to C01(f, v) if I(p) = 1, and to C23(f, v) if I(p) = 2. If (f, v) ∈ FV2(M, γ)
is type (C) and q is the other birth-death critical point, then we put p into C01(f, v)
if f(p) < f(q), and into C23(f, v) if f(p) > f(q).
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Finally, assume that (f, v) is codimension-2 of type (D), so f has a critical point p
of type A±

3 . In case of an index 1-0-1, 0-1-0, or 1-2-1 birth-death-birth, we add p to
C01(f, v), while in case of an index 2-1-2, 3-2-3, or 2-3-2 birth-death-birth, we add p
to C23(f, v).

De�nition 6.3. Suppose that (f, v) ∈ FV≤2(M, γ). We say that a properly embed-
ded surface Σ ⊂M separates (f, v) if

(1) Σ t v,
(2) M =M− ∪M+, such that M− ∩M+ = Σ and R±(γ) ⊂M±,
(3) C01(f, v) ⊂M− and C23(f, v) ⊂M+, and
(4) ∂Σ = s(γ).

We denote the set of surfaces that separate (f, v) by Σ(f, v). When (f, v) ∈ FV1(M, γ)
is type (NH) with an index 1-2 birth-death singularity p, there are two di�erent choices
for the partition (C01(f, v), C23(f, v)) of C(f), depending on where we put p, hence
Σ(f, v) is not completely unique. If we put p into C01(f, v), then we denote the re-
sulting set Σ−(f, v), and we write Σ+(f, v) when p ∈ C23(f, v). Often, we suppress
this choice in our notation, and simply write Σ(f, v) (which is then either Σ−(f, v) or
Σ+(f, v)).

Notice that if Σ separates (f, v), then Σ is necessarily orientable as it is transverse
to v and M is orientable. We orient Σ such that the normal orientation given by v,
followed by the orientation of Σ, agrees with the orientation on M ; i.e., such that Σ
is oriented as the boundary of M−.
If (f, v) ∈ FV≤2(M, γ), then for every p ∈ C01(f, v), the manifold W s(p) is di�eo-

morphic to

• a single point if p ∈ C0(f), or p is a birth-death-birth of index 0-1-0,
• R if p ∈ C1(f), or p is an index 1-0-1 or 1-2-1 birth-death-birth,
• R+ if p is an index 0-1 birth-death, or
• R2

+ if p is an index 1-2 birth-death.

In addition, if (f, v) is separable and p ∈ C01(f, v) is not an index 1-2 birth-death,
then ∂W s(p) ⊂ C01(f, v) ∪ R−(γ) (where ∂W s(p) is the topological boundary). If
p ∈ C01(f, v) is an index 1-2 birth-death, then ∂W ss(p) ⊂ C01(f, v) ∪R−(γ), while

∂W s(p) ⊂ C01(f, v) ∪R−(γ) ∪W
ss(p) ∪

⋃{
W s(p′) : p′ ∈ C01(f, v) \ {p}

}
.

Analogous statements hold for C23(f, v). The above discussion justi�es the following
de�nition.

De�nition 6.4. Suppose that (f, v) ∈ V (M, γ) is separable. Then we de�ne the
relative CW complexes (R−(γ) ∪ Γ01(f, v), R−(γ)) and (R+(γ) ∪ Γ23(f, v), R+(γ)) by
taking

Γ01(f, v) =
⋃

p∈C01(f,v)

W s(p),

Γ23(f, v) =
⋃

p∈C23(f,v)

W u(p).
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The set of vertices of Γ01(f, v) is C01(f, v). The closed 1-cells of Γ01(f, v) are the
closures of the components of the W ss(p) \ {p} for p ∈ C01(f, v) an index 1-2 birth-
death, and the closures of the components ofW s(p)\{p} for every other p ∈ C01(f, v).

Finally, Γ01(f, v) has at most one (closed) 2-cell, namely W s(p) if p ∈ C01(f, v) is an
index 1-2 birth-death. We de�ne the cell decomposition of Γ23(f, v) in an analogous
manner. Finally, we set Γ(f, v) = Γ01(f, v) ∪ Γ23(f, v).

Remark 6.5. In light of De�nition 6.4, we now motivate De�nition 6.2. We parti-
tioned the set of critical points C(f) into C01(f, v) and C23(f, v) precisely so that
we can form the relative CW complexes (R−(γ) ∪ Γ01(f, v),Γ01(f, v)) and (R+(γ) ∪
Γ23(f, v),Γ23(f, v)). We would like to have C1(f) ⊂ C01(f, v) and C2(f) ⊂ C23(f, v)
because if Σ is a separating surface, then � as we shall see in Section 6.2 � we can
obtain a Heegaard diagram from it by taking α-curves to be W u(p) ∩ Σ for some
p ∈ C1(f) and β-curves to be W s(p) ∩ Σ for some p ∈ C2(f). This also explains
our rule in case (B2). For example, suppose that (f, v) has an index 1-2 birth-death
critical point at p, and a non-degenerate critical point at p of index 1, such that there
is a �ow ϕ from p to p. Since we have to place p in C01(f, v), we must also put p into
C01(f, v), otherwise the 1-cell ϕ ⊂ W s(p) would have one endpoint in Γ23(f, v).
In case (E1), we do not obtain a CW complex (whichever side we assign p to)

for a similar reason, explaining why those gradients are not separable. Our choices
for placing the index 1-2 birth-death critical points of a pair (f, v) ∈ FV2(M, γ) in
every case other than (B2) are purely conventional to make the construction more
canonical, and most proofs would also work for the other choices. However, we do
adhere to these conventions in Theorem 6.37.
When (f, v) ∈ FV1(M, γ) has an index 1-2 birth-death critical point p, there is

no canonical way to decide where to put p, and in fact, the rule in case (B2) forces
us to allow both possibilities: If { (fλ, vλ) : λ ∈ R2 } is a generic 2-parameter family
such that (f0, v0) has a type (B2) bifurcation, where we have to put the A2 point in
C01(f, v), then we have to do the same for (fλ, vλ) when λ lies in the stratum of the
bifurcation set corresponding to the A2 singularity.

Lemma 6.6. Suppose that (f, v) ∈ FV≤2(M, γ) is separable and Σ ∈ Σ(f, v). Then
the surface Σ intersects every �ow-line of v in M \ Γ(f, v) in exactly one point.

Proof. Note thatM \Γ(f, v) is a saturated subset ofM (i.e., it is a union of complete
�ow lines). The closure of a non-constant �ow-line τ of v is di�eomorphic to I, and
has both endpoints in R(γ)∪C(f). If the maximal open interval on which τ is de�ned
is (a, b) (where a might be −∞ and b might be +∞), then let these endpoints be
τ(a) = limt→a+ τ(t) and τ(b) = limt→b− τ(t). If τ(a) ∈ C23(f, v), then τ ⊂ Γ23(f, v).
Similarly, if τ(b) ∈ C01(f, v), then τ ⊂ Γ01(f, v). Consequently, every �ow-line τ of
v|M\Γ(f,v) has

τ(a) ∈ R−(γ) ∪ C01(f, v) ⊂M−, and

τ(b) ∈ R+(γ) ∪ C23(f, v) ⊂M+,

so τ ∩ Σ 6= ∅. Since Σ is positively transverse to v, once an integral curve of v
enters M+ it can never leave it, so |τ ∩ Σ| = 1. �

Using Lemma 6.6, we can endow Σ(f, v) with a topology as follows. Choose a
smooth function h : M → I such that h−1(0) = R(γ), and let w = hv. Unlike v, the
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vector �eld w is complete, and v and w have the same phase portrait insideM \R(γ).
Let ϕ : R×M →M be the �ow of w. For surfaces Σ and Σ′ in Σ(f, v), we de�ne the
function dΣ′,Σ ∈ C∞(Σ) by requiring that ϕ(x, dΣ′,Σ(x)) ∈ Σ′ for every x ∈ Σ. This
uniquely determines dΣ′,Σ(x) by Lemma 6.6. If we �x Σ0 ∈ Σ(f, v), then the map
bΣ0 : Σ(f, v) → C∞(Σ) given by bΣ0(Σ) = dΣ,Σ0 is bijective. The topology on Σ(f, v) is
the pullback of the Whitney C∞-topology on C∞(Σ) along bΣ0 . This is independent
of the choice of Σ0, since dΣ,Σ1 = dΣ,Σ0 ◦ iΣ0,Σ1 + dΣ0,Σ1 , where iΣ0,Σ1 : Σ1 → Σ0

is the di�eomorphism given by iΣ0,Σ1(x) = ϕ(x, dΣ0,Σ1(x)). In addition, the map
f 7→ f ◦ iΣ0,Σ1 from C∞(Σ0) to C

∞(Σ1) and the map g 7→ g + dΣ0,Σ1 from C∞(Σ1)
to C∞(Σ1) are both homeomorphims. The function dΣ,Σ′ depends continuously on h,
hence the topology that we de�ned is independent of the choice of h.

Proposition 6.7. Suppose that (f, v) ∈ FV≤2(M, γ) is separable. Then the space
Σ(f, v) is non-empty and contractible. Furthermore, every Σ ∈ Σ(f, v) divides (M, γ)
into two sutured compression bodies; i.e., it is a Heegaard surface of (M, γ).

More precisely, in the indeterminate case that (f, v) ∈ FV1(M, γ) and f has an
index 1-2 birth-death critical point, we mean that both Σ−(f, v) and Σ+(f, v) are
contractible.

Proof. By the above discussion, it is clear that if Σ(f, v) 6= ∅, then it is homeomorphic
to C∞(Σ), hence it is contractible.
Next, we show that Σ(f, v) 6= ∅. Let N01 be a thin regular neighborhood of

Γ01(f, v) ∪ R−(γ), and consider the surface Σ01 = ∂N01 \ ∂M . Similarly, pick a reg-

ular neighborhood N23 of Γ23(f, v) ∪ R+(γ), and de�ne Σ23 = ∂N23 \ ∂M . Choosing
su�ciently small and nice regular neighborhoods, we can suppose that Σ01 ∩Σ23 = ∅
and that Σ01 and Σ23 are transverse to v. Their union Σ01 ∪ Σ23 separates M into
three pieces. Two of them are N01 and N23, and we call the third piece P . Now v|P is
a nowhere vanishing vector �eld that points into P along Σ01, points out of P along
Σ23, and is tangent to γ ∩ P . In addition, v(f) > 0 on P , so an isotopy from Σ01

to Σ23 relative to γ is given by �owing along v/v(f). In particular, (P, γ ∩ P ) is a
product sutured manifold, and the �ow-lines of v|P give an I-�bration. By isotoping
Σ01 near γ �owing along v, we can obtain a surface Σ′

01 such that ∂Σ′
01 = s(γ). Hence

Σ′
01 ∈ Σ(f, v) (with M− isotopic to N01 and M+ isotopic to N23 ∪ P ).
Observe that Σ01 divides (M, γ) into the sutured manifolds (N01, γ ∩ N01) and

(N23 ∪ P, γ ∩ (N23 ∪ P )). Since Γ01 is either a graph (i.e., a 1-complex), or obtained
from a graph by an elementary expansion if C01(f, v) contains an index 1-2 birth-
death, (N01, γ∩N01) is a sutured compression body (where R+(γ∩N01) = Σ01 can be
compressed to be isotopic to R−(γ ∩N01)). Similarly, (N23, γ ∩N23) is also a sutured
compression body (where R−(γ ∩ N23) = Σ23 can be compressed to be isotopic to
R+(γ ∩ N23)). As (P, γ ∩ P ) is a product, (N23 ∪ P, γ ∩ (N23 ∪ P )) is a sutured
compression body. Every element of Σ(f, v) is isotopic to Σ01 relative to γ, hence
also divides (M, γ) into two sutured compression bodies. �

De�nition 6.8. Let B(M, γ) be the space of pairs (f, v) ∈ FV≤2(M, γ) that are
separable, and let E(M, γ) be the space of triples (f, v,Σ), where (f, v) ∈ B(M, γ) and
Σ ∈ Σ(f, v). There is a projection π : E(M, γ) → B(M, γ) de�ned by forgetting Σ.
For (f, v) ∈ B(M, γ), let χ(f, v) be the Euler characteristic of Σ for any Σ ∈ Σ(f, v)
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(which is independent of the choice of Σ by Proposition 6.7). For k ∈ Z, we de�ne

Bk(M, γ) = { (f, v) ∈ B(M, γ) : χ(f, v) = k }.

Finally, we set Ek(M, γ) = π−1(Bk(M, γ)) and πk = π|Ek(M,γ).

Note that the total space E(M, γ) depends on whether Σ(M, γ) stands for Σ+(M, γ)
or Σ−(M, γ), but the base B(M, γ) is independent of this choice according to the
following result.

Lemma 6.9. For (f, v) ∈ B(M, γ), we have

χ(f, v) = χ(R−(γ)) +
∑

p∈C01(f,v)

i(p),

where

• i(p) = 2 for p ∈ C0(f) or p an index 0-1-0 birth-death-birth,
• i(p) = 0 for p a birth-death, and
• i(p) = −2 for p ∈ C1(f), or p an index 1-0-1 or 1-2-1 birth-death-birth.

Proof. Recall that (R−(γ) ∪ Γ01(f, v), R−(γ)) is a relative CW complex of dimension
at most two. We saw in the proof of Proposition 6.7 that every Σ ∈ Σ(f, v) is isotopic

to the surface Σ01 = ∂N01 \ ∂M relative to γ, where N01 is a regular neighborhood of
R−(γ) ∪ Γ01(f, v). Since ∂N01 = R−(γ) ∪Σ01 ∪ (γ ∩N01), where γ ∩N01 is a disjoint
union of annuli,

χ(R−(γ)) + χ(Σ01) = χ(∂N01) = 2χ(N01).

As N01 deformation retracts onto R−(γ) ∪ Γ01(f, v), we have

χ(N01) = χ(R−(γ)) + c0 − c1 + c2,

where ci is the number of i-cells in Γ01(f, v). By construction, each point p ∈ C01(f, v)
contributes i(p)/2 to c0−c1+c2. Indeed, for p ∈ C0(f) or p an index 0-1-0 birth-death-
birth, W s(p) = {p}, so p contributes a single 0-cell. If p is an index 0-1 birth-death,
then it contributes a 0-cell and a 1-cell, while an index 1-2 birth-death contributes
a 0-cell, two 1-cells, and a 2-cell. For p ∈ C1(f) or p an index 1-0-1 or 1-2-1 birth-
death-birth, W s(p) is an arc, and p contributes a 0-cell and two 1-cells. �

Corollary 6.10. If (f0, v0) and (f1, v1) lie in the same path-component of FV0(M, γ)
or FV1(M, γ), then χ(f0, v0) = χ(f1, v1).

Note that this corollary is false for FV≤1(M, γ).

Proof. Take a path { (ft, vt) ∈ FV i(M, γ) : t ∈ I } connecting (f0, v0) and (f1, v1). In
this family, the types of critical points in C01(ft, vt) remain unchanged; in particular,
the local contributions i(pt) for pt ∈ C01(ft, vt) are also constant. By Lemma 6.9, we
obtain that χ(f0, v0) = χ(f1, v1). �

We denote by Bm
k (M, γ) and Em

k (M, γ) the space of those (f, v) ∈ Bk(M, γ) and
(f, v,Σ) ∈ Ek(M, γ) for which f is Morse. By slight abuse of notation, we also denote
the projection (f, v,Σ) 7→ (f, v) by πk.

Proposition 6.11. Let (M, γ) be a connected sutured manifold and k ∈ Z. Then
the map πk : E

m
k (M, γ) → Bm

k (M, γ) is a principal bundle with �bre C∞(Σ,R) for a
compact, connected, orientable surface Σ with |∂Σ| = |s(γ)| and χ(Σ) = k.
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Proof. Given (f, v,Σ) ∈ Em
k (M, γ), there is a neighborhood U of πk(f, v,Σ) = (f, v)

in Bm
k (M, γ) such that for every (f ′, v′) ∈ U , we have Σ ∈ Σ(f ′, v′). To see this, note

that the surface Σ separates (M, γ) into two sutured compression bodies (M+, γ+)
and (M−, γ−), one of which contains Γ01(f, v) ∪ R−(γ), and the other one contains
Γ23(f, v) ∪ R+(γ). If (f ′, v′) is su�ciently close to (f, v), then Σ is transverse to v′.
Furthermore, Γ01(f

′, v′) ∪ R−(γ) ⊂ M− and Γ23(f
′, v′) ∪ R+(γ) ⊂ M+. Indeed, no

critical point can pass through Σ as long as Σ is transverse to the vector �eld, and
every critical point of f is stable.
Now we construct a local trivialization φ : U × C∞(Σ,R) → π−1(U). Choose a

smooth function h : M → I such that h−1(0) = R(γ). Then φ is de�ned by the formula
φ((f ′, v′), s) = Σ + s, where (f ′, v′) ∈ U and s ∈ C∞(Σ,R), and we view Σ(f ′, v′) as
an a�ne space over C∞(Σ,R) via �owing along hv′. The trivializations φ de�ne the
topology on E(M, γ) that makes πk : E

m
k (M, γ) → Bm

k (M, γ) into a principal bundle,
and is compatible with the topology on each �ber Σ(f, v). �

As a corollary, πk : E
m
k (M, γ) → Bm

k (M, γ) is a Serre �bration. In particular, it
satis�es the path-lifting property. For example, together with Corollary 6.10, for
any family of Morse-Smale vector �elds { (fλ, vλ) : λ ∈ Λ }, there is a corresponding
family of surfaces {Σλ : λ ∈ Λ } such that Σλ ∈ Σ(fλ, vλ) for every λ ∈ Λ. As the �ber
C∞(Σ,R) is contractible, we can even extend a family of splitting surfaces de�ned
over a closed subset of Λ.

6.2. Codimension-0. In the previous section, we described how to obtain a con-
tractible space of Heegaard splittings of the sutured manifold (M, γ) from a separa-
ble pair (f, v) ∈ FV≤2(M, γ). If we also assume that (f, v) is Morse-Smale and we
make an additional discrete choice, then we can enhance these splittings to sutured
diagrams. In the opposite direction, we also show that every diagram of (M, γ) with
α t β arises from a particularly simple Morse-Smale pair (f, v), and the space of
such pairs is connected.
By Proposition 6.7, every Σ ∈ Σ(f, v) is a Heegaard surface of (M, γ). If (f, v) is

Morse-Smale, then for every p ∈ C1(f) and q ∈ C2(f), the intersections W u(p) ∩ Σ
and W s(q) ∩ Σ are embedded circles, and W u(p) ∩ Σ is transverse to W s(q) ∩ Σ.

De�nition 6.12. Suppose that (f, v) ∈ FV0(M, γ), and let Σ ∈ Σ(f, v). Then the
triple H(f, v,Σ) = (Σ,α,β) is de�ned by taking the α-curves to be W u(p) ∩ Σ for
p ∈ C1(f) and the β-curves to be W s(q) ∩ Σ for q ∈ C2(f).

In general, H(f, v,Σ) is not a diagram of (M, γ) as α and β might have too many
components. We will refer to such diagrams as overcomplete, as we can remove some
components of α and β to get a sutured diagram of (M, γ).

De�nition 6.13. Let (M, γ) be a sutured manifold. We say that (Σ,α,β) is an
overcomplete diagram of (M, γ) if

(1) Σ ⊂M is an oriented surface with ∂Σ = s(γ) as oriented 1-manifolds,
(2) the components of the 1-manifold α ⊂ Σ bound disjoint disks to the negative

side of Σ, and the components of the 1-manifold β ⊂ Σ bound disjoint disks
to the positive side of Σ,

(3) if we compress Σ along α, we get a surface isotopic to R−(γ) relative to γ,
plus some 2-spheres that bound disjoint balls in M , and



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 47

(4) if we compress Σ along β, we get a surface isotopic to R+(γ) relative to γ,
plus some 2-spheres that bound disjoint balls in M .

Overcomplete diagrams specify handle decompositions of (M, γ) that also include
0- and 3-handles. Note that α and β might fail to be attaching sets because Σ \ α
and Σ\β can have some components disjoint from ∂Σ; however, all such components
are planar.
To actually make the overcomplete diagram H(f, v,Σ) into a usual Heegaard di-

agram of (M, γ), in addition to assuming that (f, v) is Morse-Smale, we also need
to make a discrete choice. The Morse-Smale condition rules out �ows between two
index i critical points for i ∈ {1, 2}, hence every point of C1(f)∪C2(f) has valence 2
in the graph Γ(f, v).

De�nition 6.14. Let Γ−(f, v) be the graph obtained from Γ01(f, v) by identifying all
vertices lying in R−(γ) and deleting the vertices at C1(f) (and merging the two adja-
cent edges into one edge). So the vertices of Γ−(f, v) are the points of C0(f), plus at
most one vertex for R−(γ), and its edges correspond toW s(p) for p ∈ C1(f). In other
words, Γ−(f, v) is obtained from the relative CW complex (Γ01(f, v)∪R−(γ), R−(γ))
by taking the factor CW complex (Γ01(f, v)∪R−(γ))/R−(γ) and removing the vertices
at C1(f). Similarly, the graph Γ+(f, v) is obtained by collapsing Γ23(f, v)∩R+(γ) to
a single point, and deleting the vertices at C2(f). The edges of Γ+(f, v) correspond
to W u(q) for q ∈ C2(f).

De�nition 6.15. Suppose that (f, v) ∈ FV0(M, γ). Let T± be a spanning tree of
Γ±(f, v), and choose a splitting surface Σ ∈ Σ(f, v). Then the sutured diagram
H(f, v,Σ, T−, T+) is de�ned by taking the α-curves to beW u(p)∩Σ, where p ∈ C1(f)
andW s(p) is not an edge of T−. Similarly, the β-curves are the intersectionsW s(q)∩Σ,
where q ∈ C2(f) and W

u(q) is not an edge of T+.

For brevity, we will often write H(f, v,Σ, T±) for H(f, v,Σ, T+, T−). Of course,
a di�erent choice of T− gives a diagram that is α-equivalent to the original, while
changing T+ gives a diagram that is β-equivalent.
In the opposite direction, given a Heegaard surface Σ for (M, γ), we will show that

one can �nd a particularly nice pair (f, v) ∈ FV0(M, γ) such that Σ ∈ Σ(f, v).

De�nition 6.16. We say that a Morse function f on (M, γ) is simple if

(1) Ci(f) = ∅ for i ∈ {0, 3},
(2) f(p) < 0 for every p ∈ C1(f),
(3) f(q) > 0 for every q ∈ C2(f).

We call a pair (f, v) ∈ V (M, γ) simple if f is simple and, in addition,

(4) for every p ∈ C1(f), there is a local coordinate system (x1, x2, x3) around p in
which f = −x21 + x22 + x23 + f(p) and v has coordinates (−2x1, 2x2, 2x3),

(5) for every q ∈ C2(f), there is a local coordinate system (x1, x2, x3) around q in
which f = −x21 − x22 + x23 + f(q) and v has coordinates (−2x1,−2x2, 2x3).

Let f be a simple Morse function. Then observe that for any gradient-like vector
�eld v for f , the pair (f, v) is separable. Indeed, f(p) < f(q) for every p ∈ C1(f)
and q ∈ C2(f), so there is no �ow-line of v from q to p. Furthermore, the surface
Σ = f−1(0) is a Heegaard surface that separates (f, v). If, in addition, (f, v) is
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Morse-Smale, then we can uniquely complete this to a diagram H(f, v) = (Σ,α,β)
of (M, γ) using De�nition 6.15. Indeed, since Γ±(f, v) is a wedge of circles, it has a
unique spanning tree T± consisting of a single vertex. The diagram H(f, v) is then
H(f, v,Σ, T−, T+). More explicitly, the α-curves are W u(p) ∩ Σ for p ∈ C1(f), and
the β-curves are W s(q) ∩ Σ for q ∈ C2(f).
The following result is basically standard Morse theory, but since it provides the

crucial link between sutured Heegaard diagrams and Morse functions, we give a com-
plete proof.

Proposition 6.17. Let (Σ,α,β) be a diagram of the sutured manifold (M, γ), and
suppose that α t β. Then there exists a simple pair (f, v) ∈ FV0(M, γ) such that
H(f, v) = (Σ,α,β).

Proof. Given an arbitrary attaching set δ ⊂ Σ, recall that C(δ) is the sutured com-
pression body obtained by attaching 2-handles to Σ× I along δ×{1}. We are going
to construct a Morse function fδ : C(δ) → I with only index 2 critical points, and a
gradient-like vector �eld vδ for fδ.
Consider the Morse function h(x) = −x21 − x22 + x23 + 1/2 and its gradient v(x) =

(−2x1,−2x2, 2x3) on the unit disk D3. Our model 2-handle will be Z = h−1(I); this
is a 3-manifold with boundary and corners. Let Z− = h−1(0) and Z+ = h−1(1).
The boundary of Z is Z− ∪ Z+ ∪ A, where Z− is a connected hyperboloid, hence
topologically an annulus. The surface Z+ is the disjoint union of two disks, while
A = Z ∩ S2 is the disjoint union of two annuli. The attaching circle of Z is the curve
a = Z− ∩ {x3 = 0}. We isotope v near A such that it stays gradient-like for h, and
becomes tangent to A. The function h has a single non-degenerate critical point of
index 2 at the origin, with stable manifold W s(0) = Z ∩ {x3 = 0}.
Pick an open regular neighborhood N of δ, and let R = (Σ \ N) × I. We de�ne

fδ on R to be the projection t onto the I-factor, and vδ on R is simply ∂/∂t. If the
components of δ are δ1, . . . , δd, then we denote by Ni the component of N contain-
ing δi. For each i ∈ { 1, . . . , d }, take a copy Zi of Z, together with the function hi
and the vector �eld vi constructed above. We glue Zi to R using a di�eomorphism
Ai → ∂Ni× I that maps the circles h−1(t)∩A to ∂Ni×{t} for every t ∈ I. So we can
extend fδ to Zi with hi and vδ with vi. After gluing Z1, . . . , Zd to R, we get a com-
pression body di�eomorphic to C(δ), together with the promised pair (fδ, vδ). Note
that here we identify (Σ \N)× {0} with Σ \N and Z−

i with N i, so that C−(δ) = Σ.
In addition, the attaching circle ai of Zi is identi�ed with αi. Let pi be the center of
the 2-handle Zi. By construction, the stable manifold W s(pi) ∩ Σ = αi.
The surface Σ cuts (M, γ) into two sutured compression bodies. Call these C−

and C+, such that R±(γ) ⊂ C±. There are di�eomorphisms d− : C− → C(α) and
d+ : C+ → C(β) that are the identity on Σ. Then we de�ne the Morse function f on
(M, γ) by taking −fα ◦ d− on C− and fβ ◦ d+ on C+, and smoothing along Σ. Then
the vector �eld v that agrees with −(d−)

−1
∗ ◦ vα ◦ d− on C− and with (d+)

−1
∗ ◦ vβ ◦ d+

on C+ is gradient-like for f , and is Morse-Smale since α t β. It follows from the
construction that H(f, v) = (Σ,α,β). �

Notice that the above construction is almost completely canonical, in the sense
that the various choices can be easily deformed into each other. In fact, we have the
following stronger statement.
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Proposition 6.18. Let (Σ,α,β) be a diagram of the sutured manifold (M, γ) such
that α t β, and recall that FV0(M, γ) is endowed with the C∞-topology. Then
the subspace of simple pairs (f, v) ∈ FV0(M, γ) for which H(f, v) = (Σ,α,β) is
connected.

Proof. Suppose that the simple pairs (f, v) and (g, w) in FV0(M, γ) satisfy H(f, v) =
(Σ,α,β) and H(g, w) = (Σ,α,β).
As in Proposition 6.17, the surface Σ cuts (M, γ) into two compression bodies C−

and C+, such that R±(γ) ⊂ C±. We will describe how to connect (f, v)|C+ and
(g, w)|C+ ; the deformation on C− is analogous. Since Σ remains the zero level set
and v, w stay transverse to Σ throughout, it is easy to glue the deformations on C+

and C− together. We construct this deformation in several steps.
First, some terminology. Let { dt : t ∈ I } be an isotopy of C+ such that d0 = IdC+ .

Then we call the family (ft, vt) = (f ◦d−1
t , (dt)∗ ◦v ◦d

−1
t ) the isotopy of (f, v) along dt.

Note that vt is a gradient-like vector �eld for ft.
Step 1. In this step, we move the stable manifolds of (f, v) until they coincide

with the stable manifolds of (g, w). We denote the components of β by β1, . . . , βk. In
addition, let C2(f) = { q1, . . . , qk } and C2(g) = { q′1, . . . , q

′
k }, enumerated such that

W s(qi, v) ∩ Σ = W s(q′i, w) ∩ Σ = βi.

