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ABSTRACT. We show that all flavors of Heegaard Floer homology, link Floer homol-
ogy, and sutured Floer homology are natural. That is, they assign concrete groups
to each based 3-manifold, based link, and balanced sutured manifold, respectively.
Furthermore, we functorially assign isomorphisms to (based) diffeomorphisms, and

show that this assignment is isotopy invariant.

The proof relies on finding a simple generating set for the fundamental group of
the “space of Heegaard diagrams,” and then showing that Heegaard Floer homology
has no monodromy around these generators. In fact, this allows us to give sufficient
conditions for an arbitrary invariant of multi-pointed Heegaard diagrams to descend

to a natural invariant of 3-manifolds, links, or sutured manifolds.
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1. INTRODUCTION

The Heegaard Floer homology groups, introduced by Ozsvath and Szabo [16], are
powerful invariants. They associate a (graded) abelian group to every 3-manifold,
knot, and sutured manifold. This group is initially well-defined only up to isomor-
phism, but in order to get more powerful invariants, one wants a naturally associated
group, not just a group up to isomorphism. We address that issue in this paper.

1.1. Motivation. To better understand what it means to have a naturally associated
group, we explain some of the naturality issues that arise in topology. Even though
the examples considered here are classical, they have strong analogies with the case
of Heegaard Floer homology. The reader familiar with naturality issues should skip
to Section 1.2 for the statement of our results.

When defining algebraic invariants in topology, it is essential to place them in a
functorial setting. For example, suppose we construct an algebraic invariant of topo-
logical spaces that depends on various choices, and hence only assigns an isomorphism
class of, say, groups to a space. We cannot talk about maps between isomorphism
classes of groups, or consider specific elements of an isomorphism class.

An early example of this phenomenon is provided by the fundamental group, which
depends on the choice of basepoint in an essential way. Indeed, given a space X
and basepoints p, ¢ € X, there is no “canonical” isomorphism between (X, p)
and 71(X, q); one has to specify a homotopy class of paths from p to ¢ first. (The
word “canonical” is often used in an imprecise way in the literature, we will spec-
ify its precise meaning later in this section.) It follows that m; can only be defined
functorially on the category of pointed topological spaces.

The naturality /functoriality issues that might arise are perfectly illustrated by sim-
plicial homology. First, one has to restrict to the category of triangulable spaces. Even
settling invariance up to isomorphism took several decades. The main question was
the following: Given triangulations 7" and T” of the space X, how do we compare the
groups H,(T) and H,(T")? The first attempts tried to proceed via the Hauptvermu-
tung: Do T and T" have isomorphic subdivisions? We now know this is false, but
even if it were true, it would not provide naturality as the choice of isomorphism is
not unique. The issue of invariance and naturality was settled by Alexander’s method

of simplicial approximation, which provides for any pair of triangulations 7" and T’
of X an isomorphism S(7,7"): H.(T) — H.(T"). So how do we get the group H.(X)
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out of this data? First, let us recall a definition due to Eilenberg and Steenrod
[6, Definition 6.1].

Definition 1.1. A transitive system of groups consists of
e a set M, and for every a € M, a group G,
e for every pair (o, 3) € M x M, an isomorphism 7§ : G, — Gg such that
(1) 7% = Idg, for every a € M,
(2) 7l oy =72 for every a, B, v € M.
A transitive system of groups gives rise to a single group G as follows: Let G be the
set of elements g € [],.,, Go for which 75 (g(a)) = g(B) for every a, B € M.

Remark 1.2. For every a € M, let po: [[,cp Ga — Go be the projection. Then
Polc: G — G, is an isomorphism. In fact, G is a universal object, obtained as a
limit along the directed graph on M where there is a unique edge from « to g for
every (a, B) € M x M. The assignment a — G, is a functor from M to the category
of groups, which is the diagram along which we take the limit. We could also have
taken the colimit, which is [[,.,, Ga/~, Where g, ~ gg for g, € G, and gz € Gp if
and only if 75(ga) = gs. The group structure on [[,.,, Go/~ is given by pointwise
multiplication of equivalence classes. Each embedding of G, into [], .\, Goa/~ is an
isomorphism. It is easy to check that this satisfies the universal property for a colimit.

We call the 7§ canonical isomorphisms. So, if we are constructing some algebraic
invariant, and have isomorphisms for any pair of choices, we only call these isomor-
phisms “canonical” if they satisfy properties (1) and (2) above. An instance of a
transitive system of groups is given by taking M to be the set of all triangulations
of a triangulable space X, and for any pair (T,7") € M x M, let nt, = B(T,T").
Another example of a transitive system is given in the case of Morse homology by
Schwarz [22, Section 4.1.3], where one needs to compare homology groups defined
using different Morse functions.

Classical homology was put in a functorial framework by the Eilenberg-Steenrod
axioms, whereas the gauge theoretic invariants of 3- and 4-manifolds are expected to
satisfy properties similar to the topological quantum field theory (TQFT) axioms of
Atiyah, called a “secondary TQFT.” Our motivating question is whether Heegaard
Floer homology fits into such a functorial picture. Heegaard Floer homology is a
package of invariants of 3- and 4-manifolds defined by Ozsvath and Szabo [16,17].
It follows from our work that each flavor of Heegaard Floer homology individually
satisfies the classical TQFT axioms, but it is important to note that the closed 4-
manifold invariant is obtained by mixing the various flavors, hence deviating from
Atiyah’s original description. -

In its simplest form, Heegaard Floer homology assigns an Abelian group HF(Y)
to a closed oriented 3-manifold Y, well-defined up to isomorphism. The construction
depends on a choice of Heegaard diagram for Y. Given two Hee/ga\ard diagr/ains H
and H' for Y, our goal is to construct a canonical isomorphism HF(H) — HF(H’)
such that the set of diagrams, together vilt\h these isomorphisms form a transitive
system of groups, yielding a single group HF(Y). We want to do this in a way that
every diffeomorphism d: Yy — Y] induces an isomorphism

d,: HF (Yy) — HF(Y}).
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For this (and also to get the canonical isomorphisms), one has to consider diagrams
embedded in Y, not only “abstract” ones. That is, we consider triples (3, o, 3)
where X is a subsurface of Y that split Y into two handlebodies, and o, 3 C X
are attaclirig sets for the two handlebodies. Then the main question is: How do we
compare HF for diagrams that are embedded in Y differently?

The Reidemeister-Singer theorem provides an analogue of the Hauptvermutung in
the case of Heegaard splittings: Any two Heegaard splittings of Y become isotopic
after stabilizations. However, this isotopy is far from being unique. In fact, the fun-
damental group m1(S(Y, X)) of the space of Heegaard splittings equivalent to (Y, )
is highly non-trivial. So we could have a loop of Heegaard diagrams { H,: ¢t € [0,1] }
of Y along which ﬁ(?—[t) has monodromy. Indeed, let us recall the following defini-
tion.

Definition 1.3. Let X C Y be a Heegaard surface. Then the Goeritz group of the
Heegaard splitting (Y, Y) is defined as

G(Y, %) = ker (MCG(Y,X) — MCG(Y)).

In other words, G(Y,X) consists of automorphisms d of (Y,X) (considered up to
isotopy preserving the splitting) such that d is isotopic to Idy if we are allowed to
move ..

According to Johnson and McCullough [9], there is a short exact sequence
1 - m(Diff(Y)) - m(S(YV, %)) - GV, %) — 1.

Let H = (X, «, 83, z) be a Heegaard diagram of Y. Ignoring basepoint issues, an
element of 71 (S(Y, X)) coming from m (Diff(Y)) acts trivially on the Heegaard Floer
homology EF(H) (as this is the action of idy, the endpoint of the loop), so this
descends to an action of G(Y,) on ﬁ(?—[) The 3-sphere has a unique genus g
Heegaard splitting for every g > 0. At the time of writing of this paper, it is un-
known whether G(S3, %) is finitely generated when the genus of 3 is greater than 2.
Understanding the group G(Y,X) for a general 3-manifold Y and splitting ¥ seems
even more difficult. So this path seems to lead to a dead end. Fortunately, Heegaard
Floer homology is invariant under stabilization, and the “fundamental group” of the
space of Heegaard diagrams modulo stabilizations is easier to understand, as we shall
see in this paper.

1.2. Statement of results. We prove that Heegaard Floer homology is an invariant
of based 3-manifolds in the following strong sense. (We ignore gradings and Spin®-
structures for the moment.)

Definition 1.4. Let Man be the category whose objects are closed, connected, ori-
ented 3-manifolds, and whose morphisms are diffeomorphisms. Let Man, be the
category whose objects are pairs (Y, p), where Y € |[Man| and p € Y is a choice of
basepoint, and whose morphisms are basepoint-preserving diffeomorphisms.

Also, let R-Mod be the category of R-modules for any ring R, and let k-Vect be
the category of vector spaces over k for any field k.

Recall that Ozsvath and Szab6 defined four different flavors of Heegaard Floer
homology, named HF, HF~, HF", and HF*. We will write HF without decoration
to mean any of these four variants.
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Theorem 1.5. There are functors
HF, HF~, HF", HF™: Man, — F,[U]-Mod,

such that for a based 3-manifold (Y,p), the groups HF(Y,p) are isomorphic to the
various versions of Heegaard Floer homology defined by Ozsvdth and Szabs [15, 16].
Furthermore, isotopic diffeomorphisms induce identical maps on HF'.

Ozsvath and Szabo [15, 16] showed that the isomorphism class of HF(Y') is an
invariant of the 3-manifold Y. The statement in Theorem 1.5 is stronger, in that it
says that HF(Y,p) is actually a well-defined group, not just an isomorphism class
of groups. The first step towards naturality was made by Ozsvath and Szabo [17,
Theorem 2.1], who constructed maps ¥ between HF (X, o, 3) and HF (X, o/, 3') for a
fixed Heegaard surface 3 and equivalent “abstract” diagrams (2, o, 3) and (X, o/, 3').
Furthermore, they also defined maps for stabilizations. In the present paper, we
explain how to canonically compare invariants of diagrams with different embeddings
in Y. We also prove that the maps ¥ are isomorphisms and they satisfy conditions (1)
and (2) of Definition 1.1. As it turns out, the additional checks are the following:
One has to show that the isomorphisms ¥ are indeed canonical in the sense explained
above, prove HF has no monodromy around the simple handleswap loop of Figure 4,
and show that the map on HF induced by a diffeomorphism d: (3, o, B) — (X, a/, 3)
isotopic to Idy agrees with the canonical isomorphism W.

One surprise in Theorem 1.5/isz\the appearance of the basepoint. Indeed, we believe
that Theorem 1.5 is false for HF without the basepoint. To make this precise, we
look at the mapping class group.

Definition 1.6. For a smooth manifold M, its mapping class group is
MCG(M) = Diff(M)/ Diffo(M) = mo(Diff (M)),

where Diff (M) is the group of diffeomorphisms of X, and Diffy(M) is the subgroup
of diffeomorphisms isotopic to the identity, which is also the connected component
of the identity in Diff(M). Similarly, for a based smooth manifold (M, p), its based
mapping class group is

where we consider maps that preserve the basepoint.

Corollary 1.7. For a based 3-manifold (Y,p), the group MCG(Y,p) acts naturally
on HF(Y,p) for any of the four variants of Heegaard Floer homology.

Proof. This follows immediately from Theorem 1.5 when restricted to automorphisms
of (Y, p). O

It is easy to construct examples where the action of the mapping class group is non-
trivial. For instance, for a 3-manifold manifold Y, the evident diffeomorphism that
exchanges the two factors of Y #Y (preserving a basepoint) will act via z@y — yQux
on ?[F(Y#Y) = ﬁ(Y)@ﬁ(Y), which is non-trivial if Y is sufficiently complicated.

Recall that, from the fibration Diff(Y,p) — Diff(Y) — Y, there is a Birman exact
sequence for based mapping class groups for any connected manifold Y

m(Y) — MCG(Y,p) — MCG(Y) — 0.
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Thus, from an action of MCG(Y,p) on HF, we get an action of m(Y) on HF; this
action of m1(Y) is trivial if the action descends to an action of the unbased mapping
class group MCG(Y'). We do not expect this action of m(Y) to always be trivial.
However, it appears to factor through an action of H(Y).

For the other three variants, HF~ (Y, p), HF*(Y,p), and HF>(Y,p), we do expect
the action of 7 (Y") on HF to be trivial, in analogy with the situation for monopole
Floer homology [11]. We will address the question of dependence of HF' on the
basepoint in a separate paper.

There is also a version of Theorem 1.5 for links. Let Link be the category of
oriented links in S3, whose morphisms are orientation preserving diffeomorphisms
d: (83, L;) — (83 Ly). Let Link, be the category whose objects are based oriented
links: pairs (L,p), where L C S% is an oriented link and p = {py,...,pn} C L
is a set of basepoints, exactly one on each component of L. The morphisms are
diffeomorphisms of S? preserving the based oriented link.

Theorem 1.8. There are functors
HFL: Link, — F,-Vect,
HFL™: Link, — F5[U]-Mod,

agreeing up to isomorphism with the link invariants defined by Ozsvdth-Szabd and
Rasmussen [14, 18, 20]. Isotopic diffeomorphisms induce identical maps on HFL.

As in Corollary 1.7, Theorem 1.8 implies that MCG(S®, L, p) acts on HFL(L,p).
Again, one can ask whether this action is non-trivial, and in particular, whether the
basepoint makes a difference. For simplicity, consider the case of knots, in which case
there is an exact sequence

71 (SY) = MCG(S® K,p) — MCG(S? K) — 0.

In this context, Sarkar [21] has constructed many examples where the action of 71 (S!)
on HFK (K, p) is non-trivial. More concretely, let 0 € MCG(S?, K, p) be the positive
finger move (or Dehn twist) along K, defined on page 4 of |21]. Then it follows

from |21, Theorem 6.1| that the action of o on ﬁF\L(Y, K, p) for prime knots up to 9
crossings is non-trivial more often than not.

There are several variants of Theorem 1.8. For instance, Ozsvath and Szabo |18,
Theorem 4.7| have defined the group HFK (Y, K,p) for K C Y a rationally null-
homologous knot, or HFL™ (Y, L, p) for Y an integer homology sphere. There is also
more structure that can be put on the result. In particular, there is a spectral sequence
from HFK™ (Y, K, p) converging to HF ™ (Y'). These invariants are again functorial.

We will unify the proofs of Theorems 1.5 and 1.8 in the more general setting
of balanced sutured manifolds. Let Sut be the category of sutured 3-manifolds and
diffeomorphisms, and let Suty,, be the full subcategory of balanced sutured manifolds.
(For definitions and details, see Definitions 2.1 and 2.26 below.)

Theorem 1.9. There is a functor
SFH : Sutbal — ]F'Q—Vect,

agreeing up to isomorphism with the sutured manifold invariant defined by the first
author [10]. Isotopic diffeomorphisms induce identical maps on SFH.
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All Heegaard Floer homology groups discussed above decompose along Spin® struc-
tures, for example,

SFH(M,y)= @5 SFH(M,~,s).

s€Spin®(M,y)

In addition, each summand SFH(M,~,s) carries a relative homological Zy()-grading,
where 0(s) is the divisibility of the Chern class ¢;(s) € H*(M). So for any z, y €
SFH(M,,s), the grading difference gr(z,y) is an element of Zy).

These gradings are natural in the following sense. Suppose that d: (M,~) — (N,v)
is a diffeomorphism. Then the induced map d.: SFH(M,~) — SFH(N,v) restricts
to an isomorphism

d*|SFH(M,’y,5): SFH(M7/Y75> — SFH(N7 Vvd(ﬁ))

that preserves the relative homological grading. Completely analogous results hold
for the other versions of Heegaard Floer homology.

Now we outline the main technical tools behind the above results; for further details
we refer the reader to Section 2. To be able to treat the various versions of Heegaard
Floer homology simultaneously, we consider an arbitrary algebraic invariant F' of
abstract (i.e., not necessarily embedded) diagrams of sutured manifolds in a given
class (e.g., knot complements in case F' is knot Floer homology). An isotopy diagram
is a sutured diagram with attaching sets taken up to isotopy, we work with these to
avoid admissibility issues. Let G be the directed graph whose vertices are isotopy
diagrams, and we connect the vertices H and H' by an edge if either the a-curves
or the f-curves differ by a sequence of isotopies and handleslides (called an a- or
p-equivalence), or if H' is obtained from H by a stabilization or a destabilization,
and there is an edge for every diffeomorphism d: H — H'. We say that F is a weak
Heegaard invariant if for every edge e from H to H’ there is an induced isomorphism

F(e): F(H) — F(H).

A weak Heegaard invariant then gives rise to an invariant of sutured manifolds, well-
defined up to isomorphism.

To assign a concrete algebraic object to each sutured manifold in a given class, we
then define the notion of a strong Heegaard invariant. Such an F' has to commute
along certain distinguished loops in G. These loops include rectangles where opposite
edges are of the “same type,” and the aforementioned simple handleswap triangles
(involving an a-handleslide, a S-handleslide, and a diffeomorphism). Furthermore, a
strong Heegaard invariant has to satisfy the property that if e: H — H is a diffeo-
morphism isotopic to the identity of the Heegaard surface, then F'(e) = Idpm).

Given a sutured manifold (M, ) in the given class, we obtain the invariant F'(M,~)
as follows. We take the subgraph G ,) of G whose vertices are isotopy diagrams
embedded in (M, ), and where we only consider diffeomorphisms that are isotopic to
the identity in M. Then our main result is Theorem 2.39, which states that given any
two paths in Gy from H to H' and a strong Heegaard invariant F', the composition
of F'" along these paths coincide. The proof of this occupies most of the paper, and
relies on a careful analysis of the bifurcations occurring in generic 2-parameter families
of gradient vector fields on 3-manifolds. It easily follows that these compositions give
a canonical isomorphism F(H) — F(H'), and we obtain F'(M,~) via Definition 1.1.
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Potential applications of naturality include for example the possibility of distin-
guishing many more contact structures on a given 3-manifold Y by being able to tell
their contact elements apart in HF(Y). Another consequence is that we can now de-
fine maps on Heegaard Floer homology induced by diffeomorphisms and cobordisms.
The paper might also be of interest to 3-manifold topologists, as it sheds more light
on the space of Heegaard splittings and diagrams, potentially telling more about the
structure of the Goeritz group.

1.3. Acknowledgements. We are extremely grateful to Peter Ozsvath for numerous
helpful conversations, and for proving that Heegaard Floer homology is invariant
under simple handleswaps (Proposition 9.25). We would also like to thank Valentin
Afraimovich, Ryan Budney, Boris Hasselblatt, Matthew Hedden, Michael Hutchings,
Martin Hyland, Jesse Johnson, Robert Lipshitz, Saul Schleimer, and Zoltan Szabo
for their guidance and suggestions.

This project would not have been possible without the hospitality of the Tambara
Institute of Mathematical Sciences and the Mathematical Sciences Research Institute.
Most of the work was carried out while the first author was at the University of
Cambridge and the second author was at Barnard College, Columbia University.

2. HEEGAARD INVARIANTS

2.1. Sutured manifolds. Sutured manifolds were originally introduced by Gabai [7].
The following definition is slightly less general, in that it excludes toroidal sutures.

Definition 2.1. A sutured manifold (M,~) is a compact oriented 3-manifold M with
boundary, together with a set v C dM of pairwise disjoint annuli. Furthermore,
the interior of each component of v contains a suture; i.e., a homologically nontrivial
oriented simple closed curve. We denote the union of the sutures by s(7). In addition,
every component of R(y) = OM \ Int(y) is oriented. Define R, (v) (respectively
R_(7)) to be those components of OM \ Int(y) whose orientations agree (respectively
disagree) with the orientation of M, or equivalently, whose normal vectors point out
of (respectively in to) M. The orientation on R(7y) must be coherent with respect to
s(7); i.e., if 0 is a component of OR() and is given the boundary orientation, then §
must represent the same homology class in H;(y) as some suture.

A sutured manifold (M, ) is called proper if the map my(y) — mo(OM) is surjective
and M has no closed components (i.e., the map my(OM) — mo(M) is surjective).

Convention 2.2. In this paper, we will assume that all sutured manifolds are proper,
in addition to not having any toroidal sutures.

To see the connection between sutured manifolds and closed 3-manifolds, observe
that if (M,~) is a sutured manifold such that dM is a sphere with a single suture
(dividing OM into two disks), then the quotient of M where 0M is identified with a
point is a closed 3-manifold with a distinguished basepoint given by the equivalence
class of OM. For the other direction, we introduce the following definitions.

Definition 2.3. Suppose that M is a smooth manifold, and let L C M be a properly
embedded submanifold. For each point p € L, let N,L = T,M/T,L be the fibre of
the normal bundle of L over p, and let UN,L = (N,L \ {0})/R. be the fibre of the
unit normal bundle of L over p. Then the (spherical) blowup of M along L, denoted
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FIGURE 1. The sutured manifolds Y (p, V) and Y (K, p, q).

by Bl (M), is a manifold with boundary obtained from M by replacing each point
p € L by UN,(L). There is a natural projection Bl,(A) — M. For further details,
see Arone and Kankaanrinta |3].

For instance, if L. C M is a submanifold of codimension 1, then Bl (M) is the usual
operation of cutting M open along L.

Definition 2.4. Let Y be a closed, connected, oriented 3-manifold, together with a
basepoint p and an oriented tangent 2-plane V' < T,M. Then Y (p, V) = (M, ) is the
sutured manifold with M = BL,(Y) and suture s(y) = (V' \ {0})/R, in the resulting
S? boundary component of M. See the left-hand side of Figure 1. We orient s(y) such
that if we lift it to V', then the lift goes around the origin in the positive direction.

There is a similar construction for links, as well.

Definition 2.5. Let (Y, K,p,q) be an oriented knot with two basepoints. Then
Y (K,p,q) = (M,~) is the sutured manifold with M = Bl (Y) and s(vy) = UN,K U
UN,K, sitting inside the torus OM, as on the right-hand side of Figure 1. The
orientation of K induces an orientation of NK. We orient UN,K coherently with
N, K, while UN,K is oriented incoherently with N K.

Similarly, if (Y, L, p,q) is a based oriented link with exactly one p and one ¢ base-
point on each component of L, then we define Y(L, p,q) to be the sutured manifold
(M,~) with M = Bl,(Y) and sutures obtained for each component of L as above.

2.2. Sutured diagrams. With these examples in mind, we turn to definitions for
sutured Heegaard diagrams. Since in this paper we need to be careful about naturality
of the constructions, we are careful in our definitions, distinguishing, for instance,
between attaching sets and isotopy classes of attaching sets.

Definition 2.6. Let X be a compact oriented surface with boundary. An attaching set
in ¥ is a one-dimensional smooth submanifold § C Int(X) such that each component
of ¥\ & contains at least one component of 0¥. We will denote the isotopy class of
d by [d].

Definition 2.7. The sutured manifold (M, ) is a sutured compression body if there
is an attaching set d C Ry () such that if we compress R, () inside M along all the
components of §, we get a surface that is isotopic to R4 (7) relative to 7. We call §
an attaching set for (M, ).
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FIGURE 2. Handelsliding the curve d; over d, along the arc a gives 07.

Definition 2.8. Given an attaching set § in X, let C(8) = (M, ) be the sutured
compression body obtained by taking M to be X x [0, 1] and attaching 3-dimensional
2-handles along § x {1}, while v = 9% x [0, 1]. In addition, let C_(8) = R_(M,~) =
¥ x {0} and

C1(0) = R (M,~) = 0C(8) \ Int (C_(d) U~y).

If 6 and & are both attaching sets in 3, then we say they are compression equivalent,
and we write § ~ &', if there is a diffeomorphism d: C(8) — C(8') such that d|c_s)
is the identity. This is an equivalence relation that descends to the isotopy classes of
attaching sets. So we will write [8] ~ [§'] if § ~ §'.

Observe that x(Cy(d)) = x(C_(8)) + 2|8|. So § ~ &' implies that |8 = |d|.

Lemma 2.9. Let § C X be an attaching set in a compact oriented surface with
boundary, and let C(8) = (M,~) be the corresponding sutured compression body.
Then my(M) = 0.

Proof. Consider the Mayer-Vietoris sequence for the pair (X x I, H), where H is the
union of the handles attached to ¥ x {1} along § x {1}:

0=Hy(E x 1)@ Hy(H) = Ho(M) = H(S x I)NH) % Hi (S x I) @ Hy(H).

Of course, H;(H) = 0 for i € {1,2}, and Hy(X x I) = 0 as X has no closed compo-
nents. Since 4 is an attaching set, the map mo(9%X) — mo(X \ d) is surjective, so the
components of § are linearly independent in H;(X) and so the map 7 is injective. It
follows that Ho(M) = 0. In particular, every smoothly embedded 2-sphere S in M
is null-homologous; i.e., there is a submanifold N of M such that ON = S. If we
attach 2-handles to M along the components of v, we obtain a compression body,
which embeds into a handlebody, and hence also into R3. In R?, the sphere S bounds
a ball, hence N is diffeomorphic to D3, and S is null-homotopic. 0

Definition 2.10. Let §; and d, be two disjoint simple closed curves in X, and fix an
embedded arc a from 9; to o, whose interior is disjoint from all the §; and from 9X.
Then a regular neighborhood of the graph ¢; Ua U d5 is a planar surface with three
boundary components: one is isotopic to d;, the other is isotopic to d5, and the third
is a new curve 07, which we call the curve obtained by handle-sliding 6, over o5 along
the arc a, see Figure 2.

Suppose § and &' are two systems of attaching circles. We say that § and &’ are
related by a handleslide if there are components ¢; and ds of § and a component &}
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of &' such that &, can be obtained by handle-sliding d; over d, along some arc, and
' = (6\61) U4 If D and D’ are isotopy classes of attaching sets, then they are
related by a handleslide if they have representatives § and &', respectively, such that
6 and &' are related by a handleslide.

Lemma 2.11. If § and &' are related by a handleslide, then § ~ &'. Conversely, if
8 ~ &, then [8] and [8'] are related by a sequence of handleslides.

Proof. The first part is immediate. For the second part, the proof of Bonahon [4,
Proposition B.1] for ordinary compression bodies can be adapted to this context. [

Remark 2.12. The proof of Juhész [10, Proposition 2.15] only gives a weaker result,
namely that if § ~ &', then the pairs (2, d) and (2, d") become diffeomorphic after a
sequence of isotopies and handleslides.

Definition 2.13. A sutured diagram is a triple (X, a, 3), where ¥ is a compact
oriented surface with boundary, and a and 3 are two attaching sets in >. An isotopy
diagram is a triple (X, [a], [3]), where (¥, a, B) is a sutured diagram.

Definition 2.14. Let (M, ) be a sutured manifold. Then we say that (3, a, B) is
an (embedded) diagram of (M,~) if
(1) ¥ C M is an oriented surface with 0¥ = s(-y) as oriented 1-manifolds,
(2) the components of e bound disjoint disks to the negative side of X, and the
components of B bound disjoint disks to the positive side of %,
(3) if we compress X along a, we get a surface isotopic to R_(7y) relative to ~,
(4) if we compress X along 3, we get a surface isotopic to R, () relative to .

In other words, ¥ cuts (M,~) into two sutured compression bodies, with attaching
sets a and 3, respectively (see Definition 2.7).

Note that if [@’] = [a] and [3] = [3], then (X, o/, 3') is also a sutured diagram of
(M, 7). So we say that (X, A, B) is an isotopy diagram of (M, ) if there is a sutured
diagram (3, a, 3) of (M, ~) such that A = [a] and B = [3].

Lemma 2.15. Let (M,~) be a sutured manifold. Then there is a diagram of (M, ).

Proof. The proof of Juhasz [10, Proposition 2.13| provides a sutured Heegaard dia-
gram (X, a, B) such that ¥ C M. O

Definition 2.16. Let (M, ) be a sutured manifold. We say that the oriented surface
¥ C M is a Heegaard surface of (M,~) if 0¥ = s(y) and ¥ divides (M, ) into two
sutured compression bodies.

Definition 2.17. A sutured diagram (X, a, 3) defines a sutured manifold (M, ~)
as follows. To obtain M, take ¥ x [—1,1] and attach 3-dimensional 2-handles to
Y x {—1} along a x {—1} and to X x {1} along B x {1}. The annuli are taken to
be v = 0¥ x [—1, 1], with the sutures s(y) = X x {0}. Then (M,~) is well-defined
up to diffeomorphism relative to X.. (Note that if we think of ¥ as the middle level
Y. x {0} € M, then (¥, a, B) is a sutured diagram of M.)

If o is isotopic to o and 3’ is isotopic to B3, then the sutured manifold (M’,~')
defined by (2, o/, 3') is diffeomorphic (relative to 3) to the sutured manifold (M, ~)
defined by (X, a,B). So an isotopy diagram H defines a diffeomorphism type of
sutured manifolds that we will denote by S(H).
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B

)

FIGURE 3. The diagram (3, g, B,) is obtained from (X1, a4, 3;) by
a stabilization.

2.3. Moves on diagrams and weak Heegaard invariants.

Definition 2.18. We say that the isotopy diagrams (X1, Ay, By) and (3, Ag, Bs) are
a-equivalent if X1 = Yo and B; = B, while A; ~ A,. Similarly, they are §-equivalent
if 21 = 22 and A1 = A27 while B1 ~ BQ.

Definition 2.19. The sutured diagram (Xs, as, 3,) is obtained from (X1, o, 3,) by
a stabilization if

there is a disk D C ¥y and a punctured torus T' C 33 such that X1\ D = Y5\ T,
Q] = QN (22 \ T),

Br=B,N (2 \T),

axNT and B,NT are simple closed curves that intersect each other transversely
in a single point.

In this case, we also say that (31, a,3,) is obtained from (X5, o, B5) by a destabi-
lization. For an illustration, see Figure 3.

Let H; and H, be isotopy diagrams. Then Hs is obtained from H; by a (de)stabi-
lization if they have representatives (X2, @z, 35) and (X1, aq, (), respectively, such
that (X2, ag, 35) is obtained from (31, ay, 3,) by a (de)stabilization.

If d: X — Y is a diffeomorphism of surfaces and C' is an isotopy class of attach-
ing sets in X, then d(C) is defined as [d(7)], where ~ is an arbitrary attaching set
representing C.

Definition 2.20. Given isotopy diagrams H; = (X1, Ay, B1) and Hy = (X3, Ay, Bs), a
diffeomorphism d: Hy — Hs is an orientation preserving diffeomorphism d: ¥, — ¥
such that d(Al) = A2 and d(Bl) = BQ.

Now we recall the notion of a graph, from a rather categorical viewpoint.

Definition 2.21. A graph G consists of
(1) a class |G| whose elements are called the objects (or vertices) of the graph,
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(2) for each pair (A, B) € |G| x |G|, a set G(A, B) whose elements are called the
morphisms (or arrows) from A to B.

Definition 2.22. A morphism of graphs F: G — K between two graphs G and K
consists of

(1) amap F: |G| — |K],

(2) for each pair (A, B) € |G| x |G| of objects, a map

F: G(A, B) — K(F(A), F(B)).

Notice that every category is a graph, and every functor between categories is a
morphism of graphs.

Definition 2.23. Let G be the graph whose class of vertices |G| consists of isotopy
diagrams and, for Hy,Hs € |G|, the edges G(H,, Hy) can be written as a union of four
sets

G(Hi, Hy) = Go(Hy, Hy) U Gg(Hy, Hy) U Gy, (Hy, Ha) U Gain(Hy, Ho).

The set G,(H;, Hs) consists of a single arrow if H; and Hy are a-equivalent and is
empty otherwise. The set Gg(H;, H2) is defined similarly using S-equivalence. The set
Gstab(H1, Hs) consists of a single arrow if Hy is obtained from H; by a stabilization
or a destabilization and is empty otherwise. Finally, Gag(H;, H2) consists of all
diffeomorphisms from H; to Hs. The graph G is thus the union of four subgraphs,
namely G,, Gg, Gstab, and Gaig.

Note that the graphs G,, Gs, and Ggs are in fact categories when endowed with
the obvious compositions. We have a version of the Reidemeister-Singer theorem.

Proposition 2.24. The isotopy diagrams Hy, Hy € |G| can be connected by an ori-
ented path if and only if they define diffeomorphic sutured manifolds. Furthermore,
the existence of an unoriented path from Hy to Hy implies the existence of an oriented
one.

Proof. By Juhasz [10, Proposition 2.15], if two diagrams define diffeomorphic sutured
manifolds, then they become diffeomorphic after a sequence of isotopies, handleslides,
stabilizations and destabilizations. (Actually, the above mentioned result is stated for
balanced diagrams, but the same proof works for arbitrary ones.) Lemma 2.11 implies
that every handleslide is an a- or S-equivalence, which concludes the proof of the first
claim.

For the second claim, observe that if x € {«, 8, stab,diff }, then G.(Hy, Hs) # 0 if
and only if G,(Hs, Hy) # 0. O

Definition 2.25. Let S be a set of diffeomorphism types of sutured manifolds, and
let C be any category. We denote by G(S) the full subgraph of G spanned by those
isotopy diagrams H for which S(H) € S. A weak Heegaard invariant of S is a
morphism of graphs F': G(S) — C such that for every arrow e of G(S) the image F'(e)
is an isomorphism.

Observe that if F': G(S) — C is a weak Heegaard invariant and H; and H, lie in
the same path-component of G(S) (i.e., if S(H;) = S(H3)), then F(H,) and F(H,)
are isomorphic objects of the category C. In this language, we can state the main
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invariance results previously known. We first introduce some important sets of dif-
feomorphism types of sutured manifolds. We denote by [(M, )] the diffeomorhpism
type of (M,~).

Definition 2.26. A balanced sutured manifold is a proper sutured manifold (M, ~)
such that x(Ry(y)) = x(R_(v)). Equivalently, by Juhasz [10, Proposition 2.9], it is
a proper sutured manifold that has a diagram (X, a, 8) with |a| = |3|. Then define
the following types of sutured manifolds.

(1) Let Span be the set of all [Y(p, V)], where Y is a closed, oriented, based
3-manifold, p € Y, and V < T,M is an oriented tangent 2-plane.

(2) Let Syuk be the set of all [S*(L, p, q)], where (L, p,q) is a based oriented link
in S3 with exactly one p and one q marking on each component of L.

(3) Let Spar be the set of all [(M, )], where (M, ) is a balanced sutured manifold.

Theorem 2.27 ([16]). The morphisms
HE, HF~, HF'*, HF™®: G(Sman) — Fa[U]-Mod
are weak Heegaard invariants of Sman (where the U-action is trivial on ﬁ)
Theorem 2.28 (|14, 18,20]). The morphisms
HFL, HFL™ : G(Sin) — Fa[U]-Mod
are weak Heegaard invariants of Synxk.
Theorem 2.29 (|10]). The morphism
SFH: G(Spa) — Fa-Vect
15 a weak Heegaard invariant of Spa.

However, these theorems are not enough to give invariants in the stronger sense
of Theorems 1.5-1.9, which assign to M an object of C, rather than an isomorphism
class of objects of C. For that, we look for further structure in the graph gG.

2.4. Strong Heegaard invariants.

Definition 2.30. Let H; = (¥;, [a],[B3,]) be isotopy diagrams for 1 < ¢ < 4. A
distinguished rectangle in G is a subgraph

H, —— H,

oo
H; "~ H,

of G that satisfies one of the following properties:

(1) Both e and h are a-equivalences, while f and g are [-equivalences.

(2) Both e and h are a-equivalences or [-equivalences, while f and g are both
stabilizations.

(3) Both e and h are a-equivalences or (-equivalences, while f and g are both
diffeomorphisms. In this case, we necessarily have ¥; = Y, and >3 = ¥,. We
require, in addition, that the diffeomorphisms f: 31 — >3 and ¢g: Yy — ¥4
are the same.
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(4) The maps e, f, g, and h are all stabilizations, such that there are disjoint discs
Dy, Dy C %5 and disjoint punctured tori 77, To C ¥4 satisfying 31\ (D1UDs) =
24 \ (Tl U T2)7 and such that 22 = (21 \ Dl) U T1 and 23 = (21 \ DQ) U TQ.

(5) The maps e and h are stabilizations, while f and ¢ are diffeomorphisms.
Furthermore, there are disks D C ¥; and D’ C X3 and punctured tori T C ¥,
and 7" C ¥4 such that ¥, \ D = ¥\ T and 33\ D' = ¥, \ 7", and the
diffeomorphisms f, g satisfy f(D) = D', g(T) =1T", and f|s,\p = gls.\7-

Remark 2.31. In case (1), ¥; = X; for 4, € {1,...,4}, so a distinguished rectangle
in this case is of the form

(%, A, B) — (S, A', B)

| l

(2, A,B) —— (3, A, BY).

In case (2), we necessarily have ¥; = ¥y and X3 = X;. Without loss of generality,
consider the situation when both e and h are a-equivalences. Then we have a rectangle

(27 [OL], [,QD - (27 [a]v [,3])

| |

(&, [}, [8]) — (&, [@], [8])

such that there is a disk D C ¥ and a punctured torus 7' C ¥’ with ¥\ D = X'\ T
Furthermore, we can assume that « = &' N (X' \T) and 8 = ' N (X' \ T), while
a=a N (X \T). Since &' ~ @, the curves &’ N T and @' NT are isotopic.

In case (4), the fact that all four diagrams contain S = ¥ \ (D; U Dy) implies that
aNS=a;NSand B;NS=p0;NS foreveryi, je{l,...,4}.

Definition 2.32. A simple handleswap is a subgraph of G of the form
H,y

{IRN

Hg‘THQ

such that

(1) H; = (%, [a], [B;]) are isotopy diagrams for 7 € {1,2,3},

(2) e is an a-equivalence, f is a S-equivalence, and g is a diffeomorphism,

(3) there is a punctured genus two surface P C X in which the above triangle
is conjugate to the triangle in Figure 4; i.e., there is a diffeomorphism that
throws P N H; onto the pictures in the green circles, sending the a-circles in
P to the two red circles, and the -circles in P to the two blue circles,

(4) in ¥\ P the diagrams H,, Hs, and Hj are identical.

S0 PNy consists of closed curves o and s and P N B3, consists of closed curves
f1 and By such that o; N B; = 0 for ¢ € {1,2}, while both a; N By and ay N By
consist of a single point. The arrow e from H; to H, corresponds to handle-sliding as



16 JUHASZ AND THURSTON

®_s @

a

5@ =@

H,

diffeomorphism a-equivalence

FIGURE 4. A simple handleswap. The green curve is the boundary of
the punctured genus two surface P that is obtained by identifying the
circles marked with corresponding letters (namely, B and D). We draw
the « curves in red and the § curves in blue.

over o along the dashed arc a. The arrow f from Hy to Hj corresponds to handle-
sliding (5 over [y along the dashed arc b. Finally, the diffeomorphism g maps Hs to
H, by performing Dehn twists around the dashed curves depicted in the lower left
corner of Figure 4; namely a left-handed Dehn twist along the large dashed curve and
right-handed Dehn twists around the smaller ones.

Definition 2.33. Let S be a set of diffeomorphism types of sutured manifolds. A
strong Heegaard invariant of S is a weak Heegaard invariant F': G(S) — C that
satisfies the following axioms:

(1) Functoriality: The restriction of F' to G,(S), Gs(S), and Gaig(S) are functors
to C. Furthermore, if e: Hy — Hs is a stabilization and ¢': Hy — H; is the
corresponding destabilization, then F(e') = F(e)™'.

(2) Commutativity: For every distinguished rectangle

H, —— H,

ol

Hy ">,

in G(S), we have F(g) o F(e) = F(h) o F(f).



