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Abstract. We study the classification of slice disks of knots up to isotopy and diffeomorphism
using an invariant in knot Floer homology. We compute the invariant of a slice disk obtained by
deform-spinning, and show that it can be effectively used to distinguish non-isotopic slice disks
with diffeomorphic complements.

Given a slice disk of a composite knot, we define a numerical stable diffeomorphism invariant

called the rank. This can be used to show that a slice disk is not a boundary connected sum, and
to give lower bounds on the complexity of certain hyperplane sections of the slice disk.

1. Introduction

In this paper, we consider the classification of smooth slice disks in D4 for a knot K in S3. Even
though the existence problem of slice disks, and the closely related slice-ribbon conjecture of Fox are
in the center of research in low-dimensional topology, this natural question has been little studied
in the literature.
We introduce several notions of equivalence: ambient isotopy fixing S3 pointwise, diffeomorphism,

and stable versions of these where one can take connected sums with 2-knots. Our interest lies in
exploring the potential of an invariant of slice disks in knot Floer homology defined by Marengon
and the first author [JM16]. Until the availability of the powerful techniques of [JZ18], which provide
formulas for the trace and cotrace maps in the link Floer TQFT, computing the invariant of any
non-trivial slice disk was beyond reach. We now provide formulas for infinite families of slice disks,
and show that the invariant can effectively distinguish slice disks up to both stable isotopy and stable
diffeomorphism. In some of these cases, as we shall see, the fundamental group provides a simpler
method of classification up to isotopy, but it seems unlikely these methods would easily extend to
the stable diffeomorphism classification. The parallel between the fundamental group and Heegaard
Floer techniques in this paper naturally raises the question whether there is a relationship between
the fundamental group and the link cobordism maps.
Given a slice disk D for K, one can always produce infinitely many other slice disks by connected

summing D with different 2-knots. We first focus on a less trivial construction, which does not
change the diffeomorphism type of the slice disk complement. This consists of taking an isotopy
from K to itself, and attaching its trace to D.

Let d be an automorphism of (S3,K) that is the identity in a neighborhood B of a point of K.
Then the deform-spinning operation of Litherland [Lit79] – which is a common generalization of
twist-spinning, due to Zeeman [Zee65], and roll-spinning, due to Fox [Fox66] – gives a slice disk
DK,d of −K#K, where −K stands for (−S3,−K); see Section 3. According to Proposition 3.2, the
diffeomorphism types of the pairs (D4, DK,d) all coincide. However, by Proposition 3.10, the isotopy
class of DK,d is uniquely determined by the isotopy class of d in Diff(S3,K,B). This, in turn, is
determined by the action of d on π1(S

3 \K, p) for p ∈ B \K by the works of Waldhausen [Wal68],
Cerf [Cer59], and Hatcher [Hat83].
Given a slice disk D for a decorated knot (K,P ) in S3, Marengon and the first author [JM16]

defined a non-zero element

tD,P ∈ ĤFK (K,P )
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2 ANDRÁS JUHÁSZ AND IAN ZEMKE

that is invariant under isotopies of D. We will review the relevant definitions in Section 4. This
invariant is unchanged by taking the connected sum of D with a 2-knot. So far, there has been no
computation of tD,P for a non-trivial slice disk D. The difficulty lies in the fact that it is hard to

give a natural construction of ĤFK (K,P ), and hence to distinguish non-zero elements; see [JTZ12].
However, the knot Floer homology of a composite knot has additional structure.

Let us write V := ĤFK (K,P ). Our first main result is Theorem 5.1, which states that, under a
suitable identification

ĤFK (−K#K,P ) ∼= V ∗ ⊗ V ∼= Hom(V, V ),

the element tDK,d,P corresponds to d∗ ∈ Hom(V, V ). If r is the diffeomorphism giving rise to roll-
spinning, then this implies that the invariants tD

K,rl
,P distinguish the slice disks DK,rl for l ∈ Z

up to stable isotopy, even though they have diffeomorphic complements, for infinitely many knots
K; see Theorem 5.4. (Note that our proof of this result assumes that the formula of Sarkar [Sar15,
Theorem 1.1] for the basepoint moving map holds over Z. The formula over F2 only allows us to
distinguish DK,rl for even and odd l.) In particular, we obtain an affirmative answer to [JM16,
Question 1.4], showing that there is a decorated knot (K,P ) with two slice disks D and D′ such
that tD,P 6= tD′,P .
More generally, given a decorated concordance C from (K,P ) to (K ′, P ′), one can construct a slice

disk DC for −K#K ′. In fact, every slice disk of −K#K ′ arises from this construction. If we write

V = ĤFK (K,P ) and V ′ = ĤFK (K ′, P ′), then there is an isomorphism ĤFK (−K#K ′, P ) ∼= V ∗⊗V ′

that depends on the connected sum sphere S, under which tDC
corresponds to the concordance map

FC ∈ Hom(V, V ′). We write rkS(D) = rk(FC). If the slice disk D of −K#K ′ is the boundary
connected sum of slice disks of K and K ′, then rkS(D) = 1.