By Lemma 2.9, we have π2(C+) = 0. Hence, using cut-and-paste techniques, the disks
W s(qi, v) and W

s(q′i, w) are isotopic relative to their boundary. So there is an isotopy
{ dt : t ∈ I } of C+ �xing ∂C+ such that d0 = IdC+ and d1(W

s(qi, v)) = W s(q′i, w);
furthermore, d1(qi) = q′i. Isotoping (f, v) along dt, we get a path of simple pairs
(ft, vt) in FV0(M, γ), all compatible with the diagram (Σ,α,β). Replacing (f, v) with
(f1, v1), we can assume thatW s(qi, v) = W s(q′i, w) and qi = q′i for every i ∈ { 1 . . . , k }.
The further deformation of (f, v) will preserve these properties, so from now on we
will write W s(qi) for every qi ∈ C2(f) = C2(g).
Step 2. Now we isotope (f, v) until it coincides with (g, w) in a neighborhood

of the critical points, without ruining what we have already achieved in Step 1.
Let i ∈ { 1 . . . , k }. Since both (f, v) and (g, w) are simple, there are balls N1 and
N2 centered at qi and coordinate systems x : N1 → R3 and y : N2 → R3 such that
f = −x21 − x22 + x23 + f(qi) and v has coordinates (−2x1,−2x2, 2x3) in N1, while
g = −y21 − y22 + y23 + g(qi) and w has coordiantes (−2y1,−2y2, 2y3) in N2. Choose
an ε > 0 so small that the disks D1 = { |x| ≤ ε } and D2 = { |y| ≤ ε } both lie in
N1 ∩ N2. Consider the di�eomorphism d : D1 → D2 given by the formula y−1 ◦ x.
Then d(D1 ∩W

s(qi)) = D2 ∩W
s(qi), as D1 ∩W

s(qi) is given by the equation x3 = 0,
while D2 ∩W

s(qi) by y3 = 0. We can choose an isotopy et : D1 → N1 ∩N2 such that
e0 = IdD1 and e1 = d; furthermore,

et(D1 ∩W
s(qi)) ⊂ W s(qi)

and et(qi) = qi for every t ∈ I. This can be extended to an isotopy dt : C+ → C+

such that dt|D1 = et, the di�eomorphism dt is the identity outside N1 ∩ N2, and
dt(W

s(qi)) = W s(qi). If we isotope (f, v) along dt, we get a pair (f1, v1) that agrees
with (g, w) in D2. Repeating this process for every qi, we can assume that (f, v) and
(g, w) agree in a neighborhood N of all the critical points q1, . . . , qk (where N is the
union of the disks D2 for each qi).
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Step 3. In this step, we arrange that v|W s(qi) = w|W s(qi) for every i ∈ { 1, . . . , k }.
By Step 2, we know that v and w coincide on the disk B = N ∩W s(qi), and that they
are transverse to ∂B. Let A be the annulus W s(qi) \B. Take a regular neighborhood
of W s(qi) of the form W s(qi)× [−1, 1], where W s(qi) is identi�ed with W s(qi)× {0}.
We are going to construct an isotopy of C+ that is supported in A× [−1, 1] that takes
v to w. For every p ∈ ∂B, we denote by νv(p, t) the �ow-line of −v starting at p
and ending at ∂W s(qi). Here t lies in some interval [0, T (v, p)]. Similarly, νw(p, t)
denotes the �ow-line of −w starting at p and de�ned for t ∈ [0, T (w, p)]. After
smoothly rescaling v inside A× [−1, 1] such that it is unchanged in a neighborhood of
∂(A× [−1, 1]), we can assume that T (v, p) = T (w, p) for every p ∈ ∂B. Let a : A→ A
be the di�eomorphism de�ned by the formula

a(νv(p, t)) = νw (p, t)

for t ∈ [0, T (v, p)]. This has the property that a∗ ◦ v ◦ a
−1 = w. There is an isotopy

{ at : t ∈ I } of A that is �xed on ∂B, and such that a0 = IdA and a1 = a. We
extend this to A × [−1, 1] by the formula at(x, s) = (ar(s)t(x), s), where r : R → I
is a bump function that is zero outside [−1, 1] and such that r(0) = 1. Finally, we
extend at to the whole of C+ as the identity. Then isotoping (f, v) along at we get a
family { (ft, vt) : t ∈ I } such that v1|W s(qi) = w|W s(qi). Note that W s(qi) is invariant
under at. Furthermore, even though at is not the identity on Σ, the �eld vt stays
transverse to Σ throughout. In fact, vt can be made invariant under at if we �rst
make v and w agree in a neighborhood of ∂A; so we can glue the deformation with
the one on C−.
Note that we do not claim that f = g anywhere outside a neighborhood of the

critical points. We will return to this in the last step.
Step 4. Now we make v and w agree on a product neighborhood W s(qi)× [−1, 1]

of every stable manifold W s(qi). Fix i ∈ { 1, . . . , k }, and let the ball B and the
annulus A be as in Step 3. We already know that (f, v) and (g, w) agree on a
neighborhood N of B. Since v and w agree on A and have no zeroes there, there
is a thin product neighborhood of W s(qi) di�eomorphic to W s(qi) × [−2, 2] such
that in this neighborhood the linear homotopy (1 − t)v + tw from v to w stays
gradient-like for f throughout. In addition, we choose this neighborhood so thin that
B × [−2, 2] ⊂ N . Let ϑ : R → I be a smooth function that is zero outside [−2, 2]
and is identically one in [−1, 1]. Then we de�ne the isotopy vt of v to be the identity
outside W s(qi)× [−2, 2], and

vt(x, s) = (1− ϑ (s) t) v + (ϑ (s) t)w

for every (x, s) ∈ W s(qi) × [−2, 2]. Then vt is gradient-like for f for every t ∈ I,
and v1 agrees with w on W s(qi)× [−1, 1].
Step 5. In this step, we homotope v to w on the rest of C+. Let P be the manifold

obtained from

C+ \
k⋃

i=1

(W s(qi)× [−ε, ε])

by rounding the corners. Here, we choose ε so small that (after possibly a small
perturbation) v and w point into P along P− = ∂P \ Int(γ ∪R+(γ)). Notice that P−

consists of Σ\ (αi× [−ε, ε]) andW s(qi)×{−ε, ε} for i ∈ { 1, . . . , k }. By construction,



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 51

the vector �elds v and w point into P along Σ and B×{−ε, ε} for every disk B of the
form N ∩W s(qi). As v and w are tangent to the annuli A, such an ε and perturbation
clearly exist. Note that v and w coincide along P−.
The sutured manifold (P, γ ∩ P ) is di�eomorphic to the product sutured manifold

(R+(γ)×I, ∂R+(γ)×I). For every x ∈ P−, let φv(x, t) be the �ow-line of v starting at
x and de�ned for t ∈ [0, T (v, x)]. Similarly, let φw(x, t) be the �ow-line of w starting
at x and de�ned for t ∈ [0, T (w, x)]. After smoothly rescaling v inside P such that
it is unchanged in a neighborhood of ∂P , we can assume that T (v, x) = T (w, x) for
every x ∈ P−. As in Step 3, we de�ne a di�eomorphism d : P → P by the formula

d(φv(x, t)) = φw (x, t)

for t ∈ [0, T (v, x)]. This satis�es d∗◦v◦d
−1 = w, and d is the identity on P− and γ∩P .

Since any di�eomorphism of a product sutured manifold (S × I, ∂S × I) that �xes
S × {0} and ∂S × I is isotopic to the identity through such di�eomorphisms, there
is an isotopy dt of P that �xes P− and γ ∩ P , and d0 = IdP . Since v and w agree on
each W s(qi) × [−1, 1], we can extend dt to every W s(qi) × [−ε, ε] as the identity. If
we isotope (f, v) along dt, we get a path of pairs (ft, vt) such that v1 = w.
Step 6. In this �nal step, we achieve f = g. For this, the linear homotopy

{ ft = (1− t)f + tg : t ∈ I } works. Indeed, as f and g coincide in a neighborhood N
of the critical points, ft|N = f |N for every t ∈ I. In addition,

v(ft) = (1− t)v(f) + tv(g) = (1− t)v(f) + tw(g) > 0

away from { q1, . . . , qk }, the common critical set of f and g. So ft has the same
index 2 non-degenerate critical points as f and is hence Morse, v is a gradient-like
vector �eld for ft, and the pair (ft, v) is simple for every t ∈ I. �

6.3. Codimension-1: Overcomplete diagrams. We start this section by proving
a type of isotopy extension lemma for families of Heegaard diagrams.

Lemma 6.19. Suppose that { (Σt,αt,βt) : t ∈ I } is a smooth 1-parameter family of
possibly overcomplete Heegaard diagrams in (M, γ) such that αt t βt for every t ∈ I.
Then there is an isotopy D : M × I →M such that

dt(Σ0,α0,β0) = (Σt,αt,βt)

for every t ∈ I, and dt �xes ∂M pointwise (where dt = D(·, t)). In particular,
d1|Σ0 : Σ0 → Σ1 is isotopic to the identity in M . The space of such isotopies is
contractible, so the space of di�eomorphisms that arise as d1 for such an isotopy D
is path-connected.

An analogous statement holds if {Σt : t ∈ I } is a 1-parameter family of Heegaard
surfaces of (M, γ). In particular, there is an induced di�eomorphism d1 : Σ0 → Σ1,
well-de�ned up to isotopy.

Proof. In M × I, consider the submanifold

Σ∗ =
⋃

t∈I

Σt × {t},

which, in turn, contains the submanifolds α∗ =
⋃

t∈I αt×{t} and β∗ =
⋃

t∈I βt×{t}.
(The fact that these are smooth submanifolds is in fact our de�nition that the family
of Heegaard diagrams is smooth.) Let F be the horizontal foliation ofM×I by leaves
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M × {t}, and we coorient F by ∂/∂t. The condition αt t βt implies that α∗ ∩ β∗ is
a collection of arcs transverse to F . Furthermore, α∗, β∗, and Σ∗ are also transverse
to F .
Pick a smooth vector �eld ν in the tangent bundle T (α∗∩β∗) positively transverse

to F . This can be extended to �rst a vector �eld in Tα∗ and Tβ∗ positively transverse
to F , then to a �eld in TΣ∗ positively transverse to F such that νs(γ)×I = ∂/∂t.
Finally, extend the vector �eld to M × I positively transverse to F such that ν|∂M =
∂/∂t. We also denote this extension by ν. After normalizing ν such that ν(t) = 1,
we can assume that its �ow preserves the foliation F . Then the di�eomorphism
dt : M →M is de�ned by �owing along ν fromM×{0} toM×{t}. By construction,
dt(Σ0,α0,β0) = (Σt,αt,βt). Note that the embedding ι0 : Σ0 ↪→ M is ambient
isotopic to ι1 ◦ d1 : Σ0 ↪→ M relative to s(γ), where ι1 is the embedding of Σ1 in M .
So d1 is indeed isotopic to the identity in M .
On the other hand, every isotopy D arises from the above construction. Indeed,

given D, take ν to be the velocity vector �elds of the curves t 7→ (dt(x), t) for x ∈M .
The space of such ν is convex, hence contractible, so the space of such isotopies D is
also contractible.
The proof of the last statement about families of Heegaard surfaces is completely

analogous, but simpler as our isotopies now do not have to preserve sets of attaching
curves αt and βt. �

Lemma 6.20. Let {Ht : t ∈ I } and {H′
t : t ∈ I } be 1-parameter families of possibly

overcomplete Heegaard diagrams of (M, γ), both connecting H0 and H1. If the two
families are homotopic relative to their endpoints, then the induced di�eomorphisms
d1, d

′
1 : M → M (in the sense of Lemma 6.19) are isotopic through di�eomorphisms

mapping H0 to H1. An analogous statement holds for homotopic families of Heegaard
surfaces {Σt : t ∈ I } and {Σ′

t : t ∈ I }; i.e., the induced di�eomorphisms d1, d
′
1 : Σ0 →

Σ1 are isotopic.

Proof. Let Ht,u = (Σt,u,αt,u,βt,u) for (t, u) ∈ I × I be the homotopy between {Ht}
and {H′

t}; i.e., Ht,0 = Ht and Ht,1 = H′
t for t ∈ I, while Hi,u = Hi for i ∈ {0, 1}

and u ∈ I. As in the proof of Lemma 6.19, we can construct a vector �eld ν on
M × I × I such that ν(u) = 0, ν(t) = 1 (in particular, it is transverse to the foliation
of M × I × I with leaves M × {t} × I), and which is tangent to the submanifolds⋃

t,u∈I Σt,u,
⋃

t,u∈I αt,u, and
⋃

t,u∈I βt,u. Then the �ow of ν de�nes a di�eomorphism

gu : M × {0} × {u} →M × {1} × {u}

that maps H0,u = H0 to H1,u = H1 for every u ∈ I. Notice that g0 = d1 and
g1 = d′1 (up to isotopy). Hence { gu : u ∈ I } provides the required isotopy between
the di�eomorphisms d1 and d

′
1. �

Lemma 6.21. Let { (ft, vt) ∈ FV0(M, γ) : t ∈ I } be a 1-parameter family of gradient-
like vector �elds, and let Σi ∈ Σ(fi, vi) be a Heegaard surface of (M, γ) for i ∈ {0, 1}.
Choose a spanning tree T 0

± of Γ±(f0, v0). The isotopy Γ(ft, vt) takes T
0
± to a spanning

tree T 1
± of Γ±(f1, v1), and consider the diagrams (Σ0,α0,β0) = H(f0, v0,Σ0, T

0
±) and

(Σ1,α1,β1) = H(f1, v1,Σ1, T
1
±). Then there is a (non-unique) induced di�eomor-

phism

d : (Σ0,α0,β0) → (Σ1,α1,β1)
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isotopic to the identity inM , and the space of such di�eomorphisms is path-connected.
If we do not pick spanning trees, we obtain a similar statement for overcomplete
diagrams.

Remark 6.22. If T 0
± and T 1

± are not related as above, then one can get from (Σ0,α0,β0)
to (Σ1,α1,β1) via a di�eomorphism isotopic to the identity in M , an α-equivalence,
and a β-equivalence.

Proof. Note that if Σ ∈ Σ(ft, vt) for some t ∈ I, then Σ also separates (fs, vs) for
every s su�ciently close to t. Indeed, each (fs, vs) is Morse-Smale, hence separable,
so Σ stays separating as long as vs is transverse to Σ, which is an open condition. By
the compactness of I, there is a sequence 0 = t0 < t1 < · · · < tn = 1 and surfaces
Σti ∈ Σ(fti , vti) for every i ∈ { 0, . . . , n − 1 } such that Σti ∈ Σ(fs, vs) for every
s ∈ [ti, ti+1].
By the discussion preceding Proposition 6.7, we can view Σ(ft, vt) as an a�ne space

over C∞(Σ) for any Σ ∈ Σ(ft, vt). For this, choose a smooth function h : M → I such
that h−1(0) = R(γ), and let i ∈ { 2, . . . , n }. As both Σti−1

, Σti ∈ Σ(fti , vti), we can
talk about the di�erence dΣti

,Σti−1
∈ C∞(Σti−1

), obtained by �owing along hvti . Let

ϕi : R → I be a smooth function such that ϕi(t) = 0 for t ≤ ti−1 and ϕi(t) = 1 for
t ≥ ti. For t ∈ [ti−1, ti], let

Σt = Σti−1
+ ϕi (t) dΣti

,Σti−1
,

where the sum is taken using the �ow of hvt. Then Σt is a smooth 1-parameter
family of surfaces connecting Σ0 to Σ1 such that Σt ∈ Σ(ft, vt) for every t ∈ I.
(Note that this path-lifting also follows from Proposition 6.11, which claims that
Em

k (M, γ) → Bm
k (M, γ) is a �bre bundle with connected �ber C∞(Σ,R).)

The isotopy {Γ(fs, vs) : 0 ≤ s ≤ t } takes T 0
± to a spanning tree T t

± of Γ±(ft, vt).
Then (Σt,αt,βt) = H(ft, vt,Σt, T

t
±) provides a smooth 1-parameter family of di-

agrams connecting (Σ0,α0,β0) and (Σ1,α1,β1). Since (ft, vt) is Morse-Smale for
every t ∈ I, we have αt t βt, so we can apply Lemma 6.19 to obtain an isotopy
D : M × I → M such that dt(Σ0,α0,β0) = (Σt,αt,βt) for every t ∈ I. If we take d
to be d1, then d is isotopic to the identity in M .
Also by Lemma 6.19, the di�eomorphism d1 is unique up to isotopy in the space

of di�eomorphisms mapping (Σ0,α0,β0) to (Σ1,α1,β1) once we �x the family of
surfaces Σt. For a di�erent family of surfaces Σ′

t ∈ Σ(ft, vt) connecting Σ0 and Σ1,
consider the homotopy Σt,u = Σt + udΣ′

t,Σt
for t, u ∈ I (where the sum means �owing

along hvt). Then Σt,0 = Σt and Σt,1 = Σ′
t for every t ∈ I. Applying Lemma 6.20 to

the homotopy Ht,u = H(ft, vt,Σt,u, T
t
±), we obtain that d1 is also unique up to isotopy

if we are allowed to vary the path t 7→ Σt. �

So the di�eomorphism induced by the family { (ft, vt) : t ∈ I } is obtained by �rst
picking an arbitrary family of surfaces Σt ∈ Σ(ft, vt), and then applying Lemma 6.19
to the diagrams H(ft, vt,Σt, T

t
±). We have the following analogue of Lemma 6.21

for 1-parameter families in FV1(M, γ), which is somewhat weaker as an element of
FV1(M, γ) does not induce a Heegaard diagram.

Lemma 6.23. Let { (ft, vt) ∈ FV1(M, γ) : t ∈ I } be a 1-parameter family, and let
Σi ∈ Σ(fi, vi) be a Heegaard surface of (M, γ) for i ∈ {0, 1}. This family induces a
di�eomorphism d : Σ0 → Σ1 which is well-de�ned up to isotopy. Furthermore, there
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is an isotopy dt : Σ0 → Σt for t ∈ I connecting IdΣ0 and d such that Σt ∈ Σ(ft, vt) for
every t ∈ I.

More precisely, if the (ft, vt) have an index 1-2 birth-death critical point, then
we can choose either Σ0 ∈ Σ−(f0, v0) and Σ1 ∈ Σ−(f1, v1), or Σ0 ∈ Σ+(f0, v0) and
Σ1 ∈ Σ+(f1, v1).

Proof. Just like in the proof of Lemma 6.21, there exists a smooth family of Heegaard
surfaces {Σt : t ∈ I } such that Σt ∈ Σ(ft, vt) for every t ∈ I. If we apply the
second part of Lemma 6.19 to {Σt : t ∈ I }, we obtain a family of di�eomorphisms
dt : Σ0 → Σt for t ∈ I, and d1 is unique up to isotopy. Independence of d1 from
the choice of family {Σt : t ∈ I } (up to isotopy) is obtained just like in the proof of
Lemma 6.21, except now we apply the second part of Lemma 6.20. �

Lemma 6.24. Let Λ: I → FV0(M, γ) be a loop of gradient-like vector �elds. Further-
more, let Σ ∈ Σ(f0, v0) be a Heegaard surface, pick a spanning tree T± of Γ±(f0, v0),
and set H = H(f0, v0,Σ, T±). By Lemma 6.21, the loop Λ induces a di�eomorphism
d : H → H. If Λ is null-homotopic in FV0(M, γ), then d is isotopic to IdH in the
space of di�eomorphisms from H to itself. If we do not pick a tree T±, we obtain an
analogous statement for overcomplete diagrams.

Proof. Let L : I × I → FV0(M, γ) be the null-homotopy; i.e., L(t, 0) = (ft, vt) for
every t ∈ I, and L(t, u) = (f0, v0) for t ∈ {0, 1} or u = 1. By Proposition 6.11,
there is a smooth 2-parameter family of Heegaard surfaces {Σt,u : t, u ∈ I } such
that Σt,u ∈ Σ(L(t, u)) for every t, u ∈ I, and Σt,u = Σ whenever t ∈ {0, 1} or
u = 1. Furthermore, T± naturally induces a spanning tree T t,u

± of Γ±(L(t, u)) such

that T t,u
± = T± for t ∈ {0, 1} or u = 1. So we have a smooth 2-parameter family of

diagrams
Ht,u = H

(
L(t, u),Σt,u, T

t,u
±

)

such that Ht,u = H for t ∈ {0, 1} or u = 1. Now Lemma 6.20 provides the required
isotopy between d and IdH. �

Corollary 6.25. Let (fi, vi) ∈ FV0(M, γ) for i ∈ {0, 1}, and let

Γ0, Γ1 : I → FV0(M, γ)

be paths such that Γj(i) = (fi, vi) for i, j ∈ {0, 1}. Given surfaces Σi ∈ Σ(fi, vi) for
i ∈ {0, 1}, consider the (overcomplete) diagrams Hi = H(fi, vi,Σi). By Lemma 6.21,
the path Γi induces a di�eomorphism di : H0 → H1. Suppose the paths Γ0 and Γ1 are
homotopic in FV0(M, γ) �xing their endpoints. Then d0 and d1 are isotopic through
di�eomorphisms from H0 to H1.

De�nition 6.26. The sutured diagram (Σ′,α′,β′) is obtained from (Σ,α,β) by a
(k, l)-stabilization if there is a disk D ⊂ Σ and a punctured torus T ⊂ Σ′, and there
are curves α ∈ α′ and β ∈ β′ such that

• Σ \D = Σ′ \ T ,
• α \D = α′ \ T and β \D = β′ ∩ \T ,
• α∩D and β ∩D consist of l and k arcs, respectively, and each component of
α ∩D intersects each component of β ∩D transversely in a single point,

• α, β ⊂ T , and they intersect each other transversely in a single point,
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• (α′ \ α) ∩ T consists of l parallel arcs, each of which intersects β transversely
in a single point,

• (β′ \ β)∩ T consists of k parallel arcs, each of which intersects α transversely
in a single point,

• for each component of α ∩ D there is a corresponding component of α′ ∩ T
with the same endpoints, and similarly for the β-curves.

In the above case, we also say that (Σ,α,β) is obtained from (Σ′,β′,α′) by a
(k, l)-destabilization. Notice that a (0, 0)-(de)stabilization agrees with the �simple�
(de)stabilization of De�nition 2.19. The two diagrams in the bottom of Figure 18 are
related by a (3, 3)-stabilization.

De�nition 6.27. The sutured diagram (Σ,α′,β) is obtained from (Σ,α,β) by a
generalized α-handleslide of type (m,n) if there are curves α1, α2 ∈ α, a curve α′

1 ∈ α′,
and an embedded arc a ⊂ Σ such that

• α′ \ α′
1 = α \ α1,

• ∂a ⊂ α2 and the interior of a is disjoint from α,
• there is a thin regular neighborhood N of α2 ∪ a such that ∂N = α1 ∪ α

′
1 ∪ c,

where c is a curve parallel to α2, and the interior of N is disjoint from α∪α′,
and

• if α2 \ ∂a = α0
2 ∪α

1
2, where α

0
2 ∪ a is parallel to α1 and α

1
2 ∪ a is parallel to α′

1,
then |α0

2 ∩ β| = m and |α1
2 ∩ β| = n.

Generalized β-handleslides are de�ned similarly.

In particular, an �ordinary� handleslide is a generalized handleslide of type (0, n),
where the endpoints of the arc a lie very close to each other.

The bifurcations that appear in generic 1-parameter families of gradient vector �elds
were given in Section 5.2.1. We now translate these to moves on sutured diagrams.
For clarity, we state what happens to overcomplete diagrams.

Proposition 6.28. Suppose that

{ (ft, vt) : t ∈ [−1, 1] }

is a generic 1-parameter family of sutured functions and gradient-like vector �elds
on (M, γ) that has a bifurcation at t = 0. Since (f0, v0) ∈ FV1(M, γ), it is separable;
pick a separating surface Σ ∈ Σ(f0, v0). Then there exists an ε = ε(Σ) > 0 such that
Σ t vt for every t ∈ (−ε, ε). Furthermore, for every x ∈ (−ε, 0) and y ∈ (0, ε), the
following hold.

If the bifurcation is not an index 1-2 birth-death, then Σ ∈ Σ(fx, vx) ∩ Σ(fy, vy).
Furthermore, the (overcomplete) diagrams

(Σ,α,β) = H(fx, vx,Σ) and (Σ′,α′,β′) = H(fy, vy,Σ),

possibly after a small isotopy of the immersed submanifold α ∪ β, are related in one
of the following ways.

(1) If the bifurcation is an index 0-1 or 2-3 birth-death, adding or removing a
redundant α- or β-curve, not necessarily disjoint from curves of the opposite
type. �Redundant� means this α- or β-curve is null-homotopic in Σ compressed
along the remaining α- or β-curves, or equivalently that it bounds a planar
region together with the other α- or β-curves.
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(2) If the bifurcation is a tangency of W u(p) and W s(q) for p ∈ C1(f0) and q ∈
C2(f0), an isotopy of the α- and β-curves cancelling or creating a pair of
intersection points.

(3) If the bifurcation is a tangency between W u(p) and W s(q) for p, q ∈ C1(f0)
or p, q ∈ C2(f0), a generalized α- or β-handleslide. Speci�cally, the α-curve
corresponding to p slides over the α-curve corresponding to q if p, q ∈ C1(f0),
while the β-curve corresponding to q slides over the β-curve corresponding to
p if p, q ∈ C2(f0).

If the bifurcation is an index 1-2 birth, then Σ ∈ Σ(fx, vx). Furthermore, there
exists a surface Σ′ ∈ Σ(fy, vy) such that the (overcomplete) diagrams (Σ,α,β) =
H(fx, vx,Σ) and (Σ′,α′,β′) = H(fy, vy,Σ

′), possibly after a small isotopy of the im-
mersed submanifold α∪β, are related by a (k, l)-stabilization if there are l �ows from
index 1 critical points into the degenerate singularity and k �ows from the degenerate
singularity to index 2 critical points. For an index 1-2 death, the same statements
hold, but with x and y reversed.

Proof. Since the family is generic, (ft, vt) ∈ FV0(M, γ) for every t ∈ [−1, 1] \ {0},
and (f0, v0) ∈ FV1(M, γ). By Proposition 6.7, the surface Σ divides (M, γ) into two
sutured compression bodies (M−, γ−) and (M+, γ+). Let ε > 0 be so small that for
every t ∈ (−ε, ε), the surface Σ is transverse to vt.
First, suppose we are in case (1). Without loss of generality, we can assume that

the bifurcation is an index 0-1 birth. The function f0 has a degenerate critical point
at p0 ∈M , which splits into an index 0 critical point p0t ∈ C0(ft) and an index 1 critical
point p1t ∈ C1(ft) for t > 0. Recall that the stable manifold W s(p0) is a 1-manifold
with boundary at p0, while the unstable manifold W u(p0) is locally di�eomorphic
to R3

+, with boundary the strong unstable manifold W uu(p0), cf. Figure 12. The
critical points p0 at t = 0 and p0t for t > 0 both have valence k + 1 in Γ(ft, vt), where
k is the number of �ow-lines from p0 to index 1 critical points within W u(p0).
Recall that p0 ∈ C01(f0, v0) ⊂M−. Since vt is transverse to Σ for every t ∈ (−ε, ε),

both p0t and p1t lie in M−, hence C01(ft, vt) ⊂ M− for every t ∈ (−ε, ε). This implies
that Σ ∈ Σ(ft, vt) for every t ∈ (−ε, ε).
The attaching sets β and β′ are just small isotopic translates of each other. The

isotopy is provided by ⋃

qt∈C2(ft)

W s(qt) ∩ Σ

for t ∈ [x, y]. The same holds for α and α′, except that α′ has one new component due
to the appearance of the new index 1 critical point p1y. The new α-circle W u(p1y) ∩Σ
is a small translate of W uu(p0) ∩ Σ. For every index 2 critical point q ∈ C2(f0) for
which W s(q) intersects W uu(p0), the corresponding β-circle W

s(q) ∩Σ intersects the
new, redundant, α-circle. (This does happen generically in 1-parameter families.)
Now we look at case (2). Consider the family of diagrams (Σ,αt,βt) = H(ft, vt,Σ)

for t ∈ [x, y]. Then (Σ,α,β) = (Σ,αx,βx) and (Σ′,α′,β′) = (Σ,αy,βy). The 1-
manifolds αt and βt remain transverse, except for t = 0, when there is a generic
tangency between W u(p) ∩ Σ ∈ α0 and W

s(q) ∩ Σ ∈ β0.
Next, assume we are in case (3). Without loss of generality, we can suppose that

p, q ∈ C1(f0). Then we show that the α-curve corresponding to p slides over the
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Figure 17. The situation in Case 3, a tangency between W u(p) and
W s(q), leading to a generalized handleslide.

α-curve corresponding to q. Since Σ is transverse to vt for every t ∈ (−ε, ε), we have
C0(ft)∪C1(ft)∪R−(γ) ⊂M− and C2(ft)∪C3(ft)∪R+(γ) ⊂M+ for every t ∈ (−ε, ε).
Hence Σ ∈ Σ(ft, vt) for every t ∈ (−ε, ε).
Let τ = W u(p)∩W s(q) be the �ow-line of v0 from p to q. Recall from Section 5.2.1

that, generically, inside the 2-dimensional unstable manifold W u(q), there is a 1-
dimensional strong unstable manifoldW uu(q). Furthermore, for every r ∈ τ , there is a
1-dimensional subspace Er < TrW

u(p) complementary to 〈v0(r)〉 = Trτ that limits to
TqW

uu(q) under the �ow of v0; see Figure 17. It follows that the curve α
0
p = W u(p)∩Σ

is di�eomorphic to R, with ends limiting to the two points of W uu(q) ∩ Σ. Consider
the circle α0

q = W u(q)∩Σ, and take a thin regular neighborhood P of α0
p∪α

0
q . Notice

that P is a pair-of-pants, and one component α′
q of ∂P is a small isotopic translate

of α0
q . For t ∈ (−ε, ε), let pt and qt be the points of C1(ft) corresponding to p = p0

and q = q0, and let αt
p = W u(pt) ∩ Σ and αt

q = W u(qt) ∩ Σ. Then αx
q and αy

q are
small isotopic translates of α0

q , while α
x
p and αy

p are small isotopic translates of the
other two components of ∂P . Hence αy

p ∈ α′ is obtained (up to a small isotopy) by

a generalized handleslide of αx
p ∈ α over αx

q ∈ α using the arc a = cl
(
α0
p

)
, and every

other component of α′ is a small translate of a component of α. The type (m,n)
of the generalized handleslide is given by the number of �ow-lines from q to index 2
critical points that intersect the two components of W u(q) \W uu(q).
Finally, consider the case of an index 1-2 birth-death, as illustrated in Figure 18.

Without loss of generality, we can assume that a pair of index 1 and 2 critical points
are born. So f0 has a degenerate singularity at p0 that splits into p1t ∈ C1(ft) and
p2t ∈ C2(ft) for t > 0. Recall that we can either include p0 in C01(f0, v0) or in
C23(f0, v0). For now, we assume that p0 ∈ C23(f0, v0), but the other choice works as
well.
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Figure 18. An index 1-2 birth death. Here, we see the two sides
of a codimension-1 index 1-2 birth-death singularity, which is included
in C23(f0, v0). There may be �ows from index 1 critical points to this
singularity, or from this singularity to index 2 critical points; in the
example, there are three of each. The top row shows locally the gradient
�ow, together with the Heegaard surface (drawn in grey). In the bottom
row, we illustrate the corresponding Heegaard diagrams. As usual, we
identify the two circles labeled �A�. On the side of the singularity where
the two critical points die (on the left), we see a grid of �ows between
these critical points.

Observe that Σ ∈ Σ(ft, vt) for every t ∈ (−ε, 0), as Σ t vt, C01(ft, vt) ⊂ M−,
and C23(ft, vt) ⊂ M+. We have p0 ∈ C23(f0, v0) ⊂ M+, thus p

1
t , p

2
t ∈ M+ for every

t ∈ (0, ε). Indeed, neither of the points p1t and p2t can pass through Σ as vt remains
transverse to Σ throughout.