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 17

(3) Continuity: If H € |G(S)| and e € Gaig(H, H) is a diffeomorphism isotopic
to Idg7 then F(e) = IdF(H)
(4) Handleswap invariance: For every simple handleswap

H,

{IRN

Hg‘THQ

in G(S), we have F'(g) o F(f) o F(e) = Idpm,)-

Note that in (3), if H = (X, a,3) and ¢;: ¥ — X for t € [0,1] is an isotopy from
e to Idy, then (X, e/(a),e(3)) represents the same isotopy diagram as H. Hence
e; € Gai(H, H) for every t € [0, 1].
Theorem 2.34. The following are strong Heegaard invariants:

(1) Sutured Floer homology, SFH, is a strong Heegaard invariant of Spa.
(2) The Heegaard Floer homology invariants ﬁ, HFY, HF~, and HF* are
strong Heegaard invariants of Sman-
(3) The link Floer homology groups HFL and HFL™ are strong Heegaard invariants
of Stink-
We will prove Theorem 2.34 in Section 9.

2.5. Construction of the Heegaard Floer functors. We next explain how The-
orem 2.34 lets us associate, for instance, a group SFH(M,~) to a balanced sutured
manifold (M, ~).

Definition 2.35. Suppose that H; and Hs are two isotopy diagrams for (M, ) with
H; = (%, A;,B;), and let ¢;: 3¥; — M be the inclusion for i € {1,2}. Then a
diffeomorphism d: H; — Hy is isotopic to the identity in M if 15 0d: ¥y — M is
isotopic to ¢1: X1 — M relative to s(7).

Definition 2.36. Let (A/,7) be a sutured manifold. Then G, is the subgraph
of G whose vertex set' |G| consists of all isotopy diagrams of (M,~). The set of
edges between H,, Hy € |Gur)| is defined by

Gy (Hy, Hy) = Go(Hy, Hy) U Gg(Hy, Hy) U G (Hy, Hy) U gghcf(Hh H,),

where G, Gg, and Ggap are as before, and ggiﬁ(Hl, H,) is the set of diffeomorphisms
from H; to H, isotopic to the identity in M.

We will prove the following stronger version of Proposition 2.24 in Section 7.1.

Proposition 2.37. Let (M,~) be sutured manifold. In the graph Gy, any two
vertices can be connected by an oriented path.

Definition 2.38. Given a weak Heegaard invariant F': G(S) — C and an oriented
path 7 in G(S) of the form

Hy = Hy = --- = H,,

1Observe that |G(am,+)| is a set, not a proper class, as we defined a sutured diagram for (M,~) to
be a submanifold of M.
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define F'(n) to be the isomorphism
F(e,)o---0F(e1): F(Hy) — F(H,).

For a weak Heegaard invariant, the isomorphism F'(n) from F(Hy) to F(H,,) might
depend on the choice of the path n. However, according to the following theorem,
this ambiguity disappears if we require I’ to be a strong Heegaard invariant and we
restrict our attention to the subgraph G ).

Theorem 2.39. Let S be a set of diffeomorphism types of sutured manifolds contain-
ing [(M,~)]. Furthermore, let F': G(S) — C be a strong Heegaard invariant. Given
isotopy diagrams H, H' € |G| and any two oriented paths n and v in Gy
connecting H to H', we have

Fn) = F).

Remark 2.40. Another interpretation of Theorem 2.39 is that if we extend G(m,y) to a
2-complex with 2-cells corresponding to the various polygons in Definition 2.33, the
result is simply-connected.

Theorem 2.39 is one of the most important and deepest results of this paper. We
will prove it in Section 8, and develop the necessary technical tools in Sections 4-7.

Definition 2.41. Let S be a set of diffeomorphism types of balanced sutured mani-
folds containing [(M, )], and let F': G(S) — C be a strong Heegaard invariant. If H
and H' are isotopy diagrams of (M, ), then let

FH,H' = F(U)a

where 7 is an arbitrary oriented path connecting H to H'. By Theorem 2.39, the map
Fy g does not depend on the choice of 7.

Corollary 2.42. Suppose that H, H', H" € |G(a)|. Then
FH,H” = FH’,H” (@] FH,H’-

Motivated by Definition 1.1, we obtain a natural invariant of sutured manifolds
from a strong Heegaard invariant as follows. As usual, we denote the category of
abelian groups by Ab.

Definition 2.43. Let S be a set of diffeomorphism types of balanced sutured mani-
folds, and let F': G(S) — Ab be a strong Heegaard invariant. Fix a balanced sutured
manifold (M, ~) with [(M,~)] € S, and suppose that H and H' are isotopy diagrams
of (M,~). We say that the elements x € F(H) and y € F(H’) are equivalent, in
short © ~ y, if y = Fy g(z). By Theorem 2.39, this is an equivalence relation on
the disjoint union HHG\Q(M,—M F(H). The equivalence class of an element x € F(H) is

denoted by [z]. Under the natural addition operation, these equivalence classes form
an abelian group that we call F(M,~). Furthermore, let I: F(H) — F(M,~) be
the isomorphism that maps z to [z].
If o: (M,~) — (M',~') is a diffeomorphism, then we define
F(¢): F(M,~) = F(M',7)

as follows. Pick an isotopy diagram H = (3, A, B) of (M,~), and let d = ¢|x. Then
H' = d(H) is an isotopy diagram of (M’ +"), and d is a diffeomorphism from H to
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H’, so it induces a map F(d): F(H) — F(H'). We define the isomorphism F(¢) as
Iy o F(d) o (Ig)~*. So we have a commutative diagram

F(H) —" F(H)

LIH l[H/
F(M,W)F—((@F(M’m’)'

Proposition 2.44. In the above definition, the isomorphism F(¢) does not depend
on the choice of isotopy diagram H of (M,~).

Proof. Suppose that H; = (X1, A1, By) and Hy = (35, A, By) are isotopy diagrams
of (M,~). Let dy = d|g, and dy = d|s,, and write H] = dy(H;) and H}, = dy(Hs).
Then we have to show that

]Hi ©) F(dl) o} (IHl)—l == IHé o) F(dg) @) (IHQ)—I.
Since (Ip,) " o In, = Fu, 1, and (Igy) ' oIy = Fiyr gy, this amounts to proving that
(2.45) FH{,H& © F(dl) - F(dQ) ° FH1,H2'
Pick a path 1 in G, of the form

Dy = Dy =% --- = D,

such that Dy = Hy and D,, = H,. There is a corresponding path 7" in G,y from H
to H) of the form

D)L D) 2. S
obtained as follows. Foreveryi € {1,...,n}, let D} = ¢(D;), and let h;: D; — D, be
the restriction of ¢ to D;. If e; is an a-equivalence, S-equivalence, or stabilization, then
we denote by e} be the corresponding a-equivalence, S-equivalence, or stabilization
from D._, to D.. Furthermore, if ¢; is a diffeomorphism isotopic to the identity, then
we take
el =hioe;oh; !,
this is also isotopic to the identity. Consider the following subgraph of G(S):

€1 €n

€2
Dy Dy e D,
lhodl lhz Lhnd2
e’ et el
/ 1 / 2 n /
D), D, D'

By construction, each small square is either a distinguished rectangle, or a commuting
rectangle of diffeomorphisms. The functor F' commutes along the former by the
Commutativity Axiom of strong Heegaard invariants, and along the latter by the
Functoriality Axiom for Ggi(S). Hence, F' also commutes along the large rectangle,
giving exactly equation (2.45). O

Let Sutpa, Sutpan, and Suty, denote the full subcategories of Sut whose objects
have diffeomorphism types lying in Spa, Sman, and Sink, respectively.
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Proof of Theorem 1.9. By Theorem 2.34, the morphism F' = SFH is a strong Hee-
gaard invariant of S,. Given isotopy diagrams H and H’ of the balanced sutured
manifold (M, ), Theorem 2.39 gives an isomorphism Fy g : F(H) — F(H'). These
isomorphisms are canonical according to Corollary 2.42. Hence, the groups F'(H) and
the isomorphisms Fy  form a transitive system, and we obtain the limit

SFH(M,~) = F(M,7)

as in Definition 2.43. A diffeomorphism ¢ between balanced sutured manifolds induces
an isomorphism F'(¢) as in Definition 2.43, and these are well-defined according to
Proposition 2.44. So we have all the ingredients for a functor SFH : Suty, — Fa-Vect.

What remains to show is that isotopic diffeomorphisms induce identical maps
on SFH, or equivalently, that for any diffeomorphism ¢: (M,~) — (M,~) isotopic
to Id(as,), we have F(¢) = Idspu(a). Let H be an isotopy diagram of (M, ), and
we write d = ¢|g and H' = ¢(H). By definition, F(¢) = Iz o F(d) o (Ig)~". So this
is the identity if and only if

F(d) = (]H/)_l o IH = FH,H’-

This is true since d is isotopic to the identity, hence it corresponds to an edge of Gs-)
between H and H', and so if we take the path n from H to H' to be the single edge d,
then F<d):F(77):FH,H’ [l

Lemma 2.46. Let (Y, p) be a based 3-manifold, and let Vi and V} be oriented 2-planes
inT,Y . Suppose that ¢, V: (Y,p) — (Y, p) are diffeomorphisms such that dp(Vy) = Vi
and dip(Vy) = Vi in an oriented sense; furthermore, both ¢ and ¢ are isotopic to Idy
through diffeomorphisms fixzing p. Then ¢ and 1) are isotopic to each other through
diffeomorphisms fixzing p and mapping Vy to Vi.

Proof. This follows from the fact that the Grassmannian M of oriented 2-planes
in 7,Y is homeomorphic to 5% and is hence simply-connected, together with an isotopy
extension argument as follows.

Let {¢:t € I} and {¢;: t € I} be isotopies from Idy to ¢ and 1), respectively,
through diffeomorphisms fixing p. Since the Grassmannian M is simply-connected,
there is a 2-parameter family of 2-planes V;,, < T,Y for (t,u) € I x I such that
Vio = do (Vo) and Viy = diyy(Vp) for every t € I, while Vg, = Vj and Vy,, = V) for
every w € I. The 2-planes V;, form a vector bundle v over I x I. Since v is trivial,
there is a family of isomorphisms i;,,: Vo — Vi, for (t,u) € I x I such that i, = Idy,
for every uw € I, and i, = (d¢y)|v, and i, = (dipy)|v, for every t € I. We can extend
this to a 2-parameter family of isomorphisms j; ,,: T,Y — T,Y such that ji,|v, = ¢4
for every (t,u) € I xI, while jy, = Idg,y for every u € I, and jy o = d¢; and ji 1 = dijy
for every t € I. By the h-principle, there is a neighborhood U of p and a family of
diffeomorphisms h,,: (U,p) — (Y,p) such that dh,, = ji, for every (t,u) € I x I,
and hyo = ¢y and hyy = Y|y for every t € I. Using the relative isotopy extension
theorem, we obtain a 2-parameter family of diffeomorphism ¢;,: (Y,p) — (Y, p) such
that ¢go, = Idy for every v € I, and g9 = ¢, and g1 = ¢, for every t € I;
furthermore, ¢;,|v = hi, for every (t,u) € I x I. Then the family {g1,: v € I}
provides an isotopy from ¢, 0 = ¢ to gi1,1 = . 0

Proof of Theorem 1.5. Let HF be one of the four variants of Heegaard Floer homol-
ogy, and let Man, v be the category of based 3-manifolds with a choice of oriented
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tangent 2-plane at the basepoint. A morphism from the object (Y, p, V) to (Y’,p/, V’)
is a diffeomorphism ¢: (Y,p) — (Y, p') such that d¢(V) = V' in an oriented sense.
As for Theorem 1.9, by Theorem 2.34, we get a functor HF'{: Sut,,, — Ab. Com-
posing with the functor (Y,p,V) +— Y(p,V) from Definition 2.4 gives a functor
HFy: Man, y — Ab. As in the proof of Theorem 1.9, we obtain that isotopic mor-
phisms induce identical maps, where we say that two morphisms from (Y, p,V) to
(Y, p, V') are isotopic if they can be connected by a path of morphisms from (Y, p, V')
to (Y, p,V').

Each fiber of the forgetful functor Man,y — Man, is a sphere, which is simply-
connected, so HF5(Y,p, V) has no monodromy along any loop of oriented 2-planes
in 7,Y. More precisely, fix a based manifold (Y,p) € Man,, and let M be the
Grassmannian of oriented 2-planes in 7,Y. Our goal is to construct a canonical
isomorphism from HF5(Y,p, Vo) to HFy(Y,p, V1) for any pair (Vo, Vi) € M x M.
Take an arbitrary morphism ¢ from (Y, p, V5) to (Y, p, V1), and such that ¢ is isotopic
to Idy through diffeomorphisms fixing p. Then we claim that the isomorphism

is independent of the choice of ¢. Indeed, by Lemma 2.46, if ¢ is another choice,
then ¢ and v are isotopic through diffeomorphisms fixing p and mapping V; to Vi,
and hence HFy(¢) = HF5(1)). We denote this isomorphism by iy, y,. So the groups
HF5(Y,p, V) for V€ M and the isomorphisms Iy, y, for (Vo, V1) € M x M form a
transitive system, and hence we can take the limit HF (Y, p). We have shown that HF'5
factors through a funci(g HF': Man, — Ab.

In fact, for each of HF, HF~, HF ", and HF'*, Theorem 2.34 gives a functor in a
richer target category, as in the statement of the theorem. U

Proof of Theorem 1.8. As for Theorem 1.9, we get a functor HFL,: Sutj,. — Ab for
both variants of link Floer homology. Composing with the map

(S°,L,p,q) = S°(L,p,q)

introduced in Definition 2.5 gives a functor HFLy: Link,, — Ab, where Link,, is the
category of oriented links with two (distinguished) basepoints on each component.
The fibre of the forgetful map Link,, — Link, over a based link (L, p) is homeomorphic
to Rl and hence contractible, so — as in the proof of Theorem 1.5 — the morphism
HFL, factors through a functor HFL: Link, — Ab. Again, the invariant takes values
in a somewhat richer category than Ab. U

Finally, we indicate how to obtain Spin‘-refined versions of the above results. Let F
be a strong Heegaard invariant defined on a set S of diffeomorphism types of balanced
sutured manifolds. Fix a sutured manifold (M, ) such that [(M,v)] € S. Suppose
that for every isotopy diagram H of (M,~) and every s € Spin°(M,~y), we are given
an abelian group F'(H,s) such that

FH)= @ F(Hs).
s5€Spin®(M,y)

In addition, we assume that if e is an edge of G(ar) from H to H', then F(e)|p(m,s) is
an isomorphism between F'(H,s) and F'(H',s). Then the limit F'(M,~) will split as
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(25} ﬁZ

FIGURE 5. Two diffeomorphic diagrams, both defining manifolds dif-
feomorphic to (S! x S?) # (S x §?), for which different identifications

—_

induce different maps on HF'.

a direct sum @, cgpine(rr.) £ (M, 7, 6) in a natural way. Relative homological gradings
on the summands F(M,~,s) can be treated in a similar manner.

3. EXAMPLES

In this section, we give several examples that illustrate some of the issues that arise
when one tries to define Heegaard Floer homology in a functorial manner.

Ezample 3.1. This example shows why it does not suffice to work with abstract (i.e.,
non-embedded) Heegaard diagrams to obtain canonical isomorphisms, and hence a
functorial invariant of 3-manifolds. See the diagrams

H= (Ea{alva? }7{61752}7Z) and H' = (2/7{0/170/2 }7 {Bi7ﬁé}7zl>

in Figure 5. Both define sutured manifolds diffeomorphic to (S x 5?)#(S'x S?) . The
diagrams H and H' are clearly diffeomorphic. Choose a diffeomorphism d: H — H'.
Observe that there is an involution f: H — H such that f(a1) = o, f(S1) = Po,
and f(z) = z, obtained by 7 rotation about the axis perpendicular to the surface
and passing through z. Then do f is also an identification between H and ’H’./EIOW—
ever, the diffecomorphisms d and d o f induce different isomorphisms between HF (H)
and EF(H’) Indeed, ﬁ(?—[) ™ (Zy)*, and f, swaps the two Z, terms lying in the
“middle” homological grading. This is why in the graph G,y we only consider dia-
grams embedded in (M, ), and edges corresponding only to diffeomorphisms isotopic
to the identity in M. Otherwise, Theorem 2.39 would not hold.

Example 3.2. Consider the diagram H = (3, «, 3, z) of S! x S? shown in Figure 6.
Here, St x S? is represented by the region bounded by the two concentric spheres with
common center O, and we identify the points of the outer and inner spheres that lie
on a ray through O. The Heegaard surface X is represented by the horizontal annulus;
after gluing the outer and inner boundary circles we get a torus. There is a single
a-circle and a single [S-circle; they intersect in two points a and b. In the diagram,
the dashed line represents an axis A passing through the basepoint z. If we rotate X
about A by an angle wt for some t € [0, 1], we get an automorphism d; of S x S2.
Notice that d; (%, a, 3,2) = (X, o, B, 2) and dy(a) = b and d;(b) = a; furthermore, d,
fixes the basepoint z for every ¢ € [0, 1]. Since EF(Z, a, 3, z) is generated by a and b,
it appears that HF has non-trivial monodromy around the loop of diagrams d;(H).
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FIGURE 6. A diagram of S! x S? for which an orientation reversing
isotopy swaps the two generators of HF'.

d
- >
ag a; a,
(3,1)

FIGURE 7. A diagram of L(3,1) with no basepoint, together with an
isotopy that permutes the 3 generators of HF.

However, d;|x is orientation reversing. This shows that we need to consider oriented
Heegaard surfaces in G,/ ,) to obtain naturality.

FEzample 3.3. Next, consider the diagram H = (X, «,3) of the lens-space L(p,1)
illustrated in Figure 7 for p = 3. In particular, X is the torus obtained by identifying
the opposite edges of the rectangle [0, 1] x [0, 1], the curve « is a line of slope 0 and 3
is a line of slope p. Then aN 3 consists of p points ay, . .., a,—; that generate ﬁ(%)
For t € [0, 1], let H; be the diagram of L(p, 1) obtained by translating 5 horizontally
by t/p. Then Hy = Hi, so we obtain a loop of diagrams for L(p,1). Notice that
E’F(”Ht) has non-trivial monodromy, as it maps a; to a;; for 0 < ¢ < p — 1, where
a, = ap. Non-trivial monodromy makes it impossible to assign a Heegaard Floer
group to L(p, 1) independent of the choice of diagram. This example is ruled out by
requiring that there is at least one basepoint, and isotopies of the o and 3 curves
cannot pass through the basepoints. Note that a choice of basepoint is necessary to
assign a Spin® structure to each generator.
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d,
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FIGURE 8. A doubly pointed diagram of S' x S?. A m-rotation in
the Sl—directign\ swaps the basepoints and induces a non-trivial auto-
morphism of HF, while being trivial on HF " and HF~ in the torsion
Spin‘“-structure.

FEzample 3.4. Here we also consider a genus one Heegaard diagram H = (3, ¢, 3, 2)
of S x S?, but with two basepoints z = {z1, 29}, see Figure 8. Heegaard Floer
homology for multi-pointed Heegaard diagrams was introduced in [18,; Section 4].
Again, we draw the diagram on [0, 1]x[0, 1]. We have two a-curves: a; = {1/4}x|[0, 1]
and ay = {3/4} x [0, 1]. Furthermore, §; is a small Hamiltonian translate of «; such
that ay N B, consists of two points that we label a, b, and as N [y consists of two
points x, y. We also arrange that (s is a translate of 5 by the vector (1/2,0). We
choose two basepoints, namely z; = (0,1/2) and 2z, = (1/2,1/2). For t € [0, 1], let
d; be the diffeomorphism of ¥ given by dy(u,v) = (u + t/2,v). (This extends to
St x 8% as rotation by 7t in the S'-direction.) Let H; = dy(H) for ¢ € [0,1], then
Hi = Ho, so we have a loop of doubly pointed diagrams of S1 x S2. Notice that
HF (Y, 0, 3, 21, 22) is generated by the pairs {a,z}, {a,y}, {b,2z}, and {b,y}. The
diffeomorphism d; swaps the generators {a,y} and {b,z}, and swaps the basepoints
z1 and z3. Hence, to have naturality for E’F, we need to work with based 3-manifolds
and based diffeomorphisms. However, if s, denotes the torsion Spin‘-structure on
St x §2% a straightforward computation shows that

HF*(/H;E(D = Z[Ub Uﬂ/(Ul - UQ)( {CL, I}v {CL, y} + {b7 ‘T}>

as a Z|Uy, Us]-module, and d; acts trivially on it. Compare this with our discussion

in the introduction that the basepoint moving map can be non-trivial on HF but is
trivial on HF' ™.

Example 3.5. Even if we isotope the a- and S-curves in /tée complement of the base-
point, one might obtain a loop of diagrams such that CF has non-trivial holonomy
around it. However, as we shall prove, there is no holonomy if we pass to homology.

We describe a diagram H of S! x S? as follows, cf. Figure 9. Let ¥ be the torus
represented by [0, 1] x [0, 1], take v to be {1/2} x [0, 1], and let 5 be a Hamiltonian
translate of o such that a N B consists of four points ay,...,as, and S is invariant
under translation by (0,1/2). Let d; be translation by (0,¢/2) for ¢t € [0, 1], and let
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as

a

a;
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ao

FIGURE 9. A Heegaard diagram of S* x S2. If we translate the 3-curve
in the vertical direction by 1/2 we get a non-trivial automorphism of
the chain complex that is trivial on the homology.

H, = (X, a,di(B), z). By construction, Ho = H;. Since dy(a;) = a;42 (where i + 2 is
to be considered modulo 4), we see that d; acts non-trivially on 6’?(7—[) However,
as EF(’H) is generated by ag + a2 and a; + ag, the induced action on homology is
trivial.

More generally, suppose that (X, a, 3, z) is a Heegaard diagram, o € e and 3 € 3.
Furthermore, suppose that there is a regular neighborhood N =~ «a x [—1, 1] of « such
that 4 C N and f is transverse to the fibers {p} x [—1, 1] for every p € a. Then we
can apply a “finger move” inside N that is the identity outside N and preserves aU 3
setwise, and hence permutes the points of a N 5. Even though this isotopy acts
non-trivially on the chain level, it is trivial on the homology level.

4. SINGULARITIES OF SMOOTH FUNCTIONS

In this section, we recall some classical results about singularities of smooth real
valued functions following Arnold et al. [2]. The reader familiar with singularity
theory can safely skip to Section 5. This part is the beginning of the proof of The-
orem 2.39 on strong Heegaard invariants that culminates in Section 8. The reader
interested in the proof of Theorem 1.5, the application of Theorem 2.39 to Heegaard
Floer homology, should skip to Section 9.

Definition 4.1. Let f be a smooth function on the manifold M. A point p € M is
said to be a critical point of f if df, = 0.

Definition 4.2. Let &, be the set of germs at 0 of smooth functions f: R” — R. Let
D,, be the group of germs of diffeomorphisms g: (R",0) — (R"™,0). The group D,
acts on &, by the rule g(f) = fog'. Two function-germs f, f’ € &, are said to be
equivalent if they lie in the same D,,-orbit.
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The equivalence class of a function germ at a critical point is called a singularity.
A class of singularities is any subset of the space &, that is invariant under the action
of the group D,,.

Definition 4.3. A critical point is said to be nondegenerate (or a Morse critical point)
if the second differential (or Hessian) of the function at that point is a nondegenerate
quadratic form. The class of non-degenerate critical points is called A;.

Theorem 4.4 (Morse Lemma). In a neighborhood of a nondegenerate critical point
a € M" of the function f: M™ — R, there exists a coordinate system in which f has
the form

fl@) = —at = =i+ T+ a4 fa),

In the above theorem, k is called the index of the nondegenerate critical point
a, and will be denoted by Z(a). If two elements of &, have nondegenerate critical
points at zero, then they are equivalent if and only if they have the same index. More
generally, for an arbitrary critical point, Z(a) is the index of the second differential
of the function at a.

The most important characteristic of a class of singularities is its codimension ¢ in
the space &, of function-germs. In fact, a generic function has only nondegenerate
critical points of codimension ¢ = 0. Degenerate critical points occur in an irremovable
manner only in families of functions depending on parameters. Thus, in a family of
functions depending on [ parameters there may occur (in such a manner that it cannot
be removed through a small perturbation of the family) only a family of singularities
for which ¢ < [.

Definition 4.5. A deformation with base A = R! of the germ f € &, is the germ at
zero of a smooth map F: R" x R! — R such that F(x,0) = f(x).
A deformation F’ is equivalent to F if

F'(z, A) = F(g(x,A), A),

where ¢ is the germ at zero of a smooth map (R™ x R!, 0) — (R",0) with g(z,0) = =,
representing a family of diffeomorphisms depending on A € R,
The deformation F” is induced from F if

F'(z,\) = F(z,0()\)),
where 0: (R”,0) — (R%,0) is a smooth germ of a mapping of the bases.

Definition 4.6. A deformation F(z, \) of the germ f(x) is said to be versal if every
deformation F” of f(x) can be represented in the form

F,(l’,/\/) = F(g(x,X),H(X)),

where g(z,0) = x and 6(0) = 05 i.e., every deformation of f(x) is equivalent to a
deformation induced from F'.

A versal deformation for which the base A has the smallest possible dimension is
called miniversal.

Proposition 4.7. Let f(x) € &, be a germ of a critical point. We denote by Iy the
ideal of &, generated by all partial derivatives f; = 0f/0x; of f, and let Qf = &,/ Ivy.
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If o1,..., ¢ project to a basis of Qy, then
!
F(a,N) = f(z) + ) Aje;
j=1

is a miniversal deformation of the germ f(x).
A versal deformation is unique in the following sense.

Theorem 4.8. Every (-parameter versal deformation of a germ f is equivalent to
a deformation induced from any other (-parameter versal deformation by a suitable
diffeomorphism of their bases.

Let K be a subset of £, invariant under the action of D,,; i.e., a class of singularities.
Furthermore, let P C &, be the germs at 0 of polynomials in R[zy, ..., x,]. A normal
form for the class K is a map ®: B — P from a finite dimensional linear “parameter
space” B to the space of polynomial germs satisfying three conditions:

e ®O(B) intersects all D,-orbits in K,
e the preimage of every D,-orbit in B is finite, and
e d71(&,\ K) lies in some hypersurface in B.

Theorem 4.9. In a generic 1-parameter family of smooth functions, the only degen-
erate critical points that appear have normal form

fl@) = =ai = =g+ zipy + oo 2 o+ fla).

The class of such singularities is called As.
In addition, in 2-parameter families singularities of the form

fla) = —af— - —ap+ai, +- - +ap_ Fa, + f(a)
might also appear. The class of such singularities is called A;)t.
As a corollary of Proposition 4.7, a miniversal deformation of a singularity of
type A;p is given by
Flz,\)=—a]— - —ap + 2 + ... 75 + A,
where A € R. So such singularities are stable, i.e., they cannot be removed by small

perturbations.
Miniversal deformations of type A, singularities are given by the formula

Fo,\) = =2 = =23 + @y + o ap g+ 2y + Nz + A

where the parameter A = (A, \y) € R% So every generic 1-parameter deformation of
a type A, singularity is equivalent to one induced from this, and so has normal form

—a = — B Tp e 2+ M (B + Aa(t).

The concrete value of the constant term Ao(t) does not affect the types of singularities
appearing in the family, so from a qualitative point of view we can assume that
Ao(t) = 0. Then, in this family, for A\; < 0 we have two nondegenerate critical points
of indices k and k+ 1 that cancel each other at A\; = 0, and the germs have no critical
points for A\; > 0. Hence, we will sometimes refer to a type A, singularity of index k
as an index k—(k + 1) birth-death singularity (death if A;(¢) is decreasing, and birth if
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FIGURE 10. Bifurcation diagrams of the singularities A5 and Aj
for n = 1.

A1(t) is increasing). In 2-parameter families, type As singularities appear along curves
in the parameter space A (in the above normal form given by the formula \; = 0).
Finally, type Agt singularities have miniversal deformation

F(z,\) = —a] — - —ap + 2+ + 2o 22 + Mal + Ay + A3

with parameter A € R3. These first appear in a non-removable manner in 2-parameter
families. To study the bifurcation set in A = R? for a generic 2-parameter deformation
A — &,, we again disregard the constant term, and consider

2 2, .2 2 4 2
—xy = =Tt T T+ X, T, AT, + Ay,

For generic values of A, this may have

e three nondegenerate critical points, of indices k, k+1, and k for A7 and k+1,
k, and k + 1 for Ay; or
e one nondegenerate critical point, of index k for A and k+ 1 for A;.

When the polynomial 422 +2\;x,, + A\ has multiple roots, the behaviour is different.
The discriminant is the cuspidal curve

A={AeAN: 8\ £27T\3=0}.

For A € A\ {0}, the germ F(x,A\) has an A; and an A, singularity, while for A = 0,
it has an A7 singularity. Sometimes, we will refer to an Aj singularity of index k
as an index k—(k + 1)-k birth-death-birth, while an Aj singularity of index k as
an index (k 4 1)-k—(k 4 1) birth-death-birth. For the bifurcation diagrams of the
singularities A] and Aj, see Figure 10. Note that, in case of A7, for A\; < 0 and Ay =
0, the values of two critical points coincide, which is a type of bifurcation that we
disregard. There is an analogous bifurcation for A; singularities in case A\; > 0
and /\2 = 0.

Now we apply the above discussion to global 1- and 2-parameter families of smooth
real valued functions on manifolds. For a generic 1-parameter family of smooth func-
tions { fn: A € A}, there is a discrete subset D C A such that for every A € A\ D
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the function f, has only nondegenerate critical points, while for A € D it has a sin-
gle degenerate critical point of type Ay, where two nondegenerate critical points of
neighboring indices collide.

For a generic 2-parameter family { fy: A € A}, there is a subset D C A such
that f\ has only nondegenerate critical points for A € A\ D. In addition, D is a
union of embedded curves that have only cusp singularities and intersect each other
in transverse double points. At a regular point A € D, the function f; has a single
degenerate critical point of type A,. If A\ is a double point of D, then f; has two
degenerate critical points of type As. Finally, at each cusp of D, the function f; has
a single degenerate critical point of type Ai.

5. GENERIC 1- AND 2-PARAMETER FAMILIES OF GRADIENTS

Next, we summarize the results of Palis and Takens [19] and Vegter [23]| on the
classification of global bifurcations that appear in generic 1- and 2-parameter fam-
ilies of gradient vector fields on 3-manifolds. In Section 6, we will translate the
codimension-1 bifurcations to moves on Heegaard diagrams, while codimension-2 bi-
furcations translate to loops of Heegaard diagrams. Note that the bifurcation theory
of gradients is much richer than the corresponding theory for smooth functions, due
to the tangencies that can appear between invariant manifolds of singular points.

5.1. Invariant manifolds. First, we review some classical definitions and results of
Anosov et al. [1, Section 4.

Definition 5.1. An invariant manifold of a vector field is a submanifold that is
tangent to the vector field at each of its points.

If v is a smooth vector field on a manifold M with a singularity at p (i.e., v is
zero at p), then the linear part L,v of v at p is an endomorphism of T,M. In local

coordinates © = (x1,...,x,) around p, the linear part of v is Az, where A = %‘x:[)
and 2% is the Jacobian matrix whose (i, k) entry is 2%
k.

The space T,M can be written as a direct sum of three Lyv-invariant subspaces,
namely 7%, T*, and T°, such that every eigenvalue of L,v|rs has negative real part,
every eigenvalue of L,v|r« has positive real part, and every eigenvalue of L,v|re has
real part zero. Indeed, 7%, T", and T are spanned by the generalized eigenvectors
of L,v corresponding to eigenvalues with negative, positive, and zero real parts, re-
spectively. Here, the superscripts s, u, and ¢ correspond to “stable,” “unstable,” and
“center.”

Definition 5.2. We say that v has a hyperbolic singularity at p if none of the eigen-
values of L,v are purely imaginary; i.e., if 7 = 0.

Theorem 5.3 (Center manifold theorem). Let v be a C"! wvector field on M with a
singular point at p. Let T®, T", and T° be the subspaces of the splitting corresponding
to the operator Lyv.

Then the differential equation © = v(x) has invariant manifolds W*, W*, and WW*
of class C"™1, O™t and C", respectively, that go through p and are tangent to T*,
T, and T¢, respectively, at p. Solutions with initial conditions on W?* (respectively,
W) tend exponentially to p as t — +oo (respectively, t — —00).
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Here, W? is called the (strong) stable manifold and W" the (strong) unstable
manifold of the singular point p. The behavior of the phase curves on the center
manifold W€ is determined by the nonlinear terms. If v is C*°, then WW* and W*" can
be chosen to be C'*°, whereas the center manifold is only finitely smooth. In addition,
the choice of WW° might not be unique.

Theorem 5.4 (Reduction Principle). Suppose a differential equation with C* right-
hand side has a singular point p. Let T°, T", and T be the invariant subspaces
corresponding to the map L,v. Then, in a neighborhood of the singular point p, the
equation under consideration is topologically equivalent to the direct product of two
equations: the restriction of the original equation to the center manifold, and the
“standard saddle” _

a=—a, b=b, acT® beT".

This theorem can be used to study both individual equations and families of equa-
tions; a family # = v(x,¢) being equivalent to the equation & = v(x,¢), € = 0.
The following discussion has been taken from Palis and Takens [19].

Definition 5.5. We say that a smooth vector field v on M has a saddle-node at p
(or a quasi-hyperbolic singularity of type 1) if dim7° = 1 and v|yy. has the form
v = az?Z + O(|z[*) with a # 0 for some center manifold W* through p.

If v, belonging to a one-parameter family {v*} of vector fields, has a saddle-node
at p, we say that it unfolds generically if there is a center manifold for the family
{v*} passing through p (at u = fi) such that v,, restricted to this center manifold,
has the form

0 _ _
vp = (a2 +b(p = 70) 5+ O (|2 + |2+ (u =) + | = W) ,
with a, b # 0.

For example, if f : M — R has an A, singularity at p, then the V f has a saddle-
node at p.

Definition 5.6. A point p € M is called a quasi-hyperbolic singularity of type 2 of a
vector field v if dim7° = 1 and there is a center manifold W¢ of class C™ such that
on W¢, there is a local C™-coordinate x with v|y. = z° - v (x)a% with v1(0) # 0.

For example, if f : M — R has an Af singularity at p, then Vf has a quasi-
hyperbolic singularity of type 2 at p.

Definition 5.7. Let p be a singular point of the vector field v on M. Furthermore,
let the maximal flow of v be ¢: D — M, where D C M xR is the flow domain. Then
the unstable set of p is

We(p) ={x e M: lim p(z,i) =p},
and the stable set of p is
Whp)={zeM: lim p(r,t)=p}

If p is a hyperbolic singular point of v, then both W?*(p) and W*"(p) are injectively
immersed submanifolds of M with tangent spaces T,W?*(p) = T° and T,W"(p) =
T, respectively. So, in this case, the stable and unstable sets W#(p) and W*(p)
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FIGURE 11. The stable and unstable sets of a saddle-node singular-
ity are manifolds with boundary. This figure also illustrates the non-
uniqueness of the center manifold.

coincide with the stable and unstable manifolds YW* and W*" of the singular point p,
respectively.

If p is a saddle-node, W*(p) is an injectively immersed submanifold with boundary.
This boundary is the strong stable manifold of p, and is denoted by W**(p). Note
that T,W**(p) = T*. Similarly, W"(p) is an injectively immersed submanifold with
boundary the strong unstable manifold W**(p), see Figure 11. In the terminology of
Theorem 5.3, we have W**(p) = W?* and W"*(p) = W*.

5.2. Bifurcations of gradient vector fields on 3-manifolds. Let M be compact
3-manifold. A gradient vector field X = grad,(f) on M is associated with a Rie-
mannian metric g and a smooth function f: M — R by the relation g(X,Y) = df (Y)
for all smooth vector fields Y on M. Since f is strictly increasing along regular orbits
of X, the vector field grad,(f) has no periodic orbits or other kinds of recurrence. The
singular points of X coincide with the critical points of f. Since the linear part L, X
of X at a singularity p is symmetric with respect to g, all eigenvalues of L, X are real.
(In suitable coordinates L,X is the Hessian matrix of f at the singular point).

Definition 5.8. A gradient vector field X on M is Morse-Smale if

(H) all singular points of X are hyperbolic, and
(T) all stable and unstable manifolds are transversal.

The Morse-Smale vector fields constitute an open and dense subset of the set X9(M)
of all gradient systems on a closed manifold M. In addition, a gradient system is
structurally stable if and only if it is Morse-Smale.

Definition 5.9. A k-parameter family of gradients {X*"} on a compact manifold
M is a family of pairs (¢g*, f*) for p € R¥, where {g*} is a k-parameter family of
Riemannian metrics and {f#} is a k-parameter family of real-valued functions on M,
such that X* = grad,.(f").

We assume that both ¢g* and f#, and hence X*, depend smoothly on (u,z) €
R¥ x M. The set of such pairs is endowed with the strong Whitney topology; i.e., the
topology of uniform convergence of ¢g*, f* and all their derivatives on compact sets.
The resulting topological space of k-parameter families is denoted by X7 (M).
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Definition 5.10. A parameter value 7 € R* is called a bifurcation value for the
family {X*} in X7 (M) if X* fails to be a Morse-Smale system. Hence X* has at
least one orbit of tangency between stable and unstable manifolds, or at least one
non-hyperbolic singular point.

The bifurcation set of a family {X*} in X7 (M) is the subset of R* consisting of all
bifurcation values of {X*}.

Note that, in dimension three, if a stable manifold and an unstable manifold do
not intersect transversely at a point z, then they are actually tangent at z. Indeed,
stable and unstable manifolds always contain the flow direction, and any two linear
subspaces of R? containing a fixed vector are either transverse or tangent (in the sense
that one is contained inside the other).

5.2.1. Generic 1-parameter families of gradients in dimension 3. We now turn to the
results of Palis and Takens [19], following the notation of Vegter [23].

Definition 5.11. Let v be a vector field on a 3-manifold M. Two invariant sub-
manifolds A and B of v have a quasi-transversal tangency if their intersection has a
connected phase curve 7 that is not a single point, and at some (and hence every)
point r € ~, the following two conditions hold:

(QT-1) dim(7,A + T, B) = 2; so we have three cases:
(a) dim A = 2 and dim B = 2,
(b) dim A =1 and dim B = 2,
(c) dimA =2 and dim B = 1.

(QT-2) In case (QT-1a), we impose the condition that the tangency between A and B
is as generic as possible in the following sense. Let S be a smooth 2-dimensional
cross-section for v, containing r. Take coordinates (1, x2) on a neighborhood
of rin S, in which ANS = {xy = 0}, while BN S is of the form {zy = F(z1)}
for some smooth function F. Condition (QT-1) amounts to F'(0) = 0 and

;_i(()) = 0. In addition, we require that
d*F
—(0 0.

For an open and dense set of 1-parameter families of gradients, it is easy to describe
the bifurcation diagram: It consists of isolated points in the parameter space R
at which one of the conditions appearing in the characterization of Morse-Smale
gradients is violated “in the mildest possible manner.” For a generic family {X*} €

X7 (M), at each bifurcation value i € R exactly one of the following two possibilities
holds:

(NH) Failure of condition (H). The vector field X* has exactly one generically un-
folding saddle-node p, all other singular points are hyperbolic, and all stable
and unstable manifolds are transversal. By convention (here and later), at
saddle-nodes the set of stable and unstable manifolds required to be trans-
verse includes W*(p) and W*"(p) as well as W*(p) and W*(p).

(NT) Failure of condition (T). All singular points of X* are hyperbolic, and there
is a single non-transversal orbit of intersection ~ of the unstable manifold
W (pk) of p/ and the stable manifold W*(ph) of pi that is quasi-transversal
and satisfies the additional non-degeneracy conditions below.
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(ND-1) This condition expresses the “crossing at non-zero speed” of W*(p}) and
Ws(ph) as the parameter passes the value 7z, where p/ and pi are the
saddle points of X*# near pf and pg, respectively. For this, we choose
paths o%, o°: R — M with o%(u) € W*(pY), o*(u) € W*(py), and
o"(m) = o°() = r € v. We require that

o"(7i) — 6°() #0 mod (TLW"(pf) + T,W*(ph)) .