If K and K ′ are prime knots such that K ′ 6= −K, then the connected sum sphere S is unique,
and the rank of tD,P in Hom(V, V ′) is an invariant of D up to stable diffeomorphism. We denote this
by rk(D). Since tD,P preserves the Alexander and Maslov gradings, rk(D) has refinements rkj(D, i)
and rk(D, i) for i, j ∈ Z.

The rank of a slice disk D of a composite knot gives a lower bound on the complexity of certain
hyperplane sections of D. More concretely, if H is a properly embedded 3-ball in D4 transverse to
D, whose boundary is the connected sum sphere S, then we can cap off (H,D ∩H) with the trivial
tangle (D3, D1) to obtain a link L in S3. Then

rkS(D) ≤ rk
(

ĤFK (L)
)

;

see Theorem 6.7. Furthermore, when L is a knot,

max{ i ∈ Z : rkS(D, i) 6= 0 } ≤ g(L).

So far, we have focused on slice disks of composite knots. We would like to remark that the
invariant tD,P can also be used to distinguish slice disks of prime knots. Kim [Kim10] has shown
that every knot K admits an invertible concordance C to a prime knot K ′, obtained by taking a
certain satellite of K. Let P and P ′ be decorations on K and K ′, respectively, choose a decoration σ
on C compatible with these, and let C = (C, σ). If D and D′ are slice disks of K with tD,P 6= tD′,P ,
then tC∪D,P ′ 6= tC∪D′,P ′ , since tC∪D,P ′ = FC(tD,P ) and tC∪D′,P ′ = FC(tD′,P ), and the concordance
map FC is injective; see [JM16]. In other words, if the invariant distinguishes the slice disks D and
D′ of a possibly composite knot K, then it also distinguishes the slice disks C ∪ D and C ∪ D′ of
the prime knot K ′, up to stable isotopy.

1.1. Acknowledgements. We would like to thank David Gabai and Maggie Miller for helpful
conversations. The first author was supported by a Royal Society Research Fellowship, and the
second author by an NSF Postdoctoral Research Fellowship (DMS-1703685). This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 674978).
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2. Equivalences of slice disks

Throughout this paper, every slice disk is assumed to be smooth.

Definition 2.1. Let K be a knot in S3. We say that the slice disks D, D′ ⊆ D4 for K are isotopic,
and write D ∼ D′, if there is an isotopy F : I × D4 → D4 such that F0 = IdD4 , Ft|S3 = IdS3 for
every t ∈ I, and F1(D) = D′. The slice disks D and D′ are diffeomorphic if there is an orientation
preserving diffeomorphism ϕ ∈ Diff+(D

4) such that ϕ(D) = D′. Finally, we say that D and D′ are
stably isotopic/diffeomorphic if they become isotopic/diffeomorphic after taking the connected sum
of D and D′ with collections of 2-knots.

Lemma 2.2. Suppose that D and D′ are slice disks of a knot K in S3.

(1) If there is a diffeomorphism ϕ ∈ Diff(D4) such that ϕ(D) = D′ and ϕ|S3 = IdS3 , then D
and D′ are isotopic.

(2) If D and D′ are diffeomorphic, then they become isotopic by gluing the trace of an isotopy
of K in S3 to D′.

Proof. First, consider (1). As ϕ fixes S3 pointwise, we can assume that it also fixes a collar neigh-
borhood N(S3) of S3 in D4. We can isotope D to a slice disk D1 of K that lies in N(S3). Then

D ∼ D1 = ϕ(D1) ∼ ϕ(D) = D′,

as claimed.
Now suppose that D and D′ are diffeomorphic. Then ϕ(D) = D′ for some ϕ ∈ Diff+(D

4). Since
Diff+(S

3) is connected, there is an isotopy ψ : I × S3 → S3 such that ψ0 = IdS3 and ψ1 = ϕ|S3 .
If we glue the collars (I × S3, I ×K) to (D4, D) and (I × S3,

⋃

t∈I{t} × ψt(K)) to (D4, D′) along

{1}×S3, we obtain slice disks D̄ and D̄′ in D4 ∪ (I ×S3), respectively. If we extend ϕ to the collar
I × S3 via ϕ̄(t, x) = (t, ψt(x)), then the extension ϕ̄ maps D̄ to D̄′, and fixes {0} × S3 pointwise.
Hence D̄ and D̄′ are isotopic by (1). �

3. Deform-spun slice disks

Litherland [Lit79] defined the notion of deform-spinning to construct 2-knots in R4, generalizing
the construction of twist-spinning, due to Zeeman [Zee65], and roll-spinning, due to Fox [Fox66]. An
analogous construction can be used to obtain slice disks in D4, as follows.