Since vy is generic, W s(p1y) has both ends in C0(fy) ∪ R−(γ) ⊂ M−. This implies
that W s(p1y) intersects Σ transversely in two points. On the other hand, as p2y ∈M+

and both ends of W u(p2y) lie in C3(fy) ∪ R+(γ) ⊂M+, we have W u(p2y) ∩ Σ = ∅. We
obtain Σ′ by smoothing the corners of

∂
(
M− ∪N

(
W s(p1y)

))
\ ∂M,

where N
(
W s(p1y)

)
is a thin tubular neighborhood of W s(p1y) whose boundary in M+

is transverse to vy. It is apparent that Σ
′ is transverse to vy, and Σ′ cuts (M, γ) into

two sutured compression bodies, one of which contains C01(fy, vy)∪R−(γ), while the
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other one contains C23(fy, vy) ∪ R+(γ). Hence Σ′ ∈ Σ(fy, vy). Notice that Σ′ \ Σ is
an annulus A, and Σ \ Σ′ is a disjoint union of two disks D1 and D2.
We now describe the attaching sets α′ and β′. Observe that α = W u(p1y)∩Σ′ ∈ α′

is a homologically non-trivial curve in A. The curve β = W s(p2y) ∩ Σ′ ∈ β′ intersects
α transversely in a single point, and β ∩A is an arc connecting ∂D1 and ∂D2. Let T
be a thin regular neighborhood of A ∪ β. Then T is homeomorphic to a punctured
torus. In addition, let

D = (T \ A) ∪D1 ∪D2;

this is di�eomorphic to a disk. Observe that α′ ∩ (Σ \ T ) is a small isotopic translate
of α∩ (Σ \D), and similarly, β′ ∩ (Σ \ T ) is a small isotopic translate of β ∩ (Σ \D).
If q0 ∈ C1(f0) is a non-degenerate critical point, and qy ∈ C1(fy) is the correspond-

ing critical point, then W u(qy) ∩ Σ′ ∈ α′ intersects β in precisely |W u(q0) ∩W
s(p0)|

points. In addition,W u(qy)∩T consists of parallel arcs that do not enter A. Similarly,
for every r0 ∈ C2(f0) with corresponding ry ∈ C2(fy), the β-curve W

s(ry) ∩ Σ′ ∈ β′

intersects α in |W s(r0) ∩W
u(p0)| points, and A in the same number of parallel arcs.

Hence (Σ′,α′,β′) is indeed obtained from (Σ,α,β) by a (k, l)-stabilization, as stated.
Note that if we include p0 in C01(f0, v0), then an analogous argument applies, with

the di�erence that inside the stabilization tube A we have a β-curve and an α-arc. �

Remark 6.29. In general, the stabilized surface Σ′ ∈ Σ(fy, vy) ceases to be separating
for t > 0 small. Indeed, generically, the saddle-node p0 6∈ Σ′, and consequently the
index 1 and 2 critical points pt1 and pt2 will both lie on the same side of Σ′ for t > 0
su�ciently small.

Essentially the same argument gives the following analogue of Proposition 6.28 for
2-parameter families.

Proposition 6.30. Suppose that { (fµ, vµ) ∈ FV(M, γ) : µ ∈ R2 } is a generic 2-
parameter family that has a codimension-1 bifurcation at µ = 0. Let S be the stratum
of the bifurcation set passing through the origin (S is a non-singular curve near 0).
Since (f0, v0) ∈ FV1(M, γ), it is separable; pick a separating surface Σ ∈ Σ(f0, v0).
Then there exists an ε = ε(Σ) > 0 such that D2

ε \ S consists of two components C1

and C2, and for every x ∈ C1 and y ∈ C2 the same conclusion holds as in Proposi-
tion 6.28.

Recall that in De�nition 2.30, we introduced the notion of distinguished rectangles
of Heegaard moves.

De�nition 6.31. A generalized distinguished rectangle is de�ned just like in De�ni-
tion 2.30, except we replace the word �stabilization� with �(k, l)-stabilization,� and
allow overcomplete diagrams.

The following result relates isotopies with codimension-1 moves.

Proposition 6.32. Suppose that { (fµ, vµ) ∈ FV≤1(M, γ) : µ ∈ R2 } is a generic
2-parameter family, and let

V1 = {µ ∈ R2 : (fµ, vµ) ∈ FV1(M, γ) }

be the codimension-1 bifurcation set. Let a ⊂ V1 be an arc with endpoints µ0 and µ1,
and suppose we are given surfaces Σi ∈ Σ(fµi

, vµi
) for i ∈ {0, 1}. Let b0 and b1 be
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Figure 19.

arcs transverse to V1 such that the only bifurcation value in bi is µi and Σi t vµ for
every µ ∈ bi. Orient b0 and b1 such that they have the same intersection sign with V1,
and let ∂b0 = y0 − x0 and ∂b1 = y1 − x1, see Figure 19.

After possibly �ipping the orientation of b0 and b1, we can assume that Σi ∈
Σ(fxi

, vxi
) for i ∈ {0, 1}. Furthermore, suppose we are given surfaces Σ′

i ∈ Σ(fyi , vyi)
for i ∈ {0, 1} such that Σ′

i is obtained from Σi by a stabilization if (fµi
, vµi

) is an
index 1-2 birth, and Σ′

i = Σi otherwise. (Such surfaces always exist by applying
Proposition 6.28 to the 1-parameter family parametrized by bi.) Then the isotopy
diagrams H1 = [H(fx0 , vx0 ,Σ0)], H2 = [H(fy0 , vy0 ,Σ

′
0)], H3 = [H(fx1 , vx1 ,Σ1)], and

H4 = [H(fy1 , vy1 ,Σ
′
1)] �t into a generalized distinguished rectangle

H1
e //

f
��

H2

g

��
H3

h // H4

of type (3) if (fµi
, vµi

) is a handleslide, or type (5) if (fµi
, vµi

) is an index 1-2 birth-
death, cf. De�nition 2.30. For other types of bifurcations, we have a rectangle with
e and h the identity or adding/removing a redundant α- or β-curve, and f = g a
di�eomorphism. If we pick any curves a1 and a2 outside the bifurcation set parallel
to a with ∂a1 = x1−x0 and ∂a2 = y1− y0 and apply Lemma 6.21, then a1 will induce
a di�eomorphism isotopic to f , and a2 will induce a di�eomorphism isotopic to g. In
particular, f ∈ G0

di�(H1, H3) and g ∈ G0
di�(H2, H4). The arrows e and h are given by

Proposition 6.28.

Note that in case of an index 1-2 birth-death singularity, we mean Σ0 ∈ Σ±(fµ0 , vµ0)
and Σ1 ∈ Σ±(fµ1 , vµ1), and we allow all four combinations of signs.

Proof. For now, assume that in case of an index 1-2 birth death, we have either
Σ0 ∈ Σ+(fµ0 , vµ0) and Σ1 ∈ Σ+(fµ1 , vµ1), or Σ0 ∈ Σ−(fµ0 , vµ0) and Σ1 ∈ Σ−(fµ1 , vµ1).
Choose an arbitrary parametrization a(t) of the arc a, then apply Lemma 6.23 to

the 1-parameter family { (fa(t), va(t)) : t ∈ I } inside FV1(M, γ). We obtain a family
of di�eomorphisms dt : Σ0 → Σt such that Σt = dt(Σ0) ∈ Σ(fa(t), va(t)) for every t ∈ I.
There exists an ε > 0 such that for every t ∈ I and µ ∈ R2 with |a(t) − µ| < ε, we
have Σt t vµ. Indeed, as transversality is an open relation, the set

U = { (t, µ) ∈ I × R2 : Σt t vµ }

is an open neighborhood of the graph a = { (t, a(t)) : t ∈ I } in I ×R2. In particular,
we can take ε to be the distance of a and (I × R2) \ U . Furthermore, we take ε so
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small that for every µ ∈ Nε(a), the pair (fµ, vµ) is Morse-Smale unless µ lies in the
component of V1 containing a. We denote by C1 and C2 the components of Nε(a)\V1,
labeled such that b0 and b1 are both oriented from C1 to C2.
First, suppose that (fµi

, vµi
) is not an index 1-2 birth-death. Then, as explained

in the proof of Proposition 6.28, for every t ∈ I and µ ∈ R2 with |a(t) − µ| < ε, we
even have Σt ∈ Σ(fµ, vµ). Furthermore, Σ0 = Σ′

0 and Σ1 = Σ′
1, and the corresponding

isotopy diagrams H1 and H2, and similarly, H3 and H4, are related by a handleslide,
adding or removing a redundant α- or β-curve, or they are the same (for an orbit of
tangency between an index 1 and an index 2 critical point). In this case, we take
f = g = d1 : Σ0 → Σ1. What we need to show is that d1(H1) = H3 and d1(H2) = H4.
Pick points x′0 ∈ C1∩ b0, x

′
1 ∈ C1∩ b1, y

′
0 ∈ C2∩ b0, and y

′
1 ∈ C2∩ b1, then choose arcs

c1 ⊂ C1 and c2 ⊂ C2 with ∂c1 = x′1−x
′
0 and ∂c2 = y′1−y

′
0. These can be parametrized

such that |a(t) − cj(t)| < ε for every t ∈ I and j ∈ {1, 2}. Since Σt ∈ Σ(fcj(t), vcj(t))
and (fcj(t), vcj(t)) is Morse-Smale, there is an induced overcomplete diagram

Hj
t = H(fcj(t), vcj(t),Σt).

If we apply the �rst part of Lemma 6.19 to the family of diagrams {Hj
t : t ∈ I },

we obtain an induced di�eomorphism dj1 : Σ0 → Σ1 such that d11(H
1
0) = H1

1 and
d21(H

2
0) = H2

1. Since Σi ∈ Σ(fµ, vµ) for every µ ∈ bi and i ∈ {0, 1}, the isotopy
diagrams [H1

0] = H1, [H
1
1] = H3, [H

2
0] = H2, and [H2

1] = H4. Hence d
1
1(H1) = H3 and

d21(H2) = H4. The second part of Lemma 6.19 implies that dj1 is isotopic to d1 for
j ∈ {1, 2}, so indeed d1(H1) = H3 and d1(H2) = H4.
Let a′1 ⊂ R2 be the path obtained by going from x0 to x′0 along b0, then from x′0

to x′1 along c1, �nally, from x′1 to x1 along b1. We de�ne the path a′2 ⊂ R2 from y0
to y1 in an analogous manner. Since Σi ∈ Σ(fµ, vµ) for every µ ∈ bi and i ∈ {0, 1}, the

path a′j induces a di�eomorphism δj1 : Hj → Hj+2 isotopic to d
j
1 for j ∈ {1, 2}. If a1 is

an arbitrary path from x0 to x1 in the complement of the bifurcation set and parallel
to a, then a1 is homotopic to a′1 relative to their boundary. So by Corollary 6.25,
the path a1 induces a di�eomorphism f : H1 → H3 isotopic to δ11, hence also to d1.
Similarly, a path a2 from y0 to y1 avoiding the bifurcation set and parallel to a induces
a di�eomorphism g : H2 → H4 isotopic to δ21, hence also to d1.
Suppose that (fµi

, vµi
) is an index 1-2 birth; furthermore, Σ0 ∈ Σ+(fµ0 , vµ0) and

Σ1 ∈ Σ+(fµ1 , vµ1). The case when Σ0 ∈ Σ−(fµ0 , vµ0) and Σ1 ∈ Σ−(fµ1 , vµ1) is com-
pletely analogous. Then, by Proposition 6.30, the diagram H2 is obtained from H1

by a stabilization, and similarly, H4 is obtained from H3 by a stabilization. Pick arcs
c1 : I → C1 and c2 : I → C2 as above, and extend them to arcs a′1 : [−1, 2] → R2

connecting x0 and x1 and a
′
2 : [−1, 2] → R2 connecting y0 and y1 in a similar manner.

I.e., a′j([−1, 0]) ⊂ b0, a
′
j

∣∣
I
= ci, and a′j([1, 2]) ⊂ b1. For every µ on the �birth� side

of V1, let the index 1 and 2 critical points born be p1(µ) and p2(µ), respectively. The
surface Σt divides M into two sutured compression bodies M−(t) and M+(t). Let
Σt = Σ0 for t ∈ [−1, 0] and Σt = Σ1 for t ∈ [1, 2]. Furthermore, we write pj(t)
for pj(a′2(t)), where j ∈ {1, 2} and t ∈ [−1, 2]. For each t ∈ [−1, 2], we construct a
surface

Σ∗
t ∈ Σ(fa′2(t), va′2(t))

from Σt by adding a tube around W s(p1(t)) as in the proof of Proposition 6.28, but
now in a way that the construction depends smoothly on t. For this, simply pick a
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thin regular neighborhood N of
⋃

t∈[−1,2]

W s(p1(t))× {t} ⊂M × [−1, 2],

let Nt = N ∩ (M × {t}), then take

Σ∗
t = ∂(M−(t) ∪Nt) \ ∂M.

Finally, let At = Σ∗
t \ Σt be the added tube (i.e., annulus). We can do this in such a

way that Σ∗
−1 = Σ′

0 and Σ∗
2 = Σ′

1.
We take f to be d1. Furthermore, we de�ne g to be d1 outside the extra tube A−1,

and extend it to A−1 using the family Σ∗
t (this follows from a straightforward relative

version of Lemma 6.19). Similarly to the other cases, take H1
t = H(fa′1(t), va′1(t),Σt)

and H2
t = H(fa′2(t), va′2(t),Σ

∗
t ) = (Σ∗

t ,α
2
t ,β

2
t ), then apply Lemma 6.19 to these families

of diagrams to obtain di�eomorphisms d11 and d
2
1, respectively, such that d11(H1) = H3

and d21(H2) = H4. As above, d11 is isotopic to d1, hence d1(H1) = H3. Similarly, d21
agrees with d1 up to isotopy outside A−1, and inside A−1 it has to map the curve α2

−1∩
A−1 to α2

2 ∩ A2 up to isotopy, hence d21(H2) = H4. So we indeed have a generalized
distinguished rectangle of type (5). The fact that any curve ai homotopic to a′i relative
to their boundary induces an isotopic di�eomorphism follows from Corollary 6.25.
Finally, we consider the case of an index 1-2 birth-death singularity with Σ0 ∈

Σ+(fµ0 , vµ0) and Σ1 ∈ Σ−(fµ1 , vµ1), or Σ0 ∈ Σ−(fµ0 , vµ0) and Σ1 ∈ Σ+(fµ1 , vµ1). We
will only discuss the former possibility, as the latter is completely analogous. We �rst
assume that a is a constant path mapping to the point µ ∈ V1, and b0 = b1. We
denote the arc b0 = b1 by b, and write ∂b = y − x. Let bx and by be the components
of b \ {µ} containing x and y, respectively. Then Σ0, Σ1 ∈ Σ(fx, vx), while Σ′

0,
Σ′

1 ∈ Σ(fy, vy). If a1 is the constant path at x, then it induces the di�eomorphism
f : Σ0 → Σ1 obtained by �owing along vx. Similarly, if a2 is the constant path at y,
then it induces the di�eomorphism g : Σ′

0 → Σ′
1 obtained by �owing along vy. Then

f(H1) = H3 and g(H2) = H4.
All we need to show is that g is isotopic to the stabilization of f . Let p ∈ M be

the degenerate critical point of fµ, and let p1(µ) ∈ C1(fµ) and p
2(µ) ∈ C2(fµ) be the

corresponding critical points of fµ for µ ∈ by. Let N ⊂M be a (vµ)-saturated regular
neighborhood ofW s(p)∪W u(p). Then the diskD0 = Σ0∩N is a regular neighborhood
of the arc W s(p) ∩ Σ0, and the disk D1 = Σ1 ∩ N is a regular neighborhood of the
arc W u(p) ∩ Σ1. Furthermore, for i ∈ {0, 1}, let

Ai = Σ′
i \ Σi

be the stabilization tubes, and αi = Σ′
i∩W

u(p1(y)) and βi = Σ′
i∩W

s(p2(y)) the new
α- and β-curves. Note that α0 ⊂ A0 and β0 ∩ A0 is an arc, whereas β1 ⊂ A1 and
α1 ∩A1 is an arc. Recall that Bi = Σi \Σ

′
i is a pair of open disks; we choose Di such

that Bi ⊂ Di. Then

Ti = (Di \Bi) ∪ Ai

is a punctured torus that is a regular neighborhood of αi ∪ βi for i ∈ {0, 1}. By
construction, Σ′

i = (Σi \Di) ∪ Ti. The �ow of vµ induces a di�eomorphism

d : Σ0 \D0 → Σ1 \D1.
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If i : Σ1 \D1 ↪→ Σ1 is the embedding, then both

f |Σ0\D0 : Σ0 \D0 → Σ1

and

g|Σ′
0\T0

: Σ′
0 \ T0 = Σ0 \D0 → Σ′

1

are isotopic to i ◦ d. Hence, f |Σ0\D0 is isotopic to g|Σ′
0\T0

. Since g(α0) = α1 and
g(β0) = β1, we can isotope g such that it maps the regular neighborhood T0 of α0∪β0
to the regular neighborhood T1 of α1 ∪ β1. So, up to isotopy of f and g, the diagram

[H(fx, vx,Σ0)]
e //

f

��

[H(fy, vy,Σ
′
0)]

g

��
[H(fx, vx,Σ1)]

h // [H(fy, vy,Σ
′
1)]

is a distinguished rectangle of type (5).
We are now ready to prove the general case, when a ⊂ V1 is an arbitrary arc,

and we have an index 1-2 birth-death singularity with Σ0 ∈ Σ+(fµ0 , vµ0) and Σ1 ∈
Σ−(fµ1 , vµ1). Choose a surface Σ ∈ Σ+(fµ1 , vµ1). There exists an ε = ε(Σ) > 0
such that Σ t vµ for every µ ∈ D2

ε (µ1), and let b ⊂ D2
ε (µ1) be a sub-arc of b1 such

that µ1 ∈ Int(b). Suppose that ∂b = y − x, and denote by bx,x1 the sub-arc of b1
between x and x1, and by by,y1 the sub-arc of b1 between y and y1. If we apply
Proposition 6.28 to the 1-parameter family b, then we see that Σ ∈ Σ(fx, vx), and we
obtain a surface Σ′ ∈ Σ(fy, vy) stabilizing Σ ∈ Σ(fx, vx). We write H = [H(fx, vx,Σ)]
and H ′ = [H(fy, vy,Σ

′)].
Let a1 ⊂ R2 be the path obtained by going from x0 to x along an arc a′1 parallel

to a, then from x to x1 along bx,x1 . The path a2 ⊂ R2 is obtained by going from y0
to y along an arc a′2 parallel to a, then from y to y1 along by,y1 . We also assume that
a′1 and a′2 are disjoint from the bifurcation set. Then a′1 induces a di�eomorphism

f ′ : H1 = [H(fx0 , vx0 ,Σ0)] → H = [H(fx, vx,Σ)],

and the arc a′2 induces a di�eomorphism

g′ : H2 = [H(fy0 , vy0 ,Σ
′
0)] → H ′ = [H(fy, vy,Σ

′)].

Furthermore, the constant x path induces a di�eomorphism

f ′′ : H = [H(fx, vx,Σ)] → [H(fx, vx,Σ1)],

and the constant y path induces a di�eomorphism

g′′ : H ′ = [H(fy, vy,Σ
′)] → [H(fy, vy,Σ

′
1)].

Since Σ ∈ Σ(fµ, vµ) for every µ ∈ bx,x1 , bothH(fx, vx,Σ1) andH(fx1 , vx1 ,Σ1) de�ne
the same isotopy diagram H3. Similarly, as Σ′ ∈ Σ(fµ, vµ) for every µ ∈ by,y1 , both
H(fy, vy,Σ

′
1) and H(fy1 , vy1 ,Σ

′
1) de�ne the same isotopy diagram H4. Furthermore,

the arc bx,x1 induces a di�eomorphism isotopic to f ′′, and the path by,y1 induces a
di�eomorphism isotopic to g′′. Hence, the path a1 induces a di�eomorphism f : H1 →
H3 isotopic to f

′′ ◦f ′, and the path a2 induces a di�eomorphism g : H2 → H4 isotopic
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to g′′ ◦ g′. Let s denote the stabilization from H to H ′, and consider the following
subgraph of G:

H1
e //

f ′

��

H2

g′

��
H

s //

f ′′

��

H ′

g′′

��
H3

h // H4.

The top rectangle is distinguished of type (5), as we already know the result for
Σ0 ∈ Σ+(fµ0 , vµ0) and Σ ∈ Σ+(fµ1 , vµ1), together with that arc a ⊂ V1 and transverse
arcs b0 and b. The bottom rectangle is also distinguished of type (5), since we have
proved the proposition for the special case Σ ∈ Σ+(fµ1 , vµ1) and Σ1 ∈ Σ−(fµ1 , vµ1),
the constant µ1 path, and the transverse arc b. It follows that the large rectangle is
also distinguished of type (5), and by the above discussion, it agrees with the rectangle
in the statement. �

6.4. Codimension-1: Ordinary diagrams. In this section, we will show how to
choose spanning trees appropriately in Propositions 6.28 and 6.30 to pass from over-
complete to actual Heegaard diagrams, without altering the relationship of the dia-
grams before and after the bifurcation in an essential way. We are going to write Γ for
Γ(fx, vx) and Γ′ for Γ(fy, vy). Similarly, we use the shorthand Γ± for Γ±(fx, vx) and
Γ′
± for Γ±(fy, vy), where Γ±(f, v) is de�ned in De�nition 6.14. By abuse of notation,

if p is a non-degenerate critical point of f0, then we also write p for the corresponding
critical points of fx and fy. Furthermore, if p is index 1 or 2, we also view p as
the midpoint of the appropriate edge of Γ± or Γ′

±, even though these graphs are not
strictly speaking subsets of M , but are factors of Γ and Γ′, respectively; the latter
two graphs do contain p.
Suppose we are in case (1) of Proposition 6.28 (0-1 or 2-3 birth-death), and without

loss of generality, consider the case of the birth of the critical points p ∈ C0(fy) and
q ∈ C1(fy). Then Γ is obtained from Γ′ by a small isotopy, deleting the vertex q of
valence two along with its two adjacent edges, and merging the two vertices in Γ′

it was connected to (one of which is p). There is a map b from spanning trees of
Γ± to spanning trees of Γ′

±, given by small isotopy and adding the edge p; then
H(fx, vx,Σ, T±) and H(fy, vy,Σ, b(T±) are the same isotopy diagram.
Similarly, in case (2) (1-2 tangency), the graphs Γ and Γ′ are the same, except

for a small isotopy. This induces a bijection b of spanning trees of Γ± and Γ′
± such

that H(fx, vx,Σ, T±) and H(fy, vy,Σ, b(T±)) represent the same isotopy diagram. So
bifurcations (1) and (2) have no e�ect on isotopy diagrams if we choose the spanning
trees consistently.
Now consider the case of an index 1-2 birth. Then Γ′

− is obtained from Γ− by
adding an edge corresponding to the new index 1 critical point, and similarly, Γ′

+

is obtained from Γ+ by adding an edge corresponding to the new index 2 critical
point. Furthermore, Γ− and Γ+ are both connected. So spanning trees T± of Γ±

remain spanning trees T ′
± of Γ′

±. The diagram H(fy, vy,Σ
′, T ′

±) is obtained from
H(fx, vx,Σ, T±) by a (k′, l′)-stabilization, where l′ is the number of �ows from index 1
critical points of f0 not in T− to the saddle-node singular point, and k′ is the number
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Figure 20. A handleslide in an overcomplete diagram. In this exam-
ple, T− = {eq} is the only spanning tree of Γ− and T ′

− = {e′q} is the
unique spanning tree of Γ′

−. However, the diagram H′ cannot be ob-
tained from H by a single handleslide. The α-curves and graph edges
corresponding to T− and T ′

− are drawn in a lighter color. The tree T−
is not adapted to the handleslide.

of �ows from the saddle-node to index 2 critical points not in T+. Note that, in this
case, not all spanning trees of Γ′

± come from spanning trees of Γ±.
Finally, consider case (3) (same-index tangency). Without loss of generality, assume

that the curve αp slides over αq, yielding α
′
p, where p, q ∈ C1(fx), the curve αp =

W u(p) ∩ Σ, and αq = W u(q) ∩ Σ. Then the graph Γ′
− is obtained from Γ− by sliding

the edge eq ∈ E(Γ−) containing q over the edge ep ∈ E(Γ−) containing p, yielding
the edge e′q (note the change of roles as we pass to the spanning trees). Issues arise
when eq ∈ T− and ep 6∈ T−, since then the curve αp is sliding over the �invisible�
curve αq. In fact, there are situations where, for any spanning tree T− of Γ− and
any spanning tree T ′

− of Γ′
−, the corresponding Heegaard diagrams do not di�er by a

single handleslide. For such a situation, see Figure 20. This motivates the following
de�nition.

De�nition 6.33. Suppose we have a handleslide of αp over αq as above. Then we
say that the spanning tree T± of Γ± is adapted to the handleslide if either

• eq 6∈ T±, or
• both ep, eq ∈ T±.

We denote by Aαp/αq
(Γ±) the set of spanning trees of Γ± adapted to sliding the curve

αp over αq.

Lemma 6.34. Given a handleslide as above, Aαp/αq
(Γ±) 6= ∅ if either ep is not a loop

or eq is not a cut-edge. Furthermore, there is a bijection

b : Aαp/αq
(Γ±) → Aα′

p/αq
(Γ′

±)

such that, for every spanning tree T± ∈ Aαp/αq
(Γ±), the sutured diagrams H =

H(f−ε, v−ε,Σ, T±) and H′ = H(fε, vε,Σ, b(T±)) are related by sliding αp over αq

if ep, eq 6∈ T±, and represent the same isotopy diagram otherwise.
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Proof. If ep is not a loop, then there is a spanning tree T± of Γ± that contains ep.
Alternatively, if eq is not a cut-edge, then there is a spanning tree T± of Γ± such that
eq 6∈ T±. In either case T± ∈ Aαp/αq

(Γ±) and Aαp/αq
(Γ±) 6= ∅.

Now we de�ne the map b. If eq 6∈ T±, then b(T±) = T±. In this case, the diagramH′

is obtained from H by sliding αp over αq if ep 6∈ T±, and H′ represents the same
isotopy diagram as H otherwise. If ep, eq ∈ T±, then b(T±) is T± \ {eq} ∪ {e′q},
where e′q is obtained by sliding eq across ep. Now H and H′ represent the same
isotopy diagram. �

Even if Aαp/αq
(Γ±) = ∅ (with p, q of index 1), since Γ23(fx, vx) and Γ23(fy, vy) are

small isotopic translates of each other, there is a natural bijection b between spanning
trees of Γ+ and Γ′

+. If T± and T ′
± are spanning trees of Γ± and Γ′

±, respectively, such
that T ′

+ = b(T+), then the corresponding diagrams are α-equivalent. As the example
in Figure 20 shows, this is the best we can hope for, unless we are in one of the lucky
situations of Lemma 6.34.

6.5. Codimension-1: Converting Heegaard moves to function moves. We
now turn to the other direction: Given a move on Heegaard diagrams, can it be
converted to a path of functions?

Proposition 6.35. Suppose that Hi = (Σi,αi,βi) for i ∈ {0, 1} are diagrams of the
sutured manifold (M, γ) such that αi t βi. In addition, let (fi, vi) ∈ FV0(M, γ) for
i ∈ {0, 1} be simple Morse-Smale pairs with H(fi, vi) = Hi.

(1) Given a di�eomorphism d : H0 → H1 isotopic to the identity in M , there is
a family { (ft, vt) : t ∈ [0, 1] } of simple Morse-Smale pairs connecting (f0, v0)
and (f1, v1) that induces d in the sense of Lemma 6.21.

(2) If H0 and H1 are α- or β-equivalent, then (f0, v0) and (f1, v1) can be connected
by a family of simple (but not necessarily Morse-Smale) pairs (ft, vt) such that
Σ0 = Σ1 ∈ Σ(ft, vt) for every t ∈ [0, 1]. In particular, every isotopy and
handleslide can be realized by such a family.

(3) If H1 is obtained from H0 by a (de)stabilization, then there is a generic family
(ft, vt) of sutured functions connecting (f0, v0) and (f1, v1) such that for every
t 6= 1/2, the pair (ft, vt) is simple and Morse-Smale, and at t = 1/2, there is
an index 1-2 birth-death bifurcation of (ft, vt) realizing the stabilization.

Proof. We �rst prove claim (1). Let ιi : Σi ↪→ M be the embedding. The statement
that d is isotopic to the identity inM means that there exists an isotopy et : Σ0 →M
such that e0 = ι0 and e1 = ι1 ◦d, while et(∂Σ0) = s(γ) for every t ∈ [0, 1]. This can be
extended to a di�eotopy Et : M → M such that Et|Σ0 = et and E0 = IdM . Consider
the function gt = f0 ◦ E

−1
t and the vector �eld wt = dEt ◦ v0 ◦ E

−1
t . Then (gt, wt)

is a simple Morse-Smale pair. If Σt = et(Σ0), αt = et(α0), and βt = et(Σ0), then
we have (Σt,αt,βt) ∈ Σ(gt, wt). Clearly, (g0, w0) = (f0, v0), but (g1, w1) and (f1, v1)
might di�er. We de�ne (ft, vt) to be (g2t, w2t) for 0 ≤ t ≤ 1/2. By Proposition 6.18,
the pairs (g1, w1) and (f1, v1) can be connected by a family { (ft, vt) : t ∈ [1/2, 1] }
of simple Morse-Smale pairs, all adapted to H1. In the proof of Lemma 6.21, if we
take dt to be e2t for 0 ≤ t ≤ 1/2 and to be e1 for 1/2 ≤ t ≤ 1, then dt satis�es
dt(H0) = Ht ∈ Σ(ft, vt) for every t ∈ [0, 1]. Hence the family { (ft, vt) : t ∈ [0, 1] }
indeed induces the di�eomorphism d1 = d, which concludes the proof of (1).
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Now consider claim (2), and suppose that H0 = (Σ,α0,β) and H1 = (Σ,α1,β)
are α-equivalent. Then Lemma 2.11 implies that, after applying a sequence of han-
dleslides to α0, we get an attaching set α′

1 that is isotopic to α1. Hence, it su�ces
to prove the claim when H2 can be obtained from H1 by an isotopy of the α-curves,
or by an α-handleslide.
First, assume that α0 and α1 are related by an isotopy. As described by Mil-

nor [13, Section 4], there is an isotopy {wt : t ∈ [0, 1] } of v0, supported in a collar
neighborhood of Σ in the α-handlebody, such that w0 = v0, every wt is gradient-like
for f0, and H(f0, w1) = H1. Once we have arranged that the Heegaard diagrams are
equal, by Proposition 6.18 we can connect (f0, w1) and (f1, v1) through a family of
simple Morse-Smale pairs, all adapted to H1.
Now suppose that α0 and α1 are related by a handleslide. In particular, the circle

αp = W u(p) ∩ Σ corresponding to p ∈ C1(f0) slides over the curve αq = W u(q) ∩ Σ
corresponding to q ∈ C1(f0) along some arc a ⊂ Σ connecting αp and αq. Again, by
Milnor [13, Section 4], there is a deformation { (gt, wt) : t ∈ [0, 1] } of (f0, v0) such that
(g0, w0) = (f0, v0), every (gt, wt) is a simple Morse-Smale pair, and p, q are neighboring
index 1 critical points of g1. Neighboring means that, if ξ = g1(p) and η = g1(q),
then ξ < η, and the only critical points of g1 in M[ξ,η] = g−1

1 ([ξ, η]) are p and q. We
can also assume that H(gt, wt) = H0 for every t ∈ [0, 1], and that (gt, wt) coincides
with (f0, v0) outside a small regular neighborhood of

W s(p) ∪W u(p) ∪W s(q) ∪W u(q).