When dim W*(p!) = 1 and dim W*(p) = 2, we impose the following addi-
tional conditions. The case when dim W*(p!) = 2 and dim W*(p5) = 1 have
the same conditions, but with the sign of X* reversed.

(ND-2) The contracting eigenvalues of the linear part of X7 at p{’ are different
(this is generic for gradients because only real eigenvalues occur). This
implies that there is a unique 1-dimensional invariant manifold W**(p!) C
W2 (p}) such that Tp,fwss(pf) is the eigenspace of Lp,ITXﬁ corresponding

to the strongest contracting eigenvalue. We call W**(p!') the strong stable
manifold of pf.

(ND-3) For some r € v, let E, C T,W*(p5) be a 1-dimensional subspace comple-
mentary to X?(r). Let X/’ for t € R be the flow of X*. Then we require
that

dim (dXF), (E;) = T (5f).

(ND-4) The stable and unst@ble manifolds of any singularity p* & {p?, pg} are
transversal to W (pf).

The possibilities occurring in cases (NH) and (NT) are shown schematically in
Figure 12. Note that in case (NT), we have Z(pY), Z(py) € {1,2} and Z(p}) < Z(p})

by condition (QT-1) of quasi-transversality.

5.2.2. Generic 2-parameter families of gradients in dimension 3. This section sum-
marizes results of Vegter [23]; also see Carneiro and Palis [5] for the classification of
generic 2-parameter families of gradients in arbitrary dimensions.

The instabilities (NH) and (NT) of Section 5.2.1 may also occur in an open and
dense class of 2-parameter gradient families on M. The corresponding parameter
values form smooth curves in the parameter space R%. Moreover, for a generic family
{X"} € X§(M), at an isolated value 7z of the parameter, exactly one of the following
situations may occur. (These cases are described in more detail shortly.)

(A) The vector field X* has exactly two quasi-transversal orbits of tangency be-
tween stable and unstable manifolds, satisfying analogues of conditions (ND-
1)-(ND-4), while all singularities are hyperbolic.

(B) The vector field X* has exactly one non-hyperbolic singularity, which is a
saddle-node, and exactly one quasi-transversal orbit of tangency between sta-
ble and unstable manifolds that satisfies analogues of conditions (ND-1)—(ND-
4).

(C) The vector field X* has exactly two non-hyperbolic singularities, which are
saddle-nodes, while all stable and unstable manifolds intersect transversally.

(D) The vector field X* has exactly one non-hyperbolic singularity, which is quasi-
hyperbolic of type 2, while all stable and unstable manifolds are transversal.
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FIGURE 12. Generic codimension-1 singularities of gradient vector
fields. The vertical direction in these pictures is the direction of the
Morse function, so the gradient flow always goes upwards. The critical
points are shown schematically, indicating only the stable and unsta-
ble manifolds. The top row shows the possibilities in case (NH): an
index 0-1, an index 1-2, and an index 2-3 saddle-node. Here the stable
and unstable manifolds are manifolds with boundary. In the bottom
row, we see a quasi-transversal orbit of tangency, shown in red, be-
tween W*(py) and W#*(py). There are three cases, from left to right:
Z(p1) =Z(p2) =1, or Z(p1) = Z(p2) =2, or Z(p1) = 1 and Z(py) = 2.

(E) All singular points of X* are hyperbolic, and a single degenerate orbit of
tangency occurs between W*(p}) and W*(ph) that violates exactly one of
the conditions (QT-1), (QT-2), (ND-3), or (ND-4) in the “mildest possible
manner.” Observe that it does not make sense to consider violation of condi-
tion (ND-1); it can be replaced by a similar condition for 2-parameter families.
Condition (ND-2) also holds for generic 2-parameter families, since the set of
linear gradients on R? having two equal eigenvalues has codimension 2. Hence,

generically, a pair of equal contracting eigenvalues at p} does not occur to-
gether with an orbit of tangency.

If X* has a non-hyperbolic singular point p € M, as in cases (B)—(D), the set of
stable and unstable manifolds also includes W**(p) and W"*(p), respectively.

Next, we consider the bifurcation sets in R? near parameter values 7 for which we
have one of the situations described above. Such a parameter value is in the closure of
smooth curves in R? that correspond to the occurrence of bifurcations that may also
occur in 1-parameter families. The 1-parameter families limiting on 7 corresponding
to tangencies with invariant manifolds of far-away singularities are called secondary
bifurcations. We do not list the cases that arise from the ones below by reversing the
sign of X*, which simply amounts to swapping superscripts “u” and “s.”
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FiGuRE 13. The possibilities for two nondegenerate orbits of
tangency between hyperbolic singular points from case (A).
The top row shows the possibilities in case (A1), while the bottom row
illustrates case (A2). In this figure, each critical points is index 1, with
stable manifold consisting of a curve and unstable manifold consisting
of a disk. The orbits of tangencies are shown in red.

There are four hyperbolic singular points p?, e pf of X* such that the or-
bits of tangency are contained in W*(p}) N W*(ph) and W*(p5) N W*(p),
respectively. We allow pi = p§ or p = p, or both. Note that Z(p!) € {1,2}
for every i € {1,...,4}, and necessarily Z(p}) < Z(p}) and Z(p§) < Z(p}).
See the top row of Figure 13 for schematic drawings of the possibilities when
each p! has index 1. Generically, the bifurcation set consists of two smooth
curves that intersect transversely at 7i, cf. Figure 21.

There are three hyperbolic singular points p?, pg, and pg of X* such that the
orbits of tangency are contained in W*(pi") N W*(ph) and W*(p5) N W*(pk),
respectively. Again, each piH has index 1 or 2, and

Z(pY) < Z(vh) < Z(p5)-
See the bottom row of Figure 13 for an illustration. The bifurcation set consists
of five codimension-1 strata meeting at m, cf. Figure 22.

The vector field X* has one saddle-node p* and one quasi-transverse orbit
of tangency between W*(p}) and W*(p5), where p! and pj are hyperbolic
saddle-points of X*; see Figure 14 for one case. The bifurcation set consists
of two curves that intersect transversely at 7z, cf. Figure 23.

The vector field X* has a saddle-node p# and a hyperbolic saddle-point p*
whose stable manifold has one quasi-transverse orbit of tangency with the
unstable manifold of p”. Secondary bifurcations are, among others, due to the
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FI1GURE 14. Codimension-2 bifurcations that involve a saddle-node. As
in Figure 13, we have drawn schematic possibilities showing only the
stable and unstable manifolds. In the case of an index 1-2 saddle-node,
the stable and unstable manifolds are each half-planes. The red lines
show quasi-transverse orbits of tangency between different singulari-
ties. The green lines are flows that are transverse intersections between
stable and unstable manifolds.

occurrence of tangencies between W"(pt) and W#*(p") for each saddle point
pt = p* such that W*(pf) N W(p") # 0; suppose there are s of these. For an
illustration of one case, see Figure 14. Then the bifurcation diagram consists
of s 4+ 3 codimension-1 strata meeting at 1, cf. Figure 24.

The vector field X* has a saddle-node p# and a quasi-transverse orbit of
tangency between W5 (p#) and W*(p"), where p* is a saddle-point of X*, see
Figure 14. The bifurcation set consists of 3 codimension-1 strata meeting at 1,
cf. Figure 25.

For an open and dense class of 2-parameter families {X*} of X§ (M), we have
a pair py, po of saddle-nodes occurring at isolated values 7z of the parameter.
For an illustration, see Figure 14. There are two curves I'y and I'y in the
parameter plane corresponding to the occurrence of exactly one saddle-node

of X* near p; and po, respectively. Generically, these curves are transversal,
cf. Figure 26.

In a neighborhood of the central bifurcation value g, the bifurcation diagram
consists of parameter values p for which X*#, and hence f*, has a degenerate
singular point near p. For an open and dense class of 2-parameter families { f*}
for which grad(f#*) has a quasi-hyperbolic singularity of type 2, there are u-
dependent local coordinates (xz,y, z) in which f* can be written as

+at 4+ a® + o £ 7 £ 22

having a singularity of type A3. So the bifurcation diagram near 7 is the
well-known cusp, cf Figure 28. The pair of curves having 1z in their closure
corresponds to the occurrence of exactly one saddle-node near p. For an
illustration, see Figure 15.
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FIGURE 15. Local codimension-2 bifurcation of type (D). We have
drawn the bifurcation diagram for an A5 singularity, and indicated the
dynamics on the two sides of the bifurcation set.

:X,P)l
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FIGURE 16. The dynamics at a bifurcation of type (E1).

(E1) We have dim W*(p}) = dim W*(ph) = 1, violation of (QT-1). Secondary bi-
furcations may be present due to occurrence of an orbit of tangency between
W#(py) and an unstable manifold (of dimension 2) intersecting W#*(pf), or
between W"(p') and a stable manifold (of dimension 2) intersecting W*(p}),
see Figure 16. For u close to Ji, let D¥ be a continuous family of smooth discs
contained in a level set of f# such that W*(p}) N D¥ = {r}. Let U}{,...,U¥
be the intersections of D! with unstable manifolds having non-empty intersec-
tions with W*(p{). Similarly, S{, ..., S¥ denote intersections of D¥ and stable
manifolds meeting W*(p4). The corresponding bifurcation diagram consists
of n+m curves in the parameter plane, having 7z in their closure, cf. Figure 29.
For parameter values p on these curves we have either W*(py) N D# € Ul for
some i € {1,...,n}, or W*(pf) N DI € S% for some j € {1,...,m}.
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(E2) We have d*F"/dz* = 0, violation of (QT-2), where F* is the function F
defined in (QT-2) for the vector field v#. For an open and dense class of
2-parameter families, we have (d*F#/dz?)(0) # 0, while the family {F"} is
a versal unfolding of F¥. The latter condition implies the existence of local
coordinates (u,x) near (@,r) in which (@, r) corresponds to (0,0) € R? x R,
such that F*(z) = 2® + ux + pe. The bifurcation values form a cusp in the
parameter space R2.

(E3) Situation of case (QT-1b), where lim, , ., dX/'(E,) is the eigenspace of the
linear part at p/ corresponding to the weakest contracting eigenvalues, which is
violation of (ND-3). Let D¥ be as in case (E1). Then D¥ contaius U}, ..., U¥
that are intersections of DY and unstable manifolds meeting W*(p{). Sec-
ondary bifurcations occur for parameter values p for which W#*(p5) N DY is
tangent to U/ for some i € {1,...,n}.

(E4) The vector field X* has an orbit of tangency as in case (QT-1b), and ex-
actly one hyperbolic saddle p¥ different from p¥ and p§ such that TW*(pF)
and W*(p/) are not transversal, which is violation of (ND-4). In this case,
we have secondary bifurcations for parameter values p for which one of the
following occur:

(a) W (ph) N Dy € W=(ph) N Dy,
(b) W*(p¥) N D* is tangent to W*(ph) N DX.

5.3. Sutured functions and gradient-like vector fields. In this section, we in-
troduce sutured functions, which are smooth functions on a sutured manifold with
prescribed boundary behavior. Then we define and study gradient-like vector fields
for sutured functions.

Definition 5.12. Let (M, ) be a sutured manifold, and fix a diffeomorphism
d: v — s(y) x [-1,1]

such that d(p) = (p,0) for every p € s(7), and d maps v N R+ (7) to s(y) x {£1}. We
also fix a vector field vy along R(7) that points into M along R_(v) and points out of
M along Ry (7). A sutured function on (M,~) is a smooth function f: M — [—1,1]
such that

(1) f7H(ED) = Re(7),

(2) UO(f) > 07
(3) fly = m od, where 7y is the projection s(y) x [—1,1] = [—1,1].

Notice that, for a fixed choice of d and vy, the space of sutured functions on (M, ) is
convex, hence contractible. Furthermore, the space of pairs (d, vp) is also contractible,
though we will always assume implicitly that we are working with a fixed choice (d, vy).
For a sutured function f, we denote by C(f) the set of critical points of f; i.e.,

C(f) ={peM:df,=0}.

By conditions (2) and (3), the set C(f) lies in the interior of M. The following
definition was motivated by Milnor [13, Definition 3.1].

Definition 5.13. Let f be a sutured function on (M,~). A vector field v on M is a
gradient-like vector field for f if
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(1) v(f) >0 on M\ C(f),

(2) C(f) has a neighborhood U such that v|y = grad,(f|v) for some Riemannian
metric g on U,

(3) v|, = 0/0z, where z is the [—1, 1]-coordinate on 7.

Remark 5.14. Note that Milnor [13, Definition 3.1] defined gradient-like vector fields
for a Morse function f on an n-manifold M. Instead of condition (2), he required
that for any critical point p of f, there are coordinates (z1,...,z,) in a neighborhood
U of p such that

f=fp)-ai— -4l ot

and v has coordinates (—z1,...,—Z), Txi1,...,%,) throughout U. When studying
families of smooth functions, as we have seen, more complicated singularities can
arise. We could require that around such a singularity, v is the Euclidean gradient in
a local coordinate system in which the singularity is in normal form. But then it is
unclear whether the space of gradient-like vector fields is contractible, as the space of
such local coordinate systems is rather complicated. Hence, we have chosen to work
with condition (2), as the space of metrics is clearly contractible. As a tradeoff, one
has to resort to such results as Theorems 5.3 and 5.4 to understand the invariant
manifolds of v near a singular point.

Let FV(M,~) be the space of pairs (f,v), where f is a sutured function on (M, )
and v is a gradient-like vector field for f. We endow FV (M, ~y) with the C*-topology.

Definition 5.15. A Morse function on (M,~y) is a sutured function f: M — [—1,1]
such that all critical points of f are non-degenerate. For a Morse function f and
i€40,1,2,3}, let C;(f) be the set of critical points of f of index i.

By (2), every gradient-like vector field v of a Morse function has only hyperbolic
singular points. In particular, we can talk about the stable and unstable manifolds
W4 (p) and W*(p) of a singular point p of v. If we also want to refer to the vector
field v, then we write W*(p,v) and W?(p,v). Note that the Morse index Z(p) of the
critical point p € C(f) agrees with dim W*(p). Indeed, in a suitable coordinate system
around p, the linearization L,v coincides with the Hessian of f at p. Furthermore,
notice that every point

reM\ |J W“p)uws(p)
peC(f)
lies on a compact flow-line connecting R_(7) and R (7).
Definition 5.16. We say that (f,v) € FV(M, ) satisfies the Morse-Smale condition

if v is Morse-Smale in the sense of Definition 5.8. We denote the subspace of Morse-
Smale pairs in FV(M,~) by FVo(M,~).

If (f,v) € FVo(M,7), then f is a Morse function on (M, ). Furthermore, for every
p, q¢ € C(f), the intersection W*(p) N W#(p) is a manifold of dimension Z(p) — Z(q)
that we denote by W (p, q). In particular, W(p,q) = 0 if Z(p) — Z(q) < 0.

Remark 5.17. Notice that for (f,v) € FV(M,~), the condition that W*(p) and W*(q)
intersect transversally is automatically satisfied if at least one of p or ¢ has index 0
or 3. For a pair (f,v) € FV(M,~) where f is a Morse function, the Morse-Smale
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condition can be violated by having flows between critical points of index 1, flows
between critical points of index 2, or an orbit of tangency in W*(p) N W#(q) for
p € Ci(f) and ¢ € Cy(f). In addition, flows from index 2 to index 1 critical points
generically appear in 2-parameter families.

Definition 5.18. We say the pair (f,v) € FV(M,v) is codimension-1 if (f,v) &
FVo(M,), but v appears as X* for some 1-parameter family {X*} € X7(M) that
is generic in the sense of Section 5.2.1. We denote the space of codimension-1 pairs
by FV1(M,~), and the union FVo(M,~v) U FV1(M,~) by FV<1(M, ).

In an analogous manner, we say that (f,v) € FV(M,~) is codimension-2 if (f,v) &
FV<1(M,7), but v appears as X* for some 2-parameter family {X*} € Xj (M) that
is generic in the sense of Section 5.2.2. We denote the space of codimension-2 pairs
by FVo(M,~). Finally, we set

FVaMy) = |J Fvi

i€{0,1,2}

The following proposition implies that every gradient-like vector field is actually a
gradient for some Riemannian metric. The advantage of gradient-like vector fields is
that they are easier to manipulate than metrics, which is useful in actual construc-
tions.

Proposition 5.19. Let (f,v) € FV(M,~). Then the space G(f,v) of Riemannian
metrics g on M for which v = gmdg(f) 15 non-empty and contractible.

Proof. By definition, there is a metric ¢ on a neighborhood U of C(f) such that
v|ly = grad,(f|v). Pick a smaller neighborhood V' of C(f) such that V C U. We are
going to extend g[y to the whole manifold M such that v = grad,(f) everywhere.
Such a metric g on M satisfies g(v,,v,) = v.(f) > 0 and g(v,,w,) = 0 for every
x & C(f) and w, € ker(df,). So the extension g on M is uniquely determined
by a choice of metric on the 2-plane bundle ker(df)|s\y that smoothly extends the
metric given on ker(df)|y\¢(y). For this, pick an arbitrary metric on ker(df)|a,v and
piece it together with g|in\c(y) using a partition of unity subordinate to the covering
{U, M\ V} of M. Hence G(f,v) # 0.

The space G(f,v) is contractible because it is convex. Indeed, if g, g1 € G(f,v),
then g;(v,w) = w(f) for every vector field w on M and i € {0,1}. Let g; = (1—t)go+
tgy for t € I be an arbitrary convex combination of gy and g;. Then g;(v, w) = w(f)
for every w on M; i.e., v = grad,,(f). O

Corollary 5.20. The space FV(M,~) is contractible.

Proof. Let F(M,~) be the space of sutured functions and G(M, ) the space of Rie-
mannian metrics on (M, ), respectively. Both F(M,~) and G(M,~) are contractible.
Consider the projection

w: F(M,~) x G(M,~) = FV(M,~)

given by 7T(f, g) = (f,grad,(f)); this is a Serre fibration. For (f,v) € FV(M,~), the
fiber is g7'(f,v) = G(f,v), which is contractible by Proposition 5.19. Hence the base
space FV(M,~) is also contractible. 0J
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6. TRANSLATING BIFURCATIONS OF GRADIENTS TO HEEGAARD DIAGRAMS

We will now translate the singularities of Sections 5.2.1 and 5.2.2 in terms of Hee-
gaard diagrams. Loosely speaking, each generic gradient gives a Heegaard diagram,
each codimension-1 singularity gives a move between Heegaard diagrams, and each
codimension-2 singularity gives a contractible loop of Heegaard diagrams. The codi-
mension-1 and codimension-2 singularities give moves and loops of moves, respec-
tively, that are more complicated than the ones appearing in the definition of weak
and strong Heegaard invariants; in Section 7 we will see how to simplify these families.

The overall idea is that to construct a Heegaard splitting from the gradient of a
generic Morse function (not necessarily self-indexing), take one compression body
to be a small neighborhood of the union of all flows starting at R_(y) or index 0
critical points and ending at index 1 critical points. The other compression body is
then isotopic to a small neighborhood of the flows starting at index 2 critical points
and ending at R, () or at index 3 critical points. To further construct the a- and
B-curves of a Heegaard diagram, we take the intersection of the Heegaard surface
with the unstable manifolds of some of the index 1 critical points and with the stable
manifolds of some of the index 2 critical points.

This Heegaard splitting extends naturally across codimension-1 and codimension-2
singularities, as long as there is not a flow from an index 2 to an index 1 critical point.
In each case, we will analyze how the corresponding Heegaard diagrams change.

6.1. Separability of gradients. We now introduce separability, our main technical
tool for obtaining Heegaard splittings compatible with gradient-like vector fields that
have at most codimension-2 degeneracies. In the sections that follow, we explain how
to enhance these Heegaard splittings to Heegaard diagrams for generic gradients, to
moves between diagrams for codimension-1 gradients, and to loops of diagrams for
codimension-2 gradients.

Definition 6.1. We say that the pair (f,v) € FV<o(M,~) is separable if

e it is not codimension-2 of type (E1); i.e., if for every pair of non-degenerate
critical points p € Cs(f) and ¢ € C1(f), we have W"(p) N W*(q) = 0; and
e if it is codimension-2 of type (C) (i.e., it has two birth-death singularities at p

and at ¢), then f(p) # f(q)-
(This second condition is codimension-3, and hence generic for 2-parameter families.)

Definition 6.2. Suppose that (f,v) € FV<3(M, 7). Then we partition C'(f) into two
subsets, namely Cy; (f,v) and Cas(f, v), as follows. We add Co(f)UC1(f) to Co1(f,v)
and Cg(f) U Cg(f) to ng(f, U).

Now suppose that f has a critical point p of type As. If p is an index 0-1 birth-death,
then p € Co1(f,v). If p is an index 2-3 birth-death, then p € Co3(f,v).

Consider the case when p is an index 1-2 birth-death critical point of f. If (f,v) is
codimension-1 of type (NH), then we can add p to either Co;(f,v) or Cos(f,v). If (f,v)
is codimension-2 of type (B1), then we add p to Co1(f,v) if Z(p1) = Z(p2) = 1, and
to Cos(f,v) if Z(p1) = Z(p2) = 2. If (f, v) is codimension-2 of type (B2) or (B3), then
we add p to Co1(f,v) if Z(p) = 1, and to Cas(f,v) if Z(p) = 2. If (f,v) € FVo(M,7)
is type (C) and ¢ is the other birth-death critical point, then we put p into Coi(f,v)
if f(p) < f(q), and into Cos(f,v) if f(p) > f(q).
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Finally, assume that (f,v) is codimension-2 of type (D), so f has a critical point p
of type A;,t. In case of an index 1-0-1, 0-1-0, or 1-2-1 birth-death-birth, we add p to
Co1(f,v), while in case of an index 2-1-2, 3-2-3, or 2-3-2 birth-death-birth, we add p
to ng(f, U).

Definition 6.3. Suppose that (f,v) € FV<2(M,v). We say that a properly embed-
ded surface ¥ C M separates (f,v) if

(1) X ho,

(2) M = M_U M, such that M_N M, =% and Ry(y) C My,

(3) C(]l(f, ’U) C M_ and ng(f, U) C M+, and

(4) 9% = s(v).
We denote the set of surfaces that separate (f,v) by X(f,v). When (f,v) € FV1(M,7)
is type (NH) with an index 1-2 birth-death singularity p, there are two different choices
for the partition (Coi(f,v),Cas(f,v)) of C(f), depending on where we put p, hence
Y(f,v) is not completely unique. If we put p into Co(f,v), then we denote the re-
sulting set ¥_(f,v), and we write ¥, (f,v) when p € Co3(f,v). Often, we suppress
this choice in our notation, and simply write X(f,v) (which is then either ¥_(f, v) or

Z-i—(fv U))

Notice that if 3 separates (f,v), then X is necessarily orientable as it is transverse
to v and M is orientable. We orient Y such that the normal orientation given by v,
followed by the orientation of Y, agrees with the orientation on M; i.e., such that X
is oriented as the boundary of M_.

If (f,v) € FV<2(M,~), then for every p € Cypi(f,v), the manifold W*(p) is diffeo-
morphic to

e a single point if p € Cy(f), or p is a birth-death-birth of index 0-1-0,

e Rif pe Cy(f), or pis an index 1-0-1 or 1-2-1 birth-death-birth,

e R, if pis an index 0-1 birth-death, or

e R? if p is an index 1-2 birth-death.
In addition, if (f,v) is separable and p € Cy(f,v) is not an index 1-2 birth-death,
then OW*(p) C Coi(f,v) U R_(7y) (where OW*(p) is the topological boundary). If
p € Cor(f,v) is an index 1-2 birth-death, then 0W**(p) C Co1(f,v) U R_(7), while

OW*(p) C Cor(f,v) UR(Y) UW=(p) U J{ W) : 1 € Cou(f.0) \ {p} }-

Analogous statements hold for Cy3(f,v). The above discussion justifies the following
definition.

Definition 6.4. Suppose that (f,v) € V(M,~) is separable. Then we define the
relative CW complexes (R_(7) UT01(f,v), R-(7)) and (R+(y) UT23(f, v), R4 (7)) by
taking

FOl(fv U) = U Ws(p)a
pEC(n(f,v)

Tos(fo)= | W)

p€C23(f,v)



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 43

The set of vertices of T'g1(f,v) is Coi(f,v). The closed 1-cells of I'py(f,v) are the
closures of the components of the W**(p) \ {p} for p € Co1(f,v) an index 1-2 birth-
death, and the closures of the components of W*(p)\ {p} for every other p € Cp1(f,v).
Finally, ['g;(f,v) has at most one (closed) 2-cell, namely W#(p) if p € Co1(f,v) is an
index 1-2 birth-death. We define the cell decomposition of I's3(f,v) in an analogous
manner. Finally, we set I'(f,v) = Lo1(f,v) U Los3(f, v).

Remark 6.5. In light of Definition 6.4, we now motivate Definition 6.2. We parti-
tioned the set of critical points C(f) into Coi(f,v) and Cas(f,v) precisely so that
we can form the relative CW complexes (R_(y) U To1(f,v), Fo1(f,v)) and (R4 (vy) U
LCos(f,v),Tas(f,v)). We would like to have C1(f) C Coi(f,v) and Cy(f) C Cas(f,v)
because if X is a separating surface, then — as we shall see in Section 6.2 — we can
obtain a Heegaard diagram from it by taking a-curves to be W"(p) N ¥ for some
p € Ci(f) and [-curves to be W¥(p) N X for some p € Cy(f). This also explains
our rule in case (B2). For example, suppose that (f,v) has an index 1-2 birth-death
critical point at p, and a non-degenerate critical point at p of index 1, such that there
is a flow ¢ from p to p. Since we have to place p in Cy;(f, v), we must also put p into
Co1(f,v), otherwise the 1-cell § C W*(p) would have one endpoint in Ios(f, v).

In case (E1), we do not obtain a CW complex (whichever side we assign p to)
for a similar reason, explaining why those gradients are not separable. Our choices
for placing the index 1-2 birth-death critical points of a pair (f,v) € FVy(M,~) in
every case other than (B2) are purely conventional to make the construction more
canonical, and most proofs would also work for the other choices. However, we do
adhere to these conventions in Theorem 6.37.

When (f,v) € FV1(M,~) has an index 1-2 birth-death critical point p, there is
no canonical way to decide where to put p, and in fact, the rule in case (B2) forces
us to allow both possibilities: If { (fy,vy): A € R?} is a generic 2-parameter family
such that (fy,vg) has a type (B2) bifurcation, where we have to put the As point in
Co1(f,v), then we have to do the same for (fy,vy) when A lies in the stratum of the
bifurcation set corresponding to the A, singularity.

Lemma 6.6. Suppose that (f,v) € FV<o(M,7) is separable and ¥ € X(f,v). Then
the surface X intersects every flow-line of v in M \ T'(f,v) in exactly one point.

Proof. Note that M \T'(f,v) is a saturated subset of M (i.e., it is a union of complete
flow lines). The closure of a non-constant flow-line 7 of v is diffeomorphic to I, and
has both endpoints in R(v)UC(f). If the maximal open interval on which 7 is defined
is (a,b) (where a might be —oo and b might be +00), then let these endpoints be
7(a) = limy_o1 7(t) and 7(b) = limy_y,— 7(t). If 7(a) € Cos(f,v), then 7 C Ta3(f,v).
Similarly, if 7(b) € Cy(f,v), then 7 C Loy (f,v). Consequently, every flow-line 7 of
vlanr(r) has

7(a) € R-(v) U Cu(f,v) C M_, and

7(b) € Ry () U Cas(f,v) € My,

so 7MY # (. Since X is positively transverse to v, once an integral curve of v
enters M it can never leave it, so [T N Y| = 1. O

Using Lemma 6.6, we can endow Y(f,v) with a topology as follows. Choose a
smooth function h: M — I such that h=*(0) = R(v), and let w = hv. Unlike v, the
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vector field w is complete, and v and w have the same phase portrait inside M \ R(7).
Let ¢: R x M — M be the flow of w. For surfaces ¥ and ' in X(f,v), we define the
function dsy x; € C°°(X) by requiring that ¢(z,dsy »(x)) € ¥’ for every x € X. This
uniquely determines dsy 5;(z) by Lemma 6.6. If we fix 3y € X(f,v), then the map
by, : X(f,v) = C=(X) given by by, (X) = dx 5, is bijective. The topology on X(f,v) is
the pullback of the Whitney C*°-topology on C*°(X) along by,,. This is independent
of the choice of Xy, since dyy, = dsyx, ©ix, 5, + dsyx,, Where is, 5, X — X
is the diffeomorphism given by iy, », (2) = ¢(x,ds, v, (z)). In addition, the map
f = foiy,xn from C®(%;) to C*(X;) and the map g — g + dyx, », from C*(%;)
to C*°(%;) are both homeomorphims. The function dy s depends continuously on h,
hence the topology that we defined is independent of the choice of h.

Proposition 6.7. Suppose that (f,v) € FV<o(M,7) is separable. Then the space
Y(f,v) is non-empty and contractible. Furthermore every 3 € X(f,v) divides (M, )
into two sutured compression bodies; i.e., it is a Heegaard surface of (M,~).

(M
More precisely, in the indeterminate case that (f,v) € FV;(M,~) and f has an
index 1-2 birth-death critical point, we mean that both ¥_(f,v) and Y. (f,v) are
contractible.

Proof. By the above discussion, it is clear that if X(f,v) # 0, then it is homeomorphic
to C*°(X), hence it is contractible.

Next, we show that X(f,v) # 0. Let Ny be a thin regular neighborhood of
Loi(f,v) U R_(7), and consider the surface ¥, = dNy; \ M. Similarly, pick a reg-
ular neighborhood Nz of I'ys(f,v) U Ry (), and define Y93 = ONg3 \ OM. Choosing
sufficiently small and nice regular neighborhoods, we can suppose that Yg; N a3 =0
and that Yy; and Yo3 are transverse to v. Their union g, U Yo3 separates M into
three pieces. Two of them are Ny; and Nas, and we call the third piece P. Now v|p is
a nowhere vanishing vector field that points into P along ¥y, points out of P along
Y03, and is tangent to v N P. In addition, v(f) > 0 on P, so an isotopy from X
to Yoz relative to 7y is given by flowing along v/v(f). In particular, (P,y N P) is a
product sutured manifold, and the flow-lines of v|p give an [-fibration. By isotoping
Y01 near v flowing along v, we can obtain a surface X, such that 93j, = s(y). Hence
¥4, € X(f,v) (with M_ isotopic to Ng; and M, isotopic to Nog U P).

Observe that Xy, divides (M,7) into the sutured manifolds (Nyi,y N Npi) and
(Nog U P,y N (Nog U P)). Since Ty is either a graph (i.e., a 1-complex), or obtained
from a graph by an elementary expansion if Cy(f,v) contains an index 1-2 birth-
death, (No1, 7N Npp) is a sutured compression body (where R, (yN Ny;) = o1 can be
compressed to be isotopic to R_(y N Nop)). Similarly, (Naz, v N Nag) is also a sutured
compression body (where R_(y N Nog) = a3 can be compressed to be isotopic to
R.(y N Ny3)). As (P,yN P) is a product, (Naz U P,y N (Nag U P)) is a sutured
compression body. Every element of ¥(f,v) is isotopic to ¥ relative to v, hence
also divides (M, ) into two sutured compression bodies. O

Definition 6.8. Let B(M,~) be the space of pairs (f,v) € FV<o(M,~) that are
separable, and let F(M,~) be the space of triples (f,v, X)), where (f,v) € B(M,~) and
Y € X(f,v). There is a projection 7: E(M,~) — B(M,~) defined by forgetting X.
For (f,v) € B(M,~), let x(f,v) be the Euler characteristic of ¥ for any ¥ € X(f,v)
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(which is independent of the choice of ¥ by Proposition 6.7). For k € Z, we define

Bp(M,~) ={(f.v) € B(M,7): x(f,v) =k}.
Finally, we set Ey(M,~) = 7~ 1(By(M,7)) and 7 = 7|5, (v.4)-

Note that the total space F(M,~y) depends on whether 3( M, ~) stands for 3, (M, ~)
or ¥_(M,~), but the base B(M,~) is independent of this choice according to the
following result.

Lemma 6.9. For (f,v) € B(M,~), we have
X(f0) =x(R-(y)+ > i),

p€Co1(f,v)
where
e i(p) =2 forp e Cy(f) or p an index 0-1-0 birth-death-birth,
e i(p) = 0 for p a birth-death, and
e i(p) = —2 forp e Ci(f), or p an index 1-0-1 or 1-2-1 birth-death-birth.

Proof. Recall that (R_(v) UL (f,v), R_(7)) is a relative CW complex of dimension
at most two. We saw in the proof of Proposition 6.7 that every ¥ € X(f, v) is isotopic

to the surface Yo, = ONy; \ OM relative to v, where Ny; is a regular neighborhood of
R_ (’j/) U Fgl(f, U). Since 6N01 =R_ (’j/) U 201 U (’7 N N()l), where Y N N01 is a dlSJOlIlt
union of annuli,

X(R-(7)) + x(Zo1) = x(INo1) = 2x(Now).
As Ny deformation retracts onto R_(v) UL (f,v), we have

X(Not) = x(R-(7)) +co — 1 + c2,
where ¢; is the number of i-cells in Ty (f,v). By construction, each point p € Co(f,v)
contributes i(p)/2 to co—c1+co. Indeed, for p € Cy(f) or p an index 0-1-0 birth-death-
birth, W#(p) = {p}, so p contributes a single O-cell. If p is an index 0-1 birth-death,
then it contributes a 0O-cell and a 1-cell, while an index 1-2 birth-death contributes
a O-cell, two 1-cells, and a 2-cell. For p € Ci(f) or p an index 1-0-1 or 1-2-1 birth-
death-birth, W#(p) is an arc, and p contributes a 0-cell and two 1-cells. O

Corollary 6.10. If (fo,vo) and (f1,v1) lie in the same path-component of FVo(M, )
or FV1(M,7), then x(fo,v0) = x(f1,v1).

Note that this corollary is false for FV (M, ).

Proof. Take a path {(f;,v;) € FV;(M,~): t € I} connecting (fo,vo) and (f1,v1). In
this family, the types of critical points in Co(f;, v;) remain unchanged; in particular,
the local contributions i(p;) for p, € Co1(f;, vy) are also constant. By Lemma 6.9, we
obtain that x(fo,vo) = x(f1,v1)- O

We denote by Bj*(M,~) and E*(M,~) the space of those (f,v) € By(M,~) and
(f,v,%) € Ex(M,~) for which f is Morse. By slight abuse of notation, we also denote
the projection (f,v,3) — (f,v) by 7.

Proposition 6.11. Let (M,~) be a connected sutured manifold and k € Z. Then
the map m: EJ(M,~) — B (M, ) is a principal bundle with fibre C*(X,R) for a
compact, connected, orientable surface ¥ with 03| = |s(y)| and x(X) = k.
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Proof. Given (f,v,%) € EJ*(M,~), there is a neighborhood U of m(f,v, %) = (f,v)
in B]*(M,~) such that for every (f’,v’) € U, we have ¥ € X(f’,v’). To see this, note
that the surface 3 separates (M,~y) into two sutured compression bodies (M, ~y)
and (M_,~_), one of which contains I'g;(f,v) U R_(7), and the other one contains
Cos(f,v) U Ry (y). If (f',7) is sufficiently close to (f,v), then X is transverse to v'.
Furthermore, oy (f/',v") U R_(y) € M_ and Tys(f',v") U Ry(y) € M. Indeed, no
critical point can pass through X as long as ¥ is transverse to the vector field, and
every critical point of f is stable.

Now we construct a local trivialization ¢: U x C*(X,R) — 7~ }(U). Choose a
smooth function h: M — I such that h=1(0) = R(v). Then ¢ is defined by the formula
o((f' ), s) =X + s, where (f',v') € U and s € C*°(3,R), and we view X(f’,v') as
an affine space over C*°(3,R) via flowing along hv’. The trivializations ¢ define the
topology on E(M,~) that makes m: E*(M,~) — BJ*(M,~) into a principal bundle,
and is compatible with the topology on each fiber 3(f, v). O

As a corollary, m: EJ*(M,~) — B;*(M,~) is a Serre fibration. In particular, it
satisfies the path-lifting property. For example, together with Corollary 6.10, for
any family of Morse-Smale vector fields { (fy,va): A € A}, there is a corresponding
family of surfaces { ¥x: A € A } such that ¥y € 3(f\, v)) for every A € A. As the fiber
C*(X%,R) is contractible, we can even extend a family of splitting surfaces defined
over a closed subset of A.

6.2. Codimension-0. In the previous section, we described how to obtain a con-
tractible space of Heegaard splittings of the sutured manifold (M, ~y) from a separa-
ble pair (f,v) € FV<2(M,~). If we also assume that (f,v) is Morse-Smale and we
make an additional discrete choice, then we can enhance these splittings to sutured
diagrams. In the opposite direction, we also show that every diagram of (M, ) with
a h 3 arises from a particularly simple Morse-Smale pair (f,v), and the space of
such pairs is connected.

By Proposition 6.7, every ¥ € ¥(f,v) is a Heegaard surface of (M,~). If (f,v) is
Morse-Smale, then for every p € C(f) and g € Cy(f), the intersections W (p) N X
and W*(q) N3 are embedded circles, and W"(p) N ¥ is transverse to W?*(q) N X.

Definition 6.12. Suppose that (f,v) € FVo(M,~), and let ¥ € X(f,v). Then the
triple H(f,v,%) = (X, ¢, 3) is defined by taking the a-curves to be W*(p) N % for
p € C1(f) and the S-curves to be W#(q) N X for ¢ € Cs(f).

In general, H(f,v,X) is not a diagram of (M, ~) as a and 8 might have too many
components. We will refer to such diagrams as overcomplete, as we can remove some
components of a and 8 to get a sutured diagram of (M, ~).

Definition 6.13. Let (M,7) be a sutured manifold. We say that (X, a,3) is an
overcomplete diagram of (M,~) if

(1) ¥ C M is an oriented surface with 0¥ = s(-y) as oriented 1-manifolds,

(2) the components of the 1-manifold e C ¥ bound disjoint disks to the negative
side of X, and the components of the 1-manifold 8 C ¥ bound disjoint disks
to the positive side of X,

(3) if we compress 3 along a, we get a surface isotopic to R_(vy) relative to 7,
plus some 2-spheres that bound disjoint balls in M, and
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(4) if we compress ¥ along 3, we get a surface isotopic to R, () relative to =,
plus some 2-spheres that bound disjoint balls in M.

Overcomplete diagrams specify handle decompositions of (M, ) that also include
0- and 3-handles. Note that o and 3 might fail to be attaching sets because ¥ \
and X\ B can have some components disjoint from 9%; however, all such components
are planar.

To actually make the overcomplete diagram H(f,v,Y) into a usual Heegaard di-
agram of (M,~), in addition to assuming that (f,v) is Morse-Smale, we also need
to make a discrete choice. The Morse-Smale condition rules out flows between two
index ¢ critical points for ¢ € {1,2}, hence every point of C(f)UCs(f) has valence 2
in the graph I'(f,v).

Definition 6.14. Let I'_(f,v) be the graph obtained from I'g; (f, v) by identifying all
vertices lying in R_(7) and deleting the vertices at C1(f) (and merging the two adja-
cent edges into one edge). So the vertices of I'_(f, v) are the points of Cy(f), plus at
most one vertex for R_(y), and its edges correspond to W#(p) for p € Cy(f). In other
words, I'_(f,v) is obtained from the relative CW complex (I'p; (f,v) U R_(7), R_(7))
by taking the factor CW complex (I'p1 (f,v)UR_(y))/R_(7) and removing the vertices
at Cy(f). Similarly, the graph T'; (f,v) is obtained by collapsing I'as(f,v) N Ry () to
a single point, and deleting the vertices at Cy(f). The edges of ', (f,v) correspond
to W*(q) for ¢ € Ca(f).