Let c = (ξ + η)/2 and Mc = g−1
1 (c). By �owing backwards along w1, the arc a gives

rise to an arc a′ ⊂Mc. Then there is an isotopy {wt : t ∈ [1, 2] } of w1 such that

• the isotopy is supported in M[ξ,η],
• wt is a gradient-like vector �eld for g1 for every t ∈ [1, 2],
• it isotopes the circle W u(p) ∩Mc by a �nger move along a′ across one of the
points of the 0-sphere W s(q) ∩Mc,

• W u(r) ∩Mc is �xed for every r ∈ C1(g1) \ {p}.

The last condition can be satis�ed because a′ is disjoint from the circles W u(r) ∩
Mc. This realizes the handleslide of αp over αq; i.e., H(g2, w2) = H1. Again, using
Proposition 6.18, the pairs (g2, w2) and (f1, v1) can be connected by a family of simple
Morse-Smale pairs, all adapted to H1, concluding the proof of claim (2). Notice
that (ft, vt) ceases to be Morse-Smale at values of t for which there is a tangency
between an α- and a β-curve, or when there is an α-handleslide.
Finally, consider statement (3). Without loss of generality, we can suppose that H1

can be obtained from H0 by a stabilization. The case of a destabilization follows by
time-reversal.
By de�nition, there is a disk D ⊂ Σ0 and a punctured torus T ⊂ Σ1 such that

Σ0 \ D = Σ1 \ T . Furthermore, α0 = α1 ∩ (Σ1 \ T ), β0 = β1 ∩ (Σ1 \ T ), and there
are circles α = α1 ∩ T and β = β1 ∩ T that intersect each other transversely in a
single point. Let p ∈ C1(f1) and q ∈ C2(f1) be the critical points of f1 for which
W u(p) ∩ Σ2 = α and W s(q) ∩ Σ2 = β. Let Z0 be the union of the �ow-lines of v0
passing through D. As D ∩ (α0 ∪ β0), the manifold Z0 is di�eomorphic to D × I.
De�ne Z1 to be the union of the �ow-lines of v1 passing through T , together with

W s(p) ∪W u(p) ∪W s(q) ∪W u(q).
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Then Z1 is also di�eomorphic to D × I, since it can be obtained from T × I by
attaching 3-dimensional 2-handles along α× {0} and β × {1}.
The vertical boundary of Zi is the annulus Ai obtained by taking the union of the

�ow-lines of vi passing through ∂D = ∂T . There is an isotopy { dt : t ∈ [0, 1] } of M
such that d0 = IdM , d1(A0) = A1, and dt �xes Σ0 pointwise. Then consider the 1-
parameter family (f0 ◦d

−1
t , (dt)∗ ◦v0 ◦d

−1
t ) of simple Morse-Smale pairs. This isotopes

A0 to A1. Hence, we can assume that A0 = A1, which implies that Z0 = Z1. So we
will write A for Ai and Z for Zi. The attaching sets α0 and β0 might move during
this process via an isotopy avoiding D, but we can undo this using claim (2) without
changing A anymore. So we still have α0 = α1∩(Σ1 \T ) and β0 = β1∩(Σ1 \T ). It is
straightforward to arrange that (f0, v0) and (f1, v1) agree on a regular neighborhood
of A.
Take the sutured manifold

(N, ν) =
(
M \ Z, γ ∪ A

)
.

Then H′
0 = (Σ0 \D,α0,β0) and

H′
1 = (Σ1 \ T,α1 \ {α},β1 \ {α})

are both diagrams of (N, ν). If we write (f ′
i , v

′
i) = (fi, vi)|N for i ∈ {0, 1}, then

H′
i = H(f ′

i , v
′
i). However, as H

′
0 = H′

1, we can apply Proposition 6.18 to get a family
(f ′

t , v
′
t) of simple Morse-Smale pairs on (N, ν) connecting (f ′

0, v
′
0) and (f ′

1, v
′
1). On

the other hand, observe that (D, ∅, ∅) and (T, α, β) are both diagrams of the product
sutured manifold (Z,A) that are related by a stabilization, hence it now su�ces to
prove claim (3) for this special case. Indeed, we can simply glue the family connecting
(f0, v0)|Z and (f1, v1)|Z to the family (f ′

t , v
′
t).

Consider R3 with the standard coordinates (x, y, z). Let

Gt(x, y, z) = x3 − y2 + z2 + (1/2− t)x,

with gradient vector �eld

Wt(x, y, z) = (3x2 + 1/2− t,−2y, 2z).

Then Gt has a bifurcation at t = 1/2, where a pair of index 1 and 2 critical points
are born. Let

Bt = G−1
t ([−1, 1]) ∩D3

2 and ηt = Bt ∩ ∂D
3
2,

where D3
2 is the unit disk in R3 of radius 2. Furthermore, let gt = Gt|Bt

and wt =
Wt|Bt

. It is straightforward to check that (Bt, ηt) is di�eomorphic to the product
sutured manifold (D2, ∂D2×I) for every t ∈ [0, 1]. In addition, H(g0, w0) = (D′, ∅, ∅),
where D′ = g−1

0 (0) is a disk, while H(g1, w1) = (T ′, α′, β′), where T ′ = g−1
1 (0) is a

punctured torus, and α′ and β′ are simple closed curves that intersect each other in
a single point. There exists a smooth family of di�eomorphisms ht : (Bt, ηt) → (Z,A)
such that h0(D

′) = D, h1(T
′) = T , h1(α

′) = α, and h1(β
′) = β. Pushing (gt, wt)

forward along ht, we get a family on (Z,A) that we also denote by (gt, wt). According
to Proposition 6.18, for i ∈ {0, 1}, the pair (fi, vi)|Z can be connected with (gi, wi)
via a family of simple Morse-Smale pairs. This concludes the proof of claim (3). �
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6.6. Codimension-2. The singularities of gradient vector �elds that appear in gener-
ic 2-parameter families were given in Section 5.2.2. This also applies to gradient-like
vector �elds on sutured manifolds by Proposition 5.19. Let us see what these give in
terms of Heegaard diagram of sutured manifolds.
Let (fµ, vµ) for µ ∈ R2 be a generic 2-parameter family of sutured functions and

gradient-like vector �elds on the sutured manifold (M, γ) that has a codimension-2
singularity for µ = 0; i.e., (f0, v0) ∈ FV2(M, γ). Recall the notion of the bifurcation
set in the parameter space from De�nition 5.10; this is the set S of parameter values
µ ∈ R2 for which vµ fails to be Morse-Smale. Then, for ε > 0 su�ciently small, the
set (S∩D2

ε )\{0} is the disjoint union of smooth arcs (strata) S1, . . . , Sr with 0 ∈ ∂Si

and ∂Si \ {0} ∈ S1
ε . We label the arcs Si in a clockwise manner. The components

of D2
ε \ S are chambers C1, . . . , Cr, labeled such that Ci lies between Si−1 and Si for

i ∈ { 1, . . . , r } (where S0 = Sr by de�nition).
In this section, the bifurcation diagrams that we draw illustrate the bifurcation set

S ⊂ R2 in a neighborhood D2
ε of 0, and for each chamber Ci, we indicate the relevant

part of the corresponding (overcomplete) Heegaard diagram H(fµ, vµ,Σ) for µ ∈ Ci

near 0 and some Heegaard surface Σ ∈ Σ(fµ, vµ). (Note that if µ, µ
′ ∈ Ci, then the

vector �elds vµ and vµ′ are topologically equivalent, hence the corresponding diagrams
are homeomorphic and close to each other.) We only show certain subsurfaces of Σ
in our illustrations and draw the boundary of these in green. Outside these subsur-
faces, the diagrams are related by a small isotopy of α ∪ β. Following our previous
conventions, α-circles are drawn in red, while β-circles are drawn in blue.
Consider an arc Si, and pick a short curve c : [−ν, ν] → R2 transverse to Si at c(0).

This gives rise to a 1-parameter family { (fc(t), vc(t)) : t ∈ [−ν, ν] } to which we can
apply Proposition 6.28. If the diagrams for (fc(−ν), vc(−ν)) and (fc(ν), vc(ν)) are related
by an α-equivalence, then we draw Si in red; if they are related by a β-equivalence,
then we draw Si in blue; and Si is black if they are related by a (de)stabilization.

De�nition 6.36. Suppose that { (fµ, vµ) : µ ∈ R2 } is a generic 2-parameter family
such that (f0, v0) ∈ FV2(M, γ). For ε > 0 as above, a link of the bifurcation at 0 is
an embedded polygonal curve P ⊂ D2

ε such that

• the bifurcation value 0 lies in the interior of P ,
• P t S and |Si ∩ P | = 1 for every i ∈ { 1, . . . , r },
• each chamber Ci contains exactly one or two vertices of P .

We say that P is minimal if each Ci contains precisely one vertex of P . We orient
the curve P in a clockwise manner.
A surface enhanced link of the bifurcation at 0 is a link P , together with a choice

of Heegaard surface Σµ ∈ Σ(fµ, vµ) for each vertex µ of P .

We will use the following notational convention. If Ci contains one vertex of P , then
we denote that by µi. The edge of P that intersects Si is called ai. If Ci contains two
vertices, then they are denoted by µi and µ

′
i, ordered coherently with the orientation of

the edge a′i of P between them. So ∂ai is either µi+1−µi or µi+1−µ
′
i, and ∂a

′
i = µ′

i−µi.
In particular, if P is minimal, then the vertices of P are µ1, . . . , µr and its edges are
a1, . . . , ar. For simplicity, we write (fi, vi) for (fµi

, vµi
), (f ′

i , v
′
i) for (fµ′

i
, vµ′

i
), Σi for

Σµi
, and Σ′

i for Σµ′
i
. Furthermore, we write Hi = (Σi, [αi], [βi]) for the (overcomplete)

isotopy diagram [H(fi, vi,Σi)] and H
′
i = (Σ′

i, [α
′
i], [β

′
i]) for [H(f ′

i , v
′
i,Σ

′
i)].
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The cases distinguished in the following result are labeled consistently with the
ones appearing in the bifurcation analysis of Section 5.2.2.

Theorem 6.37. Suppose that F = { (fµ, vµ) : µ ∈ R2 } is a generic 2-parameter
family such that (f0, v0) ∈ FV2(M, γ). Using the notation as above, for every ε > 0
su�ciently small, there exists a surface enhanced link P ⊂ D2

ε of the bifurcation at 0
such that the following hold. The polygon P is minimal unless the bifurcation at 0 is
of type (C) or (E1). For i ∈ { 1, . . . , r }, there is a point xi ∈ ∂ai such that Σxi

t vµ
for every µ ∈ ai. Consecutive isotopy diagrams Hi and Hi+1, or H

′
i and Hi+1, are

related by a move corresponding to the type of the stratum Si. As in Lemma 6.21,
each edge a′i induces a di�eomorphism di : Hi → H ′

i isotopic to the identity in M .
The particular cases are as described below.

We may ignore the strata Si that correspond to an index 0-1 or an index 2-3 birth-
death, or a tangency between the unstable manifold of an index 1 critical point and
the stable manifold of an index 2 critical point, as the isotopy diagrams de�ned by
H(fi, vi,Σi, T

i
±) and H(fi+1, vi+1,Σi+1, T

i+1
± ) coincide if we take Σi = Σi+1 and choose

T i
± and T i+1

± consistently (see the discussion of trees following Proposition 6.28). If
this reduces the bifurcation set to a single curve of codimension-1 bifurcations or
eliminates it completely, then we do not list the bifurcation below. This simpli�cation
reduces the number of cases considerably, though no extra technical di�culty arises
in the omitted cases. We use the notation of Section 5.2.2, with the codimension-
2 bifurcation appearing at the parameter value µ = 0. Whenever we talk about
handleslides, we mean generalized handleslides, as in De�nition 6.27.
In all the cases where (f0, v0) is separable, i.e., everywhere except in case (E1),

we construct the surfaces Σ1, . . . ,Σr (and Σ′
3 in case (C)) from a common surface

Σ ∈ Σ(f0, v0) with the aid of Proposition 6.7. In these cases, we take ε so small that
Σ t vµ for every |µ| < ε. Often, Σ ∈ Σ(fi, vi) for every i ∈ { 1, . . . , r }; for example,
when f0 is Morse (this includes all bifurcations of type (A)), or has an index 0-1
or 2-3 birth-death singularity, or an index 0-1-0, 1-0-1, 2-3-2, or 3-2-3 birth-death-
birth. When f0 has an index 1-2 birth-death, then we can construct surfaces on the
two sides of the corresponding stratum as in the proof of Proposition 6.32. We only
explain how to construct the surfaces Σ1, . . . ,Σr whenever a new idea is needed.
As stated above, in cases (C) and (E1), the link P is not minimal. In the corre-

sponding �gures, if Ci contains two vertices of P , we will draw a yellow ray in Ci

emanating from 0 that separates µi and µ
′
i. The reader should think of this ray as a

�di�eomorphism stratum� of the bifurcation set. The purpose of this will be explained
in the following section.
We start by looking at bifurcations of type (A), which were illustrated schematically

in Figure 13. For cases (B) and (C), the reader should consult Figure 14, while for
cases (D) and (E1), see Figure 15.
In all subcases of case (A), we can take an arbitrary minimal link P ⊂ D2

ε and
Σi = Σ for i ∈ { 1, . . . , r }. First, we describe the possibilities in case (A1), cf.
Figure 21. In each case, r = 4 and the bifurcation set S is the union of two smooth
curves that intersect transversely at 0.

(A1a) As in case (A1), with all p0i distinct, I(p01) = I(p02) ∈ {1, 2} and I(p03) =
I(p04) ∈ {1, 2}. We describe what happens to the diagrams Hi when all the p0i
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Figure 21. The links of bifurcations of type (A1a)�(A1d). The sur-
faces shown should be doubled along their black boundary arcs to ob-
tain the relevant subsurface of the Heegaard diagram. This way the
red arcs become the α-circles and the green arcs become the boundary
components of the subsurface. We do not draw the β-circles as they
remain unchanged.

have index 1; the other cases are analogous. Then βi = β1 for i ∈ { 2, 3, 4 }.
Furthermore, the attaching set α1 contains four distinct curves α1, . . . , α4

(corresponding to p01, . . . , p
0
4, respectively), and α3 contains two distinct curves

α′
1 and α′

3 such that α′
1 is obtained by sliding α1 over α2 and α′

3 is obtained
by sliding α3 over α4. In addition, α2 = (α1 \ α1) ∪ α

′
1, α4 = (α1 \ α3) ∪ α

′
3,

and α3 = (α1 \ (α1 ∪ α3)) ∪ (α′
1 ∪ α

′
3).

(A1b) As in case (A1), with p01 = p03. The points p01, p
0
2, and p

0
4 all have index 1, or

they all have index 2. We discuss the case when they are all index 1. Then
there are curves α1, α2, α4 ∈ α1, and curves α′

1 ∈ H2, α
′′
1 ∈ H4, and α

′′′
1 ∈ H3

such that α′
1 is obtained by sliding α1 over α2, the curve α′′

1 is obtained by
sliding α1 over α4, while α

′′′
1 can be obtained by either sliding α′

1 over α4, or
α′′
1 over α2. Furthermore, α2 = (α1 \ α1) ∪ α′

1, α3 = (α1 \ α1) ∪ α′′′
1 , and

α4 = (α1 \ α1) ∪ α′′
1. In other words, H2 is obtained from H1 by sliding α1

over α2, the diagram H4 is obtained from H1 by sliding α1 over α4, and H3 is
obtained from H1 by sliding α1 over α2, and then sliding the resulting curve
over α4.

(A1c) As in case (A1), with p02 = p04. The set α1 contains three distinct curves α1,
α2, and α3; furthermore, there is an arc a1 with ∂a1 ⊂ α2 and an arc a3 with
∂a3 ⊂ α2 such that a1 and a3 reach α2 from opposite sides, and H2 is obtained
from H1 by sliding α1 over α2 using a1 (resulting in a curve α′

1), H4 is obtained
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Figure 22. The link of a bifurcation of type (A2).

from H1 by sliding α3 over α2 using a3 (resulting in the curve α′
3), while H3

di�ers from H1 by removing α1 and α3 and adding α′
1 and α

′
3.

(A1d) As in case (A1), with p01 = p03 and p02 = p04. Both p01 and p02 have index 1, or
they both have index 2. This is similar to case (A1b), except that α1 is sliding
over the same curve α2 in two di�erent ways from opposite sides.

(A2) In this case, we have I(p01) = I(p02) = I(p03) ∈ {1, 2} and r = 5. We consider
the case when all the p0i are index 1. The βi coincide up to a small isotopy. The
attaching set α1 contains three distinct curves α1, α2, and α3 corresponding
to p01, p

0
2, and p

0
3, respectively. Then the pentagon is formed by α1 sliding over

α2, which is itself sliding over α3. More precisely, let α′
1 be the curve obtained

from α1 by sliding it over α2, let α
′
2 be the curve obtained from α2 by sliding

it over α3, and �nally let α′′
1 be the curve obtained from α1 by sliding it over

α′
2. Then α2 = (α1 \ α2) ∪ α

′
2, α3 = (α2 \ α1) ∪ α

′′
1, α4 = (α3 \ α

′
2) ∪ α2, and

α5 = (α4 \ α
′′
1) ∪ α

′
1. In particular, this implies that α1 = (α5 \ α

′
1) ∪ α1. For

a schematic illustration, see Figure 22.

We now look at bifurcations of type (B); i.e., codimension-2 singularities that in-
clude a single stabilization. See Figure 14 for schematic drawings. The link P and
the surfaces Σi are obtained as follows. We label the strata such that S1 and S3 are
the stabilizations and there is a single stratum S2 on the stabilized side. We choose
Σ ∈ Σ(f0, v0) and ε as above. For i 6∈ {2, 3}, the vertex µi of P is an arbitrary point
of Ci and Σi = Σ. Pick a parameter value ν ∈ S2 with |ν| < ε. Let p0 ∈ C(f0) be
the index 1-2 birth-death singularity; it breaks into the critical points p1ν ∈ C1(fν)
and p2ν ∈ C2(fν). The surface Σν ∈ Σ(fν , vν) is obtained from Σ by attaching a tube
around W u(p2ν) if p

0 ∈ C01(f0, v0), or a tube around W s(p1ν) if p
0 ∈ C23(f0, v0). The

side a2 of P is chosen short enough so that Σν t vµ for every µ ∈ a2. The endpoints
of a2 are µ2 and µ3. Both Σ2 and Σ3 are de�ned to be Σν . Every side ai of P for
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i 6= 2 can be an arbitrary arc connecting µi and µi+1 that intersects Si in a single
point.

(B1) For de�niteness, suppose that p0 is an index 1-2 birth, while p01 and p02 are
index 1 critical points. Then r = 4, and the strata S1 and S3 are stabilizations,
while S2 and S4 are handleslides. Recall from De�nition 6.2 that, in this
case, p0 ∈ C01(f0, v0). The type of the stabilizations H1 → H2 and H4 →
H3 depend on the number of �ows from pµ1 to pµ for µ ∈ S1 and µ ∈ S3,
respectively. Recall from (ND-2) that W uu(p02) is 1-dimensional, and it is
transverse to W s(p0) by (NH); i.e., disjoint from it. Hence, the �ows from p02
to p0 are split into two parts by W uu(p02). For µ ∈ S1, �ows in one part will
be glued to the orbit of tangency from p01 to p02, while for µ ∈ S3 �ows in the
other part will be glued to the orbit of tangency. If there are k1 and k2 �ows
from p02 to p0 in the two parts, and l �ows from p0 to index 2 critical points
and m �ows to p0 from index 1 critical points, then the two stabilizations
H1 → H2 and H4 → H3 are of types (l,m+ k1) and (l,m+ k2), respectively.
Figure 23 shows an example with k1 = k2 = 1. In general, the α-curve

corresponding to pλ2 intersects the green disk in k1 + k2 horizontal segments,
k1 of which lie on one side of W uu(pλ2) and k2 on the other side. So the α-
curve corresponding to pλ1 intersects the green disk in k1 arcs on one side of
the handleslide stratum, and in k2 arcs on the other side. When p01 and p02
are index 2, then we obtain a similar picture, but with red and blue reversed.
(This is ensured by the convention of De�nition 6.1 that now p0 ∈ C23(f0, v0).)

(B2) An orbit of tangency from an index 1-2 birth-death point p0 to an index 1
critical point p0 (in which case p0 ∈ C01(f0, v0)), or an orbit of tangency from
an index 2 critical point to an index 1-2 birth-death point (in which case
p0 ∈ C23(f0, v0)). For de�niteness, we consider the �rst case. The bifurcation
diagram has at least r ≥ 3 strata, where S1 and S3 are stabilizations and the
other Si for i 6∈ {1, 3} are α-handleslides. Indeed, for any �ow from an index 1
critical point p0∗ to p0, we can perturb the neighborhood of p0 on the �death�
side of S1∪S3 so that there is a �ow from pµ∗ to pµ. The number of �ows from
index 1 critical points to p0 is equal to r − 3.
For the types of the stabilizations, suppose that there are k �ows from

index 1 critical points to p0 and l �ows from p0 to index 2 critical points.
Furthermore, the �ows from p0 to index 2 critical points are divided into two
parts by W uu(p0); let these two parts have m1 and m2 �ows, respectively.
Then the two stabilizations H1 → H2 and H4 → H3 have types (l + m1, k)
and (l+m2, k), respectively (where H4 = H1 if r = 3). The pair (m1,m2) can
be seen as the type of the generalized handleslide H2 → H3. Figure 24 shows
an example. When p is index 2, we obtain a similar picture, but with red and
blue reversed.

(B3) An orbit of tangency between the strong stable manifold of an index 1-2
birth-death point p and the unstable manifold of an index 1 critical point p,
or between the strong unstable manifold of an index 1-2 birth-death point and
the stable manifold of an index 2 critical point. Without loss of generality,
suppose we are in the former case. Then r = 3, the strata S1 and S3 are
stabilizations, while the stratum S2 is a handleslide. Recall that we chose



74 JUHÁSZ AND THURSTON

Figure 23. The link of a singularity of type (B1). This example has
l = 2, m = 3, and k1 = k2 = 1.

Figure 24. The link of a singularity of type (B2). This example has
k = 2, l = 2, m1 = 2, and m2 = 1.
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Figure 25. The link of a singularity of type (B3). This example has
k = 2 and l = 2.

p ∈ C01(f0, v0). If there are k �ow-lines from index 1 critical point to p (not
counting the �ow from p in W ss(p)) and l �ows from p to index 2 critical
points, then the stabilizations H1 → H2 and H1 → H3 are of types (k, l + 1)
and (k, l), respectively. For µ ∈ S2, the 2-dimensional unstable manifold
W u(p) has a tangency with the 1-dimensional stable manifold of the index 1
critical point born from p, see Figure 18. Hence, the α-curve W u(p)∩Σ slides
over the α-curve appearing in the stabilization as we move from H3 to H2.
Figure 25 shows an example. As before, De�nition 6.1 ensures that we obtain
a picture with colors reversed when p is index 2.

(C) Two simultaneous index 1-2 birth-death critical points at p1 and p2, labeled
such that f(p1) < f(p2). Recall that, in this case, (f0, v0) is separable with
p1 ∈ C01(f0, v0) and p2 ∈ C23(f0, v0). Let the number of �ows from p1 to
p2 be t, and let the number of �ows from p1 to index 2 critical points and
from index 1 critical points to p1 be m and n, respectively. Similarly, let the
number of �ows to index 2 critical points from p2 and from index 1 critical
points to p2 be k and l, respectively. Then r = 4, and each stratum Si is a
(de)stabilization. The strata S1 and S3 correspond to the birth-death at p1,
while S2 and S4 are the birth-death strata for p2. The type of the stabilization
H1 → H2 is (kt+m,n), for H2 → H3 it is (k, l+t), for H1 → H4 it is (k, nt+l),
and �nally, for H3 → H4 it is (m + t, n). Figure 26 shows an example with
t = 1, and Figure 27 shows an example with t = 2.
The vertices µ1, µ2, µ3, µ

′
3, and µ4 of P and the Heegaard surfaces Σi ∈

Σ(fi, vi) for i ∈ { 1, . . . , 4 } and Σ′
3 ∈ Σ(f ′

3, v
′
3) are obtained as follows. As

before, pick a surface Σ ∈ Σ(f0, v0), and let ε > 0 be so small that Σ t vµ for
every |µ| < ε. Then µ1 ∈ C1 is arbitrary and Σ1 = Σ. For ν ∈ C2∪S2∪C3, let
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Figure 26. The link of a singularity of type (C). This example has
t = 1, (k, l) = (2, 3), and (m,n) = (2, 3).

q1(ν) ∈ C2(fν) be the index 2 critical point born from p1. Similarly, for η ∈
C3 ∪S3 ∪C4, let q2(η) ∈ C1(fη) be the index 1 critical point born from p2. By
taking ε to be su�ciently small, we can assume thatW u(q1(ν))∩W

s(q2(η)) = ∅
for every ν, η ∈ S2 ∪ C3 ∪ S3. Choose points ν ∈ S2 and η ∈ S3. The
surface Σν is obtained from Σ by attaching a tube aroundW u(q1(ν)) such that
Σν ∈ Σ(fν , vν). Similarly, Ση is obtained from Σ by attaching a tube around
W s(q2(η)) such that Ση ∈ Σ(fη, vη). Pick short arcs a2 and a3 transverse to S2

and S3 at ν and η, respectively, such that Σν t vµ for every µ ∈ a2 and Ση t vµ
for every µ ∈ a3. We take µ2 = ∂a2 ∩ C2, µ3 = ∂a2 ∩ C3, µ

′
3 = ∂a3 ∩ C3, and

µ4 = ∂a3∩C4. Furthermore, Σ2 = Σν and Σ4 = Ση. To obtain Σ3 ∈ Σ(f3, v3),
add a tube to Σ2 around W s(q2(µ3)). Similarly, Σ′

3 ∈ Σ(f ′
3, v

′
3) is obtained

from Σ4 by adding a tube around W u(q1(µ
′
3)). The edges a1, a

′
3, and a4 of P

are chosen arbitrarily (subject to |ai ∩ Si| = 1 for i ∈ {1, 4} and a′3 ⊂ C3).
The regions of Σ shown in Figures 26 and 27 are obtained by taking a

regular neighborhood N of (W u(p1)∪W
s(p2))∩Σ; so the green curves are the

components of ∂N . Recall that both W u(p1) ∩ Σ and W s(p2) ∩ Σ are arcs,
which intersect each other in t points x1, . . . , xt. For i ∈ { 1, . . . , t− 1 }, let ci
be a properly embedded arc in N that intersects W s(p2) ∩ Σ transversely in
a single point between xi and xi+1. Cutting N along c1, . . . , ct−1, we obtain a
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Figure 27. The link of a more complicated singularity of type (C).
This example has t = 2, (k, l) = (2, 3), and (m,n) = (4, 3). The black
arcs labeled with c1 in the boundary of the green circle are identi�ed.

disk with distinguished pairs of arcs in its boundary. This is the disk that we
draw in our �gures, with the ci are shown in black.

Remark 6.38. To avoid the �di�eomorphism stratum� in case (C), one would need
a quantitative result that the arcs a2 and a3 can be chosen to be so long that they
actually intersect, in which case we could take µ3 = a2 ∩ a3 and drop µ′

3. This does
not seem possible for an arbitrary 2-parameter family.

Note that the di�eomorphism d3 : H3 → H ′
3 induced by a′3 can be destabilized to a

di�eomorphism d′3 : Σ → Σ. This follows from the fact that Σ t vµ for every µ ∈ a′3
and both Σ3 and Σ′

3 are obtained by attaching tubes to Σ. Indeed, consider the family
of surfaces Σµ ∈ Σ(fµ, vµ) for µ ∈ a′3 obtained by adding tubes around W u(q1(µ))
and W s(q2(µ)). The one can apply Lemma 6.19 to lift this family of surfaces to an
isotopy that preserves the �tubes.�

(D) An index 1-2-1 (A+
3 ) or 2-1-2 (A−

3 ) degenerate critical point, a birth-death-
birth singularity. See Figure 28 for an example in the index 2-1-2 case, which
we will discuss. In this case, r = 2, and on the stabilized side C2, we have
three critical points, p1, p2, and p3, with p1 and p3 of index 2 and p2 of index 1.
In the birth-death strata S1 and S2, the critical points cancel each other in
two di�erent ways: p2 cancels against either p1 or p3. For both cancellations
to be possible, there is necessarily a unique �ow from p2 to both p1 and p3,
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Figure 28. The link of a birth-death-birth singularity, type (D). In
this example, k = 3 and l = 2.

and no other �ows from p2 to index 2 critical points. To see there are no other
�ows from p2, recall that the local form of an A−

3 singularity p is −x21+x
2
2−x

4
3,

hence it has a 1-dimensional unstable manifold, which is generically disjoint
from the stable manifolds of all index 2 critical points. So, after a su�ciently
small deformation of f0, these stable manifolds will still avoid a neighborhood
of p. The parameters are the numbers k and l of �ows from index 1 critical
points to p1 and p3, respectively, not counting the �ows from p2. The two
stabilizations corresponding to passing S1 and S2 are of types (1, k) and (1, l),
respectively. Note that on the common destabilized diagram H1, there is a
single β-circle meeting k + l of the α-strands.
The link P is an arbitrary bigon around 0 inside D2

ε . The Heegaard surface
Σ1 = Σ, the part shown in Figure 28 is a neighborhood of W s(p) ∩ Σ, where
p is the degenerate critical point of f0. The surface Σ divides M into two
pieces M− and M+ such that p ∈ M+. To obtain Σ2, we add a tube around
W s(p2) to Σ so thin that it separates p2 from p1 and p3. Recall that W

s(p) is
a 2-disk, while W ss(p) is a curve inside it. The numbers k and l are in fact
the number of �ow-lines from index 1 critical points to p on the two sides of
W ss(p) in W s(p).

(E1) A �ow from an index 2 critical point p1 to an index 1 critical point p2. Suppose
there are k �ows from p2 to index 2 critical points and l �ows from index 1
critical points to p1. Then r = k+ l, and k of the strata Si are β-handleslides
while l of them are α-handleslides. Indeed, as we move the parameter value µ
in a circle around 0, for each �ow from another index 1 critical point q to p1,
we pass a stratum Si where we see an orbit of tangency in W u(q) ∩W s(p2),
which translates to an α-handleslide. Similarly, for each �ow from p2 to an
index 2 critical point r, for some value µ ∈ Si, we see an orbit of tangency in
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Figure 29. Construction of the Heegaard surface in case (E1).

W u(p2) ∩W s(r), which translates to a β-handleslide. In each case, another
curve slides over the α-circle W u(p2) ∩ Σ or the β-circle W s(p1) ∩ Σ.
We now explain how to choose ε, the link P � which is a 2r-gon � and the

corresponding diagrams H1, H
′
1, . . . , Hr, H

′
r. Since (f0, v0) is not separable, we

describe the construction in detail. For an illustration, see Figure 29. Take N0

to be a thin regular neighborhood of
⋃{

W s(p) : p ∈ C0(f0) ∪ C1(f0) \ {p
0
2}

}
∪R−(γ),

and let Σ = ∂N0 \ ∂M . Generically, Σ is transverse to v0, and if we choose ε
small enough, Σ is transverse to vµ for every µ ∈ D2

ε . Consider the circle
β = W s(p1)∩Σ, and let B be an annular neighborhood of β in Σ so small that
it is disjoint from the stable �ow into p2 not starting at p1. Pick values νi ∈ Si,
and let Ai be a thin tube ∂N(W s(pνi2 )) \N0 disjoint from W u(pνi1 ) ∪W

s(pνi1 ),
and let Di ∪D

′
i be the pair of disks N(W s(pνi1 ))∩Σ (the feet of the tube Ai).

If νi lies su�ciently close to 0, then we can assume that Di ⊂ B. De�ne Σi to
be (Σ \ (Di ∪D

′
i)) ∪ Ai; this is a separating surface for the Morse-Smale pair

(fi, vi). For every i ∈ { 1, . . . , r }, pick an arc ai transverse to Si at νi so short
that Σi ∈ Σ(fµ, vµ) and Di ∩W

s(pνi1 ) = ∅ for every µ ∈ ai. According to our
conventions, ∂ai ∩ Ci = µ′

i and ∂ai ∩ Ci+1 = µi+1. Note that Ai is an annular
neighborhood of the circle αi = W u(pνi2 ) ∩ Σi. We also pick a small disk
D ⊂ Σ around the point W s(p2)∩ (Σ \B). Again, taking Ai su�ciently thin,
all the D′

i will lie in D. The side a′i of the link P is an arbitrary curve in Ci

connecting µi and µ
′
i. To obtain the surface enhanced link, we take Σ′

i = Σi+1.
The diagrams Hi = H(fi, vi,Σi) and H

′
i = H(f ′

i , v
′
i,Σ

′
i) all agree outside the

subsurfaces Ti = (D \ D′
i) ∪ Ai ∪ (B \ Di), up to a small isotopy of α ∪ β.

What happens inside the twice punctured disks Ti is depicted in Figure 30.
There, ∂Ti are the green circles and the two components of ∂Ai are labeled
by A. (We have omitted the tubes Ai for clarity.) The only di�erence between
Σi and Σi+1 is that the foot of the tube Ai lying in B is moved around by
an isotopy. The diagrams H ′

i and Hi+1 are related by a handleslide, while a′i
induces a di�eomorphism ϕi : Hi → H ′

i isotopic to the identity in M (and
well-de�ned up to isotopy). The composition ϕn ◦ · · · ◦ ϕ1 : Σ1 → Σ1 is a
di�eomorphism that is the product of Dehn twists about the components of
∂T1; see De�nition 7.8.

In cases (E2)�(E4), the same splitting surface Σ can be chosen for every (fi, vi),
and the curves αi (resp. βi) are all isotopic to each other for an appropriate choice
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Figure 30. The bifurcation diagram for singularity (E1), a �ow from
an index 1 critical point to an index 2 critical point. In this example,
(k, l) = (2, 3). Outside the green circles, all �ve diagrams are small
isotopic translates of each other. The Heegaard surface inside the green
circles is not constant, there is a tube that moves around joining the
two black boundary circles labeled by A.

of spanning trees. Since we are going to pass to isotopy diagrams, this description
su�ces for our purposes.

7. Simplifying moves on Heegaard diagrams

In this section, we break down (k, l)-stabilizations, generalized handleslides, and the
loops of diagrams of type (A)�(E) appearing in Theorem 6.37 into the simpler moves
and loops that come up in the de�nition of strong Heegaard invariants, De�nition 2.33.
During the simpli�cation procedure, we work with overcomplete diagrams, and will
only later choose spanning trees to pass to actual sutured diagrams.

De�nition 7.1. A polyhedral decomposition of D2 is a CW-decomposition such that
the attaching map of every cell is an embedding.
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A bordered polyhedral decomposition of D2 is a partition of D2 that arises as follows.
Pick a polyhedral decomposition of D2, and take the union of each open i-cell in S1

with the neighboring open (i+1)-cell in Int(D2) for i ∈ {0, 1}. So the �cells� meeting
S1 have boundary along S1. We call these bordered cells.

A polyhedral decomposition P and a bordered polyhedral decomposition R are
dual if in each open 2-cell of P there is a unique vertex of R. Furthermore, for each
open 1-cell e of P \ S1, there is a unique open 1-cell e∗ of R that intersects sk1(P)
transversely in a single point lying in e. Finally, each closed 2-cell c of P that meets
S1 contains a bordered edge of R connecting sk0(R) ∩ c and a point of c ∩ S1.

De�nition 7.2. We say that the partition S = V0tV1tV2 is a bordered strati�cation
of the disk D2 if the following hold:

(1) V0 is a �nite set of points in the interior of D2,
(2) V1 is a properly embedded 1-dimensional submanifold of D2 \ V0, and
(3) each point x ∈ V0 has a neighborhood Nx such that the pair (Nx, V ∩ Nx)

is di�eomorphic to a cone (D2, I · H) for some �nite set H ⊂ S1, where
V = V0 ∪ V1.

Note that a bordered polyhedral decomposition is a special instance of a bordered
strati�cation. A bordered polyhedral decomposition R of D2 is a re�nement of S if
sk0(R) ⊃ V0 and every open 1-cell of R is either contained in V1 or is disjoint from
it. We say that a polyhedral decomposition of D2 is dual to S if it is dual to some
bordered polyhedral decomposition R re�ning S.

A generic 2-parameter family of gradient-like vector �elds F : D2 → FV(M, γ)
gives rise to a bordered strati�cation S(F) of D2 by taking

Vi = {µ ∈ D2 : F(µ) ∈ FV2−i(M, γ) }

for i ∈ { 0, 1, 2 }.

De�nition 7.3. A polyhedral decomposition P of D2 is adapted to the family F if

(1) P is dual to S(F),
(2) each edge intersecting V1 is so short that Proposition 6.28 applies to it,
(3) if µ ∈ V0 and σ is the 2-cell of P containing µ, then ∂σ is a link of µ as in

Theorem 6.37,
(4) every 2-cell σ of P that intersects V1 but is disjoint from V0 is a quadrilateral,

and σ ∩ V1 is an arc connecting opposite sides of σ,
(5) any two closed 2-cells of P containing two di�erent points of V0 are disjoint,

and any two closed 1-cells of P that intersect V1 \ S
1 are either disjoint, or

they both belong to a 2-cell containing a point of V0.

Lemma 7.4. Let F : D2 → FV(M, γ) be a generic 2-parameter family. Then there
exists a polyhedral decomposition P of D2 adapted to F . Furthermore, given a trian-
gulation of S1 such that each 1-cell contains at most one bifurcation point of F and
satis�es Condition (2) of De�nition 7.3, then we can choose P such that it extends
this triangulation.

Proof. First, choose the 2-cells of P containing the points of V0 using Theorem 6.37,
all taken to be su�ciently small, and denote by N(V0) their union. Pick short arcs
transverse to V1 \ N(V0) such that Proposition 6.28 applies to each, and such that
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there is an arc through each boundary point of V1 lying inside S1. These will all be
1-cells of P . Next, as in Proposition 6.32, connect the endpoints of neighboring 1-cells
intersecting V1 so that we obtain a collection of rectangles that, together with N(V0),
completely cover V1. The rectangles are 2-cells of P . Finally, we subdivide the
remaining regions until the attaching map of each 2-cell becomes an embedding. This
is possible if we choose su�ciently many 1-cells intersecting V1. It is apparent from
the construction that P is dual to a bordered polyhedral decomposition of D2 re�ning
the bordered strati�cation S(F). If we are already given P ∩ S1, then the extension
to D2 proceeds in an analogous manner. �

If P is adapted to the generic 2-parameter family F : D2 → FV(M, γ), then we
label each edge of P with the type of move that occurs as we move along it, which
is either a di�eomorphism isotopic to the identity if the edge does not cross V1, or
a generalized handleslide, a (k, l)-stabilization, or birth/death of a redundant α/β
curve if the edge does cross V1.

De�nition 7.5. Let F : D2 → FV(M, γ) be a generic 2-parameter family and P an
adapted polyhedral decomposition. A choice of Heegaard surfaces

{Σµ ∈ Σ(F(µ)) : µ ∈ sk0(P) }

is coherent with P if, for every edge e of P with ∂e = µ − µ′, the isotopy diagrams
[H(F(µ),Σµ)] and [H(F(µ′),Σµ′)] are related as indicated by the label of e. A surface
enhanced polyhedral decomposition of D2 adapted to F is a polyhedral decomposition
of D2 adapted to F , together with a coherent choice of Heegaard surfaces.

Lemma 7.6. Let F : D2 → FV(M, γ) be a generic 2-parameter family, and suppose
that P is a polyhedral decomposition of D2 adapted to F . If we are given Heegaard
surfaces Σµ ∈ Σ(F(µ)) for µ ∈ sk0(P) ∩ S1 as in De�nition 7.5, then this can be
extended to a choice of Heegaard surfaces coherent with P.

Proof. For the vertices of each 2-cell containing a point of V0, we choose the sur-
faces Σµ using Theorem 6.37. Then, for the remaining vertices of edges e that inter-
sect V1 \ S

1, we pick the Σµ using Proposition 6.28. This is possible because these
edges have no vertices in common by (5). For the rest of the vertices in sk0(P) \ S1,
we choose Σµ arbitrarily. �

From now on, let F : D2 → FV(M, γ) be a generic 2-parameter family, S = S(F)
the induced bordered strati�cation of D2, and P a surface enhanced polyhedral de-
composition of D2 with dual bordered polyhedral decomposition R re�ning S. In
what follows, we give a method for resolving R, giving rise to a new bordered polyhe-
dral decomposition R′ of D2. This consists of �rst replacing the strata in V1 \N(V0)
corresponding to (k, l)-stabilizations by a collection of parallel strata labeled by simple
stabilizations and handleslides. Then, at each point µ of V0, we connect these strata
in a particular manner depending on the type of µ. We do not claim the existence
of a family F ′ giving rise to the new decomposition R′, though constructing such is
probably straightforward but tedious. (This would be the 2-parameter analogue of
Proposition 6.35.)
The role of the resolved strati�cation R′ is that we can re�ne the polyhedral de-

composition P adapted to F to obtain a decomposition P ′ dual to R′, and we can
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choose (overcomplete) isotopy diagrams for the new vertices sk0(P
′) \ sk0(P) in a

natural manner such that neighboring diagrams are now related by simple stabiliza-
tions, simple handleslides, or di�eomorphisms. Furthermore, along the boundary of
each 2-cell of P ′, after an appropriate choice of spanning trees, each strong Heegaard
invariant will commute by de�nition.
As in the previous sections, we suppress the strata corresponding to index 0-1

and 2-3 saddle-nodes, since these disappear for any choice of spanning trees. For
simplicity, we will often only draw the bordered polyhedral decompositionR′, possibly
the dual decomposition P ′, and the Heegaard diagrams for a few vertices µ of P ′ if
the other intermediate diagrams are easy to recover. Consistently with our previous
color conventions, edges of R and R′ are red if the diagrams on the two sides are
related by an α-equivalence, blue for β-equivalences, black for (de)stabilizations, and
yellow for di�eomorphisms.

7.1. Codimension-1. Suppose that the possibly overcomplete isotopy diagramH ′ =
(Σ′, [α′], [β′]) is obtained fromH = (Σ, [α], [β]) by a (k, l)-stabilization. In particular,
we remove the disk D ⊂ Σ and replace it with the punctured torus T to obtain Σ′.
Inside T , we have two new attaching curves; namely, α ∈ α′ and β ∈ β′.
Such a (k, l)-stabilization can be replaced by a simple stabilization, k consecutive

β-handleslides, and l consecutive α-handleslides. For convenience, we describe this
procedure in the direction of the destabilization going from H ′ to H. Speci�cally,
pick an orientation on both α and β. Let α1, . . . , αl be the α-curves that intersect β,
labeled in order given by the orientation of β and possibly listing the same α-curve
several times. This gives rise to a sequence of diagrams

H ′ = H0, H1, . . . , Hl,

where Hi is obtained from Hi−1 by sliding αi over α in the direction opposite to the
orientation of β. Similarly, let β1, . . . , βk be the β-curves that intersect α, ordered
given by the orientation of α. Sliding these over β one by one in the direction opposite
to the orientation of α, we obtain the diagrams Hl+1, . . . , Hl+k. The result is a
rectangular grid between the arcs coming from α1, . . . , αl and β1, . . . , βk, plus the
handle T over which α and β run. We can now perform a simple destabilization
on (T, α, β) to obtain H. See Figure 31 for how this resolution appears inside a
2-parameter family.
Note that there were several choices involved in this construction, namely the ori-

entations on α and β, and also whether to do the α-handleslides or the β-handleslides
�rst. (In the opposite direction, going from H to H ′ via a (k, l)-stabilization, the
choice of orientations corresponds to a choice of which quadrant around the grid of
intersections to stabilize in.) It will be helpful here to introduce the notion of a
stabilization slide.

De�nition 7.7. A stabilization slide is a subgraph of G of the form

H1
e //

f

!!

H2

g

��
H3

such that
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Figure 31. Resolving a stabilization. A stabilization of type (k, l)
can be replaced by a simple stabilization, followed by k consecutive
β-handleslides and l consecutive α-handleslides.

Figure 32. A stabilization slide. Such a loop of diagrams is a degen-
erate case of a distinguished rectangle of type (2).

(1) Hi = (Σi, [αi], [βi]) are (possibly overcomplete) isotopy diagrams for i ∈
{1, 2, 3} such that Σ2 = Σ3,

(2) the edges e and f are stabilizations, while g is an α- or β-equivalence,
(3) there are a disk D ⊂ Σ1 and a punctured torus T ⊂ Σ2 = Σ3 such that the

restrictions H1|D, H2|T and H3|T are conjugate to the pictures in Figure 32
if the edge g is an α-equivalence, and to the same pictures with red and blue
reversed if g is a β-equivalence, and

(4) we have H1|Σ1\D = H2|Σ2\T = H3|Σ3\T .

Note that if we apply a strong Heegaard invariant to a stabilization slide, we obtain
a commutative triangle. Indeed, consider the rectangle obtained from the stabilization
slide triangle by taking two copies of H1 and connecting them by an edge labeled by
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Figure 33. Switching the orientation involved in resolving a (k, l)-
stabilization. On the top and bottom are two di�erent ways of resolv-
ing a (2, 1)-stabilization, with di�erent choices for the orientation of α1.
The two di�erent choices can be related by commuting β-equivalences
and stabilization slides, as shown. Dashed edges are diagonals of rect-
angles whose other edge intersects the stabilization stratum.

the identity ofH1. Then this is a distinguished rectangle of type (2), with two opposite
edges being stabilizations and the other two being α- or β-equivalences.
It might happen that at the two ends of a (k, l)-stabilization stratum, we need

to use resolutions with di�erent orientations. The di�erent choices involved in the
construction can be related by commuting handleslides and stabilization slides. An
example illustrating how to modify the bordered polyhedral decomposition R′ and
the dual polyhedral decompositon P ′ along a (k, l)-stabilization stratum of S to
obtain new decompositions R′′ and P ′′

0 that interpolate between di�erent orientation
conventions is shown in Figure 33. Note that, in this �gure, we have introduced
four codimension-2 bifurcations of type (B3). The modi�ed decomposition R′′ has
some 1-cells corresponding to (1, 0)-stabilizations. We obtain P ′′

0 by taking the dual
polyhedral decomposition P ′′ of R′′, then for each (1, 0)-stabilization edge e of R′′, we
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Figure 34. Interpolating between the resolution of a (2, 3)-stabiliza-
tion stratum starting with the β-handleslides and the one starting with
the α-handleslides. For this, we introduce a grid of distinguished rect-
angles of type (1).

Figure 35. Writing a generalized handleslide of type (2, 3) as the com-
position of a simple handleslide and an isotopy of the resulting α-curve.

delete the edge of P ′′ passing through e and replace it with the other diagonal of the
quadrilateral in P ′′ containing e. We indicated these new diagonals by dashed lines
in the �gure. Each such diagonal divides the corresponding quadrilateral in P ′′

0 into
a stabilization slide and a commuting triangle of β-equivalences. For our purposes,
it su�ces to construct the modi�ed resolution P ′′

0 of P in a purely combinatorial
manner, without actually showing the existence of a corresponding modi�cation of
the 2-parameter family of gradient-like vector �elds. Thus, in the sequel, we may
assume that the orientations are picked conveniently.
Now suppose that at one end of a (k, l)-stabilization stratum, we resolve by doing

the β-handleslides �rst, while at the other end, we do the α-handleslides �rst. We can
interpolate between these two choices by introducing a grid of distinguished rectangles
of type (1), cf. Figure 34.
If the diagram H′ is obtained from H by a generalized α-handleslide of type (m,n),

then H′ can also be obtained from H by a simple (i.e., type (0,m + n)) handleslide,
followed by an isotopy of the resulting α-curve. For an illustration, see Figure 35.
Since we are passing to isotopy diagrams, we do not have to distinguish between
simple and generalized handleslides.
We now prove Proposition 2.37, which claims that for any balanced sutured man-

ifold (M, γ), in the graph G(M,γ), any two vertices can be connected by an oriented
path.

Proof of Proposition 2.37. Let H and H ′ be isotopy diagrams of (M, γ). Then pick
representatives H = (Σ,α,β) and H′ = (Σ′,α′,β′) such that α t β and α′ t β′.
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By Proposition 6.17, there are simple Morse-Smale pairs (f, v), (f ′, v′) ∈ FV0(M, γ)
such that H(f, v) = H and H(f ′, v′) = H′. By Corollary 5.20, there exists a generic
1-parameter family

{ (ft, vt) ∈ FV≤1(M, γ) : t ∈ I }

of sutured functions and gradient-like vector �elds such that (f0, v0) = (f, v) and
(f1, v1) = (f ′, v′). Let 0 < b1 < · · · < bn < 1 be the set of parameter values such
that (ft, vt) ∈ FV1(M, γ) if and only if t ∈ {b1, . . . , bn}.
Using Proposition 6.28 and the fact that for a given splitting surface any two

attaching sets are α/β-equivalent, for every i ∈ {1, . . . , n}, we can choose points b−i <

bi < b+i close to bi, separating surfaces Σ
±
i ∈ Σ

(
fb±i , vb

±

i

)
, and spanning trees T±

i such

that the diagramsH±
i = H

(
fb±i , vb

±

i
,Σ±

i , T
±
i

)
are related by an α- or β-equivalence, or

a (k, l)-(de)stabilization. As explained above, every (k, l)-stabilization can be written
as a simple stabilization, followed by an α-equivalence and a β-equivalence.
Finally, by Lemma 6.21, H and H−

1 , H
+
i and H−

i+1 for i ∈ { 1, . . . , n− 1 }, and H+
n

and H′ are related by a di�eomorphism isotopic to the identity in M , followed by
an α-equivalence and a β-equivalence. �

7.2. Codimension-2. We consider the various types of singularities from Theo-
rem 6.37 in Section 6.6, in an order that is more convenient for this section. For
each type of singularity, we will construct a resolved bordered decomposition R′, as
described at the beginning of Section 7.
The links of singularities of type (A1a)�(A1d) and (A2) from Theorem 6.37 (in-

volving pairs of handleslides) are easy, we do not modify these during the resolution
process. After choosing arbitrary spanning trees, we get a loop in G(M,γ) where each
edge is an α- or β-equivalence. Any strong Heegaard invariant F applied to this loop
commutes. Indeed, such a loop can be subdivided into triangles where each edge is of
the same color, and some rectangles with two opposite edges blue and two opposite
edges red. The commutativity of F along a triangle is guaranteed by the Functoriality
axiom of De�nition 2.33, whereas for the rectangles � each of which is a distinguished
rectangle of type (1) in the sense of De�nition 2.30 � we can use the Commutativity
axiom.
Next, we consider a singularity of type (B3). This essentially is just changing the

type of destabilization, and can be done with no singularities in the resolved bifurca-
tion diagram R′, as long as the choice of orientation for resolving the stabilization is
appropriate. An example is shown in Figure 36.
For singularities of type (B1) (a birth-death singularity at p simultaneous with a

handleslide of p1 over p2), recall that a crucial feature was the number k = k1 + k2 of
�ows from p2 to p. If k = 0, the resolution can be done easily with several handleslide
commutations (links of type (A1a)) and one stabilization-handleslide commutation.
For k > 0, we need to introduce k slide pentagons (links of type (A2)), as α1 =
W u(p1) ∩ Σ is sliding over α2 = W u(p2) ∩ Σ, which in turn slides over the circle α
introduced at the stabilization corresponding to p. Note that k1 of these pentagons
point �up�, while k2 of them point �down.� See Figure 37 for an example with k = 2.
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Figure 36. Resolving the singularity of type (B3) from Figure 25.

Figure 37. Resolving the singularity of type (B1) from Figure 23.

Before proceeding, we introduce handleswaps, loops of overcomplete diagrams that
generalize the notion of simple handleswaps. As we shall see, these arise during the
simpli�cation procedure of links of type (E1), and are in fact quite close to them.
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Figure 38. A (2; 3)-handleswap.

De�nition 7.8. A (k; l)-handleswap is a loop of overcomplete diagrams H0, . . . ,Hk+l

as follows. There is a surface Σ such that Hi = (Σ,αi,βi) for every i ∈ { 0, . . . , k+l }.
Furthermore, there is a pair of pants P ⊂ Σ such that αi ∩ (Σ \ P ) = αj ∩ (Σ \ P )
and βi∩ (Σ\P ) = βj ∩ (Σ\P ) for every i, j. Inside P , we have one full α-curve that
we denote by α0 and one full β-curve that we call β0. The boundary ∂P consists of
three curves, A being parallel to α0, a curve B parallel to β0, and the third we denote
by C. The set (α0 ∩ P ) \ α0 consists of l parallel arcs connecting B and C, while
(β0∩P )\β0 consists of k parallel arcs connecting A and C. We also require that none
of the α-arcs intersect the β-arcs in P . For 0 ≤ i < l, the diagram Hi+1 is obtained
from Hi by sliding one of the α-arcs over α0, and for l ≤ i < k + l, the diagram
Hi+1 is obtained from Hi by sliding one of the β-arcs over β0. The diagram H0 is
obtained from Hk+l by a di�eomorphism that is the composition of a left-handed
Dehn twist about C and right-handed Dehn-twists about A and B. The case of a
(2; 3)-handleswap is depicted in Figure 38.
Similarly, we say that a loopH0, . . . , Hk+l of isotopy diagrams is a (k; l)-handleswap

if every Hi has a representative Hi such that H0, . . . ,Hk+l is a (k; l)-handleswap.

We will show in Section 7.3 that any (k; l)-handleswap can be resolved into a
number of simple handleswaps, and thus that any strong Heegaard invariant applied
to the (k; l)-handleswap commutes.
Suppose we have a loop of diagrams as in De�nition 7.8, but where the α- and

β-handleslides are not necessarily separated from each other. Using commutations,
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Figure 39. Rearranging the order of α- and β-handleslides in a han-
dleswap using commutations. On the left, we see P and R, on the right
the modi�ed decompositions P ′ and R′.

these can easily be rearranged in the standard form, so we will also refer to these as
handleswaps. Figure 39 shows how to write a handleswap loop with mixed α- and β-
handleslides as a product of a standard handleswap and some distinguished rectangles
corresponding to commuting handleslides. The procedure is easier to understand on
the level of the bordered polyhedral decomposition P , where one spirals the blue
strata and red strata in opposite directions to separate them.
As mentioned above, the link of a singularity of type (E1) (a �ow from an index 2

critical point to an index 1 critical point) is quite close to a handleswap. We can make
it exactly a handleswap by introducing some commutation moves between di�eomor-
phisms and handleslides. On the level of the bordered polyhedral decomposition P ,
in a small neighborhood of the (E1) singularity, we spiral the yellow di�eomorphism
strata corresponding to the di�eomorphisms ϕ1, . . . , ϕn to all lie next to each other,
then compose the di�eomorphisms. For an illustration, see Figure 40. Recall that
the composition d = ϕn ◦ · · · ◦ ϕ1 : Σ1 → Σ1 is the product of Dehn twists about
the boundary components of the pair of pants T1 (the three green circles in the �g-
ure). Finally, we rearrange the α- and β-handleswaps as above to �rst have the
α-handleslides, followed by the β-handleslides. We denote this new surface enhanced
polyhedral decomposition by P ′, and the dual bordered polyhedral decomposition
by R′.
The link of the (E1) singularity in P ′ appears slightly di�erent from a standard

handleswap, since in the diagram H1 right above the di�eomorphism stratum, the
α- and β-arcs intersect each other. However, this is not an issue as we are dealing
with isotopy diagrams. Indeed, consider the smaller pair of pants T ′

1 bounded by the
dashed curve and the two small green circles in Figure 40. We choose T ′

1 so small that
inside it all the α- and β-arcs are disjoint. If we now perform all handleslides and the
di�eomorphism within T ′

1, we get a standard handleswap loop, and each diagram is
isotopic to the corresponding diagram in P ′. If we even replace the di�eomorphism
d by the di�eomorphism d′ that is a product of Dehn twists about the boundary
components of T ′

1, then d and d′ are isotopic, and by the Continuity Axiom of strong
Heegaard invariants, F (d) = F (d′) : F (H1) → F (H1).
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Figure 40. Simplifying a link of type (E1).

Next, we consider singularities of type (B2), a �ow from a birth-death singularity p
to an index 1 critical point p. Here, the crucial features were the number k of �ows
from index 1 critical points to p and the numberm = m1+m2 of �ows from p to index 2
critical points. This time, in the resolution P ′, we have a number of commutations
as usual, as well as an (m; k+ 1)-handleswap between the circles β = W s(p)∩Σ and
α = W u(p)∩Σ. To obtain this handleswap, we add a single di�eomorhpism stratum
to R′, drawn in yellow. See Figure 41 for an example. We only show R′ outside the
green circle. The handleswap is the loop of diagrams in P ′ around the green circle,
this loop is illustrated in Figure 42. We will explain in Section 7.3 how to extend R′

to the interior of the green circle so that the (m; k + 1)-handleswap is reduced to a
simple handleswap. The edge e of P ′ dual to the yellow stratum on the destabilized
side corresponds to a di�eomorphism that is isotopic to the identity of the Heegaard
surface, hence the two vertices of e correspond to the same isotopy diagram. So we can
terminate the yellow di�eomorphism stratum at a point x of the black stabilization
stratum, giving rise to a triangle in the dual polyhedral decompositionP ′ containing x.
For singularities of type (D), a 2-1-2 birth-death-birth singularity, we can, as usual,

replace the stabilization by a simple stabilization and a number of handleslides. This
time, we can replace the cusp singularity by a slide triangle and a (1; k+l)-handleswap,
as shown in Figure 43. As in case (B2), we add a di�eomorphism stratum passing
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Figure 41. Resolving the singularity of type (B2) from Figure 24,
which has k = 2 and m = 3. Here, for clarity, the handleswap has not
yet been put in the standard form.

through the stabilization stratum. The corresponding di�eomorphism is isotopic to
the identity on the destabilized side. For a closeup of the handleslide loop, see Fig-
ure 44. The handleswap is between α1 = W u(p1) ∩ Σ and β2 = W s(p2) ∩ Σ.
Finally, we consider the case of a double stabilization, type (C). As shown in

Figure 45, we can eliminate the di�eomorphism and assume that we are dealing with
the link in Figure 46. The simpli�cation of Figure 27 is shown in Figure 49.
Recall that a key feature in case (C) was the number t of �ows between the two

stabilization points (from p1 to p2). If t = 0, the two normalizations of the stabiliza-
tion (the sequence of a stabilization and a number of handleslides) are compatible
with each other, and we can �ll in the link with a number of commuting squares.
Otherwise, we will get a total of t di�erent handleswaps, as shown by example in
Figure 47 for t = 1. For a closeup of the handleswap loop, see Figure 48. An example
for the t = 2 case is shown in Figure 50.

7.3. Simplifying handleswaps. Note that in De�nition 7.8, a β-curve might inter-
sect α0 multiple times, hence several β-arcs in the pair of pants P might belong to
the same β-curve.

De�nition 7.9. A (k, 1; l)-handleswap is a (k + 1; l)-handleswap between α0 and β0
such that there is a β-curve that intersects α0 in a single point. Similarly, a (k, 1; l, 1)
handleswap is a (k, 1; l + 1)-handleswap such that there is an α-curve that intersects
β0 in a single point. A (k; l, 1)-handleswap is de�ned in an analogous manner.

The �nal ingredient in the proof of Theorem 2.39 is to replace an arbitrary (k; l)-
handleswap by simple handleswaps. This proceeds in several stages:

• We �rst stabilize the diagram, to guarantee that in each handleswap between
α0 and β0, at least one of the β-circles meeting α0 meets it exactly once,
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Figure 42. A closeup of the handleswap loop of diagrams in P ′ around
the green circle from Figure 41.

Figure 43. Resolving the singularity of type (D) from Figure 28.
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Figure 44. A closeup of the handleswap loop around the green circle
from Figure 43. The handleswap is between α1 and β2.

Figure 45. First step in resolving the singularity of type (C) from
Figure 26. The two diagrams in the upper left quadrant are isotopic,
so we manage to eliminate the di�eomorphism this way.
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Figure 46. After the �rst reduction step, the link in Figure 26 can be
replaced by this simpler link.

Figure 47. Resolving the singularity of type (C) with t = 1 from Figure 46.

giving a (k, 1; l)-handleswap. Similarly, we do the same thing for the α-circles
meeting β0, giving a (k, 1; l, 1)-handleswap.