Definition 6.15. Suppose that (f,v) € FVo(M,~). Let T1 be a spanning tree of
I't(f,v), and choose a splitting surface ¥ € X(f,v). Then the sutured diagram
H(f,v,%,T_,T,) is defined by taking the a-curves to be W*(p)NX, where p € C1(f)
and W*(p) is not an edge of 7. Similarly, the S-curves are the intersections W*(q)NX,
where ¢ € Cy(f) and W"(q) is not an edge of T.

For brevity, we will often write H(f,v,%,Ty) for H(f,v, 2, Ty, T ). Of course,
a different choice of T gives a diagram that is a-equivalent to the original, while
changing T', gives a diagram that is S-equivalent.

In the opposite direction, given a Heegaard surface X for (M, ), we will show that
one can find a particularly nice pair (f,v) € FVo(M,y) such that ¥ € 3(f,v).

Definition 6.16. We say that a Morse function f on (M,~) is simple if
(1) Ci(f) =0 for i € {0, 3},
(2) f(p) <0 for every p € Ci(f),
(3) f(q) > 0 for every q € Cs(f).
We call a pair (f,v) € V(M,~) simple if f is simple and, in addition,
(4) for every p € Cy(f), there is a local coordinate system (zy, xq, x3) around p in
which f = —2? + 23+ 22 + f(p) and v has coordinates (—2zy, 2z, 273),
(5) for every g € Cy(f), there is a local coordinate system (x1, e, x3) around ¢ in
which f = —2? — 22 + 23 + f(q) and v has coordinates (—2z;, —2z5, 2x3).

Let f be a simple Morse function. Then observe that for any gradient-like vector
field v for f, the pair (f,v) is separable. Indeed, f(p) < f(q) for every p € Cy(f)
and ¢ € Cy(f), so there is no flow-line of v from ¢ to p. Furthermore, the surface
Y = f71(0) is a Heegaard surface that separates (f,v). If, in addition, (f,v) is
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Morse-Smale, then we can uniquely complete this to a diagram H(f,v) = (¥, a, 3)
of (M,~) using Definition 6.15. Indeed, since 'y (f,v) is a wedge of circles, it has a
unique spanning tree 7Ty consisting of a single vertex. The diagram H(f,v) is then
H(f,v,%,T_,T,). More explicitly, the a-curves are W*(p) N X for p € Ci(f), and
the S-curves are W*(q) NX for ¢ € Cy(f).

The following result is basically standard Morse theory, but since it provides the
crucial link between sutured Heegaard diagrams and Morse functions, we give a com-
plete proof.

Proposition 6.17. Let (X, a, B) be a diagram of the sutured manifold (M,~), and
suppose that o th 3. Then there exists a simple pair (f,v) € FVo(M,~) such that

H(f,v) = (3, &, B).

Proof. Given an arbitrary attaching set & C X, recall that C'(d) is the sutured com-
pression body obtained by attaching 2-handles to X x I along d x {1}. We are going
to construct a Morse function f5: C'(d) — [ with only index 2 critical points, and a
gradient-like vector field vs for fs.

Consider the Morse function h(z) = —2? — 23 + 22 + 1/2 and its gradient v(z) =
(—2x1, —279,2x3) on the unit disk D3. Our model 2-handle will be Z = h~'(I); this
is a 3-manifold with boundary and corners. Let Z~ = h~'(0) and ZT = h!(1).
The boundary of Z is Z~ U Z* U A, where Z~ is a connected hyperboloid, hence
topologically an annulus. The surface Z* is the disjoint union of two disks, while
A = 7N S? is the disjoint union of two annuli. The attaching circle of Z is the curve
a=Z"N{x3 =0}. We isotope v near A such that it stays gradient-like for h, and
becomes tangent to A. The function h has a single non-degenerate critical point of
index 2 at the origin, with stable manifold W*(0) = Z N {x3 = 0}.

Pick an open regular neighborhood N of §, and let R = (X \ N) x I. We define
fs on R to be the projection ¢ onto the I-factor, and vs on R is simply 0/0t. If the
components of d are d1,...,04, then we denote by N; the component of N contain-
ing 6;. For each i € {1,...,d}, take a copy Z; of Z, together with the function h;
and the vector field v; constructed above. We glue Z; to R using a diffeomorphism
A; = ON; x I that maps the circles A1 (t) N A to ON; x {t} for every ¢t € I. So we can
extend fs to Z; with h; and vs with v;. After gluing Z,,..., Z; to R, we get a com-
pression body diffeomorphic to C'(§), together with the promised pair (fs,vs). Note
that here we identify (X \ N) x {0} with ¥\ N and Z; with N;, so that C_(§) = X.
In addition, the attaching circle a; of Z; is identified with «;. Let p; be the center of
the 2-handle Z;. By construction, the stable manifold W*(p;) N ¥ = «;.

The surface ¥ cuts (M,~) into two sutured compression bodies. Call these C_
and Cy, such that Ri(y) C Ci. There are diffeomorphisms d_: C_ — C(«) and
dy: Cy — C(B) that are the identity on X. Then we define the Morse function f on
(M,~) by taking —f, od_ on C_ and fzod; on Cy, and smoothing along 3. Then
the vector field v that agrees with —(d_);'ov,0d_ on C_ and with (d;);'ovgod,
on C, is gradient-like for f, and is Morse-Smale since a h 3. It follows from the
construction that H(f,v) = (3, a, 3). O

Notice that the above construction is almost completely canonical, in the sense
that the various choices can be easily deformed into each other. In fact, we have the
following stronger statement.
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Proposition 6.18. Let (3, a, 3) be a diagram of the sutured manifold (M,~y) such
that a M B, and recall that FVo(M,~) is endowed with the C*®-topology. Then
the subspace of simple pairs (f,v) € FVo(M,~) for which H(f,v) = (¥, a,0) is
connected.

Proof. Suppose that the simple pairs (f,v) and (g, w) in FVo(M,~) satisfy H(f,v) =
(3, a,8) and H(g,w) = (3, o, B).

As in Proposition 6.17, the surface ¥ cuts (M, ) into two compression bodies C_
and C, such that Ry(y) C Cy. We will describe how to connect (f,v)|c, and
(g9,w)|c,; the deformation on C_ is analogous. Since ¥ remains the zero level set
and v, w stay transverse to > throughout, it is easy to glue the deformations on C'y
and C_ together. We construct this deformation in several steps.

First, some terminology. Let {d,: t € I } be an isotopy of C such that dy = Ildc¢, .
Then we call the family (f;,v;) = (fod;*, (d;).ovod; ") the isotopy of (f,v) along d,.
Note that v, is a gradient-like vector field for f;.

Step 1. In this step, we move the stable manifolds of (f,v) until they coincide
with the stable manifolds of (g, w). We denote the components of 3 by 51,..., (k. In
addition, let Co(f) ={q1,...,q } and Cs(g) = { ¢}, ..., q), }, enumerated such that

W(q;,v) N X =W?*(g,w) N =g,

By Lemma 2.9, we have m5(C) = 0. Hence, using cut-and-paste techniques, the disks
W*(q;,v) and W*(q}, w) are isotopic relative to their boundary. So there is an isotopy
{di:t € I'} of C, fixing C such that dy = Ide, and di(W*(g;,v)) = W(q}, w);
furthermore, dy(¢;) = ¢}. Isotoping (f,v) along d;, we get a path of simple pairs
(fe,v) in FVo(M, ), all compatible with the diagram (X, a, 8). Replacing (f, v) with
(f1,v1), we can assume that W*(g;,v) = W*(q},w) and ¢; = ¢, foreveryi € {1... k}.
The further deformation of (f,v) will preserve these properties, so from now on we
will write W*(g;) for every ¢; € Co(f) = Ca(g).

Step 2. Now we isotope (f,v) until it coincides with (g, w) in a neighborhood
of the critical points, without ruining what we have already achieved in Step 1.
Let : € {1...,k}. Since both (f,v) and (g, w) are simple, there are balls N; and
N, centered at ¢; and coordinate systems z: N; — R? and y: Ny — R? such that
f = —2% — 23+ 22+ f(¢;) and v has coordinates (—2z1, —2x5,2x3) in N;, while
g = -yl —ys+ys+ g(g;) and w has coordiantes (—2y;, —2ys,2y3) in No. Choose
an € > 0 so small that the disks D; = {|z| < e} and Dy = {|y| < €} both lie in
Ni N N,. Consider the diffeomorphism d: D; — D, given by the formula y=! o z.
Then d(Dy NW?*(q;)) = DaNW*(g;), as D1 N W*(g;) is given by the equation z3 = 0,
while Dy N W*#(¢;) by y3 = 0. We can choose an isotopy e;: D; — N3 N Ny such that
eo = Idp, and e; = d; furthermore,

et(D1 N W*(qi)) C W*(q:)

and e;(¢;) = ¢; for every t € I. This can be extended to an isotopy d;: C;. — Cy
such that d;|p, = e;, the diffeomorphism d; is the identity outside N3 N Ny, and
di(W*(q;)) = W*(q;). If we isotope (f,v) along d;, we get a pair (fi,v;1) that agrees
with (g, w) in D,. Repeating this process for every ¢;, we can assume that (f,v) and
(g9, w) agree in a neighborhood N of all the critical points ¢y, ..., g, (where N is the
union of the disks D, for each ¢;).
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Step 3. In this step, we arrange that v|yws(,) = w|ws(g,) for every i € {1,...,k}.
By Step 2, we know that v and w coincide on the disk B = NNW?*(g;), and that they
are transverse to 0B. Let A be the annulus W#(¢;) \ B. Take a regular neighborhood
of W*(g;) of the form W*(¢q;) x [—1, 1], where W*(qg;) is identified with W*(g;) x {0}.
We are going to construct an isotopy of C'; that is supported in A x [—1, 1] that takes
v to w. For every p € 0B, we denote by v,(p,t) the flow-line of —v starting at p
and ending at OW?*(¢;). Here t lies in some interval [0,7(v,p)]. Similarly, v, (p,1)
denotes the flow-line of —w starting at p and defined for ¢ € [0,7(w,p)]. After
smoothly rescaling v inside A x [—1, 1] such that it is unchanged in a neighborhood of
O(A x [—1,1]), we can assume that T'(v,p) = T'(w, p) for every p € OB. Let a: A — A
be the diffeomorphism defined by the formula

a(vy(p,t)) = vw (P, 1)

for t € [0, T(v,p)]. This has the property that a. ovoa™! = w. There is an isotopy
{a;:t € I} of A that is fixed on 0B, and such that ag = Id4 and a1 = a. We
extend this to A x [—1,1] by the formula a;(z,s) = (a,@(x),s), where r: R — I
is a bump function that is zero outside [—1,1] and such that r(0) = 1. Finally, we
extend a; to the whole of C', as the identity. Then isotoping (f,v) along a; we get a
family { (fi,v;): t € I} such that v|ws(g,) = w|ws(g,). Note that W*(g;) is invariant
under a;. Furthermore, even though a; is not the identity on X, the field v; stays
transverse to Y throughout. In fact, v; can be made invariant under a, if we first
make v and w agree in a neighborhood of 0A; so we can glue the deformation with
the one on C_.

Note that we do not claim that f = g anywhere outside a neighborhood of the
critical points. We will return to this in the last step.

Step 4. Now we make v and w agree on a product neighborhood W#(¢;) x [—1, 1]
of every stable manifold W*(¢;). Fix i € {1,...,k}, and let the ball B and the
annulus A be as in Step 3. We already know that (f,v) and (g, w) agree on a
neighborhood N of B. Since v and w agree on A and have no zeroes there, there
is a thin product neighborhood of W?*(g;) diffeomorphic to W#(g;) x [—2,2] such
that in this neighborhood the linear homotopy (1 — t)v + tw from v to w stays
gradient-like for f throughout. In addition, we choose this neighborhood so thin that
B x [-2,2] € N. Let ¥: R — I be a smooth function that is zero outside [—2, 2]
and is identically one in [—1,1]. Then we define the isotopy v; of v to be the identity
outside W*(¢q;) x [—2,2], and

vz, s) = (1= (s)t)v+ (F(s)t)w
for every (z,s) € W*(q;) x [—2,2]. Then v; is gradient-like for f for every ¢t € I,
and vy agrees with w on W¥(¢;) x [—1,1].

Step 5. In this step, we homotope v to w on the rest of C'y. Let P be the manifold
obtained from

A7 (@) x (==,

by rounding the corners. Here, we choose ¢ so small that (after possibly a small
perturbation) v and w point into P along P— = 0P \ Int(yU R4 ()). Notice that P_
consists of X\ (a; X [—¢,¢]) and W*(¢;) x {—e,e} fori € {1,...,k }. By construction,
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the vector fields v and w point into P along 3 and B x {—¢, ¢} for every disk B of the
form NNW*(q;). As v and w are tangent to the annuli A, such an ¢ and perturbation
clearly exist. Note that v and w coincide along P_.

The sutured manifold (P, N P) is diffeomorphic to the product sutured manifold
(Ry(y)x1,0R(y)*xI). Forevery x € P_, let ¢,(x,t) be the flow-line of v starting at
x and defined for t € [0,7 (v, z)]. Similarly, let ¢,,(z,t) be the flow-line of w starting
at = and defined for ¢ € [0,T(w, z)]. After smoothly rescaling v inside P such that
it is unchanged in a neighborhood of 9P, we can assume that T'(v,z) = T'(w, z) for
every x € P_. As in Step 3, we define a diffeomorphism d: P — P by the formula

d(Pv(x, 1)) = du (2,1)

for t € [0,T(v,x)]. This satisfies d,ovod~! = w, and d is the identity on P_ and yNP.
Since any diffeomorphism of a product sutured manifold (S x 1,05 x I) that fixes
S x {0} and 9S x [ is isotopic to the identity through such diffeomorphisms, there
is an isotopy d; of P that fixes P_ and v N P, and dy = Idp. Since v and w agree on
each W*(¢;) x [—1,1], we can extend d; to every W?*(g;) x [—¢, €] as the identity. If
we isotope (f,v) along d;, we get a path of pairs (f;,v;) such that v; = w.

Step 6. In this final step, we achieve f = g¢g. For this, the linear homotopy
{fi=0—=t)f+tg:t e} works. Indeed, as f and g coincide in a neighborhood N
of the critical points, f;|y = f|n for every ¢t € I. In addition,

v(fe) = (1 = o(f) +tu(g) = (1 = t)v(f) + tw(g) > 0

away from {qi,...,qx }, the common critical set of f and g. So f; has the same
index 2 non-degenerate critical points as f and is hence Morse, v is a gradient-like
vector field for f;, and the pair (f;,v) is simple for every ¢ € I. d

6.3. Codimension-1: Overcomplete diagrams. We start this section by proving
a type of isotopy extension lemma for families of Heegaard diagrams.

Lemma 6.19. Suppose that { (X, 0, 3,): t € I} is a smooth 1-parameter family of
possibly overcomplete Heegaard diagrams in (M, ~y) such that o, th B, for everyt € I.
Then there 1s an isotopy D: M X I — M such that

dt(zm ), ,30) = (Etv Qi /615)

for every t € I, and d; fites OM pointwise (where dy = D(-,t)). In particular,
dils,: 2o — X1 is isotopic to the identity in M. The space of such isotopies is
contractible, so the space of diffeomorphisms that arise as dy for such an isotopy D
15 path-connected.

An analogous statement holds if {3,: t € 1} is a I-parameter family of Heegaard
surfaces of (M,~). In particular, there is an induced diffeomorphism di: Yy — X,
well-defined up to isotopy.

Proof. In M x I, consider the submanifold
== % x {t},
tel

which, in turn, contains the submanifolds o, = |J,.; o x {t} and B, = U, B, x {t}.
(The fact that these are smooth submanifolds is in fact our definition that the family
of Heegaard diagrams is smooth.) Let F be the horizontal foliation of M x I by leaves
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M x {t}, and we coorient F by 0/0t. The condition a; i 3, implies that o, N B, is
a collection of arcs transverse to F. Furthermore, o, 3,, and X, are also transverse
to F.

Pick a smooth vector field v in the tangent bundle T'(a, N3, ) positively transverse
to F. This can be extended to first a vector field in T'a, and T'3, positively transverse
to F, then to a field in 7%, positively transverse to F such that vy« = 0/0t.
Finally, extend the vector field to M x I positively transverse to F such that v|gy =
0/0t. We also denote this extension by v. After normalizing v such that v(t) = 1,
we can assume that its flow preserves the foliation F. Then the diffeomorphism
dy: M — M is defined by flowing along v from M x {0} to M x {t}. By construction,
di(3o, g, By) = (X4, a4, B;). Note that the embedding ¢o: Xy < M is ambient
isotopic to ¢; o dy: Xg — M relative to s(7), where ¢; is the embedding of ¥y in M.
So d; is indeed isotopic to the identity in M.

On the other hand, every isotopy D arises from the above construction. Indeed,
given D, take v to be the velocity vector fields of the curves t — (d;(z),t) for x € M.
The space of such v is convex, hence contractible, so the space of such isotopies D is
also contractible.

The proof of the last statement about families of Heegaard surfaces is completely
analogous, but simpler as our isotopies now do not have to preserve sets of attaching
curves oy and 3,. U

Lemma 6.20. Let {H;:t € I } and {H}: t € I } be I-parameter families of possibly
overcomplete Heegaard diagrams of (M,~), both connecting Ho and H,. If the two
families are homotopic relative to their endpoints, then the induced diffeomorphisms
dy, dy: M — M (in the sense of Lemma 6.19) are isotopic through diffeomorphisms
mapping Ho to Hi. An analogous statement holds for homotopic families of Heegaard
surfaces { ;. t € I} and{X}: t € I }; i.e., the induced diffeomorphisms dy, d}: Xo —
Y1 are 1sotopic.

Proof. Let Hyy = (S, 0, By,,) for (t,u) € I x I be the homotopy between {#,}
and {H,}; i.e., Hio = Hy and Hyy = H, for t € I, while H;,, = H,; for i € {0,1}
and v € I. As in the proof of Lemma 6.19, we can construct a vector field v on
M x I x I such that v(u) =0, v(t) = 1 (in particular, it is transverse to the foliation
of M x I x I with leaves M x {t} x I), and which is tangent to the submanifolds
Urwer 2t Upuer @tus and U, e B, Then the flow of v defines a diffeomorphism

gu: M x {0} x {u} - M x {1} x {u}

that maps Ho., = Ho to Hi, = Hi for every u € I. Notice that gy = d; and
g1 = d} (up to isotopy). Hence {g,: u € I} provides the required isotopy between
the diffeomorphisms d; and dj. O

Lemma 6.21. Let { (f;,v:) € FVo(M,7): t € I} be a 1-parameter family of gradient-
like vector fields, and let 3; € X(fi,v;) be a Heegaard surface of (M,~) for i € {0,1}.
Choose a spanning tree TY of T+ (fo,vo). The isotopy T'(fi,v;) takes TS to a spanning
tree T of T+(f1,v1), and consider the diagrams (X, g, By) = H(fo,v0, X0, T2) and
(X1, a1,8,) = H(f1,v1,21,TL). Then there is a (non-unique) induced diffeomor-
phism

d: (207 O, 60) - (217 g, Bl)
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wsotopic to the identity in M, and the space of such diffeomorphisms is path-connected.
If we do not pick spanning trees, we obtain a similar statement for overcomplete
diagrams.

Remark 6.22. If T and T are not related as above, then one can get from (3, avg, 3,)
to (X1, g, B;) via a diffeomorphism isotopic to the identity in M, an a-equivalence,
and a p-equivalence.

Proof. Note that if ¥ € 3(f;,v,) for some ¢t € I, then 3 also separates (fs,vs) for
every s sufficiently close to t. Indeed, each (f,vs) is Morse-Smale, hence separable,
so X stays separating as long as v, is transverse to Y, which is an open condition. By
the compactness of I, there is a sequence 0 = t; < t; < --- < t, = 1 and surfaces
Y, € X(fy,,v,) for every i € {0,...,n — 1} such that ¥, € 3(f,,v,) for every
s € [tz’7ti+1]~

By the discussion preceding Proposition 6.7, we can view X( f;, v;) as an affine space
over C*(X) for any X € X(f;, v). For this, choose a smooth function h: M — I such
that h=1(0) = R(y), and let s € {2,...,n}. As both 3, , 3, € X(f,,vs,), we can
talk about the difference ds, =, =~ € C*(3,_,), obtained by flowing along hv,,. Let
i R — I be a smooth function such that ¢;(t) = 0 for t < t;_; and ¢;(t) = 1 for
t Z tz For t € [ti—lytiL let

Et = ztifl _'_ (pl (t) dztivzt

where the sum is taken using the flow of hv,. Then ¥, is a smooth 1-parameter
family of surfaces connecting ¥y to ¥; such that ¥, € X(f;,v;) for every t € I.
(Note that this path-lifting also follows from Proposition 6.11, which claims that
EM(M,~) — B;(M,~) is a fibre bundle with connected fiber C* (3, R).)

The isotopy {T'(fs,vs): 0 < s < ¢} takes T9 to a spanning tree T of Ty(f, vy).
Then (X4, o, B,) = H(fi, v, 2, TL) provides a smooth l-parameter family of di-
agrams connecting (%o, ag, 8y) and (X1, a@1,8;). Since (f;,v¢) is Morse-Smale for
every t € I, we have oy h 3,, so we can apply Lemma 6.19 to obtain an isotopy
D: M x I — M such that d,(X¢, o, By) = (X4, oy, 3,) for every t € I. If we take d
to be dy, then d is isotopic to the identity in M.

Also by Lemma 6.19, the diffeomorphism d; is unique up to isotopy in the space
of diffeomorphisms mapping (3o, g, By) to (X1, a1,3;) once we fix the family of
surfaces ;. For a different family of surfaces ¥; € X(f;, v;) connecting ¥y and X,
consider the homotopy ¥;, = ¥; + udy; s, for t,u € I (where the sum means flowing
along hvy). Then ;¢ = ¥; and ¥;; = ¥ for every ¢ € I. Applying Lemma 6.20 to
the homotopy Hy = H(fi, vi, Xiu, 1), we obtain that d; is also unique up to isotopy
if we are allowed to vary the path ¢t — 3. 0

So the diffeomorphism induced by the family { (f;,v;): ¢ € I } is obtained by first
picking an arbitrary family of surfaces ¥, € X(f;, v;), and then applying Lemma 6.19
to the diagrams H(f;, v, X, TL). We have the following analogue of Lemma 6.21
for 1-parameter families in FV;(M,~y), which is somewhat weaker as an element of
FV1(M,~) does not induce a Heegaard diagram.

Lemma 6.23. Let {(fi,v;) € FVi(M,v):t € 1} be a 1-parameter family, and let
Y € X(fi,v;) be a Heegaard surface of (M,~) fori € {0,1}. This family induces a
diffeomorphism d: Xg — X1 which s well-defined up to isotopy. Furthermore, there

i—1’
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is an isotopy dy: Xo — Xy fort € I connecting Ids, and d such that X, € X(fy,vy) for
everyt € I.

More precisely, if the (f;,v;) have an index 1-2 birth-death critical point, then
we can choose either g € X_(fy,v0) and X1 € X_(f1,v1), or g € 3, (fo,v0) and
21 € E+(f1,v1).

Proof. Just like in the proof of Lemma 6.21, there exists a smooth family of Heegaard
surfaces {3;: t € I} such that ¥, € X(f,v) for every t € I. If we apply the
second part of Lemma 6.19 to {¥;: ¢t € I}, we obtain a family of diffeomorphisms
dy: Y9 — X for t € I, and d; is unique up to isotopy. Independence of d; from
the choice of family {¥;: ¢t € I} (up to isotopy) is obtained just like in the proof of
Lemma 6.21, except now we apply the second part of Lemma 6.20. 0]

Lemma 6.24. Let A: I — FVo(M,~) be a loop of gradient-like vector fields. Further-
more, let 3 € X(fo,v0) be a Heegaard surface, pick a spanning tree T+ of T'+(fo,v0),
and set H = H(fo,v0,%,T4). By Lemma 6.21, the loop A induces a diffeomorphism
d: H — H. If A is null-homotopic in FVo(M,~), then d is isotopic to Idy in the
space of diffeomorphisms from H to itself. If we do not pick a tree T\, we obtain an
analogous statement for overcomplete diagrams.

Proof. Let L: I x I — FVo(M,~) be the null-homotopy; i.e., L(t,0) = (fi,v:) for
every t € I, and L(t,u) = (fo,v) for t € {0,1} or v = 1. By Proposition 6.11,
there is a smooth 2-parameter family of Heegaard surfaces {¥;,: t, u € I} such
that X, € X(L(t,u)) for every ¢, u € I, and ¥;,, = X whenever ¢t € {0,1} or
u = 1. Furthermore, T naturally induces a spanning tree 70" of T'w(L(t,u)) such
that 74" = Ty for t € {0,1} or u = 1. So we have a smooth 2-parameter family of
diagrams
Hyw = H (L(t,u), S0, TL")

such that H;, = H for t € {0,1} or u = 1. Now Lemma 6.20 provides the required
isotopy between d and Idy. O

Corollary 6.25. Let (f;,v;) € FVo(M,v) fori € {0,1}, and let
F(), Fli [ %FVO(M,’}/)

be paths such that I';(i) = (fi,v;) for i, j € {0,1}. Given surfaces ¥; € X(f;,v;) for
i € {0,1}, consider the (overcomplete) diagrams H; = H(f;,v;,3;). By Lemma 6.21,
the path T; induces a diffeomorphism d;: Ho — Hi. Suppose the paths g and 'y are
homotopic in FVo(M,~) fizing their endpoints. Then dy and dy are isotopic through
diffeomorphisms from Hgy to H;.

Definition 6.26. The sutured diagram (X', a’,3') is obtained from (X, o, 3) by a
(k,1)-stabilization if there is a disk D C ¥ and a punctured torus 7' C ¥', and there
are curves a € o’ and 3 € @ such that

e X\ D=%\T,

ea\D=a'\Tand B\ D =70 N\T,

e N D and BN D consist of [ and k arcs, respectively, and each component of

a N D intersects each component of BN D transversely in a single point,
e o, f C T, and they intersect each other transversely in a single point,
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e (&' \ o) NT consists of | parallel arcs, each of which intersects § transversely
in a single point,

e (B'\ 8)NT consists of k parallel arcs, each of which intersects a transversely
in a single point,

e for each component of a N D there is a corresponding component of o’ N T
with the same endpoints, and similarly for the S-curves.

In the above case, we also say that (3,«,8) is obtained from (X',3 a’) by a
(k,l)-destabilization. Notice that a (0,0)-(de)stabilization agrees with the “simple”
(de)stabilization of Definition 2.19. The two diagrams in the bottom of Figure 18 are
related by a (3, 3)-stabilization.

Definition 6.27. The sutured diagram (X, a’,3) is obtained from (X, a,3) by a
generalized a-handleslide of type (m,n) if there are curves ay, ay € @, a curve o € o/,
and an embedded arc a C X such that

e o\ =a)\a,

e Ja C ap and the interior of a is disjoint from «,

e there is a thin regular neighborhood N of ay U a such that ON = a3 Ua) Uc,
where c is a curve parallel to ai, and the interior of N is disjoint from aU o/,
and

e if ay \ Da = o) Uai, where a Ua is parallel to a; and ol Ua is parallel to of,
then |ad N B| = m and |ad N G| = n.

Generalized S-handleslides are defined similarly.

In particular, an “ordinary” handleslide is a generalized handleslide of type (0,n),
where the endpoints of the arc a lie very close to each other.

The bifurcations that appear in generic 1-parameter families of gradient vector fields
were given in Section 5.2.1. We now translate these to moves on sutured diagrams.
For clarity, we state what happens to overcomplete diagrams.

Proposition 6.28. Suppose that
{(feov): t € [-1,1]}

15 a generic 1-parameter family of sutured functions and gradient-like vector fields
on (M,~) that has a bifurcation at t = 0. Since (fo,vo) € FV1(M,7), it is separable;
pick a separating surface ¥ € X(fo,v0). Then there exists an € = €(3) > 0 such that
Y M vy for every t € (—e,€). Furthermore, for every x € (—¢€,0) and y € (0,¢€), the
following hold.

If the bifurcation is not an index 1-2 birth-death, then ¥ € X(fy,vs) N X(fy, vy).
Furthermore, the (overcomplete) diagrams

(Zvawg) = H(fzavxaz) and (Elva/aﬂl) = H(fyvvy72)v

possibly after a small isotopy of the immersed submanifold o U 3, are related in one
of the following ways.

(1) If the bifurcation is an index 0-1 or 2-8 birth-death, adding or removing a
redundant a- or B-curve, not necessarily disjoint from curves of the opposite
type. “Redundant” means this a- or B-curve is null-homotopic in X2 compressed
along the remaining a- or B-curves, or equivalently that it bounds a planar
region together with the other a- or [B-curves.
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(2) If the bifurcation is a tangency of W"(p) and W*(q) for p € C1(fo) and q €
Csy(fo), an isotopy of the a- and B-curves cancelling or creating a pair of
intersection points.

(8) If the bifurcation is a tangency between W"(p) and W*(q) for p, q € C1(fo)
or p, q € Cy(fo), a generalized a- or 5-handleslide. Specifically, the a-curve
corresponding to p slides over the a-curve corresponding to q if p, ¢ € C1(fo),
while the [-curve corresponding to q slides over the B-curve corresponding to
pif p, ¢ € Ca(fo)-

If the bifurcation is an index 1-2 birth, then ¥ € X(fy,v.). Furthermore, there
exists a surface ¥ € 3(f,,v,) such that the (overcomplete) diagrams (3, ., B) =
H(fy,v:,%) and (X', e/, 8") = H(f,,v,, %), possibly after a small isotopy of the im-
mersed submanifold aUB, are related by a (k,1)-stabilization if there are l flows from
index 1 critical points into the degenerate singularity and k flows from the degenerate
singularity to index 2 critical points. For an index 1-2 death, the same statements
hold, but with x and y reversed.

Proof. Since the family is generic, (f;,v:) € FVo(M,~) for every ¢t € [—1,1] \ {0},
and (fo,v9) € FV1(M,~). By Proposition 6.7, the surface ¥ divides (M, ) into two
sutured compression bodies (M_,~v_) and (M, v). Let € > 0 be so small that for
every t € (—¢,€), the surface ¥ is transverse to .

First, suppose we are in case (1). Without loss of generality, we can assume that
the bifurcation is an index 0-1 birth. The function f; has a degenerate critical point
at py € M, which splits into an index 0 critical point p? € Cy(f;) and an index 1 critical
point p; € C1(f;) for t > 0. Recall that the stable manifold 1W*(py) is a 1-manifold
with boundary at py, while the unstable manifold W*"(py) is locally diffeomorphic
to R%, with boundary the strong unstable manifold W**(p,), cf. Figure 12. The
critical points py at t = 0 and p? for ¢ > 0 both have valence k + 1 in T'(/f, v;), where
k is the number of flow-lines from p, to index 1 critical points within W*(py).

Recall that py € Co1(fo,vo) C M_. Since v, is transverse to ¥ for every t € (—¢, €),
both p{ and p; lie in M_, hence Cyi(fi,v;) C M_ for every ¢ € (—e, e). This implies
that ¥ € X(f,v;) for every t € (—e, €).

The attaching sets 3 and (3 are just small isotopic translates of each other. The
isotopy is provided by

U WS(Qt) nx

@t €C2(ft)

for t € [z,y]. The same holds for a and &', except that &’ has one new component due
to the appearance of the new index 1 critical point p,. The new a-circle W*(p,) N ¥
is a small translate of W*%(py) N X. For every index 2 critical point ¢ € Cs(fy) for
which W*(q) intersects W*"(py), the corresponding S-circle W*(q) N 3 intersects the
new, redundant, a-circle. (This does happen generically in 1-parameter families.)

Now we look at case (2). Consider the family of diagrams (X, o, 8;) = H(fi, v, 2)
for t € [z,y]. Then (X,,8) = (X, 0, 8,) and (X', e/, 8) = (¥,,,8,). The 1-
manifolds o, and B3, remain transverse, except for ¢ = 0, when there is a generic
tangency between W*(p) NE € ap and W*(q) NX € 3,,.

Next, assume we are in case (3). Without loss of generality, we can suppose that
p, ¢ € C1(fo). Then we show that the a-curve corresponding to p slides over the
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FIGURE 17. The situation in Case 3, a tangency between W"(p) and
W+#(q), leading to a generalized handleslide.

a-curve corresponding to ¢. Since X is transverse to v, for every t € (—¢,€), we have
Co(f)UC(f)UR_(v) C M_ and Co(fr) UCs(fy) URL(7) C M. for every ¢ € (—¢,¢).
Hence 3 € X(fi, v;) for every t € (—e¢, ).

Let 7 = W"(p) NW?#(q) be the flow-line of vy from p to g. Recall from Section 5.2.1
that, generically, inside the 2-dimensional unstable manifold W*(q), there is a 1-
dimensional strong unstable manifold W"*(q). Furthermore, for every r € 7, there is a
1-dimensional subspace E, < T,W"(p) complementary to (vg(r)) = T,.7 that limits to
T,W"*(q) under the flow of v; see Figure 17. It follows that the curve af) = W*(p)N¥
is diffeomorphic to R, with ends limiting to the two points of W**(q) N X. Consider
the circle o) = W*(¢q) N, and take a thin regular neighborhood P of o Ua)). Notice
that P is a pair-of-pants, and one component a; of 9P is a small isotopic translate
of 042. For t € (—¢,¢€), let p; and ¢, be the points of Ci(f;) corresponding to p = po
and ¢ = qo, and let ), = W*(p,) N ¥ and o = W"(q;) N X. Then of and o are
small isotopic translates of ag, while o and o} are small isotopic translates of the
other two components of 9P. Hence ol € o' is obtained (up to a small isotopy) by
a generalized handleslide of o) € a over o € o using the arc a = cl (ag), and every
other component of o’ is a small translate of a component of a. The type (m,n)
of the generalized handleslide is given by the number of flow-lines from ¢ to index 2
critical points that intersect the two components of W*(q) \ W"*(q).

Finally, consider the case of an index 1-2 birth-death, as illustrated in Figure 18.
Without loss of generality, we can assume that a pair of index 1 and 2 critical points
are born. So fy has a degenerate singularity at po that splits into p! € Ci(f;) and
p? € Cy(fy) for t > 0. Recall that we can either include py in Co;(fo,ve) or in
Ca3(fo,v0). For now, we assume that py € Ca3(fo,v0), but the other choice works as
well.
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FIGURE 18. An index 1-2 birth death. Here, we see the two sides
of a codimension-1 index 1-2 birth-death singularity, which is included
in Ca3(fo,v0). There may be flows from index 1 critical points to this
singularity, or from this singularity to index 2 critical points; in the
example, there are three of each. The top row shows locally the gradient
flow, together with the Heegaard surface (drawn in grey). In the bottom
row, we illustrate the corresponding Heegaard diagrams. As usual, we
identify the two circles labeled “A”. On the side of the singularity where
the two critical points die (on the left), we see a grid of flows between
these critical points.

Observe that ¥ € 3(f;,v;) for every t € (—¢€,0), as X th v, Cor(fr,vr) C M_,
and Ch(fr,v;) C My. We have py € Co3(fo,v0) C My, thus p;, p? € M, for every
t € (0,¢). Indeed, neither of the points p; and p? can pass through ¥ as v; remains
transverse to % throughout.

Since v, is generic, W*(p,) has both ends in Cy(f,) U R_(y) C M_. This implies
that W (p;) intersects X transversely in two points. On the other hand, as pz e M,
and both ends of W*(p?) lie in Cs(f,) U Ry.(y) C M, we have W*(p2) N ¥ = (). We
obtain ¥’ by smoothing the corners of

O (M_UN (W*(p,))) \ OM,

where N (W#(p;)) is a thin tubular neighborhood of W*(p}) whose boundary in M,
is transverse to v,. It is apparent that ' is transverse to v,, and X' cuts (M, ) into
two sutured compression bodies, one of which contains Cy; (fy, v,) U R_(7), while the
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other one contains Cas(f,,v,) U Ry (7). Hence ¥’ € X(f,,v,). Notice that X'\ X is
an annulus A, and ¥\ ¥’ is a disjoint union of two disks Dy and Ds.

We now describe the attaching sets o’ and @'. Observe that a = W*(p,) N ¥’ € o
is a homologically non-trivial curve in A. The curve § = W*(p2) N X' € B intersects
a transversely in a single point, and 5N A is an arc connecting 0D and dDs. Let T
be a thin regular neighborhood of AU 3. Then T is homeomorphic to a punctured
torus. In addition, let

D = (T\ A)U D; U Dy;
this is diffeomorphic to a disk. Observe that o’ N (X\ T) is a small isotopic translate
of N (X\ D), and similarly, 3'N (X \ T) is a small isotopic translate of 3N (X\ D).

If go € C1(fo) is a non-degenerate critical point, and g, € C;(f,) is the correspond-
ing critical point, then W*(g,) N ¥’ € &' intersects 3 in precisely |W"(qo) N W*(po)|
points. In addition, W*(g,)NT consists of parallel arcs that do not enter A. Similarly,
for every ry € Cy(fo) with corresponding r, € Cy(f,), the S-curve W(r,)NY € 3
intersects a in |[W*(rg) N W*(po)| points, and A in the same number of parallel arcs.
Hence (X', o/, 3') is indeed obtained from (X, o, 3) by a (k, [)-stabilization, as stated.

Note that if we include poy in Co1(fo,v0), then an analogous argument applies, with
the difference that inside the stabilization tube A we have a S-curve and an a-arc. [

Remark 6.29. In general, the stabilized surface ¥’ € X(f,, v,) ceases to be separating
for t > 0 small. Indeed, generically, the saddle-node py &€ %', and consequently the
index 1 and 2 critical points p} and pl will both lie on the same side of ¥/ for ¢ > 0
sufficiently small.

Essentially the same argument gives the following analogue of Proposition 6.28 for
2-parameter families.

Proposition 6.30. Suppose that {(f,,v,) € FV(M,v): p € R*} is a generic 2-
parameter family that has a codimension-1 bifurcation at u = 0. Let S be the stratum
of the bifurcation set passing through the origin (S is a non-singular curve near 0).
Since (fo,v0) € FV1(M,7), it is separable; pick a separating surface X € 3( fo,vo).
Then there exists an € = ¢(X) > 0 such that D>\ S consists of two components Cy

and Cy, and for every x € C and y € Cy the same conclusion holds as in Proposi-
tion 6.28.

Recall that in Definition 2.30, we introduced the notion of distinguished rectangles
of Heegaard moves.

Definition 6.31. A generalized distinguished rectangle is defined just like in Defini-
tion 2.30, except we replace the word “stabilization” with “(k,[)-stabilization,” and
allow overcomplete diagrams.

The following result relates isotopies with codimension-1 moves.

Proposition 6.32. Suppose that {(f.,v,) € FV<1(M,7): u € R?} is a generic
2-parameter famaly, and let

Vlz{,uERQ: (fmvu> efvl(Ma’V)}

be the codimension-1 bifurcation set. Let a C Vi be an arc with endpoints py and pi,
and suppose we are given surfaces ¥; € X(f,,,vy,) for i € {0,1}. Let by and by be
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Yo a B4

v, by b,

Mo a H

Xo a, Xy
FIGURE 19.

arcs transverse to Vi such that the only bifurcation value in b; is p; and 3; M v, for
every i € b;. Orient by and by such that they have the same intersection sign with V1,
and let Oby = yo — xo and Oby =y, — x1, see Figure 19.

After possibly flipping the orientation of by and by, we can assume that >; €
Y(fu;sVa;) fori € {0,1}. Furthermore, suppose we are given surfaces ¥ € X(fy,, vy:)
for i € {0,1} such that 3 is obtained from X; by a stabilization if (f,,,v,,) is an
index 1-2 birth, and ) = %, otherwise. (Such surfaces always exist by applying
Proposition 6.28 to the I1-parameter family parametrized by b;.) Then the isotopy
diagrams Hy = [H(fzg, Vo, 20)], Ha = [H(fyy, Vyor 20)], Hs = [H(fz,, Ve, 21)], and
Hy = [H(fy,,vy,,2})] fit into a generalized distinguished rectangle

H, —= H,

ol

H; "~ H,

of type (3) if (fu,,vu) is a handleslide, or type (5) if (fu,,vu,) i an index 1-2 birth-
death, cf. Definition 2.30. For other types of bifurcations, we have a rectangle with
e and h the identity or adding/removing a redundant a- or B-curve, and f = g a
diffeomorphism. If we pick any curves a; and as outside the bifurcation set parallel
to a with day = w1 — xg and Jas = y1 — Yo and apply Lemma 6.21, then ay will induce
a diffeomorphism isotopic to f, and as will induce a diffeomorphism isotopic to g. In
particular, f € ggiﬁ(Hl,Hg) and g € Qgiﬁ(HQ, Hy). The arrows e and h are given by
Proposition 6.28.

Note that in case of an index 1-2 birth-death singularity, we mean X € X1 (f.,, Vy,)
and X1 € X4 (fy,, vy, ), and we allow all four combinations of signs.

Proof. For now, assume that in case of an index 1-2 birth death, we have either
20 € By (fuor Vo) and X1 € Xy (fuy, vpy), 0r Bg € X (fugr Vo) and Xy € B (g, vy)-

Choose an arbitrary parametrization a(t) of the arc a, then apply Lemma 6.23 to
the 1-parameter family { (fy@), Va)): t € I } inside FV1(M,~). We obtain a family
of diffeomorphisms d;: Xg — ¥, such that X, = dy(30) € X(faq), Var)) for every t € I.
There exists an € > 0 such that for every t € I and u € R? with |a(t) — u| < €, we
have ¥; M v,. Indeed, as transversality is an open relation, the set

U={(t,n) eI xR*: %, hv,}

is an open neighborhood of the graph @ = { (¢,a(t)): t € I } in I x R?. In particular,
we can take € to be the distance of @ and (I x R?)\ U. Furthermore, we take € so
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small that for every p € N(a), the pair (f,,v,) is Morse-Smale unless p lies in the
component of V] containing a. We denote by C; and Cs the components of N (a)\ V4,
labeled such that by and b; are both oriented from C; to Cs.

First, suppose that (f,,,v,,) is not an index 1-2 birth-death. Then, as explained
in the proof of Proposition 6.28, for every t € I and p € R? with |a(t) — pu| < €, we
even have 3, € ¥(f,,v,). Furthermore, ¥, = X{ and X, = ¥/, and the corresponding
isotopy diagrams H; and H,, and similarly, H3 and H,, are related by a handleslide,
adding or removing a redundant a- or S-curve, or they are the same (for an orbit of
tangency between an index 1 and an index 2 critical point). In this case, we take
f=g=di: X9 — 3. What we need to show is that d,(H;) = Hs and d;(Hy) = Hy.
Pick points x; € C1Nby, 2} € C4 ﬂbl, y{] € CyNby, and yi € CyNby, then choose arcs
c1 C Cy and ¢y C Cy with ¢y = 2} —x, and Ocy = y}| —y(,. These can be parametrized
such that |a(t) — ¢;(t)| < e for every t € I and j € {1,2}. Since X; € X(fe;1), Ve, 1))
and (fe;(t), Ve, (1)) is Morse-Smale, there is an induced overcomplete diagram

(fcJ ch 15)7E )

If we apply the first part of Lemma 6.19 to the family of diagrams {H]:t € I},
we obtain an induced diffeomorphism d}: £y — X, such that d}(H}) = H! and
d2(HZ) = H3. Since Z; € X(f,,v,) for every u € b; and i € {0,1}, the isotopy
diagrams [H}] = Hy, [Hi] = H3, [H3] = Hs, and [H?] = H,. Hence dj(H;) = H3 and
d3(H,) = Hy. The second part of Lemma 6.19 implies that d] is isotopic to d; for
Jj € {1,2}, so indeed dy(H,) = Hj and d,(Hy) = H,.

Let af C R? be the path obtained by going from x( to xj along by, then from z
to o} along ¢y, finally, from | to x; along b;. We define the path a}, C R? from g,
to y; in an analogous manner. Since ¥; € X(f,,v,) for every p € b; and i € {0,1}, the
path @’ induces a diffeomorphism §): H; — H; o isotopic to d) for j € {1,2}. If a; is
an arbitrary path from x4 to x; in the complement of the bifurcation set and parallel
to a, then a; is homotopic to a relative to their boundary. So by Corollary 6.25,
the path a; induces a diffeomorphism f: H; — Hj isotopic to 6}, hence also to dj.
Similarly, a path as from y, to y; avoiding the bifurcation set and parallel to a induces
a diffeomorphism ¢: Hy — H, isotopic to 07, hence also to d.

Suppose that (f,,,v,,) is an index 1-2 birth; furthermore, ¥y € 34 (f,,,v,,) and
Y1 € X4(fur,vu). The case when Xy € X_(fy,,v,,) and X1 € X_(f,,,v,,) is com-
pletely analogous. Then, by Proposition 6.30, the diagram H, is obtained from H;
by a stabilization, and similarly, H, is obtained from Hj by a stabilization. Pick arcs
ci: I — C) and ¢y: I — Cy as above, and extend them to arcs a}: [—1,2] — R?
connecting zo and z; and aj: [—1,2] — R? connecting 3 and y; in a similar manner.
Le., a%([-1,0]) C by, a}’l = ¢;, and a}([1,2]) C by. For every u on the “birth” side
of V4, let the index 1 and 2 critical points born be p'(u) and p*(p), respectively. The
surface ¥; divides M into two sutured compression bodies M_(t) and M, (t). Let
¥ = Yo for t € [—-1,0] and 3, = %) for ¢ € [1,2]. Furthermore, we write p’(t)
for p/(a}y(t)), where j € {1,2} and ¢t € [—1,2]. For each ¢t € [—1,2], we construct a
surface

i € Xfay(e), Vayr))
from ¥; by adding a tube around W*(p!(t)) as in the proof of Proposition 6.28, but
now in a way that the construction depends smoothly on t. For this, simply pick a
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thin regular neighborhood N of

U W) x {1 < M x [-1,2)
1,2

let Ny = NN (M x {t}), then take
S = (M_(t) UN,) \ OM.

Finally, let A, = 35 \ 3; be the added tube (i.e., annulus). We can do this in such a
way that X*, = X and X3 = 3.

We take f to be d;. Furthermore, we define g to be d; outside the extra tube A_q,
and extend it to A_; using the family 37 (this follows from a straightforward relative
version of Lemma 6.19). Similarly to the other cases, take H} = H(far (1), Ve (1), 2t)
and M7 = H(fu ) vay), 5i) = (7, &2, 87), then apply Lemma 6.19 to these families
of diagrams to obtain diffeomorphisms d} and d?, respectively, such that d}(H;) = H;
and d2(H,) = Hy. As above, dj is isotopic to dy, hence di(H,) = Hj. Similarly, d?
agrees with d; up to isotopy outside A_;, and inside A_; it has to map the curve o ;N
Ay to a3 N Ay up to isotopy, hence d3(H,) = H,. So we indeed have a generalized
distinguished rectangle of type (5). The fact that any curve a; homotopic to a; relative
to their boundary induces an isotopic diffeomorphism follows from Corollary 6.25.

Finally, we consider the case of an index 1-2 birth-death singularity with >, €
E—l—(f#oavuo) and X; € E—(fulvvu1)7 or X € Z—(fumvuo) and X, € Z—i-(fuuvm)' We
will only discuss the former possibility, as the latter is completely analogous. We first
assume that a is a constant path mapping to the point @ € Vi, and by = b;. We
denote the arc by = b; by b, and write 0b = y — x. Let b, and b, be the components
of b\ {i} containing = and y, respectively. Then %o, ¥y € X(f,,v,), while 3,
¥ € X(fy,vy). If a; is the constant path at z, then it induces the diffeomorphism
f: X9 — X obtained by flowing along v,. Similarly, if as is the constant path at y,
then it induces the diffeomorphism g: 3{ — X/ obtained by flowing along v,. Then
f(Hy) = H3 and g(Hs) = H,.

All we need to show is that ¢ is isotopic to the stabilization of f. Let p € M be
the degenerate critical point of fz, and let p'(u) € C1(f,) and p*(u) € C(f,) be the
corresponding critical points of f, for p € b,. Let N C M be a (vg)-saturated regular
neighborhood of W*(p)UW*(p). Then the disk Dy = ¥oNN is a regular neighborhood
of the arc W#(p) N o, and the disk D; = ¥ N N is a regular neighborhood of the
arc W¥(p) N X;. Furthermore, for ¢ € {0, 1}, let

A, =30\ %,

be the stabilization tubes, and o; = X;NW*(p'(y)) and B; = X NW*(p?(y)) the new
a- and f-curves. Note that ag C Ag and 5y N Ay is an arc, whereas 5 C A; and
aj; N Aj is an arc. Recall that B; = %, \ 3 is a pair of open disks; we choose D; such
that B; C D;. Then

T, = (D;\ B;)) UA,

is a punctured torus that is a regular neighborhood of a; U g; for i € {0,1}. By
construction, ) = (3; \ D;) UT;. The flow of v; induces a diffeomorphism

dZEQ\DO—)El\Dl.
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Ifi: 1\ Dy < X is the embedding, then both
f|20\D0: 20 \ D() — 21

and
9|26\To: Eé\TO = 20 \ D() — 2/1

are isotopic to i o d. Hence, f|s,\p, is isotopic to g[s;\z,- Since g(ap) = a; and
9(Bo) = 1, we can isotope g such that it maps the regular neighborhood Ty of apU By
to the regular neighborhood T; of ay U 81. So, up to isotopy of f and g, the diagram

[H (fz, va, Do)] —— [H(fy, vy, X))

g )

[H(fo, 00, D1)] — [H(f,, v, 21)]

is a distinguished rectangle of type (5).

We are now ready to prove the general case, when a C V; is an arbitrary arc,
and we have an index 1-2 birth-death singularity with o € X, (f,,,v,,) and 3y €
Y (fur,vu ). Choose a surface ¥ € 3, (f,,,v,,). There exists an € = ¢(X) > 0
such that ¥ M v, for every u € D?(u;), and let b C D?(uy) be a sub-arc of b; such
that 4y € Int(b). Suppose that 0b = y — z, and denote by b, ,, the sub-arc of b
between x and xz;, and by b,,, the sub-arc of b; between y and y;. If we apply
Proposition 6.28 to the 1-parameter family b, then we see that ¥ € ¥(f,, v,), and we
obtain a surface X' € 3(f,,v,) stabilizing ¥ € 3(f,,v,). We write H = [H(fy, v, 2)]
and H' = [H(f,, vy, )]

Let a; C R? be the path obtained by going from zy to = along an arc a} parallel
to a, then from x to z; along b, ,,. The path ay C R? is obtained by going from yq
to y along an arc aj parallel to a, then from y to y; along b, ,,. We also assume that
a} and aj are disjoint from the bifurcation set. Then a} induces a diffeomorphism

f/: Hl = [H(fl’mvxoa EO)] — H = [H(famvxv E)])
and the arc af induces a diffeomorphism
g’ Ha = [H(fy, 040, 20)] = H = [H(fy, vy, 2)].
Furthermore, the constant x path induces a diffeomorphism
f”: H = [H(f;ra Vg, E)] — [H(fac’ Vg, 21)]7
and the constant y path induces a diffeomorphism
9"+ H' = [H(fy, vy, X)] = [H(fy, vy, ZY)]-

Since ¥ € X(f,,v,) for every pu € b, ., both H(fy, vy, £1) and H(fa,, Vs, 21) define
the same isotopy diagram Hs. Similarly, as ¥’ € X(f,,v,) for every u € b,,,, both
H(fy, vy, 2)) and H(f,,,v,,,%)) define the same isotopy diagram H,. Furthermore,
the arc b, ,, induces a diffeomorphism isotopic to f”, and the path b, ,, induces a
diffeomorphism isotopic to ¢”. Hence, the path a; induces a diffeomorphism f: H; —
Hj isotopic to f”o f’, and the path as induces a diffeomorphism ¢: Hy — H, isotopic
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to ¢" o ¢’. Let s denote the stabilization from H to H’, and consider the following
subgraph of G:
H, —— H,

ol

H—sH

L f// L g//

Hy —~ H,.
The top rectangle is distinguished of type (5), as we already know the result for
Y0 € Xy (fruos Vo) and X € X (fou,, vy, ), together with that arc @ C Vj and transverse
arcs by and b. The bottom rectangle is also distinguished of type (5), since we have
proved the proposition for the special case ¥ € X, (f,,,v,,) and X1 € X_(f.,, v ),
the constant ;1 path, and the transverse arc b. It follows that the large rectangle is
also distinguished of type (5), and by the above discussion, it agrees with the rectangle
in the statement. 0

6.4. Codimension-1: Ordinary diagrams. In this section, we will show how to
choose spanning trees appropriately in Propositions 6.28 and 6.30 to pass from over-
complete to actual Heegaard diagrams, without altering the relationship of the dia-
grams before and after the bifurcation in an essential way. We are going to write I for
[(fy,v,) and IV for I(f,,v,). Similarly, we use the shorthand I'y for I'y(f,,v,) and
I, for I'y (f,,vy), where 'y (f,v) is defined in Definition 6.14. By abuse of notation,
if p is a non-degenerate critical point of fy, then we also write p for the corresponding
critical points of f, and f,. Furthermore, if p is index 1 or 2, we also view p as
the midpoint of the appropriate edge of I'x or I, even though these graphs are not
strictly speaking subsets of M, but are factors of I' and I, respectively; the latter
two graphs do contain p.

Suppose we are in case (1) of Proposition 6.28 (0-1 or 2-3 birth-death), and without
loss of generality, consider the case of the birth of the critical points p € Cy(f,) and
q € C1(fy). Then I is obtained from I by a small isotopy, deleting the vertex ¢ of
valence two along with its two adjacent edges, and merging the two vertices in I
it was connected to (one of which is p). There is a map b from spanning trees of
I'y to spanning trees of I”,, given by small isotopy and adding the edge p; then
H(fy,v,,2,Ty) and H(f,, vy, X,b(T) are the same isotopy diagram.

Similarly, in case (2) (1-2 tangency), the graphs I" and T" are the same, except
for a small isotopy. This induces a bijection b of spanning trees of I'y and I, such
that H(f,, vy, X,T%) and H(f,, vy, X,b(T)) represent the same isotopy diagram. So
bifurcations (1) and (2) have no effect on isotopy diagrams if we choose the spanning
trees consistently.

Now consider the case of an index 1-2 birth. Then I” is obtained from I'_ by
adding an edge corresponding to the new index 1 critical point, and similarly, I",
is obtained from I', by adding an edge corresponding to the new index 2 critical
point. Furthermore, I'_ and I', are both connected. So spanning trees T, of I'y
remain spanning trees 77, of I",. The diagram H(f,,v,,X',T}) is obtained from
H(f., v, 2, Ty) by a (K, l')-stabilization, where [’ is the number of flows from index 1
critical points of fy not in 7 to the saddle-node singular point, and %" is the number
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FIGURE 20. A handleslide in an overcomplete diagram. In this exam-
ple, T = {e,} is the only spanning tree of I'_ and 7" = {e;} is the
unique spanning tree of IV.. However, the diagram H’' cannot be ob-
tained from H by a single handleslide. The a-curves and graph edges
corresponding to T and 7" are drawn in a lighter color. The tree T_
is not adapted to the handleslide.

of flows from the saddle-node to index 2 critical points not in 7';. Note that, in this
case, not all spanning trees of I, come from spanning trees of I';.

Finally, consider case (3) (same-index tangency). Without loss of generality, assume
that the curve «, slides over ag, yielding aj,, where p, ¢ € Ci(f.), the curve o), =
W (p)NE, and oy = W*(q) N X. Then the graph I'" is obtained from I'_ by sliding
the edge e, € E(I'_) containing ¢ over the edge e, € E(I'_) containing p, yielding
the edge e; (note the change of roles as we pass to the spanning trees). Issues arise
when e, € T_ and e, € T_, since then the curve «,, is sliding over the “invisible”
curve oy. In fact, there are situations where, for any spanning tree 7_ of I'_ and
any spanning tree 7”7 of I'”_, the corresponding Heegaard diagrams do not differ by a
single handleslide. For such a situation, see Figure 20. This motivates the following
definition.

Definition 6.33. Suppose we have a handleslide of «y, over o, as above. Then we
say that the spanning tree T of 'y is adapted to the handleslide if either

® &4 € T:t, or
e both e, e, € T:.

We denote by A,,/q,(I'+) the set of spanning trees of I'. adapted to sliding the curve

Qp OVET Q.

Lemma 6.34. Given a handleslide as above, Aap/aq(Fi) # 0 if either e, is not a loop
or eq is not a cut-edge. Furthermore, there is a bijection

b Ao, (Tx) = Aayja, ()

such that, for every spanning tree T € A ja,(I'+), the sutured diagrams H =
H(foe,v_e, 2. Ty) and H' = H(fe,v,X,b0(T%)) are related by sliding o, over «,
if ep,eq & T, and represent the same isotopy diagram otherwise.
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Proof. If e, is not a loop, then there is a spanning tree 7} of I'y that contains e,.
Alternatively, if e, is not a cut-edge, then there is a spanning tree Ty of I'y such that
eq € Ty In either case Ty € Ay, /o, (T's) and Ay jo, (T'1) # 0.

Now we define the map b. If e, & Ty, then (7% ) = 1. In this case, the diagram H’'
is obtained from H by sliding «, over o, if e, ¢ T, and H’ represents the same
isotopy diagram as H otherwise. If e,, e, € Ty, then b(TL) is T4 \ {e,} U {e},
where e is obtained by sliding e, across e,. Now H and H' represent the same
isotopy diagram. ([l

Even if Ay, /o,(I'+) = 0 (with p, ¢ of index 1), since T'o3(f;, v;) and T'as(fy, v,) are
small isotopic translates of each other, there is a natural bijection b between spanning
trees of I'; and I",. If T and T7} are spanning trees of I'x and I, respectively, such
that 7" = b(71), then the corresponding diagrams are a-equivalent. As the example
in Figure 20 shows, this is the best we can hope for, unless we are in one of the lucky
situations of Lemma 6.34.

6.5. Codimension-1: Converting Heegaard moves to function moves. We
now turn to the other direction: Given a move on Heegaard diagrams, can it be
converted to a path of functions?

Proposition 6.35. Suppose that H; = (3;, a;, B;) for i € {0,1} are diagrams of the
sutured manifold (M,~) such that a; th B,. In addition, let (f;,v;) € FVo(M,~) for
i €{0,1} be simple Morse-Smale pairs with H(f;,v;) = H,;.
(1) Given a diffeomorphism d: Ho — Hy isotopic to the identity in M, there is
a family { (fi,ve): t € [0,1] } of simple Morse-Smale pairs connecting ( fo,vo)
and (f1,v1) that induces d in the sense of Lemma 6.21.
(2) If Ho and H, are a- or B-equivalent, then (fo,vo) and (f1,v1) can be connected
by a family of simple (but not necessarily Morse-Smale) pairs ( f;, v;) such that
Yo = X1 € X(fi,v) for every t € [0,1]. In particular, every isotopy and
handleslide can be realized by such a family.
(3) If Hy is obtained from Hy by a (de)stabilization, then there is a generic family
(fi,vr) of sutured functions connecting (fo,vo) and (f1,v1) such that for every
t # 1/2, the pair (fi,v;) is simple and Morse-Smale, and at t = 1/2, there is
an index 1-2 birth-death bifurcation of (fi,v:) realizing the stabilization.

Proof. We first prove claim (1). Let ¢;: 3; < M be the embedding. The statement
that d is isotopic to the identity in M means that there exists an isotopy e;: %o — M
such that eg = ¢p and e; = 11 od, while e,(0%) = s(7y) for every ¢t € [0, 1]. This can be
extended to a diffeotopy E;: M — M such that Ei|sx, = e; and Ey = Idy,. Consider
the function g, = fy o £, and the vector field wy, = dE; o vy o E;*. Then (g;, w;)
is a simple Morse-Smale pair. If 3; = e;(3), a; = ei(a), and B, = e, (%), then
we have (X, ay, 8;) € X(gi, wy). Clearly, (go, wo) = (fo,v0), but (g1,w;) and (f1,v1)
might differ. We define (f;,v;) to be (gar, wa) for 0 <t < 1/2. By Proposition 6.18,
the pairs (g1, w;) and (f1,v1) can be connected by a family { (f;,v;): t € [1/2,1]}
of simple Morse-Smale pairs, all adapted to H;. In the proof of Lemma 6.21, if we
take d; to be ey for 0 < ¢t < 1/2 and to be e; for 1/2 < t < 1, then d; satisfies
di(Ho) = Hy € X(fi,vy) for every t € [0,1]. Hence the family { (f;,v): t € [0,1] }
indeed induces the diffeomorphism d; = d, which concludes the proof of (1).
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Now consider claim (2), and suppose that Hy = (X, oo, 3) and H; = (X, a1, 9)
are a-equivalent. Then Lemma 2.11 implies that, after applying a sequence of han-
dleslides to oy, we get an attaching set o that is isotopic to a;. Hence, it suffices
to prove the claim when H, can be obtained from 7, by an isotopy of the a-curves,
or by an a-handleslide.

First, assume that oy and a; are related by an isotopy. As described by Mil-
nor [13, Section 4|, there is an isotopy {w;: t € [0,1] } of vy, supported in a collar
neighborhood of ¥ in the a-handlebody, such that wy = vy, every w; is gradient-like
for fo, and H(fo,w1) = Hy. Once we have arranged that the Heegaard diagrams are
equal, by Proposition 6.18 we can connect (fy,w;) and (f1,v1) through a family of
simple Morse-Smale pairs, all adapted to H;.

Now suppose that oy and o are related by a handleslide. In particular, the circle
a, = W*(p) N X corresponding to p € C1(fy) slides over the curve oy, = W*(q) N X
corresponding to g € C;(fy) along some arc a C ¥ connecting «,, and a,. Again, by
Milnor |13, Section 4|, there is a deformation { (g;, wy): t € [0,1] } of (fo,vo) such that
(g0, wo) = (fo,v0), every (gs, wy) is a simple Morse-Smale pair, and p, g are neighboring
index 1 critical points of g;. Neighboring means that, if & = ¢;(p) and n = ¢1(q),
then £ < 7, and the only critical points of g; in My, = g7 ([€,m]) are p and q. We
can also assume that H (g, w;) = H for every t € [0, 1], and that (g;, w;) coincides
with (fo,v0) outside a small regular neighborhood of

W#(p) UW*"(p) UIW?*(q) U W"(q).

Let ¢ = (£ +n)/2 and M, = g; '(c). By flowing backwards along w;, the arc a gives
rise to an arc a’ C M.. Then there is an isotopy {w;: t € [1,2] } of w; such that

e the isotopy is supported in M ),

e w; is a gradient-like vector field for g, for every t € [1,2],

e it isotopes the circle W*(p) N M. by a finger move along a’ across one of the
points of the 0-sphere W¥(q) N M,,

o W¥(r)N M, is fixed for every r € Ci(g1) \ {p}-

The last condition can be satisfied because a’ is disjoint from the circles W*(r) N
M,. This realizes the handleslide of o, over ay; i.e., H(g2, ws) = H;. Again, using
Proposition 6.18, the pairs (ga, ws) and (f1,v1) can be connected by a family of simple
Morse-Smale pairs, all adapted to H;, concluding the proof of claim (2). Notice
that (f;,v;) ceases to be Morse-Smale at values of ¢ for which there is a tangency
between an a- and a [-curve, or when there is an a-handleslide.

Finally, consider statement (3). Without loss of generality, we can suppose that H;
can be obtained from H, by a stabilization. The case of a destabilization follows by
time-reversal.

By definition, there is a disk D C Xy and a punctured torus 7" C >; such that
Yo\ D =%, \T. Furthermore, oy = a; N (X1 \ T), By = B; N (X1 \ T'), and there
are circles @« = a; N'T and § = B, NT that intersect each other transversely in a
single point. Let p € C1(f1) and g € Cy(f1) be the critical points of f; for which
Wh(p) N Xy = a and W*(q) N Xy = . Let Z be the union of the flow-lines of v
passing through D. As D N (a U B,), the manifold Z; is diffeomorphic to D x I.
Define Z; to be the union of the flow-lines of v; passing through 7', together with

W#(p) U W (p) UW?*(q) UW*"(q).
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Then Z; is also diffeomorphic to D x I, since it can be obtained from T x I by
attaching 3-dimensional 2-handles along oo x {0} and 5 x {1}.

The vertical boundary of Z; is the annulus A; obtained by taking the union of the
flow-lines of v; passing through 0D = OT. There is an isotopy {d;: t € [0,1] } of M
such that dy = Idyy, di(Ag) = Ay, and d; fixes ¥y pointwise. Then consider the 1-
parameter family (food; ", (d;).ovood; ") of simple Morse-Smale pairs. This isotopes
Ag to A;. Hence, we can assume that Ay = A;, which implies that Zy = Z;. So we
will write A for A; and Z for Z;. The attaching sets ap and 3, might move during
this process via an isotopy avoiding D, but we can undo this using claim (2) without
changing A anymore. So we still have ag = ay N (X1\7) and B, = B, N(X1\ 7). Itis
straightforward to arrange that (fy,vo) and (fi,v1) agree on a regular neighborhood
of A.

Take the sutured manifold

(N,v) = (M\Z,yUA) .
Then H{ = (X0 \ D, av, 3,) and

Hy = (Ei\ T, a1\ {a}, 8, \ {a})
are both diagrams of (N,v). If we write (f/,v!) = (fi,v:;)|n for ¢ € {0,1}, then

H; = H(f!,v.). However, as Hj = H), we can apply Proposition 6.18 to get a family
(fi,v;) of simple Morse-Smale pairs on (N,v) connecting (f],v;) and (fi,v]). On
the other hand, observe that (D,(,0) and (7, «, 5) are both diagrams of the product
sutured manifold (Z, A) that are related by a stabilization, hence it now suffices to
prove claim (3) for this special case. Indeed, we can simply glue the family connecting
(fo,v0)|z and (f1,v1)|z to the family (f,v}).

Consider R? with the standard coordinates (z,y, z). Let
Gi(z,y,2) = 2> —y* + 22 + (1/2 — t)x,
with gradient vector field
Wi(z,y,2) = (32° + 1/2 — t, -2y, 22).

Then G, has a bifurcation at t = 1/2, where a pair of index 1 and 2 critical points
are born. Let

B, =G Y[-1,1))N D3 and n, = B,NID3,

where D3 is the unit disk in R? of radius 2. Furthermore, let g; = Gy|p, and w; =
Wilg,. It is straightforward to check that (By,n,) is diffeomorphic to the product
sutured manifold (D?, dD?* x I) for every t € [0,1]. In addition, H(go,wo) = (D', 0, 0),
where D' = g;'(0) is a disk, while H(gy,w1) = (T", ¢/, ), where T = g7 *(0) is a
punctured torus, and o' and 5’ are simple closed curves that intersect each other in
a single point. There exists a smooth family of diffeomorphisms h;: (B, n:) — (Z, A)
such that ho(D') = D, hi(T") = T, hi(a’) = a, and hy(p’) = . Pushing (g;, wy)
forward along h;, we get a family on (Z, A) that we also denote by (g, w;). According
to Proposition 6.18, for ¢ € {0,1}, the pair (f;,v;)|z can be connected with (g;, w;)
via a family of simple Morse-Smale pairs. This concludes the proof of claim (3). O
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6.6. Codimension-2. The singularities of gradient vector fields that appear in gener-
ic 2-parameter families were given in Section 5.2.2. This also applies to gradient-like
vector fields on sutured manifolds by Proposition 5.19. Let us see what these give in
terms of Heegaard diagram of sutured manifolds.

Let (fu,v,) for p € R? be a generic 2-parameter family of sutured functions and
gradient-like vector fields on the sutured manifold (M, ) that has a codimension-2
singularity for p = 0; i.e., (fo,v9) € FVa(M,y). Recall the notion of the bifurcation
set in the parameter space from Definition 5.10; this is the set S of parameter values
p € R? for which v, fails to be Morse-Smale. Then, for € > 0 sufficiently small, the
set (SN D?)\ {0} is the disjoint union of smooth arcs (strata) Si, ..., S, with 0 € 95,
and 9S; \ {0} € S!. We label the arcs S; in a clockwise manner. The components
of D?\ S are chambers C1, ..., C,, labeled such that C; lies between S;_; and S; for
ie{1l,...,7} (where Sy = S, by definition).

In this section, the bifurcation diagrams that we draw illustrate the bifurcation set
S C R? in a neighborhood D? of 0, and for each chamber C;, we indicate the relevant
part of the corresponding (overcomplete) Heegaard diagram H(f,,v,, %) for u € C;
near 0 and some Heegaard surface ¥ € 3(f,,v,). (Note that if x, 4/ € C;, then the
vector fields v, and v, are topologically equivalent, hence the corresponding diagrams
are homeomorphic and close to each other.) We only show certain subsurfaces of X
in our illustrations and draw the boundary of these in green. Outside these subsur-
faces, the diagrams are related by a small isotopy of a U 3. Following our previous
conventions, a-circles are drawn in red, while S-circles are drawn in blue.

Consider an arc S;, and pick a short curve c: [—v, v] — R? transverse to S; at ¢(0).
This gives rise to a 1-parameter family { (fou),vew): t € [—v,v]} to which we can
apply Proposition 6.28. If the diagrams for (fo(—v), Ve(—v)) and (fewy, Vo)) are related
by an a-equivalence, then we draw S; in red; if they are related by a -equivalence,
then we draw S; in blue; and S; is black if they are related by a (de)stabilization.

Definition 6.36. Suppose that { (f,,v,): p € R?} is a generic 2-parameter family
such that (fo,v9) € FVo(M,7). For € > 0 as above, a link of the bifurcation at 0 is
an embedded polygonal curve P C D? such that

e the bifurcation value 0 lies in the interior of P,
e PhSand |S;NP|=1foreveryiec{1,...,r},
e cach chamber C; contains exactly one or two vertices of P.
We say that P is munimal if each C; contains precisely one vertex of P. We orient
the curve P in a clockwise manner.
A surface enhanced link of the bifurcation at 0 is a link P, together with a choice
of Heegaard surface ¥, € X(f,, v,) for each vertex u of P.

We will use the following notational convention. If C; contains one vertex of P, then
we denote that by u;. The edge of P that intersects .5; is called a;. If C; contains two
vertices, then they are denoted by p; and p}, ordered coherently with the orientation of
the edge a; of P between them. So Ja; is either ;11— p; or i1 —p, and dal = p,— ;.
In particular, if P is minimal, then the vertices of P are uq, ..., u, and its edges are
ai, ..., a,. For simplicity, we write (fi,v;) for (f,,vu,), (f],vi) for (fu,v.), ¥ for
Y, and 3 for ¥, Furthermore, we write H; = (¥, [a], [3;]) for the (overcomplete)
isotopy diagram [H(f;, v, %;)] and H! = (X, [e], [3}]) for [H(f], v}, 3]

i) Vi)
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The cases distinguished in the following result are labeled consistently with the
ones appearing in the bifurcation analysis of Section 5.2.2.

Theorem 6.37. Suppose that F = {(fu,,v.): u € R*} is a generic 2-parameter
family such that (fo,vo) € FVo(M,). Using the notation as above, for every e > 0
sufficiently small, there exists a surface enhanced link P C D? of the bifurcation at 0
such that the following hold. The polygon P is minimal unless the bifurcation at 0 s
of type (C) or (E1). Forie {1,...,r}, there is a point x; € Oa; such that 3., h v,
for every u € a;. Consecutive isotopy diagrams H; and H;y, or H, and H;1, are
related by a mowve corresponding to the type of the stratum S;. As in Lemma 6.21,
each edge a, induces a diffeomorphism d;: H; — H] isotopic to the identity in M.
The particular cases are as described below.

We may ignore the strata S; that correspond to an index (-1 or an index 2-3 birth-
death, or a tangency between the unstable manifold of an index 1 critical point and
the stable manifold of an index 2 critical point, as the isotopy diagrams defined by
H(fi,v:, 5, TL) and H(fiy1, i1, Biv1, THH) coincide if we take ¥; = ¥, and choose
Ti and T consistently (see the discussion of trees following Proposition 6.28). If
this reduces the bifurcation set to a single curve of codimension-1 bifurcations or
eliminates it completely, then we do not list the bifurcation below. This simplification
reduces the number of cases considerably, though no extra technical difficulty arises
in the omitted cases. We use the notation of Section 5.2.2, with the codimension-
2 bifurcation appearing at the parameter value @ = 0. Whenever we talk about
handleslides, we mean generalized handleslides, as in Definition 6.27.

In all the cases where (fy,vo) is separable, i.e., everywhere except in case (E1),
we construct the surfaces 3,..., %, (and Xj in case (C)) from a common surface
¥ € X(fo,vo) with the aid of Proposition 6.7. In these cases, we take € so small that
¥ Mo, for every |u| < e. Often, ¥ € X(f;,v;) for every i € {1,...,r}; for example,
when fp is Morse (this includes all bifurcations of type (A)), or has an index 0-1
or 2-3 birth-death singularity, or an index 0-1-0, 1-0-1, 2-3-2, or 3-2-3 birth-death-
birth. When f, has an index 1-2 birth-death, then we can construct surfaces on the
two sides of the corresponding stratum as in the proof of Proposition 6.32. We only
explain how to construct the surfaces ¥q,..., %, whenever a new idea is needed.

As stated above, in cases (C) and (E1), the link P is not minimal. In the corre-
sponding figures, if C; contains two vertices of P, we will draw a yellow ray in C;
emanating from 0 that separates u; and p). The reader should think of this ray as a
“diffeomorphism stratum” of the bifurcation set. The purpose of this will be explained
in the following section.

We start, by looking at bifurcations of type (A), which were illustrated schematically
in Figure 13. For cases (B) and (C), the reader should consult Figure 14, while for
cases (D) and (E1), see Figure 15.

In all subcases of case (A), we can take an arbitrary minimal link P C D? and
Y, = X fori e {1,...,r}. First, we describe the possibilities in case (Al), cf.
Figure 21. In each case, r = 4 and the bifurcation set S is the union of two smooth
curves that intersect transversely at 0.

(Ala) As in case (Al), with all p{ distinct, Z(p?) = Z(p9) € {1,2} and Z(p3) =
Z(p}) € {1,2}. We describe what happens to the diagrams H; when all the p?
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FIGURE 21. The links of bifurcations of type (Ala)-(Ald). The sur-
faces shown should be doubled along their black boundary arcs to ob-
tain the relevant subsurface of the Heegaard diagram. This way the
red arcs become the a-circles and the green arcs become the boundary
components of the subsurface. We do not draw the [-circles as they
remain unchanged.

have index 1; the other cases are analogous. Then 3, = 3, for i € {2,3,4}.
Furthermore, the attaching set a; contains four distinct curves aq,...,ay
(corresponding to p?, . .., pJ, respectively), and a3 contains two distinct curves
o and a3 such that o is obtained by sliding «; over ay and «f is obtained
by sliding ag over ay. In addition, as = (a1 \ o) U o), oy = (g \ a3) U o,
and az = (o \ (q Uas)) U (o) Uaj).

As in case (A1), with p = pJ. The points p, pJ, and pJ all have index 1, or
they all have index 2. We discuss the case when they are all index 1. Then
there are curves ay, as, ay € @y, and curves o) € Hy, o € Hy, and oY’ € Hj
such that of is obtained by sliding a; over as, the curve of is obtained by
sliding o over ay, while o can be obtained by either sliding o) over ay, or
o over . Furthermore, s = (a3 \ o) U o), a3 = (a1 \ o) U &Y', and
ay; = (o \ 1) Uaf. In other words, Hs is obtained from H; by sliding oy
over a, the diagram H, is obtained from H; by sliding oy over ay, and Hj is
obtained from H; by sliding «a; over as, and then sliding the resulting curve
over ay.

As in case (A1), with p = pY. The set a; contains three distinct curves oy,
a9, and ag; furthermore, there is an arc a; with da; C oo and an arc as with
Oas C i such that a; and as reach oy from opposite sides, and H, is obtained
from H; by sliding o over as using a; (resulting in a curve o), Hy is obtained
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FIGURE 22. The link of a bifurcation of type (A2).

H,y

from H; by sliding ag over ay using as (resulting in the curve af), while Hj
differs from H; by removing «; and a3 and adding o] and .

As in case (A1), with p{ = p$ and p§ = pY. Both p? and pJ have index 1, or
they both have index 2. This is similar to case (Alb), except that «; is sliding
over the same curve as in two different ways from opposite sides.

In this case, we have Z(p{) = Z(p9) = Z(p3) € {1,2} and r = 5. We consider
the case when all the p{ are index 1. The 3, coincide up to a small isotopy. The
attaching set o contains three distinct curves aq, as, and a3z corresponding
to pY, pY, and pY, respectively. Then the pentagon is formed by «; sliding over
a, which is itself sliding over a3. More precisely, let o) be the curve obtained
from «; by sliding it over aw, let o), be the curve obtained from «s by sliding
it over a3, and finally let of be the curve obtained from a4 by sliding it over
ah. Then o = (a1 \ az) Uy, a3 = (aa \ 1) U], ag = (a3 \ &) U g, and
a5 = (ay \ o)) Ua). In particular, this implies that a; = (a5 \ o)) Uay. For
a schematic illustration, see Figure 22.

We now look at bifurcations of type (B); i.e., codimension-2 singularities that in-
clude a single stabilization. See Figure 14 for schematic drawings. The link P and
the surfaces 2, are obtained as follows. We label the strata such that .S; and Ss are
the stabilizations and there is a single stratum S5 on the stabilized side. We choose
Y € X(fo,v0) and € as above. For i ¢ {2,3}, the vertex y; of P is an arbitrary point
of C; and ¥; = ¥. Pick a parameter value v € Sy with |v| < e. Let p° € C(fy) be
the index 1-2 birth-death singularity; it breaks into the critical points pl € Ci(f,)
and p? € Cy(f,). The surface ¥, € 3(f,,v,) is obtained from ¥ by attaching a tube
around W"(p?) if p* € Co1(fo,v0), or a tube around W*(pl) if p¥ € Co3(fo,v0). The
side ay of P is chosen short enough so that 3, M v, for every p € a;. The endpoints
of as are ps and pz. Both Xy and X3 are defined to be X,. Every side a; of P for
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1 # 2 can be an arbitrary arc connecting p; and p; 1 that intersects S; in a single

point.

(B1)

(B2)

For definiteness, suppose that p° is an index 1-2 birth, while p? and p) are
index 1 critical points. Then r = 4, and the strata S; and S3 are stabilizations,
while S, and S; are handleslides. Recall from Definition 6.2 that, in this
case, p° € Co1(fo,v0). The type of the stabilizations H; — H, and H; —
Hj depend on the number of flows from pi to p* for u € S; and pu € Sz,
respectively. Recall from (ND-2) that W**(p9) is 1-dimensional, and it is
transverse to W*(p®) by (NH); i.e., disjoint from it. Hence, the flows from p)
to pY are split into two parts by W*(p9). For u € Sy, flows in one part will
be glued to the orbit of tangency from p? to p3, while for y € S5 flows in the
other part will be glued to the orbit of tangency. If there are k; and ko flows
from p9 to p¥ in the two parts, and [ flows from p° to index 2 critical points
and m flows to p° from index 1 critical points, then the two stabilizations
H, — Hy and Hy — Hj are of types (I, m + k1) and (I, m + k»), respectively.