• Given a (k; l, 1)-handleswap between α0 and β0 in which α1 intersects β0 once,
we can perform handleslides of each of the α-circles intersecting β0 over α1 to
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Figure 48. A closeup of the handleswap loop around the small green
circle in Figure 47.

get rid of these intersections and reduce to the case of a (k; 1)-handleswap.
Similarly, given a (k, 1; 1)-handleswap, we can perform handleslides to reduce
to the case of a (1; 1)-handleswap.

• Finally, in a (1; 1)-handleswap between α0 and β0 with β1 intersecting α0 and
α1 intersecting β0, we can perform handleslides of each α-circle intersecting β1
over α0 to guarantee that β1 has no intersections besides the one with α0. We
can similarly guarantee that α1 has no intersections besides the one with β0.
This is now, by de�nition, a simple handleswap.

In this overview, we have talked rather loosely about �stabilizing� and �performing
handleslides� on a codimension two singularity (the handleswap). In fact, we have to
perform these operations consistently in 2-parameter families, and see that we reduce
our original loop of Heegaard diagrams to the elementary loops of Section 2.4. We
will carry this out in the following sections. Recall that, in the previous section, each
time we encountered a handleswap in a �gure we removed a disk � indicated by a
green circle � form the parameter space and only drew P ′ and R′ outside this disk.
In P ′, the handleswap loop is parallel to this green circle. In each step, we extend P ′

and R′ to an annulus in the interior of the disk removed, until we reduce to simple
handleswaps.

7.3.1. Reducing to (k, 1; l, 1)-handleswaps. It is easiest to understand this reduction
by using non-simple stabilizations. Speci�cally, we will reduce a (k; l)-handleswap to a



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 97

Figure 49. The �rst step in the simpli�cation of the more complicated
loop of Figure 27.

(k, 1; l)-handleswap and a (1; l)-handleswap (which is of course a (0, 1; l)-handleswap).
Start with a (k; l)-handleswap involving α0 and β0. Let the β-strands crossing α0 be
β1, . . . , βk, and let the α-strands crossing β0 be α1, . . . , αl (both lists with multiplici-
ties). In the diagrams involved in a handleswap without extra crossings (on the top
and bottom in Figure 38), we can do a (k, 1)-stabilization on α0 and β1, . . . , βk. Sim-
ilarly, on the diagram with β1, . . . , βk crossing α1, . . . , αl (on the right in Figure 38),
we can do a (k, l + 1)-stabilization on β1, . . . , βk and α0, α1, . . . , αl. Let α′ and β′

be the new circles introduced in the stabilization. These two stabilizations in fact �t
into a 2-parameter family (with the same boundary as the original (k; l) handleswap):
each αi sliding over α0 for i ∈ { 1, . . . , l } introduces a singularity of type (B1), while
β′ sliding over β0 introduces a singularity of Type (B2). See Figure 51 for an example.
Note that the original handleswap is now a (1; l)-handleswap.
We can normalize the non-simple stabilization introduced in this procedure, follow-

ing the algorithm of Sections 7.1 and 7.2, to obtain a diagram involving only simple
stabilizations and handleswaps. An example of the result is shown in Figure 52.
Normalizing the singularities of type (B1) introduces only slide pentagons, but nor-
malizing the singularity of type (B2) introduces another handleswap, of β0 and α′.
Since β′ intersects α′ in only one point, this is a (k, 1; l)-handleswap, as desired.
Observe that the set of α-strands involved in these two handleswaps did not change.

Thus we can perform the same procedure again, but with the roles of α and β switched,
to reduce to handleswaps of type (k, 1; l, 1).
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Figure 50. Resolving the singularity of type (C) with t = 2 from Figure 49.

7.3.2. Reducing to (1; 1)-handleswaps. Next, we reduce a (k; l, 1)-handleswap between
α0 and β0 to a (k; 1)-handleswap. Again, let the β-strands intersecting α0 be β1, . . . , βk
and let the α-strands intersecting β0 be α1, . . . , αl+1. Assume that the circle contain-
ing α1 intersects β0 only once. Then, by sliding α2, . . . , αl+1 over α1, we can reduce all
three stages of the handleswap to diagrams where only α1 intersects β0, which can in
turn be related by a (k; 1)-handleswap. These handleslides can be done consistently
in a family with the introduction of commuting squares and slide pentagons, that
arise when αi for i > 1 slides over α1, which in turn slides over α0. See Figure 53 for
an example.
This reduction did not a�ect the β-strands intersecting α0. Thus, if we start with

a (k, 1; l, 1)-handleswap, we can �rst reduce it to a (k, 1; 1)-handleswap as above, and
then perform the same operation on the β-strands to reduce to a (1; 1)-handleswap.

7.3.3. Reducing to simple handleswaps. Finally, we reduce a (1; 1)-handleswap to a
simple handleswap; this is illustrated in Figure 54. Suppose the (1; 1)-handleswap
involves α0 and β0, a single curve β1 intersecting α0, and a single curve α1 intersecting
β0. Let the other strands intersecting β1 be α2, . . . , αk+1, and let the other strands
intersecting α1 be β2, . . . , βl+1, numbered such that, in the stage of the handleswap
where α1 and β1 cross, the intersections along α1 are β0, β1, β2, . . . in that order, and
similarly, the intersections along β1 are α0, α1, α2, . . . . Now we can slide (in order)
βl+1, . . . , β2 over β0, from the opposite side of the slide of β1 over β0 that appears in
the
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Figure 51. Reducing from a general (k; l)-handleswap to a (k, 1; l)-
handleswap, step 1. Here we have introduced a circle of non-simple
stabilizations to the (2; 3)-handleswap from Figure 38.

handleswap. This commutes with all three moves in the handleswap. (It commutes
with the slide of β1 over β0 because we are sliding βl+1, . . . , β2 from the opposite side
of β0.) Similarly, slide αk+1, . . . , α2 over α0. Again, if we slide from the opposite
side from the α1 slide, this commutes with all three moves in the handleswap. But
after these slides, α1 and β1 do not intersect any other strands, and we have a simple
handleswap, as in Figure 4.

8. Strong Heegaard invariants have no monodromy

We now have all the ingredients ready to prove Theorem 2.39. For the reader's
convenience, we restate it here.

Theorem. Let S be a set of di�eomorphism types of sutured manifolds containing
[(M, γ)]. Furthermore, let F : G(S) → C be a strong Heegaard invariant. Given
isotopy diagrams H,H ′ ∈ |G(M,γ)| and any two oriented paths η and ν in G(M,γ)
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Figure 52. Reducing from a general (k; l)-handleswap to a (1; l)- and
a (k, 1; l)-handleswap, step 2. This is the normalization (following Sec-
tion 7) of Figure 51.

connecting H to H ′, we have

F (η) = F (ν).

Proof. Since F satis�es the Functoriality Axiom of De�nition 2.33, it su�ces to show
that for any loop η in G(M,γ) of the form

H0
e1−→ H1

e2−→ · · ·
en−1
−→ Hn−1

en−→ H0,

we have F (η) = IdF (H0). By Lemma 2.11, every α- and β-equivalence between isotopy
diagrams can be written as a product of handleslides. So by the functoriality of F ,
we can assume that for every k ∈ { 1, . . . , n } if ek is an α- or β-equivalence, then it
is actually a handleslide.
We are going to construct a generic 2-parameter family F : D2 → FV(M, γ) of

sutured functions and gradient-like vector �elds, together with a surface enhanced



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 101

Figure 53. Here, we illustrate reduction from a (k; l, 1)-handleswap
to a (k; 1)-handleswap. In this example, k = 2 and l = 2. The circle
α1, which by hypothesis intersects β0 only once, is shown in orange.

polyhedral decomposition P of D2 such that along S1 we have the loop η. First,
for every k ∈ { 0, . . . , n − 1 }, pick a representative Hk = (Σk,αk,βk) of the isotopy
diagramHk such thatαk t βk. Then we can apply Proposition 6.17 to obtain a simple
Morse-Smale pair (fk, vk) ∈ FV0(M, γ) such that H(fk, vk) = Hk. Let pk = e2πik/n

be a vertex of P for every k ∈ { 0, . . . , n − 1 }. Then we de�ne F(pk) = (fk, vk)
and the surface enhancement assigns Σk ∈ Σ(fk, vk) to pk. In fact, the vertices of P
along S1 are precisely p0, . . . , pn−1 and the edges are the arcs in between them. We
extend F to the edge pkpk+1 = { e2πit/n : k ≤ t ≤ k + 1 } between pk and pk+1 using
Proposition 6.35. By construction, each edge pkpk+1 contains at most one bifurcation
point of F . Furthermore, if pkpk+1 does contain a bifurcation point p, then at least
one of Σk and Σk+1 is in Σ(F(p)) and is transverse to vµ for every µ ∈ pkpk+1, so
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Figure 54. Reducing from a (1; 1)-handleswap to a simple handleswap.

Proposition 6.28 applies to the whole edge for this separating surface. Hence P and F
satisfy the boundary conditions of Lemma 7.4.
For µ ∈ S1, let F(µ) = (fµ, vµ). By Proposition 5.19, the space G(fµ, vµ) of

Riemannian metrics g on M for which vµ = gradg(fµ) is non-empty and contractible.
So we can choose a generic family of metrics { gµ ∈ G(fµ, vµ) : µ ∈ S1 }. Choose a
generic extension of { fµ : µ ∈ S1 } to a family of sutured functions { fµ : µ ∈ D2 },
and similarly, extend { gµ : µ ∈ S1 } to a generic family of metrics { gµ : µ ∈ D2 }. For
µ ∈ D2, let vµ = gradgµ(fµ), modi�ed near γ such that it becomes a gradient-like
vector �eld, see condition (3) of De�nition 5.13. Then, away from a neighborhood
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of γ, the family { vµ : µ ∈ D2 } is a generic 2-parameter family of gradients, as in
De�nition 5.9. The possible bifurcations of generic 2-parameter families of gradients
were all listed in Section 5.2.2. Even though the boundary behavior of vµ on γ is not
generic, this will not cause any problems since γ is an invariant subset of vµ containing
no singular points. Finally, let F(µ) = (fµ, vµ) ∈ FV(M, γ) for every µ ∈ D2. By
Lemma 7.4, we can extend P to a polyhedral decomposition of S1 adapted to F . The
surface enhancement assigning Σk to the boundary vertices pk ∈ sk0(P) ∩ S1 can be
extended to a choice of Heegaard surfaces

{Σµ ∈ Σ(F(µ)) : µ ∈ sk0(P) }

coherent with P according to Lemma 7.6.
As in Section 7, let

S = S(F) = V0 t V1 t V2

be the bordered strati�cation given by the bifurcation strata of the family F . Further-
more, pick a bordered polyhedral decomposition R of D2 re�ning S that is dual to P .
After applying the resolution process of Section 7, we obtain a new surface enhanced
polyhedral decomposition P ′ of D2, with dual bordered polyhedral decomposition R′.
Since along S1 we only have simple stabilizations and because we can assume that
none of the 2-cells of P that intersect S1 contain codimension-2 bifurcations of F ,
after the resolution P ∩S1 = P ′ ∩S1, with the same surface enhancement. Note that
we no longer claim that P ′ is adapted to some family of gradient-like vector �elds, but
along the boundary of each 2-cell of P ′, we have a loop of overcomplete diagrams that
appears in De�nition 2.33 (or a stabilization slide, which is a degenerate distinguished
rectangle). So it is either a loop of α-equivalences, a loop of β-equivalences, a loop
of di�eomorphisms, a distinguished rectangle, a simple handleswap, or a stabilization
slide. In addition, if we have a loop of di�eomorphisms, their composition is isotopic
to the identity. Indeed, the composition d of the di�eomorphisms around a 2-cell σ is
the same as the one induced by F|∂σ : ∂σ → FV0(M, γ). Since F has no bifurcations
inside σ, the loop F|∂σ is null-homotopic in FV0(M, γ), so d is isotopic to the identity
by Lemma 6.24.
The diagrams assigned to the vertices of P ′ might be overcomplete (except along

the boundary). We now explain how to pass to a polyhedral decomposition P ′′ that is
decorated by actual (non-overcomplete) isotopy diagrams without altering anything
along S1. We obtain P ′′ as follows. Let v be a vertex of P ′ lying in the interior of
D2 that is the endpoint of kv one-cells. Then pick a kv-gon σv centered at v such
that it has one vertex in each component of Dε(v) \ sk1(P

′) for some ε very small.
For every such v, the polygon σv is a 2-cell of P ′′. Then, for each edge e of P ′ in the
interior of D2 with ∂e = v − w, connect the sides of σv and σw that intersect e by
two arcs parallel to e; these will be edges of P ′′. If e is an edge with one endpoint w
in S1 and the other endpoint v in the interior of D2, then we connect the side of σv
intersecting e with w, forming a 2-cell of P ′′ that is a triangle. So each 2-cell of P ′ is
replaced by a smaller 2-cell in P ′′, each interior vertex of P ′ is �blown up� to a 2-cell,
and each edge to a rectangle or triangle. For an illustration, see Figure 55.
We are going to decorate the vertices of P ′′ with (non-overcomplete) isotopy di-

agrams by choosing spanning trees for the overcomplete diagram at the �nearest�
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Figure 55. The polyhedral decomposition P ′ of D2 is shown in black,
and the �blown-up� decomposition P ′′ in blue (along the boundary S1

the two coincide).

vertex of P ′. If σ is a 2-cell of P ′′ with r vertices, then we will write K1, . . . , Kr for
the loop of overcomplete diagrams along ∂σ.
Recall that, to a Morse-Smale gradient (f, v) ∈ FV0(M, γ), we assigned the graphs

Γ±(f, v), and any separating surface Σ ∈ Σ(f, v) gives rise to an overcomplete diagram
H(f, v,Σ) = (Σ,α,β). However, we can obtain graphs Γ±(Σ,α,β) directly from the
overcomplete diagram (Σ,α,β) as follows. First, consider the graph whose vertices
correspond to the components of Σ \α, and for each component α of α, connect the
vertices corresponding to the components on the two sides of α by an edge (possibly
introducing a loop). Then Γ−(Σ,α,β) is obtained by identifying all the vertices
that correspond to a component of Σ \α that intersects ∂Σ non-trivially. We de�ne
Γ+(Σ,α,β) in an analogous manner. In case (Σ,α,β) = H(f, v), then

Γ±(Σ,α,β) = Γ±(f, v).

If D is an overcomplete diagram and T± is a spanning tree of Γ±(D), then we denote
by H(D, T±) the diagram obtained from D by removing the α- and β-curves corre-
sponding to edges in T±. A di�eomorphism of isotopy diagrams d : D1 → D2 induces
a map d∗ : Γ±(D1) → Γ±(D2).
Note that each vertex of P ′′ in the interior of D2 lies in a unique 2-cell σ that

corresponds to a 2-cell of P ′. Hence, we can pick spanning trees for each such 2-cell
separately to make F commute along their boundaries. Then we need to check that
F also commutes along 2-cells of P ′′ corresponding to 0-cells and 1-cells of P ′.

De�nition 8.1. The isotopy diagrams (Σ1, A1, B1) and (Σ2, A2, B2) are α/β-equiva-
lent if Σ1 = Σ2, A1 ∼ A2, and B1 ∼ B2.

Clearly, an α-equivalence or a β-equivalence is a special case of an α/β-equivalence.
From G(S), we obtain a graph G ′(S) by adding an edge for every α/β-equivalence
that is not an α-equivalence or a β-equivalence, and similarly, from G(M,γ) we obtain
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the graph G ′
(M,γ). The strong Heegaard invariant F : G(S) → C extends to G ′(S) as

follows. Given an edge e from (Σ, A1, B1) to (Σ, A2, B2), there is an α-equivalence h
from (Σ, A1, B1) to (Σ, A2, B1) and a β-equivalence g from (Σ, A2, B1) to (Σ, A2, B2).
We let F (e) = F (g) ◦F (h). Note that we could have taken the intermediate diagram
to be (Σ, A1, B2), but that gives the same map by the Commutativity Axiom of strong
Heegaard invariants applied to a distinguished rectangle of type (1).

Lemma 8.2. Suppose that

D1
a1−→ D2

a2−→ · · ·
ar−1
−→ Dr

ar−→ D1

is a loop of isotopy diagrams in G ′(S) such that each edge ai is an α/β-equivalence.
Furthermore, let F : G(S) → C be a strong Heegaard invariant. Then

F (ar) ◦ · · · ◦ F (a1) = IdF (D1).

Proof. As above, we can write every α/β-equivalence as a product of an α-equivalence
and a β-equivalence. By the Commutativity Axiom, it su�ces to prove the lemma
when a1, . . . , ai−1 are α-equivalences and ai, . . . , ar are β-equivalences for some i.
However, in this caseD1 = Di, so we only have to prove the lemma when a1, . . . , ar are
all α-equivalences, or when they are all β-equivalences. This is a simple consequence
of the Functoriality Axiom of strong Heegaard invariants. �

If σ is a 2-cell of P ′′ corresponding to a vertex v of P ′ and v is decorated by
the overcomplete diagram K, then choosing arbitrary spanning trees T 1

±, . . . , T
r
± for

Γ±(K) gives diagrams Di = H(K,T i
±) for i ∈ { 1, . . . , r } such that any two of them

are α/β-equivalent. Hence F applied to the loop of diagrams D1, . . . , Dr along ∂σ
commutes by Lemma 8.2.
Next, suppose that σ is a 2-cell of P ′′ that corresponds to a 2-cell σ0 of P ′. We

distinguish several cases. In all the cases, we make sure that if the edge between Ki

and Ki+1 is a di�eomorphism, then we choose spanning trees T i
± and T i+1

± such that
T i+1
± = d∗(T

i
±). Furthermore, if this edge is an index 1-2 stabilization, then T i+1

± is
the same as T i

± (in particular, it does not contain the edges corresponding to the new
α- and β-curve).
If all the edges of ∂σ0 are di�eomorphisms d1, . . . , dr, then we showed above that

their composition is isotopic to the identity. Choose a spanning tree T 1
± for Γ±(K1).

Given T i
±, we de�ne T

i+1
± = di∗(T

i
±) for i ∈ { 1, . . . , r − 1 }. Note that T 1

± = dr∗(T
r
±),

since dr ◦ · · · ◦ d1 is isotopic to the identity and hence it cannot permute the α-
curves or the β-curves, which are both linearly independent in H1(Σ1). By taking
Di = H(Ki, T

i
±) at the vertices of ∂σ, we obtain the loop of di�eomorphisms

D1
d1−→ D2

d2−→ · · ·
dr−1
−→ Dr

dr−→ D1

in G(M,γ). The invariant F commutes along this loop, since

F (dr) ◦ · · · ◦ F (d1) = F (dr ◦ · · · ◦ d1) = IdF (D1)

by the Functoriality and Continuity Axioms.
If ∂σ0 is a loop of α- or β-equivalences (e.g., a link of a singularity of type (A)),

or a commutative rectangle of type (1), then after choosing arbitrary spanning trees,
we get a loop of α/β-equivalences along ∂σ. Then the strong Heegaard invariant F
commutes by Lemma 8.2.
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Suppose that along σ0, we have the distinguished rectangle

K1
e //

f
��

K2

g

��
K3

h // K4

If this is of type (2), with e and h being α-equivalences and f , g being stabilizations,
then we choose a spanning tree T 1

± of Γ±(K1) and then a spanning tree T 2
± of Γ±(K2)

such that T 2
+ = T 1

+. We can view T 1
± as a spanning tree T 3

± of Γ±(K3), and we can
view T 2

± as a spanning tree T 4
± of Γ±(K4). Then the vertices of σ are decorated by

the diagrams Di = H(Ki, T
i
±) for i ∈ { 1, . . . , 4 }, which also form a distinguished

rectangle of type (2). A distinguished rectangle of overcomplete diagrams of type (3),
where f , g are di�eomorphisms, can be reduced to a distinguished rectangle of the
same type in an analogous manner. In case of a rectangle of type (4) including only
stabilizations, we start with a spanning tree T 1

± for Γ±(K1), which then gives rise
to T 2

± and T 3
± in a natural manner. Both T 2

± and T 3
± give the same spanning tree

T 4
± of Γ±(K4), as this is also the image of T 1

± under the embedding of Γ±(K1) into
Γ±(K4). Finally, for a rectangle of type (5), where e and h are stabilizations and f ,
g are di�eomorphisms, we �rst choose T 1

±, then let T 3
± = f∗(T

1
±). We let T 2

± be the
image of T 1

± under the embedding of Γ±(K1) into Γ±(K2), and T
4
± is the image of T 3

±

under the embedding of Γ±(K3) into Γ±(K4). By construction, T 4
± = g∗(T

2
±), hence

reducing to a loop of non-overcomplete diagrams of type (5) along ∂σ.
The last possible type of loop along ∂σ0 is a simple handleswap, a triangle in G(M,γ)

with vertices decorated by isotopy diagramsK1, K2, andK3 on the common Heegaard
surface Σ. Let the α- and β-curves involved in the handleswap be α1, α2, and β1, β2.
Recall that the other α- and β-curves coincide inK1, K2 andK3, so the graphs Γ±(Ki)
only di�er in the 4 edges corresponding to α1, α2, β1, β2. Since Σ \ (α1 ∪ α2) has the
same number of components as Σ, there exists a common spanning tree T− of Γ−(Ki)
for i ∈ {1, 2, 3} not containing the edges corresponding to α1 and α2. Similarly, β1∪β2
is non-separating, so there is a common spanning tree T+ of Γ+(Ki) for i ∈ {1, 2, 3}.
If we take the non-overcomplete sutured diagrams Di = H(Ki, T±) for i ∈ {1, 2, 3},
then D1, D2, and D3 also form a simple handleswap. Indeed, they all contain α1, α2,
β1, and β2, and all other curves coincide.
Finally, let σ be a 2-cell of P ′′ that corresponds to an edge e of P ′ not lying

entirely in S1. Then σ is a rectangle if e lies in the interior of D2, and is a triangle
if e∩S1 6= ∅. In the latter case, we view σ as a rectangle in G(M,γ) with one edge being
the identity. Let σ0 and σ1 be the 2-cells of P

′ lying on the two sides of e, and the edges
corresponding to e in P ′′ are g0 ⊂ σ0 and g1 ⊂ σ1. We denote the other two edges
of σ by h0 and h1. The vertices of e are decorated by the overcomplete diagrams K0

and K1. We distinguish three cases depending on the type of e. If e is an α- or β-
equivalence, then no matter how we choose trees for K0 and K1 in σ0 and σ1, along σ
we get a loop of α/β-equivalences for which F commutes by Lemma 8.2.
If e is a stabilization, then in both σ0 and σ1, we chose trees such that g0 and g1

are decorated by stabilizations. Furthermore, the edges h0 and h1 are decorated by
α/β-equivalences, coming from the fact that we chose spanning trees for the same
overcomplete diagram to decorate the endpoints of hi. If h1 is on the stabilized side,
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then this α/β-equivalence leaves the α- and β-curve involved in the stabilizations
unchanged. To see that applying F to σ we get a commutative square, bisect both h0
and h1 and write them as a product of an α-equivalence and a β-equivalence. Connect
the midpoints of h0 and h1 by a stabilization edge, hence decomposing σ into two
distinguished rectangles of type (2). Then F commutes when applied to each of these
distinguished rectangles. If e is a di�eomorphism, then we proceed in a way analogous
to the previous case; we can decompose σ into two distinguished rectangles.
So we now have a polyhedral decomposition P ′′ of D2, together with a morphism

of graphs

H : sk0(P
′′) → G(M,γ),

such that F ◦ H commutes along the boundary of each 2-cell of P ′′. What remains
to show is that this implies that F commutes along the boundary of D2; i.e.,

F (η) = F (en) ◦ · · · ◦ F (e1) = IdF (H0).

For this, we show that there is a �combinatorial 0-homotopy� from S1 to the boundary
of a 2-cell of P ′′. By this, we mean that there is a sequence of curves η0, . . . , ηk in D2

such that

(1) η0 = η and ηk = ∂σ0 for some two-cell σ0 of P ′′,
(2) every ηi is a properly embedded curve in sk1(P

′′), and
(3) the 1-chain ηi − ηi+1 is the boundary of a single 2-cell σi of P

′′.

This clearly implies that F (η) = IdF (H0), since F (ηi) ◦ F (ηi+1)
−1 = F (∂σi) = Id for

every i ∈ { 1, . . . , k − 1 }, and F (ηk) = F (∂σ0) = Id.
To construct the combinatorial 0-homotopy, we proceed recursively. Suppose we

have already obtained ηi. Then ηi bounds a disk D2
i in D2, and P ′′ restricts to a

polyhedral decomposition of D2
i . It su�ces to show that if D2

i has more than one
2-cells, then there exists a 2-cell σi in D

2
i that intersects ηi in a single arc. Indeed,

then we take ηi+1 = ηi − ∂σi, this is a simple closed curve. The existence of such a σi
follows from the following lemma.

Lemma 8.3. For any polyhedral decomposition of D2 with more than one 2-cells,
there exists a 2-cell that intersects S1 in a single arc.

Proof. We proceed by induction on the number t of 2-cells. If t = 2, then let the
2-cells be σ1 and σ2. Since the attaching map of each 2-cell is an embedding, σ1 ∩ σ2
consists of some disjoint arcs, and to obtain D2, it has to be a single arc a. Hence
σi ∩ S

1 = ∂σi \ Int(a) is a single arc for i ∈ {1, 2}.
Now suppose that the statement holds for polyhedral decompositions for which the

number of 2-cells is less than t for some t > 2, and consider a decomposition where
the number of 2-cells is t. There is a 2-cell σ1 such that Int(σ1 ∩ S

1) 6= ∅. If σ1 ∩ S
1

has a single component, it has to be an arc, and we are done. Otherwise, D2 \ σ1
consists of at least two components, each of whose closure is homeomorphic to a disk,
let D1 be one of these. Observe that s1 = D1 ∩ σ1 is an arc. If there are at least
two 2-cells in D1, then by induction, there is a 2-cell σ2 in D1 for which σ2 ∩ ∂D1

is a single arc a1. Since σ2 ∩ S1 = a1 \ Int(s1), we are done if this is a single arc.
Otherwise, either a1 ⊂ s1 or a1 ⊃ s1. In both cases, we merge σ1 and σ2 by removing
all the vertices and edges in Int(a1∩s1). We obtain a polyhedral decomposition of D2

where the number of 2-cells is t − 1 ≥ 2, so by the induction hypothesis, there is a
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2-cell σ3 that intersects S1 in a single arc. Since σ1 ∪ σ2 intersects S1 in the same
number of components as σ1, which is more than one, σ3 6= σ1 ∪ σ2, and so σ3 is also
a 2-cell of the original decomposition. Finally, if D1 consists of a single 2-cell σ2, then
σ2 ∩ S

1 = ∂σ2 \ Int(s1), which is a single arc. �

Since the polyhedral decomposition P ′′|D2
i+1

contains one less 2-cell than P ′′|D2
i
, the

process ends when P ′′|D2
k
consists of a single 2-cell, and we obtain the combinatorial

0-homotopy. This concludes the proof of Theorem 2.39. �

9. Heegaard Floer homology

In this section, we prove Theorem 2.34. First, we explain how the various versions
of Heegaard Floer homology �t into the context of a weak Heegaard invariant in the
sense of De�nition 2.25, and then turn to the veri�cation of the required properties
of a strong Heegaard invariant, in the sense of De�nition 2.33. Most of the con-
struction builds on the work of Ozsváth and Szabó [17, Section 2.5]. However, that
argument contains gaps; for example, it does not take into account the embedding
of the Heegaard surface. The key extra steps are showing that the maps constructed
by Ozsváth and Szabó are indeed isomorphisms and are functorial, the veri�cation of
the continuity axiom, and perhaps most importantly, the veri�cation of handleswap
invariance. For concreteness, we explain the case of sutured Floer homology in detail

as it includes ĤF and ĤFL as special cases, and only remark on the di�erences for
the other versions. In particular, we show that SFH is a strong Heegaard invariant
of the class Sbal. However, to emphasize that all the arguments are essentially the
same for the other versions of Heegaard Floer homology, we will write HF ◦ instead of
SFH . All Heegaard diagrams appearing in this section are assumed to be balanced.

9.1. Heegaard Floer homology as a weak Heegaard invariant. We start by
explaining how Heegaard Floer homology �ts into the context of a weak Heegaard
invariant. (This was essentially proved by Ozsváth and Szabó; we remind the reader
of the proof in order to �ll in details and because we will later extend the arguments
to prove that Heegaard Floer homology is a strong Heegaard invariant.) One compli-
cation arises from the fact that Heegaard Floer homology is, in fact, not an invariant
associated to arbitrary Heegaard diagrams; rather, these Heegaard diagrams must
satisfy the additional property of admissibility. There are several forms of admissibil-
ity. We will focus presently on the case of weak admissibility in the sense of Ozsváth
and Szabó [16, De�nition 4.10] and Juhász [10, De�nition 3.11], which is su�cient for

de�ning ĤF , SFH , and HF
+. The stronger variant, used in the construction of HF−

and HF
∞, is de�ned in reference to an auxiliary Spinc structure.

We brie�y discuss Spinc-structures. Let H = (Σ,α,β) be an abstract (i.e., non-
embedded) Heegaard diagram. Our aim is to explain what we mean by a Spinc-
structure for H. If H is a diagram of the sutured manifolds (M, γ) and (M ′, γ′), then
there is a di�eomorphism φ : (M, γ) → (M ′, γ′) that is well-de�ned up to isotopy
�xing Σ. So φ induces a bijection

b(M,γ),(M ′,γ′) : Spinc(M, γ) → Spinc(M ′, γ′),

which intertwines the H1(M)-action on the set Spinc(M, γ) and the H1(M
′)-action

on the set Spinc(M ′, γ′). For s ∈ Spinc(M, γ) and s′ ∈ Spinc(M ′, γ′), we write s ∼ s′
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if and only if b(M,γ),(M,γ′)(s) = s′. Then �∼� de�nes an equivalence relation on the
class of elements of Spinc(M, γ) for all (M, γ) such that H is a diagram of (M, γ). We
de�ne Spinc(H) to be the collection of these equivalence classes. (Strictly speaking,
this is also a proper class, not a set.) Given s ∈ Spinc(M, γ), we denote its equivalence
class by [s]; this is an element of Spinc(Σ,α,β).
Let x ∈ Tα ∩ Tβ be a Heegaard Floer generator. By Proposition 6.17, there exists

a simple pair (f, v) ∈ FV0(M, γ) such that H(f, v) = H. We can associate to x

a nowhere vanishing vector �eld v
x
on M as follows. Let γ

x
be the union of the

�ow-lines of v passing through the points of x. Then we delete v on a thin regular
neighborhood N

x
of γ

x
, and extend it to N

x
as a nowhere vanishing vector �eld; this is

possible since each component of N
x
contains two critical points of v of opposite sign,

and hence the degree of v is zero along each component of ∂N
x
. If we take a di�erent

simple pair (f, v) ∈ FV0(M, γ) with H(f, v) = H, then Proposition 6.18 implies
that (f, v) and (f, v) can be connected by a path within FV0(M, γ). This show that
the vector �elds v

x
and v

x
are homologous relative to ∂M . (Recall that two vector

�elds are homologous relative to ∂M if they are homotopic in the complement of a
ball, where the homotopy is the identity on ∂M .) In particular, the Spinc-structures
de�ned by v

x
and v

x
coincide; we denote it by s(M,γ)(x). As above, we can also assign

to x an element s(M ′,γ′)(x) ∈ Spinc(M ′, γ′). By construction, s(M,γ)(x) ∼ s(M ′,γ′)(x),
so we can de�ne s(x) ∈ Spinc(H) to be [s(M,γ)(x)] for any (M, γ) such that H is a
diagram of (M, γ).
As explained by Ozsváth and Szabó [16, Section 4 and Theorem 6.1], the Floer

homology groups depend on a choice of complex structure j on Σ and a generic path
Js ⊂ U of perturbations of the induced complex structure over Symg(Σ), where U is
a certain contractible set of almost complex structures. The following result is due
to Ozsváth and Szabó [17, Lemma 2.11].