Figure 23 shows an example with k& = ks = 1. In general, the a-curve
corresponding to p; intersects the green disk in k; + ky horizontal segments,
ky of which lie on one side of W**(p3) and ky on the other side. So the a-
curve corresponding to p} intersects the green disk in k; arcs on one side of
the handleslide stratum, and in ky arcs on the other side. When p{ and pj
are index 2, then we obtain a similar picture, but with red and blue reversed.
(This is ensured by the convention of Definition 6.1 that now p® € Ca3(fo, o))
An orbit of tangency from an index 1-2 birth-death point p° to an index 1
critical point p° (in which case p° € Cy1(fo,v0)), or an orbit of tangency from
an index 2 critical point to an index 1-2 birth-death point (in which case
p° € Ca3(fo,v0)). For definiteness, we consider the first case. The bifurcation
diagram has at least r > 3 strata, where S; and S5 are stabilizations and the
other S; for i ¢ {1,3} are a-handleslides. Indeed, for any flow from an index 1
critical point p¥ to p°, we can perturb the neighborhood of p° on the “death”
side of 57U S5 so that there is a flow from p# to p*. The number of flows from
index 1 critical points to p° is equal to r — 3.

For the types of the stabilizations, suppose that there are k flows from
index 1 critical points to p° and [ flows from p° to index 2 critical points.
Furthermore, the flows from p° to index 2 critical points are divided into two
parts by W (p°); let these two parts have m; and my flows, respectively.
Then the two stabilizations H; — H, and Hy — Hj have types (I + mq, k)
and (14 maq, k), respectively (where Hy = Hy if r = 3). The pair (mq, msy) can
be seen as the type of the generalized handleslide Hy — Hj. Figure 24 shows
an example. When p is index 2, we obtain a similar picture, but with red and
blue reversed.

An orbit of tangency between the strong stable manifold of an index 1-2
birth-death point p and the unstable manifold of an index 1 critical point p,
or between the strong unstable manifold of an index 1-2 birth-death point and
the stable manifold of an index 2 critical point. Without loss of generality,
suppose we are in the former case. Then r = 3, the strata S; and S3 are
stabilizations, while the stratum S5 is a handleslide. Recall that we chose
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FIGURE 23. The link of a singularity of type (B1). This example has

=2, m=3,and ky = ky = 1.

H,

(2+1,2)

FIGURE 24. The link of a singularity of type (B2). This example has

k=2,1=2 m =2, and my = 1.
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H,

H,

FIGURE 25. The link of a singularity of type (B3). This example has
k=2and ! =2.

p € Coi(fo,v0). If there are k flow-lines from index 1 critical point to p (not
counting the flow from p in W#(p)) and [ flows from p to index 2 critical
points, then the stabilizations H; — Hs and H; — Hj are of types (k,[+ 1)
and (k,l), respectively. For p € Ss, the 2-dimensional unstable manifold
W*(p) has a tangency with the 1-dimensional stable manifold of the index 1
critical point born from p, see Figure 18. Hence, the a-curve W*(p) N'X slides
over the a-curve appearing in the stabilization as we move from Hjz to H,.
Figure 25 shows an example. As before, Definition 6.1 ensures that we obtain
a picture with colors reversed when p is index 2.

Two simultaneous index 1-2 birth-death critical points at p; and p,, labeled
such that f(p1) < f(p2). Recall that, in this case, (fo,vo) is separable with
p1 € Cor(fo,v0) and py € Coz(fo,v0). Let the number of flows from p; to
po be t, and let the number of flows from p; to index 2 critical points and
from index 1 critical points to p; be m and n, respectively. Similarly, let the
number of flows to index 2 critical points from p, and from index 1 critical
points to po be k and [, respectively. Then r = 4, and each stratum S; is a
(de)stabilization. The strata S; and S; correspond to the birth-death at py,
while Sy and Sy are the birth-death strata for p,. The type of the stabilization
H, — Hyis (kt+m,n), for Hy — Hj it is (k,l+t), for Hy — Hy it is (k, nt+1),
and finally, for Hy — Hy it is (m + ¢,n). Figure 26 shows an example with
t =1, and Figure 27 shows an example with ¢t = 2.

The vertices pu, po, ps, iy, and py of P and the Heegaard surfaces 3; €
X(fi,v;) for i € {1,...,4} and X} € X(f},v}) are obtained as follows. As
before, pick a surface ¥ € X(fy,vp), and let € > 0 be so small that ¥ M v, for
every |u| < e. Then puy € C is arbitrary and ¥ = 3. For v € CoU S, UCs, let
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FIGURE 26. The link of a singularity of type (C). This example has
t=1, (k,1) =(2,3), and (m,n) = (2,3).

q1(v) € Cy(f,) be the index 2 critical point born from p,. Similarly, for n €
C5US3UCYy, let g2(n) € Ci(f,) be the index 1 critical point born from p,. By
taking e to be sufficiently small, we can assume that W*(q;(v))NW*(g2(n)) = 0
for every v, n € Sy U C3 U S3. Choose points v € Sy and n € S3. The
surface ¥, is obtained from ¥ by attaching a tube around W*"(q,(v)) such that
Y, € ¥(f,,v,). Similarly, ¥, is obtained from X by attaching a tube around
W#(g2(n)) such that X, € 3(f,,v,). Pick short arcs ay and ag transverse to S,
and S5 at v and 7, respectively, such that £, i v, for every o € ay and X, h v,
for every pu € az. We take pus = das N Cy, g = das N Cy, sy = daz N Cs, and
pa = Oaz N Cy. Furthermore, ¥y = ¥, and X4 = X,. To obtain X35 € X(f3, v3),
add a tube to ¥y around W*(ga(ps)). Similarly, 3% € X(f},v4) is obtained
from X4 by adding a tube around W"(q;(p5)). The edges a;, af, and a4 of P
are chosen arbitrarily (subject to |a; N S;| =1 for i € {1,4} and af; C Cj3).
The regions of ¥ shown in Figures 26 and 27 are obtained by taking a
regular neighborhood N of (W*(p;) UW?*(p2)) NE; so the green curves are the
components of ON. Recall that both W*(p;) N X and W#(pe) N'Y are arcs,
which intersect each other in ¢ points x1,...,z;. Fori e {1,...,t —1}, let ¢
be a properly embedded arc in N that intersects W?*(py) N Y transversely in
a single point between x; and x;,;. Cutting N along ¢q,...,c;—1, we obtain a
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FIGURE 27. The link of a more complicated singularity of type (C).
This example has t = 2, (k,1) = (2,3), and (m,n) = (4,3). The black
arcs labeled with ¢y in the boundary of the green circle are identified.

disk with distinguished pairs of arcs in its boundary. This is the disk that we
draw in our figures, with the ¢; are shown in black.

Remark 6.38. To avoid the “diffeomorphism stratum” in case (C), one would need
a quantitative result that the arcs a, and az can be chosen to be so long that they
actually intersect, in which case we could take us = as Nas and drop p4. This does
not seem possible for an arbitrary 2-parameter family.

Note that the diffeomorphism d3: Hs — Hj induced by aj can be destabilized to a
diffeomorphism df: 3 — X. This follows from the fact that ¥ rh v, for every u € aj
and both X3 and X} are obtained by attaching tubes to X. Indeed, consider the family
of surfaces ¥, € ¥(f,,v,) for u € a} obtained by adding tubes around W*(g(p))
and W#(g2(u)). The one can apply Lemma 6.19 to lift this family of surfaces to an
isotopy that preserves the “tubes.”

(D) An index 1-2-1 (A7) or 2-1-2 (A3) degenerate critical point, a birth-death-
birth singularity. See Figure 28 for an example in the index 2-1-2 case, which
we will discuss. In this case, » = 2, and on the stabilized side C5, we have
three critical points, p1, p2, and ps3, with p; and p3 of index 2 and p, of index 1.
In the birth-death strata S; and S5, the critical points cancel each other in
two different ways: py cancels against either p; or ps3. For both cancellations
to be possible, there is necessarily a unique flow from p, to both p; and ps,
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FIGURE 28. The link of a birth-death-birth singularity, type (D). In
this example, £ =3 and [ = 2.

and no other flows from p, to index 2 critical points. To see there are no other
flows from py, recall that the local form of an A5 singularity p is —z? + 23 — x4,
hence it has a 1-dimensional unstable manifold, which is generically disjoint
from the stable manifolds of all index 2 critical points. So, after a sufficiently
small deformation of fj, these stable manifolds will still avoid a neighborhood
of p. The parameters are the numbers k£ and [ of flows from index 1 critical
points to p; and ps, respectively, not counting the flows from p,. The two
stabilizations corresponding to passing S; and Sy are of types (1, k) and (1,1),
respectively. Note that on the common destabilized diagram H;, there is a
single [-circle meeting k + [ of the a-strands.

The link P is an arbitrary bigon around 0 inside D?. The Heegaard surface
¥, = 3, the part shown in Figure 28 is a neighborhood of W*(p) N 3, where
p is the degenerate critical point of fy. The surface X divides M into two
pieces M_ and M, such that p € M. To obtain Xy, we add a tube around
W*#(ps2) to X so thin that it separates py from p; and p3. Recall that W*(p) is
a 2-disk, while W**(p) is a curve inside it. The numbers k and [ are in fact
the number of flow-lines from index 1 critical points to p on the two sides of
W= (p) in W*(p).

A flow from an index 2 critical point p; to an index 1 critical point p,. Suppose
there are k flows from py to index 2 critical points and [ flows from index 1
critical points to p;. Then r = k + 1, and k of the strata S; are S-handleslides
while [ of them are a-handleslides. Indeed, as we move the parameter value u
in a circle around 0, for each flow from another index 1 critical point ¢ to py,
we pass a stratum S; where we see an orbit of tangency in W*(q) N W?(pa),
which translates to an a-handleslide. Similarly, for each flow from p, to an
index 2 critical point r, for some value p € S;, we see an orbit of tangency in
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2y

FIGURE 29. Construction of the Heegaard surface in case (E1).

W (py) N W*(r), which translates to a S-handleslide. In each case, another
curve slides over the a-circle W*(py) N Y or the S-circle W*(p;) N X.

We now explain how to choose ¢, the link P — which is a 2r-gon — and the
corresponding diagrams Hy, H1, ..., H,., H!. Since (fo,vo) is not separable, we
describe the construction in detail. For an illustration, see Figure 29. Take N
to be a thin regular neighborhood of

U{W*): p € Colfo) U CL(fo) \ {p3} } U R-(7),

and let X = 0Ny \ OM. Generically, ¥ is transverse to vy, and if we choose €
small enough, ¥ is transverse to v, for every u € D2 Consider the circle
B =W?(p;)NX, and let B be an annular neighborhood of 8 in ¥ so small that
it is disjoint from the stable flow into ps not starting at p;. Pick values v; € S,
and let A; be a thin tube ON(W?*(ps)) \ No disjoint from W*(p7") U W*(p}"),
and let D; U D! be the pair of disks N(W?*(p]*)) N X (the feet of the tube A;).
If v; lies sufficiently close to 0, then we can assume that D; C B. Define ¥; to
be (X \ (D; U Dj)) U A;; this is a separating surface for the Morse-Smale pair
(fi,vi). Forevery i € {1,...,r}, pick an arc a; transverse to S; at v; so short
that 3, € X(f,,v,) and D; N W?*(p}") = () for every pu € a;. According to our
conventions, da; N C; = u; and da; N Ci41 = pir1. Note that A; is an annular
neighborhood of the circle o = W*(py') N'3;. We also pick a small disk
D C ¥ around the point W*(py) N (X \ B). Again, taking A; sufficiently thin,
all the D} will lie in D. The side a; of the link P is an arbitrary curve in C;
connecting p; and ;. To obtain the surface enhanced link, we take ¥, = 3, .

The diagrams H; = H(f;,v;,%;) and H] = H(f], v}, ¥,) all agree outside the
subsurfaces T; = (D \ D)) U A; U (B\ D;), up to a small isotopy of o U 3.
What happens inside the twice punctured disks 7; is depicted in Figure 30.
There, OT; are the green circles and the two components of 0A; are labeled
by A. (We have omitted the tubes A; for clarity.) The only difference between
Y; and X, is that the foot of the tube A; lying in B is moved around by
an isotopy. The diagrams H] and H,,, are related by a handleslide, while «
induces a diffeomorphism ¢;: H; — H/ isotopic to the identity in M (and
well-defined up to isotopy). The composition ¢, o -+ 0 p1: ¥ — X is a
diffeomorphism that is the product of Dehn twists about the components of
077; see Definition 7.8.

In cases (E2)—(E4), the same splitting surface ¥ can be chosen for every (f;, v;),
and the curves «; (resp. 3;) are all isotopic to each other for an appropriate choice
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FIGURE 30. The bifurcation diagram for singularity (E1), a flow from
an index 1 critical point to an index 2 critical point. In this example,
(k,1) = (2,3). Outside the green circles, all five diagrams are small
isotopic translates of each other. The Heegaard surface inside the green
circles is not constant, there is a tube that moves around joining the
two black boundary circles labeled by A.

of spanning trees. Since we are going to pass to isotopy diagrams, this description
suffices for our purposes.

7. SIMPLIFYING MOVES ON HEEGAARD DIAGRAMS

In this section, we break down (k, [)-stabilizations, generalized handleslides, and the
loops of diagrams of type (A)—(E) appearing in Theorem 6.37 into the simpler moves
and loops that come up in the definition of strong Heegaard invariants, Definition 2.33.
During the simplification procedure, we work with overcomplete diagrams, and will
only later choose spanning trees to pass to actual sutured diagrams.

Definition 7.1. A polyhedral decomposition of D? is a CW-decomposition such that
the attaching map of every cell is an embedding.
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A bordered polyhedral decomposition of D? is a partition of D? that arises as follows.
Pick a polyhedral decomposition of D?, and take the union of each open i-cell in S*
with the neighboring open (i + 1)-cell in Int(D?) for i € {0,1}. So the “cells” meeting
S1 have boundary along S'. We call these bordered cells.

A polyhedral decomposition P and a bordered polyhedral decomposition R are
dual if in each open 2-cell of P there is a unique vertex of R. Furthermore, for each
open 1-cell e of P\ S', there is a unique open 1-cell e* of R that intersects sk;(P)
transversely in a single point lying in e. Finally, each closed 2-cell ¢ of P that meets
S' contains a bordered edge of R connecting sko(R) N ¢ and a point of ¢ S*.

Definition 7.2. We say that the partition & = VU ViU Vj; is a bordered stratification
of the disk D? if the following hold:

(1) V is a finite set of points in the interior of D?,

(2) V; is a properly embedded 1-dimensional submanifold of D?\ V;, and

(3) each point x € Vj has a neighborhood N, such that the pair (N,,V N N,)
is diffeomorphic to a cone (D? I - H) for some finite set H C S!, where
V=WUl.

Note that a bordered polyhedral decomposition is a special instance of a bordered
stratification. A bordered polyhedral decomposition R of D? is a refinement of & if
sko(R) D Vi and every open 1-cell of R is either contained in V; or is disjoint from
it. We say that a polyhedral decomposition of D? is dual to & if it is dual to some
bordered polyhedral decomposition R refining &.

A generic 2-parameter family of gradient-like vector fields F: D* — FV(M,~)
gives rise to a bordered stratification &(F) of D? by taking

V;'Z{MGDQ: F(u) € FVy (M)}
for i € {07172}

Definition 7.3. A polyhedral decomposition P of D? is adapted to the family F if

(1) P is dual to S(F),

(2) each edge intersecting V; is so short that Proposition 6.28 applies to it,

(3) if m € V and o is the 2-cell of P containing 7z, then do is a link of & as in
Theorem 6.37,

(4) every 2-cell o of P that intersects Vi but is disjoint from Vj is a quadrilateral,
and ¢ N'V] is an arc connecting opposite sides of o,

(5) any two closed 2-cells of P containing two different points of Vj are disjoint,
and any two closed 1-cells of P that intersect V; \ S are either disjoint, or
they both belong to a 2-cell containing a point of V4.

Lemma 7.4. Let F: D?> — FV(M,~) be a generic 2-parameter family. Then there
exists a polyhedral decomposition P of D* adapted to F. Furthermore, given a trian-
qulation of S' such that each 1-cell contains at most one bifurcation point of F and
satisfies Condition (2) of Definition 7.3, then we can choose P such that it extends
this triangulation.

Proof. First, choose the 2-cells of P containing the points of Vj using Theorem 6.37,
all taken to be sufficiently small, and denote by N(Vj) their union. Pick short arcs
transverse to V3 \ N(Vp) such that Proposition 6.28 applies to each, and such that
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there is an arc through each boundary point of V; lying inside S!. These will all be
1-cells of P. Next, as in Proposition 6.32, connect the endpoints of neighboring 1-cells
intersecting V) so that we obtain a collection of rectangles that, together with N (1}),
completely cover Vi. The rectangles are 2-cells of P. Finally, we subdivide the
remaining regions until the attaching map of each 2-cell becomes an embedding. This
is possible if we choose sufficiently many 1-cells intersecting V;. It is apparent from
the construction that P is dual to a bordered polyhedral decomposition of D? refining
the bordered stratification &(F). If we are already given P N S, then the extension
to D? proceeds in an analogous manner. O

If P is adapted to the generic 2-parameter family F: D? — FV(M,~), then we
label each edge of P with the type of move that occurs as we move along it, which
is either a diffeomorphism isotopic to the identity if the edge does not cross Vi, or
a generalized handleslide, a (k,[)-stabilization, or birth/death of a redundant «/f3
curve if the edge does cross V.

Definition 7.5. Let F: D? — FV(M,~) be a generic 2-parameter family and P an
adapted polyhedral decomposition. A choice of Heegaard surfaces

{Zn € X(F(n): p € sko(P) }

is coherent with P if, for every edge e of P with de = p — i/, the isotopy diagrams
[H(F(n),2,)] and [H(F (1), X,r)] are related as indicated by the label of e. A surface
enhanced polyhedral decomposition of D? adapted to F is a polyhedral decomposition
of D? adapted to F, together with a coherent choice of Heegaard surfaces.

Lemma 7.6. Let F: D* — FV(M,~) be a generic 2-parameter family, and suppose
that P is a polyhedral decomposition of D? adapted to F. If we are given Heegaard
surfaces ¥, € S(F(w)) for p € sko(P) N SY as in Definition 7.5, then this can be
extended to a choice of Heegaard surfaces coherent with P.

Proof. For the vertices of each 2-cell containing a point of Vj, we choose the sur-
faces ¥, using Theorem 6.37. Then, for the remaining vertices of edges e that inter-
sect V4 \ S*, we pick the ¥, using Proposition 6.28. This is possible because these
edges have no vertices in common by (5). For the rest of the vertices in sko(P) \ S,
we choose ¥, arbitrarily. 0

From now on, let F: D* — FV(M, ) be a generic 2-parameter family, & = &(F)
the induced bordered stratification of D?, and P a surface enhanced polyhedral de-
composition of D? with dual bordered polyhedral decomposition R refining &. In
what follows, we give a method for resolving R, giving rise to a new bordered polyhe-
dral decomposition R’ of D?. This consists of first replacing the strata in V; \ N(V;)
corresponding to (k, [)-stabilizations by a collection of parallel strata labeled by simple
stabilizations and handleslides. Then, at each point & of V{), we connect these strata
in a particular manner depending on the type of 7. We do not claim the existence
of a family F’ giving rise to the new decomposition R’, though constructing such is
probably straightforward but tedious. (This would be the 2-parameter analogue of
Proposition 6.35.)

The role of the resolved stratification R’ is that we can refine the polyhedral de-
composition P adapted to F to obtain a decomposition P’ dual to R, and we can
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choose (overcomplete) isotopy diagrams for the new vertices sko(P’) \ sko(P) in a
natural manner such that neighboring diagrams are now related by simple stabiliza-
tions, simple handleslides, or diffeomorphisms. Furthermore, along the boundary of
each 2-cell of P’, after an appropriate choice of spanning trees, each strong Heegaard
invariant will commute by definition.

As in the previous sections, we suppress the strata corresponding to index 0-1
and 2-3 saddle-nodes, since these disappear for any choice of spanning trees. For
simplicity, we will often only draw the bordered polyhedral decomposition R’, possibly
the dual decomposition P’, and the Heegaard diagrams for a few vertices pu of P’ if
the other intermediate diagrams are easy to recover. Consistently with our previous
color conventions, edges of R and R’ are red if the diagrams on the two sides are
related by an a-equivalence, blue for S-equivalences, black for (de)stabilizations, and
yellow for diffeomorphisms.

7.1. Codimension-1. Suppose that the possibly overcomplete isotopy diagram H' =
(3, [@/],[B']) is obtained from H = (X, [, [3]) by a (k, [)-stabilization. In particular,
we remove the disk D C ¥ and replace it with the punctured torus 7" to obtain .
Inside T', we have two new attaching curves; namely, o € o’ and 3 € 3.

Such a (k,[)-stabilization can be replaced by a simple stabilization, k consecutive
[-handleslides, and [ consecutive a-handleslides. For convenience, we describe this
procedure in the direction of the destabilization going from H’ to H. Specifically,
pick an orientation on both o and 5. Let aq, ..., a; be the a-curves that intersect [,
labeled in order given by the orientation of 5 and possibly listing the same a-curve
several times. This gives rise to a sequence of diagrams

H/:Ho, Hl,...,Hl,

where H; is obtained from H; ; by sliding «; over « in the direction opposite to the
orientation of §. Similarly, let §;,..., 5, be the p-curves that intersect «, ordered
given by the orientation of . Sliding these over 5 one by one in the direction opposite
to the orientation of a, we obtain the diagrams H;.i,..., H; x. The result is a
rectangular grid between the arcs coming from aq,...,a; and fy,..., Bk, plus the
handle T" over which « and  run. We can now perform a simple destabilization
on (T,a, () to obtain H. See Figure 31 for how this resolution appears inside a
2-parameter family.

Note that there were several choices involved in this construction, namely the ori-
entations on o and 3, and also whether to do the a-handleslides or the S-handleslides
first. (In the opposite direction, going from H to H' via a (k,[)-stabilization, the
choice of orientations corresponds to a choice of which quadrant around the grid of
intersections to stabilize in.) It will be helpful here to introduce the notion of a
stabilization slide.

Definition 7.7. A stabilization slide is a subgraph of G of the form
H, —— H,
N
g
Hj
such that
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FIGURE 31. Resolving a stabilization. A stabilization of type (k,1)
can be replaced by a simple stabilization, followed by k consecutive
[S-handleslides and [ consecutive a-handleslides.
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FIGURE 32. A stabilization slide. Such a loop of diagrams is a degen-
erate case of a distinguished rectangle of type (2).

(1) H; = (%, [ay],[B,]) are (possibly overcomplete) isotopy diagrams for ¢ €
{1,2,3} such that Xy = X3,

(2) the edges e and f are stabilizations, while g is an a- or S-equivalence,

(3) there are a disk D C ¥; and a punctured torus 7' C ¥y = X3 such that the
restrictions Hi|p, Hs|r and Hj|r are conjugate to the pictures in Figure 32
if the edge g is an a-equivalence, and to the same pictures with red and blue
reversed if g is a S-equivalence, and

(4) we have Hi[s,\p = Ha|s,\v = Hslsa\r-

Note that if we apply a strong Heegaard invariant to a stabilization slide, we obtain
a commutative triangle. Indeed, consider the rectangle obtained from the stabilization
slide triangle by taking two copies of H; and connecting them by an edge labeled by
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FIGURE 33. Switching the orientation involved in resolving a (k,[)-
stabilization. On the top and bottom are two different ways of resolv-
ing a (2, 1)-stabilization, with different choices for the orientation of «.
The two different choices can be related by commuting (-equivalences
and stabilization slides, as shown. Dashed edges are diagonals of rect-
angles whose other edge intersects the stabilization stratum.

the identity of Hy. Then this is a distinguished rectangle of type (2), with two opposite
edges being stabilizations and the other two being a- or S-equivalences.

It might happen that at the two ends of a (k,[)-stabilization stratum, we need
to use resolutions with different orientations. The different choices involved in the
construction can be related by commuting handleslides and stabilization slides. An
example illustrating how to modify the bordered polyhedral decomposition R’ and
the dual polyhedral decompositon P’ along a (k,[)-stabilization stratum of & to
obtain new decompositions R” and P that interpolate between different orientation
conventions is shown in Figure 33. Note that, in this figure, we have introduced
four codimension-2 bifurcations of type (B3). The modified decomposition R” has
some 1-cells corresponding to (1,0)-stabilizations. We obtain P} by taking the dual
polyhedral decomposition P” of R”, then for each (1, 0)-stabilization edge e of R”, we
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FIGURE 34. Interpolating between the resolution of a (2, 3)-stabiliza-
tion stratum starting with the S-handleslides and the one starting with
the a-handleslides. For this, we introduce a grid of distinguished rect-
angles of type (1).

& (& (&S

FIGURE 35. Writing a generalized handleslide of type (2, 3) as the com-
position of a simple handleslide and an isotopy of the resulting a-curve.

delete the edge of P” passing through e and replace it with the other diagonal of the
quadrilateral in P” containing e. We indicated these new diagonals by dashed lines
in the figure. Each such diagonal divides the corresponding quadrilateral in Py into
a stabilization slide and a commuting triangle of S-equivalences. For our purposes,
it suffices to construct the modified resolution P of P in a purely combinatorial
manner, without actually showing the existence of a corresponding modification of
the 2-parameter family of gradient-like vector fields. Thus, in the sequel, we may
assume that the orientations are picked conveniently.

Now suppose that at one end of a (k,[)-stabilization stratum, we resolve by doing
the S-handleslides first, while at the other end, we do the a-handleslides first. We can
interpolate between these two choices by introducing a grid of distinguished rectangles
of type (1), cf. Figure 34.

If the diagram H’ is obtained from H by a generalized a-handleslide of type (m,n),
then H’ can also be obtained from H by a simple (i.e., type (0,m + n)) handleslide,
followed by an isotopy of the resulting a-curve. For an illustration, see Figure 35.
Since we are passing to isotopy diagrams, we do not have to distinguish between
simple and generalized handleslides.

We now prove Proposition 2.37, which claims that for any balanced sutured man-
ifold (M,~), in the graph G4, any two vertices can be connected by an oriented
path.

Proof of Proposition 2.37. Let H and H' be isotopy diagrams of (M,~). Then pick
representatives H = (X, o, 3) and H' = (X', &/, 3') such that a h 3 and o’ h 3.
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By Proposition 6.17, there are simple Morse-Smale pairs (f,v), (f',v) € FVo(M, )
such that H(f,v) = H and H(f',v") = H'. By Corollary 5.20, there exists a generic
1-parameter family

{(fr,v) € FV(M,v): tel}

of sutured functions and gradient-like vector fields such that (fo,v) = (f,v) and
(fi,v1) = (f,v'). Let 0 < by < --- < b, < 1 be the set of parameter values such
that (fi,v;) € FV1(M,~) if and only if t € {by,...,b,}.

Using Proposition 6.28 and the fact that for a given splitting surface any two
attaching sets are o/ f-equivalent, for every i € {1,...,n}, we can choose points b, <

b; < b; close to by, separating surfaces ¥ € ¥ (fbi, Uz,i)» and spanning trees 7= such

that the diagrams Hjt =H <fb¢ s Up Ejt, Tzi) are related by an a- or S-equivalence, or

a (k,1)-(de)stabilization. As explained above, every (k, )-stabilization can be written
as a simple stabilization, followed by an a-equivalence and a [-equivalence.

Finally, by Lemma 6.21, H and Hy, H and H;,, fori e {1,...,n—1}, and H;
and H' are related by a diffeomorphism isotopic to the identity in M, followed by
an a-equivalence and a [S-equivalence. 0]

7.2. Codimension-2. We consider the various types of singularities from Theo-
rem 6.37 in Section 6.6, in an order that is more convenient for this section. For
each type of singularity, we will construct a resolved bordered decomposition R’, as
described at the beginning of Section 7.

The links of singularities of type (Ala)-(Ald) and (A2) from Theorem 6.37 (in-
volving pairs of handleslides) are easy, we do not modify these during the resolution
process. After choosing arbitrary spanning trees, we get a loop in G,y Where each
edge is an a- or S-equivalence. Any strong Heegaard invariant F' applied to this loop
commutes. Indeed, such a loop can be subdivided into triangles where each edge is of
the same color, and some rectangles with two opposite edges blue and two opposite
edges red. The commutativity of F' along a triangle is guaranteed by the Functoriality
axiom of Definition 2.33, whereas for the rectangles — each of which is a distinguished
rectangle of type (1) in the sense of Definition 2.30 — we can use the Commutativity
axiom.

Next, we consider a singularity of type (B3). This essentially is just changing the
type of destabilization, and can be done with no singularities in the resolved bifurca-
tion diagram R’, as long as the choice of orientation for resolving the stabilization is
appropriate. An example is shown in Figure 36.

For singularities of type (B1) (a birth-death singularity at p simultaneous with a
handleslide of p; over ps), recall that a crucial feature was the number k = k; + ks of
flows from ps to p. If £ = 0, the resolution can be done easily with several handleslide
commutations (links of type (Ala)) and one stabilization-handleslide commutation.
For k > 0, we need to introduce k slide pentagons (links of type (A2)), as oy =
Wt (p1) N X is sliding over ag = W¥(p2) N X, which in turn slides over the circle «
introduced at the stabilization corresponding to p. Note that ki of these pentagons
point “up”, while k5 of them point “down.” See Figure 37 for an example with k = 2.
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FIGURE 37. Resolving the singularity of type (B1) from Figure 23.

Before proceeding, we introduce handleswaps, loops of overcomplete diagrams that
generalize the notion of simple handleswaps. As we shall see, these arise during the
simplification procedure of links of type (E1), and are in fact quite close to them.
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gl

FIGURE 38. A (2;3)-handleswap.

Definition 7.8. A (k;[)-handleswap is a loop of overcomplete diagrams Ho, . .., Hriy
as follows. There is a surface ¥ such that H; = (X, o, 3;) forevery i € {0,..., k+I }.
Furthermore, there is a pair of pants P C ¥ such that o, N (X \ P) = o; N (X \ P)
and B;N(X\ P) = B,N(X\ P) for every i, j. Inside P, we have one full a-curve that
we denote by «g and one full S-curve that we call 5;. The boundary P consists of
three curves, A being parallel to «y, a curve B parallel to [y, and the third we denote
by C. The set (ag N P) \ ap consists of [ parallel arcs connecting B and C, while
(BoNP)\ Sy consists of k parallel arcs connecting A and C. We also require that none
of the a-arcs intersect the S-arcs in P. For 0 < ¢ < [, the diagram H,,; is obtained
from H; by sliding one of the a-arcs over g, and for [ < ¢ < k + [, the diagram
Hi.1 is obtained from H; by sliding one of the g-arcs over §y. The diagram H is
obtained from Hy,; by a diffeomorphism that is the composition of a left-handed
Dehn twist about C and right-handed Dehn-twists about A and B. The case of a
(2; 3)-handleswap is depicted in Figure 38.

Similarly, we say that a loop Hy, ..., Hyy; of isotopy diagrams is a (k; [)-handleswap
if every H; has a representative #H; such that H, ..., Hg is a (k;1)-handleswap.

We will show in Section 7.3 that any (k;l)-handleswap can be resolved into a
number of simple handleswaps, and thus that any strong Heegaard invariant applied
to the (k;l)-handleswap commutes.

Suppose we have a loop of diagrams as in Definition 7.8, but where the a- and
B-handleslides are not necessarily separated from each other. Using commutations,
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FI1GURE 39. Rearranging the order of a- and S-handleslides in a han-
dleswap using commutations. On the left, we see P and R, on the right
the modified decompositions P’ and R’.

these can easily be rearranged in the standard form, so we will also refer to these as
handleswaps. Figure 39 shows how to write a handleswap loop with mixed a- and (-
handleslides as a product of a standard handleswap and some distinguished rectangles
corresponding to commuting handleslides. The procedure is easier to understand on
the level of the bordered polyhedral decomposition P, where one spirals the blue
strata and red strata in opposite directions to separate them.

As mentioned above, the link of a singularity of type (E1) (a flow from an index 2
critical point to an index 1 critical point) is quite close to a handleswap. We can make
it exactly a handleswap by introducing some commutation moves between diffeomor-
phisms and handleslides. On the level of the bordered polyhedral decomposition P,
in a small neighborhood of the (E1) singularity, we spiral the yellow diffeomorphism
strata corresponding to the diffeomorphisms ¢4, ..., ¢, to all lie next to each other,
then compose the diffeomorphisms. For an illustration, see Figure 40. Recall that
the composition d = ¢, 0 --- 0 @y: 31 — X is the product of Dehn twists about
the boundary components of the pair of pants T} (the three green circles in the fig-
ure). Finally, we rearrange the a- and f-handleswaps as above to first have the
a-handleslides, followed by the g-handleslides. We denote this new surface enhanced
polyhedral decomposition by P’, and the dual bordered polyhedral decomposition
by R'.

The link of the (E1) singularity in P’ appears slightly different from a standard
handleswap, since in the diagram H; right above the diffeomorphism stratum, the
a- and [-arcs intersect each other. However, this is not an issue as we are dealing
with isotopy diagrams. Indeed, consider the smaller pair of pants 7] bounded by the
dashed curve and the two small green circles in Figure 40. We choose 7] so small that
inside it all the a- and (-arcs are disjoint. If we now perform all handleslides and the
diffeomorphism within 77, we get a standard handleswap loop, and each diagram is
isotopic to the corresponding diagram in P’. If we even replace the diffeomorphism
d by the diffeomorphism d' that is a product of Dehn twists about the boundary
components of 77, then d and d’ are isotopic, and by the Continuity Axiom of strong
Heegaard invariants, F(d) = F(d'): F(H,) — F(H,).
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FIGURE 40. Simplifying a link of type (E1).

Next, we consider singularities of type (B2), a flow from a birth-death singularity p
to an index 1 critical point p. Here, the crucial features were the number k of flows
from index 1 critical points to p and the number m = m+ms of flows from p to index 2
critical points. This time, in the resolution P’, we have a number of commutations
as usual, as well as an (m; k + 1)-handleswap between the circles § = W¥(p) N ¥ and
a = W*({)NX. To obtain this handleswap, we add a single diffeomorhpism stratum
to R’, drawn in yellow. See Figure 41 for an example. We only show R’ outside the
green circle. The handleswap is the loop of diagrams in P’ around the green circle,
this loop is illustrated in Figure 42. We will explain in Section 7.3 how to extend R’
to the interior of the green circle so that the (m;k + 1)-handleswap is reduced to a
simple handleswap. The edge e of P’ dual to the yellow stratum on the destabilized
side corresponds to a diffeomorphism that is isotopic to the identity of the Heegaard
surface, hence the two vertices of e correspond to the same isotopy diagram. So we can
terminate the yellow diffeomorphism stratum at a point x of the black stabilization
stratum, giving rise to a triangle in the dual polyhedral decomposition P’ containing .

For singularities of type (D), a 2-1-2 birth-death-birth singularity, we can, as usual,
replace the stabilization by a simple stabilization and a number of handleslides. This
time, we can replace the cusp singularity by a slide triangle and a (1; k+[)-handleswap,
as shown in Figure 43. As in case (B2), we add a diffeomorphism stratum passing
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FIGURE 41. Resolving the singularity of type (B2) from Figure 24,
which has £ = 2 and m = 3. Here, for clarity, the handleswap has not
yet been put in the standard form.

through the stabilization stratum. The corresponding diffeomorphism is isotopic to
the identity on the destabilized side. For a closeup of the handleslide loop, see Fig-
ure 44. The handleswap is between a; = W% (p;) NE and By = W*(py) N X.

Finally, we consider the case of a double stabilization, type (C). As shown in
Figure 45, we can eliminate the diffeomorphism and assume that we are dealing with
the link in Figure 46. The simplification of Figure 27 is shown in Figure 49.

Recall that a key feature in case (C) was the number ¢ of flows between the two
stabilization points (from p; to py). If t = 0, the two normalizations of the stabiliza-
tion (the sequence of a stabilization and a number of handleslides) are compatible
with each other, and we can fill in the link with a number of commuting squares.
Otherwise, we will get a total of t different handleswaps, as shown by example in
Figure 47 for t = 1. For a closeup of the handleswap loop, see Figure 48. An example
for the t = 2 case is shown in Figure 50.

7.3. Simplifying handleswaps. Note that in Definition 7.8, a S-curve might inter-
sect g multiple times, hence several $-arcs in the pair of pants P might belong to
the same S-curve.

Definition 7.9. A (k,1;l)-handleswap is a (k + 1;1)-handleswap between ag and [y
such that there is a S-curve that intersects aq in a single point. Similarly, a (k,1;1,1)
handleswap is a (k, 1;1 4 1)-handleswap such that there is an a-curve that intersects
Po in a single point. A (k;[, 1)-handleswap is defined in an analogous manner.

The final ingredient in the proof of Theorem 2.39 is to replace an arbitrary (k;1)-
handleswap by simple handleswaps. This proceeds in several stages:

e We first stabilize the diagram, to guarantee that in each handleswap between
ap and Sy, at least one of the [-circles meeting o meets it exactly once,
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FIGURE 42. A closeup of the handleswap loop of diagrams in P’ around
the green circle from Figure 41.

€

FIGURE 43. Resolving the singularity of type (D) from Figure 28.
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FIGURE 44. A closeup of the handleswap loop around the green circle
from Figure 43. The handleswap is between a; and fs.

N

1]

a

FIGURE 45. First step in resolving the singularity of type (C) from
Figure 26. The two diagrams in the upper left quadrant are isotopic,
so we manage to eliminate the diffeomorphism this way.



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 95

!

(4.3)

H,

FIGURE 46. After the first reduction step, the link in Figure 26 can be

replaced by this simpler link.
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FIGURE 47. Resolving the singularity of type (C) with ¢ = 1 from Figure 46.

giving a (k, 1;1)-handleswap. Similarly, we do the same thing for the a-circles

meeting (o, giving a (k, 1;[, 1)-handleswap.

e Given a (k; [, 1)-handleswap between ag and Sy in which oy intersects (3 once,
we can perform handleslides of each of the a-circles intersecting 5y over a; to
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FIGURE 48. A closeup of the handleswap loop around the small green
circle in Figure 47.

get rid of these intersections and reduce to the case of a (k;1)-handleswap.
Similarly, given a (k, 1; 1)-handleswap, we can perform handleslides to reduce
to the case of a (1;1)-handleswap.

e Finally, in a (1; 1)-handleswap between «q and 3y with (; intersecting ag and
a intersecting [y, we can perform handleslides of each a-circle intersecting [3;
over o to guarantee that #; has no intersections besides the one with ag. We
can similarly guarantee that a; has no intersections besides the one with (.
This is now, by definition, a simple handleswap.

In this overview, we have talked rather loosely about “stabilizing” and “performing
handleslides” on a codimension two singularity (the handleswap). In fact, we have to
perform these operations consistently in 2-parameter families, and see that we reduce
our original loop of Heegaard diagrams to the elementary loops of Section 2.4. We
will carry this out in the following sections. Recall that, in the previous section, each
time we encountered a handleswap in a figure we removed a disk — indicated by a
green circle — form the parameter space and only drew P’ and R’ outside this disk.
In P’, the handleswap loop is parallel to this green circle. In each step, we extend P’
and R’ to an annulus in the interior of the disk removed, until we reduce to simple
handleswaps.

7.3.1. Reducing to (k,1;1,1)-handleswaps. 1t is easiest to understand this reduction
by using non-simple stabilizations. Specifically, we will reduce a (k;[)-handleswap to a



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 97

) M \\) T =
/AN

4 /TN N N A

I]{fi Dl
l(zyg) (2,5)1

ol L g
/ / \\ (6.3) / \

H \] @ @ H,

FIGURE 49. The first step in the simplification of the more complicated
loop of Figure 27.