Lemma 9.1. Let (Σ,α,β) be admissible. Fix two di�erent choices (j, Js) and (j′, J ′
s)

of complex structures and perturbations. Then there is an isomorphism

ΦJs→J ′
s
: HF ◦

Js(Σ,α,β, s) → HF
◦
J ′
s
(Σ,α,β, s).

These isomorphisms are natural in the sense that

ΦJ ′
s→J ′′

s
◦ ΦJs→J ′

s
= ΦJs→J ′′

s
,

and ΦJs→Js is the identity.

Hence, we can de�ne

HF
◦(Σ,α,β, s) =

∐

(j,Js)

HF
◦
Js(Σ,α,β, s)

/
∼,

where x ∼ y if and only if y = ΦJs→J ′
s
(x) for some (j, Js) and (j′, J ′

s).

Lemma 9.2. Let (Σ,α,β,γ) be an admissible triple diagram. Then there is a map

Fα,β,γ : HF
◦(Σ,α,β)⊗ HF

◦(Σ,β,γ) → HF
◦(Σ,α,γ)

de�ned by counting pseudo-holomorphic triangles. In particular, if β ∼ γ, then
HF

◦(Σ,β,γ) admits a �top� generator Θβ,γ, and we write Ψα
β→γ for the map

Fα,β,γ(−⊗Θβ,γ) : HF
◦(Σ,α,β) → HF

◦(Σ,α,γ).
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Similarly, if α ∼ β, then let

Ψα→β
γ (−) = Fα,β,γ(Θα,β ⊗−) : HF ◦(Σ,α,γ) → HF

◦(Σ,β,γ).

Proof. The existence of the map Fα,β,γ was proved by Ozsváth and Szabó [16, The-
orem 8.12] in the case of ordinary Heegaard triple-diagrams, and by Grigsby and
Wehrli [8, Section 3.3] for sutured triple-diagrams.
Now suppose we have a diagram (Σ,β,γ) such that β ∼ γ, and let k = |β| = |γ|.

Then (Σ,β,γ) de�nes a sutured manifold di�eomorphic to

M(R+, k) = (R+ × I, ∂R+ × I) #
(
#k(S1 × S2)

)

for some compact oriented surface R+. There is a unique Spinc-structure s0 on
M(R+, k) such that c1(s0) = 0 ∈ H2(M(R+, k);Z), and which can be represented
by a vector �eld that is vertical on the summand (R+ × I, ∂R+ × I). By the con-
nected sum formula for sutured manifolds of Juhász [10, Proposition 9.15],

HF
◦(R+, k, s0) ∼= Λ∗H1(S

1 × S2;Z2)

as relatively Z-graded groups. Here, we do not use naturality, only that Heegaard
Floer homology is well-de�ned up to isomorphism in each Spinc structure and homo-
logical grading, as shown by Ozsváth and Szabó [16]. Hence, in the �top� non-zero
homological grading, the group

HF
◦(Σ,β,γ, [s0]) ∼= HF

◦(M(R+, k), s0)

is isomorphic to Z2; we denote its generator by Θβ,γ. Since [s0] is independent of the
concrete manifold representing M(R+, k), we see that Θβ,γ is a well-de�ned element
of HF ◦(Σ,β,γ). �

Before proceeding, we state two key lemmas that will be used multiple times.

Lemma 9.3. Suppose that (Σ,ηi
0, . . . ,η

i
n−1,ηn) are sutured multi-diagrams for i ∈

{ 1, . . . , k } such that the sub-diagrams (Σ,ηi
0, . . . ,η

i
n−1) are admissible. Then there

is an exact Hamiltonian isotopic translate η′
n of ηn such that (Σ,ηi

0, . . . ,η
i
n−1,η

′
n) is

admissible for every i ∈ { 1, . . . , k }.

Proof. The case i = 1 was shown by Grigsby and Wehrli [8, proof of Lemma 3.13].
We proceed the same way, and isotope ηn using �nger moves along oriented arcs
representing a basis of H1(Σ, ∂Σ) and their parallel opposites. Since the isotopy is
independent of i, the diagrams become admissible simultaneously. Note that the
�nger moves of ηn can be achieved by an exact Hamiltonian isotopy. �

Lemma 9.4. Suppose that the quadruple diagram (Σ,α,β1,β2,β3) is admissible,

β1 ∼ β2 ∼ β3, and Ψ
β1
β2→β3

is an isomorphism. Then

Ψα
β1→β3

= Ψα
β2→β3

◦Ψα
β1→β2

.

Proof. Pick an element x ∈ HF
◦(Σ,α,β1). Since (Σ,α,β1,β2,β3) is admissible, we

can use the associativity of the triangle maps, which was proved by Ozsváth and
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Szabó [16, Theorem 8.16], to conclude that

Ψα
β2→β3

◦Ψα
β1→β2

(x) = Fα,β2,β3 (Fα,β1,β2(x⊗Θβ1,β2)⊗Θβ2,β3)

= Fα,β1,β3 (x⊗ Fβ1,β2,β3(Θβ1,β2 ⊗Θβ2,β3))

= Fα,β1,β3

(
x⊗Ψ

β1
β2→β3

(Θβ1,β2)
)
.

So it su�ces to show that Ψ
β1
β2→β3

(Θβ1,β2) = Θβ1,β3 . We assumed that Ψ
β1
β2→β3

is
an isomorphism. In particular, it induces an isomorphism between the top groups
HF

◦
top(Σ,β1,β2, s0) = Z2〈Θβ1,β2〉 and HF

◦
top(Σ,β1,β3, s0) = Z2〈Θβ1,β3〉, where s0

is the torsion Spinc-structure, and has to map the generator Θβ1,β2 to the genera-
tor Θβ1,β3 . �

Lemma 9.5. Let (Σ,α,β) and (Σ,α,β′) be two admissible diagrams, let ω be a
symplectic form on Σ, and suppose we are given an exact Hamiltonian isotopy I from
β to β′. Then the isotopy I induces an isomorphism

Γα
β→β′ : HF ◦(Σ,α,β) → HF

◦(Σ,α,β′).

These isomorphisms compose under juxtaposition of isotopies. If, moreover, the triple
(Σ,α,β,β′) is admissible, then

(9.6) Γα
β→β′ = Ψα

β→β′ ,

and in particular it is independent of the isotopy I (i.e., it depends only on the end-
points).

Proof. Naturality of the continuation map under juxtaposition is standard in Floer
theory; this particular version is due to Ozsváth and Szabó [17, Lemma 2.12]. Equa-
tion (9.6) follows from commutativity of the continuation and triangle maps. Indeed,
by results of Ozsváth and Szabó [17, Theorem 2.3], [16, Theorem 8.14], if (Σ,α,β,γ)
is an admissible triple, β ∼ γ, and β′ is an exact Hamiltonian translate of β such
that (Σ,α,β′,γ) is also admissible, then there is a commutative diagram

HF
◦(Σ,α,β)

Ψα
β→γ //

Γα
β→β′

��

HF
◦(Σ,α,γ)

Id

��
HF

◦(Σ,α,β′)
Ψα

β′→γ// HF ◦(Σ,α,γ).

A priori, the maps Ψα
β→γ and Ψα

β′→γ
might not be isomorphisms; we choose γ such

that they are. For this end, let γ be a su�ciently small exact Hamiltonian translate
of β so that each component of γ intersects the corresponding component of β trans-
versely in two points. Since the triple (Σ,α,β,β′) is admissible, we can choose γ such
that the quadruple (Σ,α,β,β′,γ) is also admissible. In particular, both (Σ,α,β,γ)
and (Σ,α,β′,γ) are admissible, satisfying the conditions for the above rectangle to be
commutative. Since γ is close to β, a result of Ozsváth and Szabó [16, Proposition 9.8]
implies that the map

Ψα
β→γ : HF

◦(Σ,α,β) → HF
◦(Σ,α,γ)
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is an isomorphism. Then the commutativity of the above rectangle gives that Ψα
β′→γ

is also an isomorphism, hence

Γα
β→β′ =

(
Ψα

β′→γ

)−1
◦Ψα

β→γ .

Since the quadruple (Σ,α,β,β′,γ) is admissible and Ψα
β′→γ

is an isomorphism, we
can apply Lemma 9.4 to conclude that

(
Ψα

β′→γ

)−1
◦Ψα

β→γ = Ψα
β→β′ .

An alternate elegant argument can be given using monogons, see the work of Lip-
shitz [12, Proposition 11.4]. �

Remark 9.7. Continuation maps in general symplectic manifolds do depend on the
homotopy class of the isotopy, and hence cannot be written in terms of triangle maps.
The above lemma is highly speci�c to Heegaard Floer homology.

Another way to view Lemma 9.5 is that the triangle map Ψα
β→β′ is an isomorphism

whenever the triple (Σ,α,β,β′) is admissible and β and β′ are exact Hamiltonian
isotopic. Our next goal is to relax the second condition and show that Ψα

β→β′ is also

an isomorphism whenever β ∼ β′.

Proposition 9.8. (1) Suppose that (Σ,α,β,β′) is an admissible triple and we
have β ∼ β′. Then the map

Ψα
β→β′ : HF ◦(α,β) → HF

◦(α,β′)

is an isomorphism.
(2) These isomorphisms are compatible in the sense that if the triple diagrams

(Σ,α,β,β′), (Σ,α,β′,β′′), and (Σ,α,β,β′′) are admissible, then

Ψα
β′→β′′ ◦Ψα

β→β′ = Ψα
β→β′′ .

(3) Similarly, if (Σ,α,α′,β) is admissible and α ∼ α′, then the map

Ψα→α′

β : HF ◦(α,β) → HF
◦(α′,β)

is an isomorphism, and satis�es the analogue of (2). Finally, we have

Ψα→α′

β′ ◦Ψα
β→β′ = Ψα′

β→β′ ◦Ψα→α′

β ,

assuming all four triple diagrams involved are admissible.

Proof. First, we show (1). By Lemma 2.11, we can get from β to β′ by a sequence
of isotopies and handleslides; let h(β,β′) be the minimal number of handleslides
required in such a sequence. We prove the claim by induction on h(β,β′).
Suppose that h(β,β′) = 0. Since the triple (Σ,α,β,β′) is admissible, the pair

(Σ,β,β′) is also admissible. According to Ozsváth and Szabó [16, Lemma 4.12],
there exists a volume form ω on Σ for which every periodic domain has total signed
area equal to zero. If β ∈ β and β′ ∈ β′ are isotopic, then the cycle β − β′ is the
boundary of a 2-chain P , which can be viewed as a periodic domain. Since P has
area zero with respect to ω, it follows that β and β′ are exact Hamiltonian isotopic.
Hence β and β′ are exact Hamiltonian isotopic, and by Lemma 9.5, the triangle map
Ψα

β→β′ is an isomorphism for any complex structure compatible with ω. However, the
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triangle maps commute with the maps ΦJs→J ′
s
, hence it is an isomorphism for any

complex structure and perturbation.
Suppose we know the statement for h(β,β′) < n for some n > 0. If h(β,β′) = n,

then we can choose an attaching set γ such that h(β,γ) = 1 and h(γ,β′) = n − 1;
furthermore, γ is obtained from β by a model handleslide as described by Ozsváth
and Szabó [16, Section 9]. Then, according to Ozsváth and Szabó [16, Theorem 9.5],
the triple (Σ,α,β,γ) is admissible and the map Ψα

β→γ is an isomorphism. The triple

diagram (Σ,α,γ,β′) might not be admissible, but by Lemma 9.3, there is an exact
Hamiltonian translate γ ′ of γ for which both (Σ,α,β,β′,γ ′) and (Σ,α,β,γ,γ ′) are
admissible. Then consider the following diagram:

HF
◦(Σ,α,β)

Ψα
β→β′

//

Ψα
β→γ

��

Ψα
β→γ′

((

HF
◦(Σ,α,β′)

HF
◦(Σ,α,γ)

Ψα
γ→γ′

// HF ◦(Σ,α,γ ′).

Ψα
γ′→β′

OO

We will prove that it is commutative. Since (Σ,α,γ,γ ′) is admissible and γ ′ is
an exact Hamiltonian translate of γ, Lemma 9.5 implies that the map Ψα

γ→γ′ =

Γα
γ→γ′ is an isomorphism. Similarly, Ψβ

γ→γ′ is also an isomorphism, and as the tuple
(Σ,α,β,γ,γ ′) is admissible, we can apply Lemma 9.4 to conclude that

Ψα
γ→γ′ ◦Ψα

β→γ = Ψα
β→γ′ .

We have seen that both Ψα
γ→γ′ and Ψα

β→γ are isomorphisms, so Ψα
β→γ′ is an isomor-

phism. Since h(γ ′,β′) = n − 1, the map Ψα
γ′→β′ is an isomorphism by the induction

hypothesis. So we are done if we show that

Ψα
β→β′ = Ψα

γ′→β′ ◦Ψα
β→γ′ .

This also follows from Lemma 9.4. Indeed, the quadruple diagram (Σ,α,β,β′,γ ′) is

admissible; furthermore, the map Ψβ

γ′→β′ is an isomorphism by the induction hypoth-

esis (the diagram (Σ,β,γ ′,β′) is admissible and h(γ ′,β′) = n − 1). It follows that
Ψα

β→β′ is an isomorphism, concluding the proof of (1).

A useful consequence of (1) is that in Lemma 9.4, the condition that Ψ
β1
β2→β3

is

an isomorphism automatically follows from the others (we only need that the triple
(Σ,β1,β2,β3) is admissible and β2 ∼ β3). Armed with this fact, we proceed to the
proof of (2). By Lemma 9.3, there is an exact Hamiltonian translate β′

1 of β′ such
that the quadruple diagrams (Σ,α,β,β′,β′

1), (Σ,α,β
′,β′′,β′

1), and (Σ,α,β,β′′,β′
1)
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are all admissible. Then consider the following diagram:

HF
◦(Σ,α,β′)

Ψα
β′→β′

1

��
Ψα

β′→β′′

��

HF
◦(Σ,α,β′

1)
Ψα

β′
1→β′′

((

HF
◦(Σ,α,β)

Ψα
β→β′

1

66

Ψα
β→β′

AA

Ψα
β→β′′

// HF ◦(Σ,α,β′′).

Commutativity of the three small triangles follows from the above improved version
of Lemma 9.4. Hence the large triangle is also commutative; i.e.,

Ψα
β→β′′ = Ψα

β′→β′′ ◦Ψα
β→β′ ,

which concludes the proof of (2).
Finally, we prove (3). First, we verify this when (Σ,α,α′,β,β′) is admissible.

Pick an element x ∈ HF
◦(Σ,α,β). Then, using the associativity of the triangle maps

[16, Theorem 8.16],

Ψα→α′

β′ ◦Ψα
β→β′(x) = Fα,α′,β′(Θα,α′ ⊗ Fα,β,β′(x⊗Θβ,β′))

= Fα′,β,β′(Fα,α′,β(Θα,α′ ⊗ x)⊗Θβ,β′)

= Ψα′

β→β′ ◦Ψα→α′

β (x).

Now we consider the general case. By Lemma 9.3, there is an isotopic copy β of β
for which both (Σ,α,α′,β,β) and (Σ,α,α′,β′,β) are admissible. Then

Ψα→α′

β′ ◦Ψα
β→β′ = Ψα→α′

β′ ◦Ψα
β→β′ ◦Ψ

α
β→β

= Ψα′

β→β′ ◦Ψ
α→α′

β
◦Ψα

β→β

= Ψα′

β→β′ ◦Ψ
α′

β→β
◦Ψα→α′

β

= Ψα′

β→β′ ◦Ψα→α′

β .

Here, the �rst and fourth equalities follow from (2), while the second and third follow
from the previous special case, assuming the admissibility conditions. This concludes
the proof of (3). �

De�nition 9.9. Suppose that the quadruple diagram (Σ,α,α′,β,β′) is admissible,
α ∼ α′, and β ∼ β′. Then let

Ψα→α′

β→β′ = Ψα→α′

β′ ◦Ψα
β→β′ = Ψα′

β→β′ ◦Ψα→α′

β .

Note that the second equality holds by part (3) of Proposition 9.8.

Lemma 9.10. Suppose that the six-tuple (Σ,α,α′,α′′,β,β′,β′′) is admissible. Then

Ψα′→α′′

β′→β′′ ◦Ψα→α′

β→β′ = Ψα→α′′

β→β′′ .
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Proof. By parts (2) and (3) or Proposition 9.8,

Ψα′→α′′

β′→β′′ ◦Ψα→α′

β→β′ = Ψα′′

β′→β′′ ◦Ψα′→α′′

β′ ◦Ψα→α′

β′ ◦Ψα
β→β′

= Ψα′′

β′→β′′ ◦Ψα→α′′

β′ ◦Ψα
β→β′

= Ψα′′

β′→β′′ ◦Ψα′′

β→β′ ◦Ψα→α′′

β

= Ψα′′

β→β′′ ◦Ψα→α′′

β = Ψα→α′′

β→β′′ .

�

So triangle maps give �canonical� isomorphisms Ψα→α′

β→β′ between HF
◦(Σ,α,β) and

HF
◦(Σ,α′,β′) whenever the quadruple (Σ,α,α′,β,β′) is admissible, α ∼ α′, and

β ∼ β′. But what do we do when the admissibility condition fails? If the triple
(Σ,α,β,β′) is not admissible, then the triangle count in Ψα

β→β′ might not be �nite,
and even if it is, there are simple examples where it does not give a natural isomor-
phism, even though β and β′ are isotopic. To overcome this obstacle, we �rst apply
an exact Hamiltonian isotopy to α and β so that the quadruple (α,α′,β,β′) becomes
admissible. According to Lemma 9.3, this is always possible.

Proposition 9.11. Suppose that the diagrams (Σ,α,β) and (Σ,α′,β′) are both ad-
missible, α ∼ α′, and β ∼ β′. According to Lemma 9.3, there exist attaching sets α

and β isotopic to α and β, respectively, and such that the quadruples (Σ,α,α,β,β)
and (Σ,α,α′,β,β′) are both admissible. Then the map

Ψα→α′

β→β′ ◦Ψ
α→α
β→β

: HF ◦(Σ,α,β) → HF
◦(Σ,α′,β′)

is an isomorphism. Furthermore, it is independent of the choice of α an β; we denote
it by Φα→α′

β→β′ . Finally, if (Σ,α′′,β′′) is also admissible, α′′ ∼ α, and β′′ ∼ β, then

(9.12) Φα′→α′′

β′→β′′ ◦ Φα→α′

β→β′ = Φα→α′′

β→β′′ .

Proof. The map Ψα→α′

β→β′ ◦Ψ
α→α
β→β

is an isomorphism by part (1) of Proposition 9.8. We

now show that it is independent of the choice of α and β. Let α1, β1 and α2, β2 be
two di�erent choices. Using Lemma 9.3, we isotope α and β until we get attaching
sets α and β such that the six-tuples obtained by adding them to the quadruples
(Σ,α,α1,β,β1), (Σ,α,α2,β,β2), (Σ,α1,α

′,β1,β
′), and (Σ,α2,α

′,β2,β
′) are all

admissible. Then we can consider the following diagram:

HF
◦
(
Σ,α1,β1

)

Ψ
α1→α

β1→β
��

Ψ
α1→α′

β1→β′

((

HF
◦(Σ,α,β)

Ψ
α→α1
β→β1

66

Ψα→α

β→β //

Ψ
α→α2
β→β2

((

HF
◦
(
Σ,α,β

)

Ψ
α→α2
β→β2��

Ψα→α′

β→β′

// HF ◦(Σ,α′,β′).

HF
◦
(
Σ,α2,β2

) Ψ
α2→α′

β2→β′

66

Each of the four small triangles is commutative by part (2) of Proposition 9.8. Hence,
the outer square also commutes; i.e.,

Ψα1→α′

β1→β′ ◦Ψ
α→α1

β→β1
= Ψα2→α′

β2→β′ ◦Ψ
α→α2

β→β2
,
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so the map for α1, β1 is the same as the map for α2, β2.
Finally we show equation (9.12). Using Lemma 9.3, pick isotopic copies α, β, α′, β′

of α, β, α′ and β′, respectively, such that the six-tuples obtained by adding these four
attaching sets to the diagrams (Σ,α,β), (Σ,α′,β′), and (Σ,α′′,β′′) are all admissible.
Applying part (2) of Proposition 9.8 to the left-hand side of equation (9.12),

Ψα′→α′′

β′→β′′ ◦Ψ
α′→α′

β′→β′ ◦Ψ
α→α′

β→β′ ◦Ψ
α→α
β→β

= Ψβ′→α′′

β′→β′′ ◦Ψ
α→α′

β→β′ ◦Ψ
α→α
β→β

= Ψα→α′′

β→β′′ ◦Ψ
α→α
β→β

= Φα→α′′

β→β′′ ,

as required. �

De�nition 9.13. Suppose that the diagrams (Σ,α,β) and (Σ,α,β′) are both ad-
missible and β ∼ β′. Then let

Φα
β→β′ = Φα→α

β→β′ .

Similarly, when we have admissible diagrams (Σ,α,β) and (Σ,α′,β) such that α ∼
α′, we write

Φα→α′

β = Φα→α′

β→β .

Lemma 9.14. Suppose that the diagrams (Σ,α,β) and (Σ,α,β′) are both admissible
and β ∼ β′. Let β be an isotopic copy of β such that the triples (Σ,α,β,β) and
(Σ,α,β′,β) are admissible. Then

Φα
β→β′ = Ψα

β→β′ ◦Ψ
α
β→β

.

An analogous statement holds for Φα→α′

β . Finally,

(9.15) Φα→α
β→β = Φα

β→β = Φα→α
β = IdHF

◦(Σ,α,β).

Proof. Let α be an exact Hamiltonian translate of α such that the quadruples
(Σ,α,α,β,β) and (Σ,α,α,β′,β) are admissible. By Lemma 9.5 and the naturality
of the continuation maps under juxtaposition,

Ψα→α
β

◦Ψα→α
β

= Γα→α
β

◦ Γα→α
β

= Id
HF

◦(Σ,α,β).

It follows that

Φα
β→β′ = Φα→α

β→β′ = Ψα→α
β→β′ ◦Ψ

α→α
β→β

= Ψα
β→β′ ◦Ψ

α→α
β

◦Ψα→α
β

◦Ψα
β→β

=

= Ψα
β→β′ ◦Ψ

α
β→β

,

as claimed. The statement for Φα→α′

β follows similarly.

Now we prove the last statement regarding Φα→α
β→β . Let β be an exact Hamiltonian

translate of β such that (Σ,α,β,β) is admissible. If we apply the �rst part with
β = β′, we get that

Φα
β→β = Ψα

β→β
◦Ψα

β→β
.

Using Lemma 9.5, the right-hand side is Γα
β→β

◦ Γα
β→β

. By the naturality of the

continuation maps under juxtaposition, this is IdHF
◦(Σ,α,β). �

Corollary 9.16. Let (Σ,α,β,β′) be an admissible triple such that β ∼ β′. Then
(
Ψα

β→β′

)−1
= Ψα

β′→β.

An analogous result holds for the maps Ψα→α′

β .
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Proof. By Lemma 9.14,

Ψα
β′→β ◦Ψα

β→β′ = Φα
β→β = IdHF

◦(Σ,α,β). �

Let (Σ, A,B) be an isotopy diagram. Then we denote by M(Σ,A,B) the set of ad-
missible diagrams (Σ,α,β) such that [α] = A and [β] = B. This is non-empty by
Lemma 9.3. It follows from equations (9.12) and (9.15) that the groups HF ◦(Σ,α,β)
for (Σ,α,β) ∈ M(Σ,A,B), together with the isomorphisms Φα→α′

β→β′ form a transitive
system of groups, as in De�nition 1.1.

De�nition 9.17. Given an isotopy diagram H, let HF ◦(H) be the direct limit of the
transitive system of groups HF

◦(Σ,α,β) for (Σ,α,β) ∈ MH and Φα→α′

β→β′ . In other
words,

HF
◦(H) =

∐

(Σ,α,β)∈MH

HF
◦(Σ,α,β)/∼,

where x ∈ HF
◦(Σ,α,β) and x′ ∈ HF

◦(Σ,α′,β′) are equivalent if and only if x′ =
Φα→α′

β→β′ (x).

We would like to show that HF
◦ is a weak Heegaard invariant. To this end, we

need to de�ne isomorphisms induced by α-equivalences, β-equivalences, di�eomor-
phisms, and (de)stabilizations between isotopy diagrams. We start with α- and β-
equivalences.

Lemma 9.18. Suppose that we are given admissible diagrams (Σ,α1,β1), (Σ,α1,β
′
1),

(Σ,α2,β2), and (Σ,α2,β
′
2) such that α1 ∼ α2 and β1 ∼ β2 ∼ β′

1 ∼ β′
2. Then the

following diagram is commutative:

HF
◦(Σ,α1,β1)

Φ
α1
β1→β′

1//

Φ
α1→α2
β1→β2

��

HF
◦(Σ,α1,β

′
1)

Φ
α1→α2
β′
1→β′

2��

HF
◦(Σ,α2,β2)

Φ
α2
β2→β′

2// HF ◦(Σ,α2,β
′
2).

Proof. By equation (9.12),

Φα1→α2

β′
1→β′

2
◦ Φα1

β1→β′
1
= Φα1→α2

β1→β′
2
= Φα2

β2→β′
2
◦ Φα1→α2

β1→β2
. �

De�nition 9.19. Suppose that the isotopy diagrams H = (Σ, A,B) and H ′ =
(Σ, A,B′) are β-equivalent. Pick admissible representatives (Σ,α,β) and (Σ,α,β′)
of H and H ′, respectively (this is possible by Lemma 9.3). By Lemma 9.18, the
isomorphisms Φα

β→β′ descend to the direct limit, giving an isomorphism

ΦA
B→B′ : HF ◦(H) → HF

◦(H ′).

For α-equivalent diagrams (Σ, A,B) and (Σ, A′, B), we de�ne the isomorphism ΦA→A′

B

analogously.

Next, we go on to de�ne isomorphisms induced by di�eomorphisms.

De�nition 9.20. Let (Σ,α,β) be an admissible diagram and d : Σ → Σ′ a di�eo-
morphism. We write α′ = d(α) and β′ = d(β). Then d induces an isomorphism

d∗ : HF
◦(Σ,α,β) → HF

◦(Σ′,α′,β′),
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as follows. Let k = |α| = |β|. Choose a complex structure j on Σ and a perturba-
tion Js of Sym

k(j) on Symk(Σ). Pushing j and Js forward along d, we get a complex
structure j′ on Σ′ and a perturbation J ′

s of Sym
k(j′) on Symk(Σ′). Clearly, d induces

an isomorphism

dJs,J ′
s
: HF ◦

Js(Σ,α,β) → HF
◦
J ′
s
(Σ′,α′,β′).

Since the maps dJs,J ′
s
commute with the isomorphisms ΦJs,Js

, these di�eomorphism
maps descend to a map d∗ on the direct limit HF ◦(Σ,α,β).

Lemma 9.21. The maps Ψα
β→β′ commute with the di�eomorphism maps d∗ de�ned

above. More precisely, suppose that (Σ,α,β,β′) is an admissible triple, let d : Σ → Σ
be a di�eomorphism, and write α = d(α), β = d(β), and β′ = d(β′). Then we have
a commutative rectangle

HF
◦(Σ,α,β)

Ψα
β→β′

//

d∗
��

HF
◦(Σ,α,β′)

d∗
��

HF
◦
(
Σ,α,β

) Ψα

β→β′

// HF ◦
(
Σ,α,β′

)
.

An analogous result holds for the maps Ψα→α′

β .

Proof. If we choose corresponding complex structures and perturbations for Σ and
Σ, the statement becomes a tautology. Indeed, Symk(d) is a symplectomorphism
between Symk(Σ) and Symk(Σ) that takes the Lagrangian triple (Tα,Tβ,Tβ′) to the
triple (Tα,Tβ,Tβ′), and matches up the complex structures and perturbations. Hence

the triangle maps Ψα
β→β′ and Ψα

β→β′
are conjugate along d∗. �

It follows from Lemma 9.21 that the di�eomorphism maps and the canonical iso-
morphisms Φα→α′

β→β′ for admissible diagrams (Σ,α,β) and (Σ,α′,β′) such that α ∼ α′

and β ∼ β′ also commute, as Φα→α′

β→β′ can be written as a composition of triangle

maps. Hence, if H and H ′ are isotopy diagrams and d : H → H ′ is a di�eomorphism,
then d descents to a map of direct limits

d∗ : HF
◦(H) → HF

◦(H ′).

Finally, we de�ne maps induced by stabilizations. We proceed as Ozsváth and
Szabó [16, Section 10], [17, p. 346]. Suppose that H′ = (Σ′,α′,β′) is a stabilization of
the admissible diagram H = (Σ,α,β). Then, for suitable almost-complex structures,
there is an isomorphism of chain complexes

σH→H′ : CF ◦(Σ,α,β) → CF
◦(Σ′,α′,β′),

as de�ned by Ozsváth and Szabó [16, Theorem 10.1]. If α′ = α∪ {α}, β′ = β ∪ {β},
and α∩ β = {c}, then σH→H′ maps the generator x ∈ Tα ∩Tβ to x×{c} ∈ Tα′ ∩Tβ′ .
This induces an isomorphism on homology.
Before stating the next lemma, we introduce some notation. If H1 = (Σ,α1,β1)

and H2 = (Σ,α2,β2) are admissible diagrams such that α1 ∼ α2 and β1 ∼ β2, then
we denote Φα1→α2

β1→β2
by ΦH1→H2 .
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Lemma 9.22. The stabilization maps σH→H′ commute with the maps ΦH1→H2, in
the following sense: Let H1 = (Σ,α1,β1) and H2 = (Σ,α2,β2) be two admissible
Heegaard diagrams such that α1 ∼ α2 and β1 ∼ β2. If H′

1 = (Σ′,α′
1,β

′
1) and H′

2 =
(Σ′,α′

2,β
′
2) are stabilizations of H1 and H2, respectively, then α′

1 ∼ α′
2, β

′
1 ∼ β′

2,
and

σH2→H′
2
◦ ΦH1→H2 = ΦH′

1→H′
2
◦ σH1→H′

1
.