(k, 1;1)-handleswap and a (1;[)-handleswap (which is of course a (0, 1;[)-handleswap).
Start with a (k;[)-handleswap involving ag and (Sy. Let the S-strands crossing ag be
b1, -, Bk, and let the a-strands crossing g be aq, ..., q; (both lists with multiplici-
ties). In the diagrams involved in a handleswap without extra crossings (on the top
and bottom in Figure 38), we can do a (k, 1)-stabilization on g and 5y, ..., B. Sim-
ilarly, on the diagram with fy,. .., Sy crossing aq, ..., (on the right in Figure 38),
we can do a (k,l + 1)-stabilization on fi,..., [, and o9, aq,...,q;. Let o/ and [’
be the new circles introduced in the stabilization. These two stabilizations in fact fit
into a 2-parameter family (with the same boundary as the original (k;[) handleswap):
each o; sliding over ag for i € {1,...,1} introduces a singularity of type (B1), while
B’ sliding over f3y introduces a singularity of Type (B2). See Figure 51 for an example.
Note that the original handleswap is now a (1;[)-handleswap.

We can normalize the non-simple stabilization introduced in this procedure, follow-
ing the algorithm of Sections 7.1 and 7.2, to obtain a diagram involving only simple
stabilizations and handleswaps. An example of the result is shown in Figure 52.
Normalizing the singularities of type (B1) introduces only slide pentagons, but nor-
malizing the singularity of type (B2) introduces another handleswap, of 5y and «'.
Since (' intersects o’ in only one point, this is a (k, 1;1)-handleswap, as desired.

Observe that the set of a-strands involved in these two handleswaps did not change.
Thus we can perform the same procedure again, but with the roles of a and g switched,
to reduce to handleswaps of type (k,1;1,1).
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FIGURE 50. Resolving the singularity of type (C) with ¢ = 2 from Figure 49.

7.3.2. Reducing to (1;1)-handleswaps. Next, we reduce a (k; [, 1)-handleswap between
ap and [y to a (k; 1)-handleswap. Again, let the S-strands intersecting ag be 1, . . ., B
and let the a-strands intersecting By be a1, ..., a;.1. Assume that the circle contain-
ing «; intersects [y only once. Then, by sliding as, ..., a1 over ay, we can reduce all
three stages of the handleswap to diagrams where only «; intersects [y, which can in
turn be related by a (k;1)-handleswap. These handleslides can be done consistently
in a family with the introduction of commuting squares and slide pentagons, that
arise when «; for ¢ > 1 slides over oy, which in turn slides over «. See Figure 53 for
an example.

This reduction did not affect the §-strands intersecting ay. Thus, if we start with
a (k,1;1,1)-handleswap, we can first reduce it to a (k, 1; 1)-handleswap as above, and
then perform the same operation on the S-strands to reduce to a (1;1)-handleswap.

7.3.3. Reducing to simple handleswaps. Finally, we reduce a (1;1)-handleswap to a
simple handleswap; this is illustrated in Figure 54. Suppose the (1;1)-handleswap
involves o and (3, a single curve 3; intersecting ag, and a single curve « intersecting
Bo. Let the other strands intersecting (3, be «s,...,ar1, and let the other strands
intersecting ay be (s, ..., [11, numbered such that, in the stage of the handleswap
where oy and (3 cross, the intersections along «; are By, B, P2, ... in that order, and
similarly, the intersections along (; are ag, oy, as,.... Now we can slide (in order)
Bis1, - - -, B2 over [y, from the opposite side of the slide of 3; over 5y that appears in
the
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FIGURE 51. Reducing from a general (k;[)-handleswap to a (k,1;1)-
handleswap, step 1. Here we have introduced a circle of non-simple
stabilizations to the (2;3)-handleswap from Figure 38.

handleswap. This commutes with all three moves in the handleswap. (It commutes
with the slide of 81 over 5y because we are sliding 5,41, ..., 82 from the opposite side
of fy.) Similarly, slide aji1,...,as over op. Again, if we slide from the opposite
side from the o slide, this commutes with all three moves in the handleswap. But
after these slides, oy and 7 do not intersect any other strands, and we have a simple
handleswap, as in Figure 4.

8. STRONG HEEGAARD INVARIANTS HAVE NO MONODROMY

We now have all the ingredients ready to prove Theorem 2.39. For the reader’s
convenience, we restate it here.

Theorem. Let S be a set of diffeomorphism types of sutured manifolds containing
[(M,~)]. Furthermore, let F: G(S) — C be a strong Heegaard invariant. Given
isotopy diagrams H,H' € |G| and any two oriented paths n and v in G
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FIGURE 52. Reducing from a general (k;[)-handleswap to a (1;1)- and
a (k, 1;1)-handleswap, step 2. This is the normalization (following Sec-
tion 7) of Figure 51.

connecting H to H', we have
F(n) = F(v).

Proof. Since F' satisfies the Functoriality Axiom of Definition 2.33, it suffices to show
that for any loop 7 in G, of the form
Hy -5 H, -2 23 H,y = H,,

we have F'(n) = Idp(s,). By Lemma 2.11, every o~ and [-equivalence between isotopy
diagrams can be written as a product of handleslides. So by the functoriality of F,
we can assume that for every k € {1,...,n} if e; is an a- or S-equivalence, then it
is actually a handleslide.

We are going to construct a generic 2-parameter family F: D? — FV(M,~) of
sutured functions and gradient-like vector fields, together with a surface enhanced
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FIGURE 53. Here, we illustrate reduction from a (k;/, 1)-handleswap
to a (k;1)-handleswap. In this example, k = 2 and [ = 2. The circle
a1, which by hypothesis intersects 3y only once, is shown in orange.

polyhedral decomposition P of D? such that along S* we have the loop 7. First,
for every k € {0,...,n — 1}, pick a representative Hy = (X, oy, B;,) of the isotopy
diagram Hj, such that ay,  B,. Then we can apply Proposition 6.17 to obtain a simple
Morse-Smale pair (fi,vx) € FVo(M,~) such that H(fy,vr) = Hy. Let pp = e>mk/n
be a vertex of P for every k € {0,...,n — 1}. Then we define F(pr) = (fr, vx)
and the surface enhancement assigns ¥ € 3(fx, vg) to pr. In fact, the vertices of P
along S! are precisely po,...,pn_1 and the edges are the arcs in between them. We
extend F to the edge Prprer = {€¥™/": k <t < k+ 1} between p, and pj,; using
Proposition 6.35. By construction, each edge pypr+1 contains at most one bifurcation
point of F. Furthermore, if prpry1 does contain a bifurcation point p, then at least
one of ¥; and Xy is in X(F(p)) and is transverse to v, for every p € DpDri1, SO
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FIGURE 54. Reducing from a (1;1)-handleswap to a simple handleswap.

Proposition 6.28 applies to the whole edge for this separating surface. Hence P and F
satisfy the boundary conditions of Lemma 7.4.

For pn € S let F(u) = (fu,v,). By Proposition 5.19, the space G(f,,v,) of
Riemannian metrics g on M for which v, = grad,(f,) is non-empty and contractible.
So we can choose a generic family of metrics { g, € G(fu,v,): p € S*'}. Choose a
generic extension of { f,: u € S*} to a family of sutured functions { f,: u € D*},
and similarly, extend { g,: p € S } to a generic family of metrics { g,: u € D* }. For
p € D? let v, = grad, (fu), modified near v such that it becomes a gradient-like
vector field, see condition (3) of Definition 5.13. Then, away from a neighborhood
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of 7, the family {v,: p € D?} is a generic 2-parameter family of gradients, as in
Definition 5.9. The possible bifurcations of generic 2-parameter families of gradients
were all listed in Section 5.2.2. Even though the boundary behavior of v, on 7 is not
generic, this will not cause any problems since v is an invariant subset of v, containing
no singular points. Finally, let F(u) = (fu,v,) € FV(M,~) for every u € D? By
Lemma 7.4, we can extend P to a polyhedral decomposition of S' adapted to F. The
surface enhancement assigning ¥ to the boundary vertices py € sko(P) N S' can be
extended to a choice of Heegaard surfaces

{ B € B(F(w): 1 € sko(P) }

coherent with P according to Lemma 7.6.
As in Section 7, let

S=6(F)=Vuwnul

be the bordered stratification given by the bifurcation strata of the family F. Further-
more, pick a bordered polyhedral decomposition R of D? refining & that is dual to P.
After applying the resolution process of Section 7, we obtain a new surface enhanced
polyhedral decomposition P’ of D?, with dual bordered polyhedral decomposition R'.
Since along S' we only have simple stabilizations and because we can assume that
none of the 2-cells of P that intersect S! contain codimension-2 bifurcations of F,
after the resolution P NS = P'N S, with the same surface enhancement. Note that
we no longer claim that P’ is adapted to some family of gradient-like vector fields, but
along the boundary of each 2-cell of P’, we have a loop of overcomplete diagrams that
appears in Definition 2.33 (or a stabilization slide, which is a degenerate distinguished
rectangle). So it is either a loop of a-equivalences, a loop of [-equivalences, a loop
of diffeomorphisms, a distinguished rectangle, a simple handleswap, or a stabilization
slide. In addition, if we have a loop of diffeomorphisms, their composition is isotopic
to the identity. Indeed, the composition d of the diffeomorphisms around a 2-cell o is
the same as the one induced by Flg,: 0o — FVo(M, ). Since F has no bifurcations
inside o, the loop F|s, is null-homotopic in FVo(M, ), so d is isotopic to the identity
by Lemma 6.24.

The diagrams assigned to the vertices of P’ might be overcomplete (except along
the boundary). We now explain how to pass to a polyhedral decomposition P” that is
decorated by actual (non-overcomplete) isotopy diagrams without altering anything
along S'. We obtain P” as follows. Let v be a vertex of P’ lying in the interior of
D? that is the endpoint of k, one-cells. Then pick a k,-gon o, centered at v such
that it has one vertex in each component of D.(v) \ ski(P’) for some e very small.
For every such v, the polygon o, is a 2-cell of P”. Then, for each edge e of P’ in the
interior of D? with de = v — w, connect the sides of o, and o, that intersect e by
two arcs parallel to e; these will be edges of P”. If e is an edge with one endpoint w
in S and the other endpoint v in the interior of D?, then we connect the side of o,
intersecting e with w, forming a 2-cell of P” that is a triangle. So each 2-cell of P’ is
replaced by a smaller 2-cell in P”, each interior vertex of P’ is “blown up” to a 2-cell,
and each edge to a rectangle or triangle. For an illustration, see Figure 55.

We are going to decorate the vertices of P” with (non-overcomplete) isotopy di-
agrams by choosing spanning trees for the overcomplete diagram at the “nearest”
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FIGURE 55. The polyhedral decomposition P’ of D? is shown in black,
and the “blown-up” decomposition P” in blue (along the boundary S*
the two coincide).

vertex of P'. If o is a 2-cell of P” with r vertices, then we will write K1, ..., K, for
the loop of overcomplete diagrams along Oo.

Recall that, to a Morse-Smale gradient (f,v) € FVo(M, ), we assigned the graphs
I'L(f,v), and any separating surface 3 € 3(f, v) gives rise to an overcomplete diagram
H(f,v,%) = (%, a,3). However, we can obtain graphs I'1 (X, a, 3) directly from the
overcomplete diagram (X, a, 3) as follows. First, consider the graph whose vertices
correspond to the components of 3\ a, and for each component « of a, connect the
vertices corresponding to the components on the two sides of o by an edge (possibly
introducing a loop). Then I'_(X, e, B) is obtained by identifying all the vertices
that correspond to a component of ¥\ a that intersects 0¥ non-trivially. We define
' (3, a, B) in an analogous manner. In case (X, a, B) = H(f,v), then

Fi(Z, QL /3) = Fi(f, U).
If D is an overcomplete diagram and T is a spanning tree of I'y (D), then we denote
by H(D,T.) the diagram obtained from D by removing the a- and S-curves corre-
sponding to edges in T'y. A diffeomorphism of isotopy diagrams d: D; — D5 induces
amap d,: I'y(Dy) = T'(Dy).

Note that each vertex of P” in the interior of D? lies in a unique 2-cell o that
corresponds to a 2-cell of P’. Hence, we can pick spanning trees for each such 2-cell
separately to make F' commute along their boundaries. Then we need to check that
F also commutes along 2-cells of P” corresponding to 0-cells and 1-cells of P'.

Definition 8.1. The isotopy diagrams (X1, A1, By) and (39, Ay, Bs) are a/f-equiva-
lent if 21 = 22, Al ~ Ag, and Bl ~ BQ.

Clearly, an a-equivalence or a f-equivalence is a special case of an «/f-equivalence.
From G(S), we obtain a graph G'(S) by adding an edge for every «/fp-equivalence
that is not an a-equivalence or a -equivalence, and similarly, from G,/ ) we obtain
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the graph Gy, ). The strong Heegaard invariant F': G(S) — C extends to G'(S) as
follows. Given an edge e from (X, Ay, By) to (3, As, Bs), there is an a-equivalence h
from (X, Ay, By) to (3, Ag, By) and a f-equivalence g from (3, Ay, By) to (X, Ag, By).
We let F(e) = F(g)o F(h). Note that we could have taken the intermediate diagram
to be (X, Ay, Bs), but that gives the same map by the Commutativity Axiom of strong
Heegaard invariants applied to a distinguished rectangle of type (1).

Lemma 8.2. Suppose that
D, % Dy 2 ... "3 D, "5 Dy

is a loop of isotopy diagrams in G'(S) such that each edge a; is an «/[-equivalence.
Furthermore, let F': G(S) — C be a strong Heegaard invariant. Then

F(a,)o---0oF(a1) = Idp(p,)-

Proof. As above, we can write every «//-equivalence as a product of an a-equivalence
and a [-equivalence. By the Commutativity Axiom, it suffices to prove the lemma
when aq,...,a;,_1 are a-equivalences and a;,...,a, are [-equivalences for some 1.
However, in this case Dy = D;, so we only have to prove the lemma when aq, ..., a, are
all a-equivalences, or when they are all S-equivalences. This is a simple consequence
of the Functoriality Axiom of strong Heegaard invariants. 0J

If o is a 2-cell of P” corresponding to a vertex v of P’ and v is decorated by
the overcomplete diagram K, then choosing arbitrary spanning trees T}, ..., T} for
I+ (K) gives diagrams D; = H(K,T%) for i € {1,...,r } such that any two of them
are «/f-equivalent. Hence F' applied to the loop of diagrams Dy,..., D, along do
commutes by Lemma 8.2.

Next, suppose that o is a 2-cell of P” that corresponds to a 2-cell oy of P’. We
distinguish several cases. In all the cases, we make sure that if the edge between K;
and K;y; is a diffeomorphism, then we choose spanning trees T% and T, such that
Ti! = d,(T%). Furthermore, if this edge is an index 1-2 stabilization, then T is
the same as T, (in particular, it does not contain the edges corresponding to the new
a- and fS-curve).

If all the edges of Jog are diffeomorphisms dy,...,d,, then we showed above that
their composition is isotopic to the identity. Choose a spanning tree T4 for T'y(K).
Given T2, we define T = d;,(T%) fori € {1,...,7 — 1}. Note that T} = d,..(T%),
since d, o --- o d; is isotopic to the identity and hence it cannot permute the a-
curves or the f-curves, which are both linearly independent in H;(%;). By taking
D; = H(K;,T}) at the vertices of do, we obtain the loop of diffecomorphisms

Dli>D2£>...dT_*1>Dri>Dl
in G(u,)- The invariant F' commutes along this loop, since
F(dr)o...oF(dl) :F(dro"'odl) :IdF(Dl)

by the Functoriality and Continuity Axioms.

If Doy is a loop of a- or f-equivalences (e.g., a link of a singularity of type (A)),
or a commutative rectangle of type (1), then after choosing arbitrary spanning trees,
we get a loop of a/F-equivalences along do. Then the strong Heegaard invariant F’
commutes by Lemma 8.2.
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Suppose that along oy, we have the distinguished rectangle

ol

K3~ K,

If this is of type (2), with e and h being a-equivalences and f, g being stabilizations,
then we choose a spanning tree T} of ['+(K) and then a spanning tree 7% of T+ (K})
such that 72 = T}. We can view T as a spanning tree T3 of ', (K3), and we can
view T? as a spanning tree T of ['y(Ky4). Then the vertices of o are decorated by
the diagrams D; = H(K;,T%) for i € {1,...,4}, which also form a distinguished
rectangle of type (2). A distinguished rectangle of overcomplete diagrams of type (3),
where f, g are diffeomorphisms, can be reduced to a distinguished rectangle of the
same type in an analogous manner. In case of a rectangle of type (4) including only
stabilizations, we start with a spanning tree T} for T'y(K;), which then gives rise
to T7 and T2 in a natural manner. Both T2 and T3 give the same spanning tree
T} of T4 (Ky), as this is also the image of T} under the embedding of T'+(K;) into
'L (K,). Finally, for a rectangle of type (5), where e and h are stabilizations and f,
g are diffeomorphisms, we first choose T, then let T3 = f.(T1). We let T2 be the
image of T} under the embedding of T'y.(K}) into I'L(K5), and T is the image of T%
under the embedding of T'(K3) into ['+(K,). By construction, T¢ = g.(T%), hence
reducing to a loop of non-overcomplete diagrams of type (5) along Jo.

The last possible type of loop along doy is a simple handleswap, a triangle in G +)
with vertices decorated by isotopy diagrams K, K5, and K3 on the common Heegaard
surface X. Let the a- and p-curves involved in the handleswap be a1, s, and 31, Fs.
Recall that the other a- and f-curves coincide in K7, K5 and K3, so the graphs I'y (K;)
only differ in the 4 edges corresponding to ay, ag, [y, B Since ¥\ (a; U ag) has the
same number of components as ¥, there exists a common spanning tree 7 of I'_(K;)
fori € {1,2,3} not containing the edges corresponding to o and ay. Similarly, 5, U5y
is non-separating, so there is a common spanning tree T of I', (K;) for i € {1,2,3}.
If we take the non-overcomplete sutured diagrams D; = H(K;, Ty) for i € {1,2,3},
then Dy, Dy, and D3 also form a simple handleswap. Indeed, they all contain aq, as,
1, and (5, and all other curves coincide.

Finally, let o be a 2-cell of P” that corresponds to an edge e of P’ not lying
entirely in S'. Then o is a rectangle if e lies in the interior of D?, and is a triangle
if eNS* # (0. In the latter case, we view o as a rectangle in G ) with one edge being
the identity. Let og and o1 be the 2-cells of P’ lying on the two sides of e, and the edges
corresponding to e in P” are gy C 0¢ and g; C o;. We denote the other two edges
of o by hg and hy. The vertices of e are decorated by the overcomplete diagrams K
and K. We distinguish three cases depending on the type of e. If e is an «- or (-
equivalence, then no matter how we choose trees for Ky and K; in oy and o4, along o
we get a loop of a/[-equivalences for which F' commutes by Lemma 8.2.

If e is a stabilization, then in both oy and oy, we chose trees such that gy and ¢,
are decorated by stabilizations. Furthermore, the edges hy and h; are decorated by
a/f-equivalences, coming from the fact that we chose spanning trees for the same
overcomplete diagram to decorate the endpoints of h;. If hy is on the stabilized side,
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then this a/f-equivalence leaves the a- and [-curve involved in the stabilizations
unchanged. To see that applying F' to ¢ we get a commutative square, bisect both hg
and h; and write them as a product of an a-equivalence and a -equivalence. Connect
the midpoints of hy and hy; by a stabilization edge, hence decomposing ¢ into two
distinguished rectangles of type (2). Then F' commutes when applied to each of these
distinguished rectangles. If e is a diffeomorphism, then we proceed in a way analogous
to the previous case; we can decompose o into two distinguished rectangles.

So we now have a polyhedral decomposition P” of D?, together with a morphism
of graphs

H: Sko(PH) — Q(M,Y),

such that F' o H commutes along the boundary of each 2-cell of P”. What remains
to show is that this implies that F' commutes along the boundary of D?: i.e.,

F(n) = F(ey)o---0F(e1) = Idpuy)-

For this, we show that there is a “combinatorial 0-homotopy” from S! to the boundary
of a 2-cell of P”. By this, we mean that there is a sequence of curves 1y, ..., 7 in D?
such that

(1) no = n and n, = dog for some two-cell oy of P”,

(2) every n; is a properly embedded curve in sk;(P”), and

(3) the 1-chain 7; — 1,41 is the boundary of a single 2-cell o; of P”.
This clearly implies that F(n) = Idp,), since F(n;) o F(ni41)"" = F(90;) = 1d for
every i € {1,...,k— 1}, and F(n) = F(doy) = Id.

To construct the combinatorial 0-homotopy, we proceed recursively. Suppose we
have already obtained n;. Then 7; bounds a disk D? in D? and P” restricts to a
polyhedral decomposition of D?. Tt suffices to show that if D? has more than one
2-cells, then there exists a 2-cell o; in D? that intersects 7; in a single arc. Indeed,
then we take 1;,1 = n; — 0o;, this is a simple closed curve. The existence of such a o;
follows from the following lemma.

Lemma 8.3. For any polyhedral decomposition of D* with more than one 2-cells,
there exists a 2-cell that intersects S' in a single arc.

Proof. We proceed by induction on the number t of 2-cells. If t = 2, then let the
2-cells be o1 and gy. Since the attaching map of each 2-cell is an embedding, o1 N oy
consists of some disjoint arcs, and to obtain D2, it has to be a single arc a. Hence
o; NS = 9o, \ Int(a) is a single arc for ¢ € {1,2}.

Now suppose that the statement holds for polyhedral decompositions for which the
number of 2-cells is less than t for some ¢ > 2, and consider a decomposition where
the number of 2-cells is . There is a 2-cell oy such that Int(cy N S) # 0. If oy N S?
has a single component, it has to be an arc, and we are done. Otherwise, D? \ o,
consists of at least two components, each of whose closure is homeomorphic to a disk,
let D; be one of these. Observe that s; = D; N oy is an arc. If there are at least
two 2-cells in Dy, then by induction, there is a 2-cell o5 in D; for which o, N 0D,
is a single arc a;. Since oy N S' = a; \ Int(s;), we are done if this is a single arc.
Otherwise, either a; C sy or a; D s1. In both cases, we merge o, and o5 by removing
all the vertices and edges in Int(a; Ns;). We obtain a polyhedral decomposition of D?
where the number of 2-cells is t — 1 > 2, so by the induction hypothesis, there is a
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2-cell o3 that intersects S' in a single arc. Since oy U 09 intersects S' in the same
number of components as oy, which is more than one, o3 # 0, U g9, and so o3 is also
a 2-cell of the original decomposition. Finally, if D; consists of a single 2-cell o5, then
oy N S = doy \ Int(s;), which is a single arc. O

Since the polyhedral decomposition PH|D.2+1 contains one less 2-cell than P”|pz, the

process ends when P”]D% consists of a single 2-cell, and we obtain the combinatorial
0-homotopy. This concludes the proof of Theorem 2.39. 0

9. HEEGAARD FLOER HOMOLOGY

In this section, we prove Theorem 2.34. First, we explain how the various versions
of Heegaard Floer homology fit into the context of a weak Heegaard invariant in the
sense of Definition 2.25, and then turn to the verification of the required properties
of a strong Heegaard invariant, in the sense of Definition 2.33. Most of the con-
struction builds on the work of Ozsvath and Szabo [17, Section 2.5]|. However, that
argument contains gaps; for example, it does not take into account the embedding
of the Heegaard surface. The key extra steps are showing that the maps constructed
by Ozsvath and Szab6 are indeed isomorphisms and are functorial, the verification of
the continuity axiom, and perhaps most importantly, the verification of handleswap
invariance. For concret(ﬂ\ess, we explain the case of sutured Floer homology in detail
as it includes HF and HFL as special cases, and only remark on the differences for
the other versions. In particular, we show that SFH is a strong Heegaard invariant
of the class Sy,. However, to emphasize that all the arguments are essentially the
same for the other versions of Heegaard Floer homology, we will write HF° instead of
SFH. All Heegaard diagrams appearing in this section are assumed to be balanced.

9.1. Heegaard Floer homology as a weak Heegaard invariant. We start by
explaining how Heegaard Floer homology fits into the context of a weak Heegaard
invariant. (This was essentially proved by Ozsvath and Szabo; we remind the reader
of the proof in order to fill in details and because we will later extend the arguments
to prove that Heegaard Floer homology is a strong Heegaard invariant.) One compli-
cation arises from the fact that Heegaard Floer homology is, in fact, not an invariant
associated to arbitrary Heegaard diagrams; rather, these Heegaard diagrams must
satisfy the additional property of admissibility. There are several forms of admissibil-
ity. We will focus presently on the case of weak admissibility in the sense of Ozsvath
and Szabo [16, Definition 4.10] and Juhész [10, Definition 3.11], which is sufficient for
defining ﬁ, SFH, and HF . The stronger variant, used in the construction of HF~
and HF| is defined in reference to an auxiliary Spin® structure.

We briefly discuss Spin“structures. Let H = (X, ¢, 3) be an abstract (i.e., non-
embedded) Heegaard diagram. Our aim is to explain what we mean by a Spin®-
structure for H. If H is a diagram of the sutured manifolds (M, ~) and (M’,~'), then
there is a diffecomorphism ¢: (M,~) — (M’,«') that is well-defined up to isotopy
fixing . So ¢ induces a bijection

b(ar ) () s SPin®(M,y) — Spin(M',+/),

which intertwines the H;(M)-action on the set Spin(M,~) and the H;(M’)-action
on the set Spin®(M’,~’). For s € Spin°(M,~) and s’ € Spin®(M’,~'), we write s ~ s’
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if and only if basq), () (5) = 8. Then “~” defines an equivalence relation on the
class of elements of Spin®(M, ) for all (M, ) such that H is a diagram of (M, ). We
define Spin“(#H) to be the collection of these equivalence classes. (Strictly speaking,
this is also a proper class, not a set.) Given s € Spin®(M, ~y), we denote its equivalence
class by [s]; this is an element of Spin®(%, a, 3).

Let x € T, N T be a Heegaard Floer generator. By Proposition 6.17, there exists
a simple pair (f,v) € FVo(M,~) such that H(f,v) = H. We can associate to x
a nowhere vanishing vector field vy on M as follows. Let 75 be the union of the
flow-lines of v passing through the points of x. Then we delete v on a thin regular
neighborhood Ny of 74, and extend it to Ny as a nowhere vanishing vector field; this is
possible since each component of Ny contains two critical points of v of opposite sign,
and hence the degree of v is zero along each component of ON,. If we take a different
simple pair (f,7) € FVo(M,v) with H(f,7) = H, then Proposition 6.18 implies
that (f,v) and (f,7) can be connected by a path within FVy(M,~). This show that
the vector fields vy and T, are homologous relative to M. (Recall that two vector
fields are homologous relative to M if they are homotopic in the complement of a
ball, where the homotopy is the identity on 9M.) In particular, the Spin‘-structures
defined by vy and vy coincide; we denote it by §(17,)(x). As above, we can also assign
to x an element sy, (x) € Spin“(M’,~'). By construction, () (X) ~ s 4 (X),
so we can define s(x) € Spin“(H) to be [s()(x)] for any (M,~) such that H is a
diagram of (M, ).

As explained by Ozsvath and Szabo [16, Section 4 and Theorem 6.1], the Floer
homology groups depend on a choice of complex structure j on X and a generic path
Js C U of perturbations of the induced complex structure over Sym? (X)), where U is
a certain contractible set of almost complex structures. The following result is due
to Ozsvath and Szabo [17, Lemma 2.11].

Lemma 9.1. Let (X, o, 3) be admissible. Fix two different choices (3, Js) and (j', J.)
of complex structures and perturbations. Then there is an isomorphism

Qg HFG (X, o, 3,5) — HFOé(E,a,B,s).
These isomorphisms are natural in the sense that
Qygpo®y 5 =D g,
and ;. j, is the identity.
Hence, we can define

HF° (2,0, 8,5) = [ HFf,s(z,a,ﬁ,s)/w,

(3:7s)
where x ~ y if and only if y = ®,,_, 5 (x) for some (j, J;) and (§', J}).
Lemma 9.2. Let (X, «, B,7) be an admissible triple diagram. Then there is a map
Fop~: HF° (X, a0, B) @ HF°(X, B,v) = HF° (3, o, 7)

defined by counting pseudo-holomorphic triangles. In particular, if B ~ -, then
HF°(¥, B,7) admits a “top” generator O, and we write U3 ., for the map

FOé,ﬁ7"/(— ® 657’Y): HFO(E7 a?/B) —> HFO(Z’ a?’)/)'
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Stmilarly, if o ~ 3, then let
Vo (=) = Fup(Oap ® —): HF?(S, o, y) = HF°(S, B,7).

Proof. The existence of the map F, 3, was proved by Ozsvath and Szabo [16, The-
orem 8.12| in the case of ordinary Heegaard triple-diagrams, and by Grigsby and
Wehrli [8, Section 3.3] for sutured triple-diagrams.

Now suppose we have a diagram (X, 3,~) such that 8 ~ ~, and let k = |3| = |7/
Then (3, 3,7) defines a sutured manifold diffeomorphic to

M(Ry k) = (Ry x I,OR, x I) # (#+(S" x 52))

for some compact oriented surface R,. There is a unique Spin‘-structure s, on
M(Ry, k) such that ¢ (sg) = 0 € H*(M(R,,k);Z), and which can be represented
by a vector field that is vertical on the summand (R, x I,0R; x I). By the con-
nected sum formula for sutured manifolds of Juhasz [10, Proposition 9.15],

HFO<R+,k,50) = A*Hl(Sl X 527Z2)

as relatively Z-graded groups. Here, we do not use naturality, only that Heegaard
Floer homology is well-defined up to isomorphism in each Spin® structure and homo-
logical grading, as shown by Ozsvath and Szabo [16]. Hence, in the “top” non-zero
homological grading, the group

HF°(X, 8,7, [s0)) = HF°(M (R, k), s0)

is isomorphic to Zy; we denote its generator by Og ... Since [s¢] is independent of the
concrete manifold representing M (R, k), we see that Oz, is a well-defined element
of HF° (%, B,7). O

Before proceeding, we state two key lemmas that will be used multiple times.

Lemma 9.3. Suppose that (3,1, ...,m'_1,m,) are sutured multi-diagrams for i €
{1,...,k} such that the sub-diagrams (X,n},...,n'_,) are admissible. Then there
is an exact Hamiltonian isotopic translate n), of m,, such that (X, n},....,n'_1,m.) is
admissible for every i € {1,...,k}.

Proof. The case i = 1 was shown by Grigsby and Wehrli [8, proof of Lemma 3.13].
We proceed the same way, and isotope m,, using finger moves along oriented arcs
representing a basis of Hq(X,0Y) and their parallel opposites. Since the isotopy is
independent of ¢, the diagrams become admissible simultaneously. Note that the
finger moves of m,, can be achieved by an exact Hamiltonian isotopy. 0

Lemma 9.4. Suppose that the quadruple diagram (X, o, By, By, B3) is admissible,
B ~ By ~ Bs, and \Ifg;_w?) s an tsomorphism. Then
‘llglﬁﬁs - \Pg2—>ﬁ3 © \1[31%52'

Proof. Pick an element z € HF°(X, oo, 3). Since (3, ¢, B, B4, B3) is admissible, we
can use the associativity of the triangle maps, which was proved by Ozsvath and



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 111

Szab6 [16, Theorem 8.16], to conclude that

gg*),ag © \Pgla,ﬁg (I) = Fa,ﬁz,ﬁs (Faﬁlﬂz (QZ ® @/31,/32) ® @52,53)
= Fa,ﬁlﬁs (m ® Fﬁlﬂmﬁs(@ﬁl,@ ® @ﬁz,ﬁs))

= Faﬁlﬁs (‘T ® qjgiaﬂ3(@ﬁl,ﬂ2)> :

So .1t sufﬁces. to show the}t Wﬁ;?ﬁ?{(@ﬁl’ﬁQ) = .@51’53. We assumed that Wg' 5 is
an isomorphism. In particular, it induces an isomorphism between the top groups
HF:op(ZwBlw@%sO) = ZQ<651,52> and HF?op(EleIleB’EO) = ZQ<@517,33>7 where s
is the torsion Spin‘-structure, and has to map the generator ©g, 5, to the genera-
tor @51753. ]

Lemma 9.5. Let (3, ,8) and (3, a,3) be two admissible diagrams, let w be a
symplectic form on X, and suppose we are given an exact Hamiltonian isotopy I from
B to B'. Then the isotopy I induces an isomorphism

Sy HF°(S,a,B) — HF*(S,a, B).

These isomorphisms compose under jurtaposition of isotopies. If, moreover, the triple
(2, o, 3,3 is admissible, then

(96) gﬁﬁl - g%ﬁ/’

and in particular it is independent of the isotopy I (i.e., it depends only on the end-
points).

Proof. Naturality of the continuation map under juxtaposition is standard in Floer
theory; this particular version is due to Ozsvath and Szabo [17, Lemma 2.12|. Equa-
tion (9.6) follows from commutativity of the continuation and triangle maps. Indeed,
by results of Ozsvath and Szabo [17, Theorem 2.3, [16, Theorem 8.14|, if (X, ¢, 3, )
is an admissible triple, 3 ~ «, and @3 is an exact Hamiltonian translate of 3 such
that (X, o, 3',4) is also admissible, then there is a commutative diagram

s
HF°(S, o, B) 22 HF°(Z, a0, )

j Y l Id

v,

HF°(S, o, B) 22 HF° (S, at, 7).
A priori, the maps Vg .~ and \Ilg, oy might not be isomorphisms; we choose 7 such
that they are. For this end, let v be a sufficiently small exact Hamiltonian translate
of 3 so that each component of ~ intersects the corresponding component of 3 trans-
versely in two points. Since the triple (3, a, 3, 3") is admissible, we can choose « such
that the quadruple (2, a, 3,3, 7) is also admissible. In particular, both (2, a, 3, 7)
and (X, a, 3', ) are admissible, satisfying the conditions for the above rectangle to be
commutative. Since 7y is close to 3, a result of Ozsvath and Szab6 [16, Proposition 9.8]
implies that the map

Gy HFY(E, o, B) — HF°(X, a, )
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is an isomorphism. Then the commutativity of the above rectangle gives that U¢,
is also an isomorphism, hence

-1
T = (05) o,
Since the quadruple (X, a, 3,3',7) is admissible and v3_,, is an isomorphism, we

can apply Lemma 9.4 to conclude that

=

-1
( g’%—y) O‘Ijg—ry = \I/g*h@/

An alternate elegant argument can be given using monogons, see the work of Lip-

shitz [12, Proposition 11.4]. O

Remark 9.7. Continuation maps in general symplectic manifolds do depend on the
homotopy class of the isotopy, and hence cannot be written in terms of triangle maps.
The above lemma is highly specific to Heegaard Floer homology.

B—p'
whenever the triple (3, a, 3,3') is admissible and 3 and 3’ are exact Hamiltonian

isotopic. Our next goal is to relax the second condition and show that \I/g N is also

Another way to view Lemma 9.5 is that the triangle map ¥ is an isomorphism

an isomorphism whenever 3 ~ 3.

Proposition 9.8. (1) Suppose that (3, a,3,3') is an admissible triple and we
have B ~ 3. Then the map

s,y HF(a, 8) — HF* (o, B)

s an isomorphism.
(2) These isomorphisms are compatible in the sense that if the triple diagrams
X, a,8,0), (S a,8,8"), and (X, a, B,8") are admissible, then
Vo g oV = Vg g
(8) Similarly, if (X, a, &', 3) is admissible and o ~ o, then the map
vs~: HF® (o, B) — HF° (!, )
is an isomorphism, and satisfies the analogue of (2). Finally, we have
Vg™ oV g = V5,5 0 VT,
assuming all four triple diagrams involved are admissible.
Proof. First, we show (1). By Lemma 2.11, we can get from 3 to B’ by a sequence
of isotopies and handleslides; let h(3,3') be the minimal number of handleslides
required in such a sequence. We prove the claim by induction on h(3,3).

Suppose that h(83,8) = 0. Since the triple (3, «, 3,3') is admissible, the pair
(2,8,03') is also admissible. According to Ozsvath and Szab6 [16, Lemma 4.12],
there exists a volume form w on ¥ for which every periodic domain has total signed
area equal to zero. If 3 € B and ' € B3 are isotopic, then the cycle B — ' is the
boundary of a 2-chain P, which can be viewed as a periodic domain. Since P has
area zero with respect to w, it follows that 5 and ' are exact Hamiltonian isotopic.

Hence 3 and 3 are exact Hamiltonian isotopic, and by Lemma 9.5, the triangle map
\I/g Y is an isomorphism for any complex structure compatible with w. However, the
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triangle maps commute with the maps ®;,_,;, hence it is an isomorphism for any
complex structure and perturbation.

Suppose we know the statement for (3, 8') < n for some n > 0. If h(3,8') = n,
then we can choose an attaching set v such that h(3,~) = 1 and h(v,8) = n — 1;
furthermore, ~ is obtained from B by a model handleslide as described by Ozsvath
and Szabo [16, Section 9]. Then, according to Ozsvath and Szabé |16, Theorem 9.5|,
the triple (3, , 3,7y) is admissible and the map W§ ,_ is an isomorphism. The triple
diagram (X, o, ,3") might not be admissible, but by Lemma 9.3, there is an exact
Hamiltonian translate 4’ of v for which both (3, a, 3,3',74') and (3, «, B,~,7') are
admissible. Then consider the following diagram:

a
B—p’

HF°(3, a, B) ey HF°(3, a0, B')

\Ija
va B N
B— v/ =B

HF(E, a,y) 5o HF® (3, 0, 7).

Yy

We will prove that it is commutative. Since (3, a,7,4’) is admissible and ~/ is
an exact Hamiltonian translate of v, Lemma 9.5 implies that the map ¥, , =
'Y,/ is an isomorphism. Similarly, \Ils _, is also an isomorphism, and as the tuple

(3, o, B,7,7') is admissible, we can apply Lemma 9.4 to conclude that

ve . ovg ., =UgZ

Y=Y B—~ B—='"

We have seen that both W2, and W3, are isomorphisms, so W3, is an isomor-
phism. Since h(v',3) = n — 1, the map WS, 5 is an isomorphism by the induction
hypothesis. So we are done if we show that

— e

o
v O Vg

o
B—B'

This also follows from Lemma 9.4. Indeed, the quadruple diagram (2, «, 3, 8',7’) is
admissible; furthermore, the map \IJS Ly is an isomorphism by the induction hypoth-
esis (the diagram (X, 3,v',8) is admissible and h(v',3) = n —1). It follows that
U5, g is an isomorphism, concluding the proof of (1).

A useful consequence of (1) is that in Lemma 9.4, the condition that \Ifg;_)ﬁ3 is
an isomorphism automatically follows from the others (we only need that the triple
(3, B4, By, B3) is admissible and 3, ~ (33). Armed with this fact, we proceed to the

proof of (2). By Lemma 9.3, there is an exact Hamiltonian translate 3] of 3’ such
that the quadruple diagrams (3, @, 8, 8, 8), (X, &, 8, 8", 8}), and (X, e, 8, 8", )
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are all admissible. Then consider the following diagram:

HF* (%, a, 3)

(o2
\Pﬁ’ﬁﬁl
‘lja

(o2
B—p’ B/ ="

HF°(Z, e, B))

@ «@
y %
v

HF° (X, o0, 3) HF° (%, a, B").

Commutativity of the three small triangles follows from the above improved version
of Lemma 9.4. Hence the large triangle is also commutative; i.e.,

gﬁﬁ" = gl‘)B” o Wgﬁ,@”
which concludes the proof of (2).
Finally, we prove (3). First, we verify this when (3, a,/,3,3') is admissible.
Pick an element x € HF°(X, t, 3). Then, using the associativity of the triangle maps
[16, Theorem 8.16],

g/_)a/ © g—m/(x) = Foo,5/(Oa,0r ® Fopp (@ Opp))
= Forpp (Fa,,5(Oae ® ) @ Og )
= \I/g, 3 © \Ifg_’a/(x).