Proof. This is veri�ed in [17, Lemma 2.15]. Note that the continuation maps in that
proof agree with our triangle maps by Lemma 9.5. �

De�nition 9.23. Given isotopy diagrams H and H ′ such that H ′ is a stabilization
of H, we de�ne an isomorphism

σH→H′ : HF ◦(H) → HF
◦(H ′)

as follows. By de�nition, there are diagrams H and H′ representing H and H ′,
respectively, such that H′ is a stabilization of H. There are canonical isomorphisms
iH : HF ◦(H) → HF

◦(H) and iH′ : HF ◦(H′) → HF
◦(H ′) coming from the direct limit

construction. We de�ne dH→H′ as iH′ ◦ σH→H′ ◦ i−1
H . This is independent of the

choice of H and H′ by Lemma 9.22, together with the observation that for any two
diagrams H1 and H2 representing the same isotopy diagram, i−1

H2
◦ iH1 = ΦH1→H2 . If

H ′ is obtained from H by a destabilization, then we set σH→H′ = (σH′→H)
−1.

Having constructed HF
◦(H) for any isotopy diagram H (in the class of diagrams

for which HF
◦(H) is de�ned), and isomorphisms induced by α-equivalences, β-equiv-

alences, di�eomorphisms, stabilizations, and destabilizations, we have proved that
HF

◦ is a weak Heegaard invariant. This reproves Theorem 2.27, Theorem 2.28, and
Theorem 2.29. However, note that we have already used the invariance of Heegaard
Floer homology up to isotopy for the manifolds M(R+, k) in the proof of Lemma 9.2,
where we constructed the element Θβ,γ for β ∼ γ. We could have avoided this by
imitating the invariance proof of Ozsváth and Szabó [16], at the price of making the
discussion longer.
Recall that at the end of Section 2.5, we indicated the necessary checks for obtaining

the Spinc-re�nement. If H is an admissible diagram of the balanced sutured manifold
(M, γ) and s ∈ Spinc(M, γ), then CF

◦(Σ,α,β, s) is generated by those x ∈ Tα ∩ Tβ

for which s(M,γ)(x) = s. It follows from the work of Ozsváth and Szabó [16] that

the Spinc-grading is preserved by the isomorphisms ΦJs→J ′
s
, the triangle maps Ψβ→β′

α

for β ∼ β′ and Ψα→α′

β for α ∼ α′, and the stabilization maps σH→H′ . Furthermore,
given a diagram H = (Σ,α,β) of (M, γ), a diagram H′ of (M ′, γ′), and a di�eo-
morphism d : (M, γ) → (M ′, γ′) mapping H to H′, it is straightforward to see that
d∗

(
s(M,g)(x)

)
= s(M ′,γ′)(d(x)) for every x ∈ Tα∩Tβ. In particular, if (M, γ) = (M ′, γ′)

and d is isotopic to the identity in (M, γ), then d∗ : Spinc(M, γ) → Spinc(M, γ) is the
identity. The existence of a Spinc-grading on HF

◦(M, γ) follows once we show that
HF

◦ is a strong Heegaard invariant.

9.2. Heegaard Floer homology as a strong Heegaard invariant. In this sec-
tion, we show that the invariant HF

◦ of isotopy diagrams, together with the maps
induced by α-equivalences, β-equivalences, di�eomorphisms, and (de)stabilizations,
satisfy the axioms of strong Heegaard invariants listed in De�nition 2.33. We post-
pone the veri�cation of axiom (4), handleswap invariance, to the following section.
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First, we prove that HF ◦ satis�es axiom (1), functoriality. The α-equivalence and
β-equivalence maps ΦA→A′

B and ΦA
B→B′ are functorial by equations (9.12) and (9.15).

Functoriality of the di�eomorphism maps d∗ follows immediately from the de�nition.
If H ′ is obtained from H by a stabilization, then the destabilization map σH′→H =
(σH→H′)−1, by de�nition.
Next, we consider axiom (2), commutativity. In De�nition 2.30, we de�ned �ve

di�erent types of distinguished rectangles of the form

H1
e //

f
��

H2

g

��
H3

h // H4,

where Hi = (Σi, [αi], [βi]). For a rectangle of type (1), commutativity follows from
equation (9.12). Lemma 9.22 implies commutativity along a rectangle of type (2).
Commutativity along a rectangle of type (3) follows from Lemma 9.21.
Now consider a rectangle of type (4). Then there are disjoint disks D1, D2 ⊂ Σ1

and punctured tori T1, T2 ⊂ Σ4 such that Σ1 \ (D1 ∪ D2) = Σ4 \ (T1 ∪ T2). Let
α4 ∩ β4 ∩ Ti = {ci} for i ∈ {1, 2}. Then there are representatives Hi = (Σi,αi,βi)
of the isotopy diagrams Hi for i ∈ { 1, . . . , 4 } such that α2 ∩ β2 ∩ T1 = {c1} and
α3 ∩ β3 ∩ T2 = {c2}, and the four diagrams coincide outside T1 and T2. Given a
generator x ∈ Tα1 ∩ Tβ1 ,

σH2→H4 ◦ σH1→H2(x) = x× {c1} × {c2} = x× {c2} × {c1} = σH3→H4 ◦ σH1→H3(x).

So the commutativity already holds on the chain level for an appropriate choice of
complex structures.
Finally, for a rectangle of type (5), we can choose representatives Hi = (Σi,αi,βi)

ofHi such thatH2 is a stabilization ofH1 andH4 is a stabilization ofH3; furthermore,
f(H1) = H3 and g(H2) = H4. This is possible since for the stabilization disks D ⊂ Σ1

and D′ ⊂ Σ3 and punctured tori T ⊂ Σ2 and T ′ ⊂ Σ4, the di�eomorphisms satisfy
f(D) = D′, g(T ) = T ′, and f |Σ1\D = g|Σ2\T . In particular, if α2 ∩ β2 ∩ T = {c} and
α4 ∩ β4 ∩ T

′ = {c′}, then g(c) = c′. With these choices, for x ∈ Tα1 ∩ Tβ1 , we have

g∗ ◦ σH1→H2(x) = g(x× {c}) = g(x)× {g(c)} = f(x)× {c′} = σH3→H4 ◦ f∗.

So we have commutativity on the chain level for an appropriate choice of complex
structures.
Finally, we verify axiom (3), continuity. This follows from the following result.

Proposition 9.24. Let (Σ,α,β) be an admissible diagram. Suppose that d : Σ → Σ
is a di�eomorphism isotopic to IdΣ, and let α′ = d(α) and β′ = d(β). Then

d∗ = Φα→α′

β→β′ : HF ◦(Σ,α,β) → HF
◦(Σ,α′,β′).

Proof. Since d : Σ → Σ is isotopic to the identity, there are diagrams Hi = (Σ,αi,βi)
for i ∈ { 0, . . . , n } and small di�eomorphisms di : Hi−1 → Hi for i ∈ { 1, . . . , n }, such
that

• H0 = (Σ,α,β) and Hn = (Σ,α′,β′),
• every di is isotopic to IdΣ,
• d = dn ◦ · · · ◦ d1,
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Figure 56. A schematic picture illustrating that a small di�eomor-
phism coincides with the composition of two triangle maps.

• |α ∩ di(α)| = 2 for every α ∈ αi−1, and
• |β ∩ di(β)| = 2 for every β ∈ βi−1.

By equation (9.12) and the functoriality of the di�eomorphism maps, it su�ces to
prove the statement for each di. So suppose that d : (Σ,α,β) → (Σ,α′,β′) is a small
di�eomorphism such that |α∩d(α)| = 2 and |β∩d(β)| = 2 for every α ∈ α and β ∈ β.
By a result of Ozsváth and Szabó [16, Proposition 9.8], the diagrams (Σ,α,β,β′) and
(Σ,α,α′,β′) are both admissible, and up to a chain homotopy equivalence, the maps
Ψα

β→β′ and Ψα→α′

β′ are given by taking x ∈ Tα ∩Tβ to the closest point x′ ∈ Tα ∩Tβ′

and y ∈ Tα ∩Tβ′ to the closest point y ∈ Tα′ ∩Tβ′ , respectively. However, d(x) = x
′

(cf. Figure 56), hence

d∗ = Ψα→α′

β′ ◦Ψα
β→β′ .

Since the triples (Σ,α,α′,β′) and (Σ,α,β,β′) are admissible, the right-hand side
coincides with Φα→α′

β′ ◦ Φα
β→β′ = Φα→α′

β→β′ . �

9.3. Handleswap invariance of Heegaard Floer homology. The arguments in
this section are due to Peter Ozsváth. Let

H1

e

!!
H3

g

OO

H2
f

oo

be a simple handleswap, as in De�nition 2.32, and pick representatives Hi = (Σ,αi,
βi) for the isotopy diagramsHi such that inside a punctured genus two subsurface P ⊂
Σ they are conjugate to the diagrams in Figure 4. In particular, α2 is obtained from
α1 by handlesliding α2 ∈ α1 over α1 ∈ α1 giving α′

2, while β2 = β1. Furthermore,
β3 is obtained from β2 by handlesliding β2 ∈ β2 over β1 ∈ β2 giving β′

2, while
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α3 = α2. The arrow g corresponds to a di�eomorphism H3 → H1. For simplicity,
we are going to write α for α1, α

′ for α2 = α3, β for β1 = β2, and β′ for β3. So
H1 = (Σ, [α], [β]), H2 = (Σ, [α′], [β]), and H3 = (Σ, [α′], [β′]). Note that the inverse
of the arrow f corresponds to sliding β′

2 over β1, giving β2.

Proposition 9.25. Let H1, H2, and H3 be related by a simple handleswap, so we
have two handleslide maps

Φα = Φα→α′

β : HF ◦(H1) → HF
◦(H2), and

Φβ = Φα′

β′→β : HF
◦(H3) → HF

◦(H2).

Then

Φα = Φβ ◦ g
−1
∗ .

Before proving Proposition 9.25, we introduce some notation and prove two lemmas.
A simple handleswap decomposes as a connected sum along ∂P in the following sense.
Let Σ0 be the genus two surface obtained from P by attaching a disk D0 along its
boundary, and let Σ1 be the surface obtained from Σ \ Int(P ) by gluing a disk D1

along its boundary. By construction, Σ is the connected sum Σ0#Σ1, taken along D0

and D1. Observe that in each Hi, none of the α- or β-curves intersects ∂P . Inside Σ
0,

the restrictions of the diagrams H1, H2, and H3 give a �model� simple handleswap,
while in Σ1 the restrictions of the diagrams H1, H2, and H3 coincide.
To compute the handleslide map Φα, we have to specify a Heegaard triple diagram

(Σ,γ,α,β) and count rigid pseudo-holomorphic triangles. The attaching set γ is
obtained from α′ by replacing every α′ ∈ α′ by a small exact Hamiltonian translate γ
such that |α′ ∩ γ| = 2; and if γ2 is the curve obtained from α′

2, then |α2 ∩ γ2| = 2. We
can decompose (Σ,γ,α,β) as a connected sum

(Σ0,γ0,α0,β0) # (Σ1,γ1,α1,β1),

taken along D0 and D1. The summand (Σ0,γ0,α0,β0) is illustrated in Figure 57,
and has the following properties:

• The Heegaard diagram (Σ0,α0,β0) represents S3; indeed, there is a unique
generator xab for Tα ∩ Tβ.

• The Heegaard diagram (Σ0,γ0,β0) also represents S3, and there is a unique
generator xcb for Tγ ∩ Tβ.

• The Heegaard diagram (Σ0,γ0,α0) represents (S1×S2)#(S1×S2), and there
are four generators in Tγ ∩ Tα. Let xca be the top-graded generator.

By construction, (Σ1,γ1,α1) represents the connected sum of a product sutured
manifold (R×I, ∂R×I) with #d−2(S1×S2), where R is Σ1 compressed along α1 and
d = |α|. The hypotheses on α and γ ensure that (Σ1,γ1,α1) is a weakly admissible
diagram, and CF

◦(Σ1,γ1,α1) has minimal rank. In particular, there is a unique
generator Θ ∈ Tγ1 ∩Tα1 that represents the top-graded Heegaard Floer homology for
(R× I, ∂R× I) #

(
#d−2(S1 × S2)

)
.

To understand holomorphic triangles in (Σ,γ,α,β), we must �rst describe some
triangles in the model diagram (Σ0,γ0,α0,β0). To this end, we prove the following.

Lemma 9.26. Consider the model diagram (Σ0,γ0,α0,β0, p0), where p0 ∈ D0 is an
arbitrary basepoint, and let xca ∈ Tγ ∩ Tα, xab ∈ Tα ∩ Tβ, and xcb ∈ Tγ ∩ Tβ be the
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Figure 57. The triple diagram (Σ0,γ0,α0,β0) associated to
Φα in a model simple handleswap in a genus two Heegaard
surface. This Heegaard triple illustrates the handleslide of α2 over α1

to arrive at {γ1, γ2}. The preferred generator xca ∈ Tγ∩Tα is indicated
by the gray circles; the unique generator xab ∈ Tα ∩ Tβ is indicated
by the black circles; the unique generator xcb ∈ Tγ ∩ Tβ is indicated
by the white circles. The preferred triangle ψ0 ∈ π2(xca,xab,xcb) from
Lemma 9.26 is shaded.

generators from above. Then, for any ψ ∈ π2(xca,xab,xcb),

(9.27) µ(ψ) = 2np0(ψ).

Moreover, there is a unique ψ0 ∈ π2(xca,xab,xcb) with µ(ψ0) = 0 and #M(ψ0) = 1.

Proof. The model element ψ0 ∈ π2(xca,xab,xcb) is represented by a pair of embedded
triangles in the Heegaard diagram, as shown in Figure 57. The fact that this has
#M(ψ0) = 1 is clear. Any element ψ ∈ π2(xca,xab,xcb) can be written as

(9.28) ψ = ψ0 + n · [P ] + k · [Σ0],

where [P ] denotes the periodic domain between γ0 and α0 with np0(P) = 0. Addition
of [P ] leaves the Maslov index unchanged; addition of [Σ0] changes it by two. Similarly,
np0(P) = 0, while np0([Σ0]) = 1. Equation (9.27) now follows.

Finally, if µ(ψ) = 0, then it follows that k = 0 in Equation (9.28). Moreover, if
n 6= 0, then ψ has both positive and negative local multiplicities, so #M(ψ) = 0.
Thus, #M(ψ) 6= 0 forces ψ = ψ0. �

Next, we consider triangles coming from the Σ1-side. Since the γ1 approximate
the α1, we have a nearest point map

i : Tα1 ∩ Tβ1 → Tγ1 ∩ Tβ1 .

There is also a canonical Maslov index zero homotopy class ψ
x
∈ π2(Θ,x, i(x)) for

every x ∈ Tα1 ∩ Tβ1 . The following result is standard (cf. [16, Proposition 9.8]).
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Lemma 9.29. Let (Σ1,γ1,α1,β1) be a sutured triple diagram, where γ1 is a small
exact Hamiltonian translate of α1 so that each γ ∈ γ1 intersects the correspond-
ing α ∈ α1 exactly twice, and let Θ denote the canonical top-graded generator of
CF

◦(Σ1,γ1,α1). If γ1 is su�ciently close to α1, then for every homotopy class
ψ ∈ π2(Θ,x,y),

#M(ψ) =

{
1 if y = i(x) and ψ = ψ

x
,

0 otherwise.

Proof. Consider a family of approximations γ1
t to α1, indexed by t ∈ R, such that

limt→0 γ
1
t = α1. Let θt ∈ Tγ1

t
∩ Tα1 be the top-graded generator, let

it : Tα1 ∩ Tβ1 → Tγ1
t
∩ Tβ1

be the nearest point map, and denote by ψt
x
the canonical Maslov index zero class

in π2(θt,x, it(x)). It is straightforward to see that #M(ψt
x
) = 1 for t small. For

all su�ciently small t > 0, the combinatorics of the Heegaard triple (Σ1,γ1
t ,α

1,β1)
stabilizes; i.e., any y ∈ Tγ1

t
∩ Tβ1 has the form y = it(z) for some z ∈ Tα1 ∩ Tβ1 ,

and we have a canonical identi�cation π2(Θ,x, it1(z))
∼= π2(Θ,x, it2(z)), provided t1

and t2 are su�ciently small. Suppose that #M(ψt) 6= 0 for su�ciently small t and
ψt ∈ π2(θt,x,y). Then taking a subsequence, we can extract a weak limit converging
locally to a curve u ∈ π2(x,y) with µ(u) ≤ 0. By transversality, it follows that x = y

and u is a constant curve. (In general, the ut might converge to a possibly broken
�owline connecting x to y, as t → 0. But again, the Maslov index rules out the
possibility that the �owline is broken.) Thus, we conclude that ψt had to coincide
with the homotopy class ψt

x
, as claimed. �

Proof of Proposition 9.25. We �rst compute Φα. Fix ψ ∈ π2(xca #Θ,xab # x1,xcb #
y1). We can decompose this into two domains, ψ0 ∈ π2(xca,xab,xcb) and ψ1 ∈
π2(Θ,x1,y1), such that they satisfy np0(ψ0) = np1(ψ1) = k, where p1 ∈ D1 is an
arbitrary point. In this case, we write ψ = ψ0 # ψ1. By the Maslov index formula of
Lipshitz [12, Corollary 4.10], we have

µ(ψ0 # ψ1) = µ(ψ0) + µ(ψ1)− 2k.

Suppose now that ψ = ψ0 # ψ1 has µ(ψ) = 0, and it also has a holomorphic rep-
resentative for all neck lengths T , as we stretch T → ∞. Then, we can pass to
a subsequence and extract a pair of holomorphic curves u0 representing ψ0 and u1
representing ψ1. Combining

(9.30) 0 = µ(ψ0) + µ(ψ1)− 2k

with Lemma 9.26 (which states that µ(ψ0) = 2np0(ψ0) = 2k), we conclude that
µ(ψ1) = 0. By Lemma 9.29, we have np1(ψ1) = 0. Since np1(ψ1) = np0(ψ0) = k, we
see that µ(ψ0) = 0, as well. Moreover, ψ0 and ψ1 are triangles which do not interact
with one another, hence M(ψ) = M(ψ0)×M(ψ1).
Now by Lemma 9.29, if this moduli space is non-trivial, then ψ1 is a canonical small

triangle in π2(Θ,x1, i(x1)). Similarly, by Lemma 9.26, in this case there is a unique
possibility for ψ0. We conclude that the triangle map Φα for the α-handleslide e is
given by

xab × x1 7→ xcb × i(x1).
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An analogous argument shows that for the β-handleslide f−1, the map Φβ is given
using a triple diagram (Σ,α′,β′, δ) by

g−1(xab × x1) = xa′b′ × x1 7→ xa′d × i′(x1),

where δ is a small Hamiltonian translate of β and xa′d is the corresponding unique
generator in Σ0 for (α′∩P, δ∩P ). Furthermore, i′ is the closest point map in (Σ1,β, δ),
and xa′b′ is the unique generator for (α′ ∩ P,β′ ∩ P ). The identi�cation between the
isotopic diagrams (Σ,γ,β) and (Σ,α′, δ) maps [xcb × i(x1)] to [xa′d × i′(x1)]. Hence
indeed Φα = Φβ ◦ g

−1
∗ . �

Appendix A. The 2-complex of handleslides

In this appendix, we sketch a description of strong Heegaard invariants for classical
(i.e., not sutured) single pointed Heegaard diagrams that is equivalent to De�ni-
tion 2.33, and instead of α-equivalences and β-equivalences, uses more elementary
moves: α-isotopies, β-isotopies, α-handleslides, and β-handleslides. The tradeo� is
that one has to check the commutativity of the invariant F along a larger number
of loops of diagrams. But we do have to impose less on F , and hence strengthen
Theorem 2.39. The main tool is a result of Wajnryb [24], who constructed a simply-
connected 2-complex whose vertices consist of cut-systems, and whose edges corre-
spond to changing just one circle in a cut system. We only sketch the proofs in this
appendix.

We start o� by looking at those moves that only involve α-circles or β-circles. For
these, it is enough to consider only one of the two handlebodies. In particular, we
show that any two cut-systems for a handlebody can be connected by a sequence of
handleslides. This is in fact a corollary of a result of Wajnryb [24]. To state his result,
let us �rst recall some de�nitions.

De�nition A.1. Let B be a handlebody of genus g and boundary Σ = ∂B. A
simple closed curve α ⊂ Σ is a meridian curve if it bounds a disk D in B such that
D ∩ Σ = ∂D = α. Then D is called a meridian disk. We also �x a �nite number of
disjoint distinguished disks on Σ and we shall assume that all isotopies of Σ are �xed
on the distinguished disks.

A cut-system on Σ is an isotopy class of an unordered collection of g disjoint
meridian curves α1, . . . , αg that are linearly independent in H1(Σ) and do not meet
the distinguished disks. We denote the cut-system by 〈α1, . . . , αg〉.

We say that two cut-systems are related by a simple move if they have g− 1 curves
in common and the other two curves are disjoint.

We construct a 2-dimensional complex X2(B). The vertices of X are the cut-
systems on Σ. Two cut-systems are connected by an edge if they are related by a
simple move; this gives the graph X1(B). If three vertices of X have g − 1 curves
in common and the three remaining curves, one from each cut-system, are pairwise
disjoint, then each pair of the vertices is connected by an edge in X and the vertices
form a triangle. We glue a face to every triangle in X1(B) and get a 2-dimensional
simplicial complex X2(B), called the cut-system complex of the handlebody B.

The following result is due to Wajnryb [24, Theorem 1].

Theorem A.2. The complex X2(B) is connected and simply-connected.
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For compatibility with the other moves we consider, we work instead with a 2-
complex whose edges are elementary handleslides. To describe the 2-cells, we need
another de�nition.

De�nition A.3. A handleslide loop is one of the following sequences of cut-systems
connected by handleslides.

(1) A slide triangle, formed by 〈α1, α2, ~α〉, 〈α2, α3, ~α〉, and 〈α3, α1, ~α〉, where α1,
α2, and α3 bound a pair-of-pants.

(2) A commuting slide square, involving four distinct α-curves, as in the link of a
singularity of type (A1a).

(3) A square formed by sliding α1 over α2 and/or α3, as in case (A1b).
(4) A square formed by sliding α1 and/or α2 over α3, with α2 and α3 sliding over

α3 from opposite sides, as in case (A1c).
(5) A square formed by sliding α1 over α2 in two di�erent ways, approaching α2

from opposite sides, as in case (A1d).
(6) A pentagon formed by sliding α1 over α2, which is itself sliding over α3, as in

case (A2).

Now suppose that there is exacly one distinguished disk on Σ = ∂B. Then let Y2(B)
be the 2-complex whose vertices are cut-systems on B, its edges correspond to han-
dleslides avoiding the distinguished disk, and its 2-cells correspond to the handleslide
loops of De�nition A.3.

Proposition A.4. The complex Y2(B) is connected.

Proof. To prove connectivity, it su�ces to show that the endpoints of each edge in
X1(B) can be connected by a path lying in the 1-skeleton Y1(B) of Y2(B). Suppose
we have an edge in X1(B) connecting 〈α0, ~α〉 and 〈α1, ~α〉. Then α0 and α1 do not
intersect. The combined set of circles 〈α0, α1, ~α〉 by hypothesis cuts ∂B into two
components, exactly one of which does not contain the distinguished disk; call this
component F . Both α0 and α1 necessarily appear in ∂F . We can get from 〈α0, ~α〉 to
〈α1, ~α〉 by sliding α0 over every component of ∂F \ (α0 ∪ α1). �

Proposition A.5. The complex Y2(B) is simply-connected.

Proof sketch. For simple connectivity, we �rst show that all the di�erent ways of
turning an edge of X1(B) into a path in Y1(B) are homotopic inside Y2(B). This can
be done (with some work) using handleslide loops of type (3). For a simple example,
see Figure 58.2

Next, we show that if we convert the edges e0, e1, and e2 of a triangle ∆ in X2(B)
into paths in Y1(B), we obtain a loop that is null-homotopic in Y2(B). Let vi be the
vertex of ∆ opposite the edge ei. We distinguish two cases:

• The same circle moves in all three edges of the triangle; i.e., the cut-system
vi = 〈αi, ~α〉 for i ∈ Z3.

• Two circles are involved; i.e., the cut-system vi = 〈αi−1, αi+1, ~α〉 for every
i ∈ Z3, where i+ 1 and i− 1 are to be considered modulo 3.

2To properly do this, note that a minimal path in Y1(B) corresponding to an edge in X1(B) gives
a pants decomposition of a subsurface of ∂B. To show that two such paths are homotopic in Y2(B),
it su�ces to show connectivity of a suitable variant of the pants complex.
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Figure 58. A simple example of a homotopy in Y2(B) connecting
two di�erent resolutions of an edge of X1(B). The lower left and the
upper right cut-systems are the vertices of the edge of X1(B) we are
resolving. One resolution is shown in green, the other one in blue. We
show half of the component F whose boundary contains α0, α1, and no
basepoints. In this case, there are k = 3 other boundary components
of F . The surfaces shown should be doubled along the black boundary
to obtain F ; in this way the red arcs become red circles.

The �rst case is simple: we end up with a trivial loop even in Y1(B) for an appropriate
choice of resolutions. Indeed, for i ∈ Z3, let Fi be the component of the complement
of 〈αi−1, αi+1, ~α〉 that does not contain the distinguished disk. Then Fi = Fi−1 ∪Fi+1

for some i ∈ Z3. We �rst convert ei−1 and ei+1 to paths γi−1 and γi+1 in Y1(B) using
the procedure above, then we choose γi to be γ−1

i+1γ
−1
i−1. By the �rst step, any two

choices for γi are homotopic, so we can pick this particular one.
In the second case, we get a component F with boundary containing α0, α1, and α2.

A handleslide loop connects 〈α0, α1, ~α〉, 〈α1, α2, ~α〉, and 〈α0, α2, ~α〉. If there are no
other components of ∂F , this is a slide triangle (a handleslide loop of type (1)).
Otherwise, if there are k other boundary components of ∂F , let α′

0 be the curve
obtained from α0 by sliding over one of the other k components. By induction, the
triangle connecting 〈α′

0, α1, ~α〉, 〈α1, α2, ~α〉, and 〈α′
0, α2, ~α〉 can be decomposed into

allowed two-cells. The remaining region (a quadrilateral with corners at 〈α′
0, α1, ~α〉,

〈α′
0, α2, ~α〉, 〈α0, α1, ~α〉, and 〈α0, α2, ~α〉) can be decomposed into k − 2 commuting

slide squares (type (2)) and one slide pentagon (type (6)). The entire large triangle
is decomposed into one slide triangle, k − 1 slide pentagons, and

(
k−1
2

)
commuting

slide squares. An example of the end result is shown in Figure 59. �

Let G ′ be the graph de�ned just like in De�nition 2.23, but with the word α/β-
equivalence replaced by α/β-handleslide. So the vertices of G ′ are isotopy diagrams,
and its edges correspond to handleslides, stabilizations, destabilizations, and di�eo-
morphisms. Since every handleslide is an α-equivalence or a β-equivalence, G ′ is a
subgraph of G.

Similarly, we can modify De�nition 2.25. If S is a set of di�eomorphism types of
sutured manifolds and C is a category, then G ′(S) is the full subgraph of G ′ spanned
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restricted to the subgraphs G ′
α(S) and G ′

β(S) is replaced by the requirement that F ′

commutes along handleslide loops.
Also note that in a stabilization slide, we subdivide the α- or β-equivalence into

two handleslides, so we view this as a loop of length four.

Proof sketch. To prove the �rst part, we only have to de�ne F (e) for the edges e
of G(S) that correspond to an α-equivalence or a β-equivalence. Without loss of
generality, suppose that e is an α-equivalence between the isotopy diagrams H =
(Σ,α,β) and H ′ = (Σ,α′,β). Let Σ be the surface obtained by attaching a disk
D to Σ along its boundary, this way we obtain two Heegaard diagrams H and H ′,
containing a distinguished disk D. Let Y be a 3-manifold containing both H and H ′

as Heegaard diagrams, and let B be the handlebody lying to the negative side of Σ.
By Proposition A.4, the complex Y2(B) is connected, so H and H ′ can be connected
by a path of handleslides h1, . . . , hk avoiding D. This gives rise to a sequence of
handleslides h1, . . . , hk connecting H and H ′. Then the isomorphism F (e) is de�ned
to be the composite F (hk) ◦ · · · ◦ F (h1).
Now we prove the second part. According to Proposition A.5, the complex Y2(B) is

simply connected. Together with the fact that F ′ commutes along every handleslide
loop (i.e., along the boundary of every face of Y2(B)), we see that the extension
of F ′ to an α- or β-equivalence edge e is independent of the choice of path h1, . . . , hk.
Functoriality of the restriction of F to Gα(S) and Gβ(S) is clear from the construction.
What remains to show is that F commutes along every distinguished rectangle of

type (1), (2), and (3) (cf. De�nition 2.30), with sides e, f , g, and h. First, con-
sider a rectangle of type (1). Write the α-equivalence e as a path of α-handleslides
h1, . . . , hk and the β-equivalence f as a path of β-handleslides h′1, . . . , h

′
l. Then we

can subdivide the big rectangle into a grid of smaller rectangles with sides hi and h
′
j

for i ∈ { 1, . . . , k } and j ∈ { 1, . . . , l }.
Given a rectangle of type (3), let h1, . . . , hk be the path of handleslides in the

resolution of the α- or β-equivalence e, and let d be the di�eomorphism corresponding
to f and g. Then we can subdivide the big rectangle into a row of smaller rectangles
with sides hi and d for i ∈ { 1, . . . , k }.
Finally, consider a rectangle of type (2). Then let h1, . . . , hk be the resolution of the

α or β-equivalence e on the destabilized side. Then, on the stabilized side h, we can
choose the stabilizations h′1, . . . , h

′
k of the above handleslides. However, the endpoint

of h′k might di�er from H4, the endpoint of h, by a sequence of handleslides over the
new α or β-curve appearing in the stabilization. We can correct this by attaching a
row of stabilization slides to the row of rectangles with horizontal sides hi and h

′
i. �
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