SN
Now we consider the general case. By Lemma 9.3, there is an isotopic copy 3 of B
for which both (3, a, @/, 3,8) and (3, a, &', 3, 3) are admissible. Then

UG o

a—a’ a «
Vg™ oV yoVs .5

a—a’ «
o \IIB o \I[g_ﬁ

a _
B—=p

_ pe
- \Ilﬁ—w’

_ 5o
= ve

_ e
- \Ij,@ﬁﬁ

a—a’

g ° Vs Vs
» O wg—}a"
Here, the first and fourth equalities follow from (2), while the second and third follow

from the previous special case, assuming the admissibility conditions. This concludes
the proof of (3). O

Definition 9.9. Suppose that the quadruple diagram (2, a, &', 3,3') is admissible,
a~a' and B~ 3. Then let

a—a' _ s ra—o’

- ! — i
sop = Vg % oVg 5 =g 5o Tg™".
Note that the second equality holds by part (3) of Proposition 9.8.
Lemma 9.10. Suppose that the siz-tuple (3, a, o/, ", 3,3, 8") is admissible. Then

o' —a a—a’ a—a’

83" @) BB T ¥p-p-
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Proof. By parts (2) and (3) or Proposition 9.8,
_ e o' —a a—a’ a
ﬁ,ﬁﬁ” @) ﬁ_>,3/ — ﬂ,ﬁﬁ/l o /@/ ﬁl o :8_>ﬁ,
_ e a—a’ a
= \P,@’%B” (¢] \I/B/ O B—3
o a// a// a_>a//
= \Ijﬂ’—w” o \Ifﬁ_w, o \Ifﬁ
" a—a _ \I,a%a”

_ ZTro
= \I/ﬂ_>13// (0] \Ijﬁ B_)ﬁ// .

o —a’ a—a’

O

So triangle maps give “canonical” isomorphisms g::g/ between HF°(X, o, 3) and
HF°(3,a/,3) whenever the quadruple (3, o, &', 3,3') is admissible, & ~ ', and
B ~ B. But what do we do when the admissibility condition fails? If the triple
(3, a, 3, 3) is not admissible, then the triangle count in U3 s might not be finite,
and even if it is, there are simple examples where it does not give a natural isomor-
phism, even though B and 3 are isotopic. To overcome this obstacle, we first apply
an exact Hamiltonian isotopy to a and 3 so that the quadruple (c, ', 3, 3') becomes

admissible. According to Lemma 9.3, this is always possible.

Proposition 9.11. Suppose that the diagrams (3, ., B) and (X, a/,3') are both ad-
missible, o ~ o', and B ~ 3. According to Lemma 9.3, there exist attaching sets @
and B isotopic to o and B, respectively, and such that the quadruples o, @, B,8)
and (X, @, o, 3,3') are both admissible. Then the map

\I/%:g‘, o \I/g::g HF° (X, a0, 8) — HF°(3,a/, 3)
is an isomorphism. Furthermore, it is independent of the choice of & an B; we denote

it by @g:g,'. Finally, if (2, a”,B") is also admissible, " ~ o, and B" ~ 3, then

(9.12) o =o'’ a—a’ q)a—wc”

ﬁlﬁﬂn o BA)BI B*)ﬁ//‘

Proof. The map \If%jg, o \Dg:g is an isomorphism by part (1) of Proposition 9.8. We

now show that it is independent of the choice of & and 8. Let &1, B8 and @, 32 be
two different choices. Using Lemma 9.3, we isotope a and 3 until we get attaching
sets @ and 3 such that the six-tuples obtained by adding them to the quadruples
(E, o, o, ,B,Bl), (E, a, Ao, ﬂ,32)7 (E, aq, a’, Blu ﬂ/), and (2,62, a’,Bg, ,8/> are all
admissible. Then we can consider the following diagram:

HF* (2,61,61)

a—aq

B—B1
\Ija~>§

s
HF*(Z, o, B) =25 HF® (3, @, B) =% HF* (2, o, B)).

Each of the four small triangles is commutative by part (2) of Proposition 9.8. Hence,
the outer square also commutes; i.e.,

\Ijglﬁa/ o \Ija—>a1 — \I/@—}a/ o \Ija—)ag

B1—0 B—P1 B2—3' B—pB2”’
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so the map for @, 3; is the same as the map for a,, Bs.

Finally we show equation (9.12). Using Lemma 9.3, pick isotopic copies &, 3, &', 3'
of a, B, ' and 3, respectively, such that the six-tuples obtained by adding these four
attaching sets to the diagrams (2, o, 3), (2, &/, 3'), and (32, @”, 3") are all admissible.
Applying part (2) of Proposition 9.8 to the left-hand side of equation (9.12),

LEReTER e R ek e R G e L
_ ‘I,g—m/’ o \Ija—>a _ Fma—a’

B—B" T TpB T BT
as required. O

Definition 9.13. Suppose that the diagrams (X, a, 3) and (2, o, 3') are both ad-
missible and 3 ~ 3. Then let

6op = P05
Similarly, when we have admissible diagrams (3, a, 3) and (X, &/, 8) such that a ~
o', we write
By = vy
Lemma 9.14. Suppose that the diagrams (X, o, 3) and (X, at, B') are both admissible
and B ~ B'. Let B be an isotopic copy of B such that the triples (3, o, 3,8) and
(%, o, B, B) are admissible. Then

s =V5.9°Y5 5
An analogous statement holds for @g_""/. Finally,
(9.15) P35 = P55 = P57 = ldpro(s,a.8)

Proof. Let @ be an exact Hamiltonian translate of e such that the quadruples
(3, a, @, 3,8) and (X, a0, @, 3, 3) are admissible. By Lemma 9.5 and the naturality
of the continuation maps under juxtaposition,

UG o Vg =TT oI = ldypesa by

It follows that

o _ a—o a—a a—a « a—o a—a « _
g = Ppog = Vg g oV g =V g oW ol @ ol, 5=
N r7e «
- \Ijﬁ—w’ © ‘11,8—@’

as claimed. The statement for @g_m' follows similarly.

Now we prove the last statement regarding ®375. Let 8 be an exact Hamiltonian
translate of 3 such that (3, a, 3,3) is admissible. If we apply the first part with
B =3, we get that

¢35 ,53=VF ;0V7

B—B B—B
Using Lemma 9.5, the right-hand side is P%—> 5° Fg—ﬁ' By the naturality of the
continuation maps under juxtaposition, this is Id gpo(5,q,g)- O

Corollary 9.16. Let (3, «, 3,3') be an admissible triple such that 3 ~ 3. Then

( g_)ﬁ/)_l - ‘Ija/_)la.

An analogous result holds for the maps \Ifg_}a'.
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Proof. By Lemma 9.14,
Vs o Ve = Poop = lduresap) O
Let (X, A, B) be an isotopy diagram. Then we denote by M 4 p) the set of ad-
missible diagrams (X, o, @) such that [a] = A and [3] = B. This is non-empty by
Lemma 9.3. Tt follows from equations (9.12) and (9.15) that the groups HF'°(3, ¢, 3)

for (3, a,8) € Mx, a,p), together with the isomorphisms @gjg,' form a transitive
system of groups, as in Definition 1.1.

Definition 9.17. Given an isotopy diagram H, let HF°(H) be the direct limit of the
transitive system of groups HF°(X, o, B) for (¥, a,8) € My and @gjg/. In other
words,

HF°(H)= [] HF(S,a.8)/~
(Z,a,8)EM g
where z € HF°(X, o, 3) and 2/ € HF°(X,a/,3') are equivalent if and only if 2’ =
5% (o).

We would like to show that HF° is a weak Heegaard invariant. To this end, we
need to define isomorphisms induced by a-equivalences, [-equivalences, diffeomor-
phisms, and (de)stabilizations between isotopy diagrams. We start with a- and (-
equivalences.

Lemma 9.18. Suppose that we are given admissible diagrams (3, aq, B1), (X, a1, 37),
(3, az, B), and (X, ap, By) such that ay ~ o and B, ~ By ~ B} ~ By. Then the
following diagram is commutative:

o]

HFO<E7a1,,61> E}HFO(XLQIMBII)

¢ﬁ14ﬁ2 l L(I)Bllﬁﬁé

a2

HF(S, a2, B5) 2" HF(%, cty, B).
Proof. By equation (9.12),

@alﬁaz o @Ckl — @Qlﬁaz — @C!Q o @Qlﬁag

B1—B5 B1—B1 B1—B4 Ba—35 B1—By "
Definition 9.19. Suppose that the isotopy diagrams H = (3, A, B) and H' =
(3, A, B') are -equivalent. Pick admissible representatives (X, o, 3) and (%, o, 3')
of H and H', respectively (this is possible by Lemma 9.3). By Lemma 9.18, the
isomorphisms ®F , 5, descend to the direct limit, giving an isomorphism

d4 o HF°(H) — HF°(H').

For a-equivalent diagrams (X, A, B) and (X, A, B), we define the isomorphism
analogously.

O

A A
(I)B

Next, we go on to define isomorphisms induced by diffeomorphisms.

Definition 9.20. Let (X, a, 3) be an admissible diagram and d: ¥ — ¥’ a diffeo-
morphism. We write o’ = d(«) and 3 = d(83). Then d induces an isomorphism

dy: HF°(S, a0, 8) — HF° (Y, o, 3),
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as follows. Let k = |a| = |3|. Choose a complex structure j on ¥ and a perturba-
tion J, of Sym*(j) on Sym*(X). Pushing j and J, forward along d, we get a complex
structure i’ on ¥’ and a perturbation J/ of Sym*(j’) on Sym*(¥’). Clearly, d induces
an isomorphism

dy.p: HFS (S, e, B) = HF% (S, o, B).

Since the maps d, ;; commute with the isomorphisms ®; -, these diffeomorphism
maps descend to a map d, on the direct limit HF°(3, o, 3).

Lemma 9.21. The maps \I/gﬁﬁ, commute with the diffeomorphism maps d, defined
above. More precisely, suppose that (3, a, BLB’) is an admissible triple, let d: X — )
be a diffeomorphism, and write @ = d(a), B = d(B), and B = d(3'). Then we have
a commutative rectangle

o \I}g*ﬁl o /
HF°(S, a, B) 2% HF(S, a0, B)

v _

HF® (%@, 8) =2 HF° (T,a,8).
An analogous result holds for the maps \I/gﬁ"‘/.

Proof. If we choose corresponding complex structures and perturbations for X and
5, the statement becomes a tautology. Indeed, Sym®(d) is a symplectomorphism
between Sym* () and Sym*(¥) that takes the Lagrangian triple (T,, Tg, T) to the
triple (Tg, T3, TB/)7 and matches up the complex structures and perturbations. Hence
the triangle maps \I/g N and \I/g_@, are conjugate along d.. 0

It follows from Lemma 9.21 that the diffeomorphism maps and the canonical iso-

morphisms @g:g,' for admissible diagrams (3, a, ) and (2, o, 3') such that a ~ o/

and B ~ @ also commute, as q)gjg,/ can be written as a composition of triangle
maps. Hence, if H and H' are isotopy diagrams and d: H — H' is a diffeomorphism,
then d descents to a map of direct limits

d,: HF°(H) — HF°(H").

Finally, we define maps induced by stabilizations. We proceed as Ozsvath and
Szabo [16, Section 10], [17, p. 346]. Suppose that H' = (3, o/, 3') is a stabilization of
the admissible diagram H = (3, o, 3). Then, for suitable almost-complex structures,
there is an isomorphism of chain complexes

OH—sH' CFO(Z, «, ﬁ) — CFO(Z/, OCI, ,6/>,

as defined by Ozsvath and Szabo [16, Theorem 10.1]. If &' = aU{a}, 8 = BU{S},
and aN B = {c}, then 03,3 maps the generator x € T, NTs to x x {c} € T,y NTys.
This induces an isomorphism on homology.

Before stating the next lemma, we introduce some notation. If H; = (3, a1, 34)
and Hs = (X, ag, 3,) are admissible diagrams such that a; ~ ay and 8, ~ (3,, then

o] —a

we denote gt 3% by Py,



NATURALITY AND MAPPING CLASS GROUPS IN HEEGAARD FLOER HOMOLOGY 119

Lemma 9.22. The stabilization maps oy_3py commute with the maps Py, y,, n
the following sense: Let Hi = (X, a1,3,) and Hs = (X, an, B5) be two admissible
Heegaard diagrams such that a1 ~ o and B, ~ By. If H) = (X, o, 3]) and Hb, =
(X, oy, 35) are stabilizations of Hy and Ha, respectively, then o) ~ oy, B ~ 35,
and

Ty © Pry sy = Py smy, © Oy 31,

Proof. This is verified in [17, Lemma 2.15]. Note that the continuation maps in that
proof agree with our triangle maps by Lemma 9.5. U

Definition 9.23. Given isotopy diagrams H and H' such that H’ is a stabilization
of H, we define an isomorphism

OH—H': HFO(H) — HFO(H/)

as follows. By definition, there are diagrams H and H' representing H and H’,
respectively, such that H' is a stabilization of H. There are canonical isomorphisms
in: HF°(H) — HF°(H) and iy : HF°(H') — HF°(H') coming from the direct limit
construction. We define dy_,py as iy 0 oy © i;{l. This is independent of the
choice of H and H' by Lemma 9.22, together with the observation that for any two
diagrams H; and H, representing the same isotopy diagram, z’;é oidy, = Py, n,. If
H' is obtained from H by a destabilization, then we set oy, = (og—m) '

Having constructed HF°(H) for any isotopy diagram H (in the class of diagrams
for which HF°(H) is defined), and isomorphisms induced by a-equivalences, S-equiv-
alences, diffeomorphisms, stabilizations, and destabilizations, we have proved that
HF° is a weak Heegaard invariant. This reproves Theorem 2.27, Theorem 2.28, and
Theorem 2.29. However, note that we have already used the invariance of Heegaard
Floer homology up to isotopy for the manifolds M (R, k) in the proof of Lemma 9.2,
where we constructed the element Og . for 8 ~ 7. We could have avoided this by
imitating the invariance proof of Ozsvath and Szabo [16], at the price of making the
discussion longer.

Recall that at the end of Section 2.5, we indicated the necessary checks for obtaining
the Spin‘-refinement. If H is an admissible diagram of the balanced sutured manifold
(M,~) and s € Spin°(M, ), then CF°(¥, o, 3,5) is generated by those x € T, N Ty
for which s(y,)(x) = s. It follows from the work of Ozsvath and Szab6 [16] that
the Spin‘-grading is preserved by the isomorphisms ®;, _, /, the triangle maps \Ilffﬁ'
for B ~ @3 and \Ifg_“’" for a ~ o/, and the stabilization maps oy_,7;. Furthermore,
given a diagram H = (3, a,3) of (M,~), a diagram H' of (M',~'), and a diffeo-
morphism d: (M,~) — (M’,~") mapping H to H', it is straightforward to see that
dy (8(1,9)(X)) = 8001 41 (d(x)) for every x € T,NTg. In particular, if (M,v) = (M’,+)
and d is isotopic to the identity in (M, ), then d,: Spin“(M,~y) — Spin°(M,~) is the
identity. The existence of a Spin®-grading on HF°(M,~) follows once we show that
HF* is a strong Heegaard invariant.

9.2. Heegaard Floer homology as a strong Heegaard invariant. In this sec-
tion, we show that the invariant HF° of isotopy diagrams, together with the maps
induced by a-equivalences, (-equivalences, diffeomorphisms, and (de)stabilizations,
satisfy the axioms of strong Heegaard invariants listed in Definition 2.33. We post-
pone the verification of axiom (4), handleswap invariance, to the following section.
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First, we prove that HF° satisfies axiom (1), functoriality. The a-equivalence and
B-equivalence maps 474" and ®4_ , are functorial by equations (9.12) and (9.15).
Functoriality of the diffeomorphism maps d, follows immediately from the definition.
If H' is obtained from H by a stabilization, then the destabilization map op_p =
(ocm_m)~t, by definition.

Next, we consider axiom (2), commutativity. In Definition 2.30, we defined five
different types of distinguished rectangles of the form

H, —— H,

b

Hy —"~ H,,

where H; = (3;, [a], [B;]). For a rectangle of type (1), commutativity follows from
equation (9.12). Lemma 9.22 implies commutativity along a rectangle of type (2).
Commutativity along a rectangle of type (3) follows from Lemma 9.21.

Now consider a rectangle of type (4). Then there are disjoint disks Dy, Dy C ¥
and punctured tori T1,T> C X4 such that 3y \ (D1 U D) = X4\ (Th UTy). Let
ayNB,NT; ={¢} for i € {1,2}. Then there are representatives H; = (3;, o, 3;)
of the isotopy diagrams H; for ¢ € {1,...,4} such that ao N B, NT} = {1} and
a3 N BsNTy, = {c}, and the four diagrams coincide outside 77 and T. Given a
generator x € T,, NTg,,

Oy sy © Oy, (X) = X X {er} X {ca} = x X {ea} X {e1} = 09550, © 09y 531, (X).

So the commutativity already holds on the chain level for an appropriate choice of
complex structures.

Finally, for a rectangle of type (5), we can choose representatives H; = (3;, a;, 3;)
of H; such that H, is a stabilization of H; and H,4 is a stabilization of H3; furthermore,
f(H1) = Hs and g(Hz) = H4. This is possible since for the stabilization disks D C ¥
and D' C Y3 and punctured tori 7' C Yy and 7" C X4, the diffeomorphisms satisfy
f(D) =D, g(T) =T, and f|s,\p = g|s,\r- In particular, if oy N B, NT = {c} and
a,NB,NT ={c}, then g(c) = ¢. With these choices, for x € T,, N Tp,, we have

9s © O3y ma (X) = g(x x {c}) = g(x) x {g(0)} = f(x) x {c'} = opy31, 0 fs.
So we have commutativity on the chain level for an appropriate choice of complex

structures.
Finally, we verify axiom (3), continuity. This follows from the following result.

Proposition 9.24. Let (3, o, B8) be an admissible diagram. Suppose that d: ¥ — X
is a diffeomorphism isotopic to Ids, and let & = d(a) and B’ = d(B). Then

d, = 575 HF°(S, o, B) = HF (X, o/, B).

Proof. Since d: ¥ — 3 is isotopic to the identity, there are diagrams H; = (X, o, 3;)
fori € {0,...,n} and small diffecomorphisms d;: H;—y — H; fori € {1,...,n}, such
that

o Hy=(2,a,8) and H, = (3, &, 3),

e every d; is isotopic to Idy,

ed=d,o---od,
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o d(a)

d(p)

FIGURE 56. A schematic picture illustrating that a small diffeomor-
phism coincides with the composition of two triangle maps.

e laNd;(a)] =2 for every a € a;_1, and

e |[BNd;(B)| =2 for every f € B,_;.
By equation (9.12) and the functoriality of the diffeomorphism maps, it suffices to
prove the statement for each d;. So suppose that d: (3, , 8) — (X, o/, 3') is a small
diffeomorphism such that |aNd(«)| = 2 and |fNd(B)| = 2 for every a € avand 5 € S.
By a result of Ozsvath and Szab6 |16, Proposition 9.8], the diagrams (2, o, 3, 3') and
(X, a, @/, 3') are both admissible, and up to a chain homotopy equivalence, the maps
V3, and \I/g,_"’" are given by taking x € T, NTz to the closest point x' € T, N Ty
and y € T, NTg to the closest point y € T, N Tg, respectively. However, d(x) =X’
(cf. Figure 56), hence

d. = a—o’ o e
« =V B-g"
Since the triples (3, a, &/, 3') and (X, e, 3,3') are admissible, the right-hand side
SR : a—a’ a _ Ha—a!
coincides with (IDﬁ, o éﬁ_w, = (DB—%?" 0

9.3. Handleswap invariance of Heegaard Floer homology. The arguments in
this section are due to Peter Ozsvath. Let

H,

1N

H3<f—H2

be a simple handleswap, as in Definition 2.32; and pick representatives H; = (3, oy,
3,) for the isotopy diagrams H; such that inside a punctured genus two subsurface P C
Y they are conjugate to the diagrams in Figure 4. In particular, as is obtained from
a; by handlesliding as € oy over a; € a; giving o, while 3, = 8,. Furthermore,
(35 is obtained from B, by handlesliding 5, € B3, over 1 € (3, giving (55, while



122 JUHASZ AND THURSTON

a3 = . The arrow g corresponds to a diffeomorphism Hz — H;. For simplicity,
we are going to write « for oy, o' for ay = a3, B for B, = 85, and @' for B;. So
H, = (%, [a],[8)]), Hy = (3,[],[8]), and Hz = (3, [], [B']). Note that the inverse
of the arrow f corresponds to sliding g5 over (1, giving fs.

Proposition 9.25. Let Hy, Hy, and Hs be related by a simple handleswap, so we
have two handleslide maps
O, = 57 HF°(Hy) — HF°(H,), and
Gy = 0G5 HF°(Hs) — HF°(H,).
Then
d, = bsog. .

Before proving Proposition 9.25, we introduce some notation and prove two lemmas.
A simple handleswap decomposes as a connected sum along OP in the following sense.
Let X° be the genus two surface obtained from P by attaching a disk D, along its
boundary, and let X! be the surface obtained from ¥ \ Int(P) by gluing a disk D,
along its boundary. By construction, ¥ is the connected sum X0 # X!, taken along D
and D;. Observe that in each H;, none of the a- or B-curves intersects OP. Inside X°,
the restrictions of the diagrams H;, H, and Hs give a “model” simple handleswap,
while in 3! the restrictions of the diagrams #,, H», and Hs coincide.

To compute the handleslide map ®,, we have to specify a Heegaard triple diagram
(3,7, a,3) and count rigid pseudo-holomorphic triangles. The attaching set ~ is
obtained from o’ by replacing every o’ € &’ by a small exact Hamiltonian translate
such that |o/ Nv| = 2; and if ~, is the curve obtained from «j, then |as Ny, = 2. We
can decompose (2,7, a, 3) as a connected sum

(EO7’YO7O{O’BO> # (21’71’ a1761)7

taken along Dy and D;. The summand (3°,~°, a, B°) is illustrated in Figure 57,
and has the following properties:

e The Heegaard diagram (X°,a’, ") represents S%; indeed, there is a unique
generator X, for T, N Tps.

e The Heegaard diagram (X°,~°, ") also represents S, and there is a unique
generator X, for T, N Tps.

e The Heegaard diagram (X°,~4°, a) represents (St x S?)# (S! x S?), and there
are four generators in T, N T,. Let x., be the top-graded generator.

By construction, (X!, 4!, al) represents the connected sum of a product sutured
manifold (R x I,0R x I) with #%72(S* x S?), where R is X! compressed along o' and
d = |a|. The hypotheses on « and v ensure that (X!, 4!, ') is a weakly admissible
diagram, and CF°(3', 4! a') has minimal rank. In particular, there is a unique
generator © € T,1 NTy that represents the top-graded Heegaard Floer homology for
(Rx I,0R x I)# (#472(S" x 52)).

To understand holomorphic triangles in (X, v, a, 3), we must first describe some
triangles in the model diagram (X°,4°, a®, 8°). To this end, we prove the following.

Lemma 9.26. Consider the model diagram (3°,~°,a°, 8°,p°), where p° € Dy is an
arbitrary basepoint, and let X, € T NT,, Xq € Ty NTp, and x, € T, NTy be the
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FIGURE 57. The triple diagram (X°,~° o’ 3°) associated to
®, in a model simple handleswap in a genus two Heegaard
surface. This Heegaard triple illustrates the handleslide of as over ay
to arrive at {71, 72}. The preferred generator x., € T,NT, is indicated
by the gray circles; the unique generator x4, € T, N Tp is indicated
by the black circles; the unique generator x4, € T, N Tg is indicated
by the white circles. The preferred triangle vy € 7o (Xca, Xap, Xep) from
Lemma 9.26 is shaded.

generators from above. Then, for any 1 € mo(Xea, Xab, Xeb),

(9.27) W) = 2n0(0).
Moreover, there is a unique gy € To(Xea, Xap, Xep) With p(1g) = 0 and #M () = 1.

Proof. The model element ¢y € o (Xea, Xap, Xep) 1S represented by a pair of embedded
triangles in the Heegaard diagram, as shown in Figure 57. The fact that this has
#M (1) = 1 is clear. Any element ¢ € Ty (Xeq, Xap, Xep) can be written as

(9.28) V=1 +n-[Pl+k-[So],

where [P] denotes the periodic domain between 4° and & with n,o(P) = 0. Addition
of [P] leaves the Maslov index unchanged; addition of [¥] changes it by two. Similarly,
nyo(P) = 0, while ny([X0]) = 1. Equation (9.27) now follows.

Finally, if u(¢) = 0, then it follows that £ = 0 in Equation (9.28). Moreover, if
n # 0, then v has both positive and negative local multiplicities, so #M (1)) = 0.
Thus, #M () # 0 forces 1 = ). O

Next, we consider triangles coming from the ¥;-side. Since the 4! approximate
the o', we have a nearest point map

1: Ton ﬂTﬂl — T,Yl ﬂTﬂl.

There is also a canonical Maslov index zero homotopy class 15 € m(0,x,i(x)) for
every X € To1 NTgi. The following result is standard (cf. [16, Proposition 9.8]).
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Lemma 9.29. Let (X', 4", a',B') be a sutured triple diagram, where v is a small
exact Hamiltonian translate of o' so that each v € ~' intersects the correspond-
ing o € o exactly twice, and let © denote the canonical top-graded generator of
CFe(Eh At al). If v' is sufficiently close to o, then for every homotopy class

1/} € 7T2(@7 X, y):

0 otherwise.

Proof. Consider a family of approximations v} to a!, indexed by ¢ € R, such that
lim; oy = al. Let 6, € T,1 NTa be the top-graded generator, let

ig: Tor N Tﬁl — T’Y% N Tﬂl

be the nearest point map, and denote by % the canonical Maslov index zero class
in mo(0;,x,4;(x)). It is straightforward to see that #M (%) = 1 for ¢ small. For
all sufficiently small ¢ > 0, the combinatorics of the Heegaard triple (X!, ~v}, !, 3")
stabilizes; i.e., any y € T,1 N Tg has the form y = it(z) for some z € Tq1 N Tg,
and we have a canonical identification m5(0,x,4;,(z)) = 7 (0, x,1,(2)), provided t;
and to are sufficiently small. Suppose that #M (") # 0 for sufficiently small ¢ and
' € (6, x,y). Then taking a subsequence, we can extract a weak limit converging
locally to a curve u € my(x,y) with pu(u) < 0. By transversality, it follows that x =y
and wu is a constant curve. (In general, the u; might converge to a possibly broken
flowline connecting x to y, as t — 0. But again, the Maslov index rules out the
possibility that the flowline is broken.) Thus, we conclude that ¢ had to coincide
with the homotopy class ¢!, as claimed. 0

Proof of Proposition 9.25. We first compute ®,. Fix ¢ € mo(Xeq # O, Xap # X1, Xep #
y1). We can decompose this into two domains, 1y € m2(Xeq, Xap, Xep) and 1 €
m2(0,X1,y1), such that they satisfy n,o(vo) = nyi(¢1) = k, where p* € Dy is an
arbitrary point. In this case, we write 1) = ¢ # ;. By the Maslov index formula of
Lipshitz [12, Corollary 4.10], we have

(o # 1) = p(vo) + p(thr) — 2k.

Suppose now that ) = 1y # 101 has u(y) = 0, and it also has a holomorphic rep-
resentative for all neck lengths T, as we stretch T — oo. Then, we can pass to
a subsequence and extract a pair of holomorphic curves ug representing vy and u;
representing v;. Combining

(9.30) 0= u(to) + pu(thr) — 2k

with Lemma 9.26 (which states that p(vy) = 2n,(1) = 2k), we conclude that
p(11) = 0. By Lemma 9.29, we have ny (1) = 0. Since n,i (1) = nyo(thy) = k, we
see that p(vy) = 0, as well. Moreover, ¥y and 1 are triangles which do not interact
with one another, hence M (1)) = M (1g) x M(1)q).

Now by Lemma 9.29, if this moduli space is non-trivial, then 1) is a canonical small
triangle in mo(0,xy,4(x1)). Similarly, by Lemma 9.26, in this case there is a unique
possibility for 1)y. We conclude that the triangle map ®, for the a-handleslide e is
given by

Xap X X1 > Xep X 1(X1).
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An analogous argument shows that for the 8-handleslide f~!, the map ®4 is given
using a triple diagram (2, o', 3, ) by

gil(Xab X Xl) = Xgpy X X1 = Xgrdg X i,(X1>,

where § is a small Hamiltonian translate of 3 and x,, is the corresponding unique
generator in X° for (o/NP, 8NP). Furthermore, 7’ is the closest point map in (X!, 3, §),
and x, is the unique generator for (o’ N P, 3’ N P). The identification between the
isotopic diagrams (3,4, 3) and (X, a’,d) maps [xy X i(x1)] to [Xuq X 7'(x1)]. Hence
indeed @, = ®50 g, .

APPENDIX A. THE 2-COMPLEX OF HANDLESLIDES

In this appendix, we sketch a description of strong Heegaard invariants for classical
(i.e., not sutured) single pointed Heegaard diagrams that is equivalent to Defini-
tion 2.33, and instead of a-equivalences and [-equivalences, uses more elementary
moves: a-isotopies, [-isotopies, a-handleslides, and (-handleslides. The tradeoff is
that one has to check the commutativity of the invariant F' along a larger number
of loops of diagrams. But we do have to impose less on F', and hence strengthen
Theorem 2.39. The main tool is a result of Wajnryb [24], who constructed a simply-
connected 2-complex whose vertices consist of cut-systems, and whose edges corre-
spond to changing just one circle in a cut system. We only sketch the proofs in this
appendix.

We start off by looking at those moves that only involve a-circles or S-circles. For
these, it is enough to consider only one of the two handlebodies. In particular, we
show that any two cut-systems for a handlebody can be connected by a sequence of
handleslides. This is in fact a corollary of a result of Wajnryb [24]. To state his result,
let us first recall some definitions.

Definition A.1. Let B be a handlebody of genus g and boundary > = 0B. A
simple closed curve o« C X is a meridian curve if it bounds a disk D in B such that
DNY =0D = «. Then D is called a meridian disk. We also fix a finite number of
disjoint distinguished disks on > and we shall assume that all isotopies of ¥ are fixed
on the distinguished disks.

A cut-system on X is an isotopy class of an unordered collection of ¢ disjoint
meridian curves aq,...,q, that are linearly independent in H;(X) and do not meet
the distinguished disks. We denote the cut-system by (a, ..., ay).

We say that two cut-systems are related by a simple move if they have g — 1 curves
in common and the other two curves are disjoint.

We construct a 2-dimensional complex X5(B). The vertices of X are the cut-
systems on Y. Two cut-systems are connected by an edge if they are related by a
simple move; this gives the graph X;(B). If three vertices of X have g — 1 curves
in common and the three remaining curves, one from each cut-system, are pairwise
disjoint, then each pair of the vertices is connected by an edge in X and the vertices
form a triangle. We glue a face to every triangle in X;(B) and get a 2-dimensional
simplicial complex X, (B), called the cut-system complex of the handlebody B.

The following result is due to Wajnryb |24, Theorem 1].

Theorem A.2. The complex Xo(B) is connected and simply-connected.
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For compatibility with the other moves we consider, we work instead with a 2-
complex whose edges are elementary handleslides. To describe the 2-cells, we need
another definition.

Definition A.3. A handleslide loop is one of the following sequences of cut-systems
connected by handleslides.
(1) A slide triangle, formed by (aq, as, @), (a9, as, @), and (s, oy, d), where ay,
a2, and a3 bound a pair-of-pants.
(2) A commuting slide square, involving four distinct a-curves, as in the link of a
singularity of type (Ala).
(3) A square formed by sliding «; over oy and/or as, as in case (Alb).
(4) A square formed by sliding a; and/or ay over ag, with ay and a3 sliding over
ag from opposite sides, as in case (Alc).
(5) A square formed by sliding a; over ay in two different ways, approaching as
from opposite sides, as in case (Ald).
(6) A pentagon formed by sliding «; over ay, which is itself sliding over as, as in
case (A2).

Now suppose that there is exacly one distinguished disk on ¥ = B. Then let Y5(B)
be the 2-complex whose vertices are cut-systems on B, its edges correspond to han-
dleslides avoiding the distinguished disk, and its 2-cells correspond to the handleslide
loops of Definition A.3.

Proposition A.4. The complex Y5(B) is connected.

Proof. To prove connectivity, it suffices to show that the endpoints of each edge in
X;(B) can be connected by a path lying in the 1-skeleton Y;(B) of Y3(B). Suppose
we have an edge in X;(B) connecting (ag, @) and (aq,@). Then ag and o7 do not
intersect. The combined set of circles (g, a1, @) by hypothesis cuts 0B into two
components, exactly one of which does not contain the distinguished disk; call this
component F'. Both ay and aq necessarily appear in 0F. We can get from («g, @) to
(o, @) by sliding g over every component of OF \ (g U ay). O

Proposition A.5. The complex Ys(B) is simply-connected.

Proof sketch. For simple connectivity, we first show that all the different ways of
turning an edge of X;(B) into a path in Y;(B) are homotopic inside Y5(B). This can
be done (with some work) using handleslide loops of type (3). For a simple example,
see Figure 58.2

Next, we show that if we convert the edges eg, €1, and ey of a triangle A in X5(B)
into paths in Y;(B), we obtain a loop that is null-homotopic in Y2(B). Let v; be the
vertex of A opposite the edge e¢;. We distinguish two cases:

e The same circle moves in all three edges of the triangle; i.e., the cut-system
V; = <O[Z‘,62> for i € Zg.

e Two circles are involved; i.e., the cut-system v; = (a;_1,;41, @) for every
1 € Z3, where 1 + 1 and 7 — 1 are to be considered modulo 3.

2To properly do this, note that a minimal path in Y3 (B) corresponding to an edge in X, (B) gives
a pants decomposition of a subsurface of 9B. To show that two such paths are homotopic in Y5(B),
it suffices to show connectivity of a suitable variant of the pants complex.
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FIGURE 58. A simple example of a homotopy in Y3(B) connecting
two different resolutions of an edge of X;(B). The lower left and the
upper right cut-systems are the vertices of the edge of X;(B) we are
resolving. One resolution is shown in green, the other one in blue. We
show half of the component F' whose boundary contains «g, oy, and no
basepoints. In this case, there are k£ = 3 other boundary components
of F'. The surfaces shown should be doubled along the black boundary
to obtain F'; in this way the red arcs become red circles.

The first case is simple: we end up with a trivial loop even in Y;(B) for an appropriate
choice of resolutions. Indeed, for ¢ € Zs, let F; be the component of the complement
of (a;_1, 11, d) that does not contain the distinguished disk. Then F; = F;_1 U F;
for some ¢ € Z3. We first convert e;_; and e;,1 to paths v;_; and 7,41 in Y;(B) using
the procedure above, then we choose 7; to be ’7;_11’}/;_11. By the first step, any two
choices for v; are homotopic, so we can pick this particular one.

In the second case, we get a component F' with boundary containing «y, a;q, and as.
A handleslide loop connects (ag, aq, @), (a1, s, d), and (o, az, @). If there are no
other components of OF, this is a slide triangle (a handleslide loop of type (1)).
Otherwise, if there are k other boundary components of OF, let af be the curve
obtained from «q by sliding over one of the other k£ components. By induction, the
triangle connecting (), a1, @), (a1, as, @), and (o, as,d) can be decomposed into
allowed two-cells. The remaining region (a quadrilateral with corners at {(aj, ay, @),
(afy, ag, @), (o, aq,d), and (ag, g, d@)) can be decomposed into k — 2 commuting
slide squares (type (2)) and one slide pentagon (type (6)). The entire large triangle
is decomposed into one slide triangle, £ — 1 slide pentagons, and (k;) commuting
slide squares. An example of the end result is shown in Figure 59.

Let G’ be the graph defined just like in Definition 2.23, but with the word «/3-
equivalence replaced by «/f-handleslide. So the vertices of G’ are isotopy diagrams,
and its edges correspond to handleslides, stabilizations, destabilizations, and diffeo-
morphisms. Since every handleslide is an a-equivalence or a S-equivalence, G’ is a
subgraph of G.

Similarly, we can modify Definition 2.25. If § is a set of diffeomorphism types of
sutured manifolds and C is a category, then G'(S) is the full subgraph of G’ spanned
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FIGURE 59. Decomposing a large slide triangle. The three vertices
are the vertices of a triangle in the complex X3(B). We show half of
the component F' whose boundary contains ag, a7, and as, and no

basepoints. In this case, there are £k = 3 other boundary components
of F.

by those isotopy diagrams H for which S(H) € §. The main result of this appendix
is the following.

Theorem A.6. Let S = Span be the set of diffeomorphism types of sutured manifolds
introduced in Definition 2.26, and let C be a category. Then every morphism of graphs
F': G'(S) — C extends to a weak Heegaard invariant F': G(S) — C.

Furthermore, suppose that I’ satisfies the commutativity, continuity, and han-
dleswap invariance properties of Definition 2.33, replacing “a/B-equivalence” with
‘handleslide,” and commutes along each handleslide loop (Definition A.3) and stabi-
lization slide (Definition 7.7). Then F' uniquely extends to a strong Heegaard invari-

ant F': G(S) — C.

Remark A.7. Note that G, (S) and G5(S) are not sub-categories of G'(S), since the
product of two handleslides is in general not a handleslide. The functoriality of F”’
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restricted to the subgraphs G/,(S) and Gj(S) is replaced by the requirement that F”
commutes along handleslide loops.

Also note that in a stabilization slide, we subdivide the a- or [-equivalence into
two handleslides, so we view this as a loop of length four.

Proof sketch. To prove the first part, we only have to define F'(e) for the edges e
of G(S) that correspond to an a-equivalence or a [-equivalence. Without loss of
generality, suppose that e is an a-equivalence between the isotopy diagrams H =
(%, ,8) and H' = (Z,a,3). Let X be the surface obtained by attaching a disk
D to ¥ along its boundary, this way we obtain two Heegaard diagrams H and H’,
containing a distinguished disk D. Let Y be a 3-manifold containing both H and H’
as Heegaard diagrams, and let B be the handlebody lying to the negative side of 3.
By Proposition A.4, the complex Y5(B) is connected, so H and H’' can be connected
by a path of handleslides hq,...,h; avoiding D. This gives rise to a sequence of
handleslides hy, ..., hy connecting H and H’. Then the isomorphism F'(e) is defined
to be the composite F'(hy) o--- o F(hy).

Now we prove the second part. According to Proposition A.5; the complex Y5(B) is
simply connected. Together with the fact that F” commutes along every handleslide
loop (i.e., along the boundary of every face of Y5(B)), we see that the extension
of F’ to an a- or S-equivalence edge e is independent of the choice of path hq, ..., hg.
Functoriality of the restriction of F to G,(S) and Gs(S) is clear from the construction.

What remains to show is that F' commutes along every distinguished rectangle of
type (1), (2), and (3) (cf. Definition 2.30), with sides e, f, g, and h. First, con-
sider a rectangle of type (1). Write the a-equivalence e as a path of a-handleslides
hi,...,h; and the S-equivalence f as a path of S-handleslides A}, ... h;. Then we
can subdivide the big rectangle into a grid of smaller rectangles with sides h; and A
forie{l,....,k}and je{1,...,1}.

Given a rectangle of type (3), let hy,...,h; be the path of handleslides in the
resolution of the a- or S-equivalence e, and let d be the diffeomorphism corresponding
to f and g. Then we can subdivide the big rectangle into a row of smaller rectangles
with sides h; and d for i € {1,...,k }.

Finally, consider a rectangle of type (2). Then let hq, ..., hj be the resolution of the
a or (-equivalence e on the destabilized side. Then, on the stabilized side h, we can
choose the stabilizations A}, ..., k) of the above handleslides. However, the endpoint
of hj, might differ from Hy, the endpoint of h, by a sequence of handleslides over the
new « or f-curve appearing in the stabilization. We can correct this by attaching a
row of stabilization slides to the row of rectangles with horizontal sides h; and h]. [
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