Definition 3.1. Let a be a properly embedded smooth arc in D3. Furthermore, let φ : I×D3 → D3

be an isotopy of D3 such that φ0 = IdD3 , φt|S2 = IdS2 for every t ∈ I, and φ1(a) = a. Then the
deform-spun slice disk Da,φ ⊆ D4 is defined by taking

⋃

t∈I

{t} × φt(a) ⊆ I ×D3,

and rounding the corners along {0, 1} × ∂D3. When the arc a is understood, we simply write Dφ

instead of Da,φ.

Intuitively, we consider the arc a in R3
−, which we rotate about the plane R2 in R4

+, while applying
the isotopy φ, until we reach R3

+.

Proposition 3.2. Let Da,φ and Da,ψ be deform-spun slice disks. Then Da,φ and Da,ψ are diffeo-
morphic.

Proof. The diffeomorphism is given by (t, x) 7→ (t, ψt ◦ φ
−1
t (x)) for (t, x) ∈ I ×D3. �

If we take ψt to be IdD3 for every t ∈ I, we obtain that D4 \Da,φ is diffeomorphic to I × (D3 \ a)
for any isotopy φ.

Lemma 3.3. Let d be an automorphism of (D3, a) such that d|S2 = IdS2 . Then there is an isotopy
φ : I × D3 → D3 as in Definition 3.1, such that φ1 = d. Furthermore, the isotopy class of the
deform-spun disk Da,φ only depends on d, which we denote by Da,d.
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Proof. By the work of Hatcher [Hat83], the group Diff(D3, S2) is contractible. Hence, there exists
an isotopy φ with φ1 = d. Furthermore, φ is unique up to isotopy. �

Definition 3.4. Let K be a knot in S3, and suppose that the open 3-ball B intersects K in an
unknotted arc. Then (S3 \ B,K \ B) is diffeomorphic to a ball-arc pair (D3, a). Suppose that we
are given a diffeomorphism d ∈ Diff(S3,K) that is the identity on B. Then the deform-spun slice
disk DK,d ⊆ B4 for −K#K is defined to be Da,d|

S3\B
.

We now recall the definition of roll-spinning, based on the description of Litherland [Lit79, Ex-
ample 2.2].

Definition 3.5. Let K be a knot in S3. Choose a tubular neighborhood N(K) ≈ K × D2 of K,
and let X = S3 \ int(N(K)) be the knot exterior. Furthermore, let ∂X × I be a collar of ∂X in X.
We identify K with R/Z. Choose a smooth monotonic function ϕ : R → I such that ϕ(t) = 0 for
t ≤ 0 and ϕ(t) = 1 for t ≥ 1. We define the diffeomorphism r : (S3,K) → (S3,K) by the formula

r(x̄, θ̄, t) =
(

x+ ϕ(t), θ̄, t
)

for (x̄, θ̄, t) ∈ K × ∂D2 × I ≈ ∂X × I,

and let r(p) = p for p ∈ S3 \ (∂X × I).
Let B ⊆ N(K) be an open 3-ball that intersects K in an unknotted arc. Then r is the identity

on B. We define the l-roll-spin of K to be DK,rl .

We now give an equivalent definition of DK,rl . Let Al be an arc on the cylinder I ×K ⊆ I × S3

such that [pK ◦Al] = l ∈ π1(K) ∼= Z, where pK : I ×K → K is the projection. Furthermore, we let
A0 = I × {x}. Suppose that ν is an I-invariant normal framing of I ×K in I × S3 that restricts
to an odd framing of {0} × K ⊆ {0} × S3. We endow Al with the normal framing that is given
by the normal of Al in I ×K, followed by the framing ν|Al

. Note that homotopy classes of normal
framings of Al relative to ∂Al correspond to π1(SO(3)) ∼= Z2, hence the above framing does not
depend on the choice of ν. As we shall see in the proof of Lemma 3.6, the framed arcs A0 and Al
are homotopic, hence isotopic in I ×S3 through an ambient isotopy that fixes {0, 1}×S3 pointwise.
This induces a diffeomorphism

dl : (I × S3) \N(Al) → (I × S3) \N(A0) ≈ D4,

which is the identity on ({0, 1}×S3) \N(Al), and is given by the normal framing of Al on ∂N(Al) \
({0, 1} × S3). Note that dl is only well-defined up to the action of Diff(D4, S3). For an illustration,
see Figure 3.1.

Lemma 3.6. The slice disks DK,rl and dl((I ×K) \N(Al)) are isotopic.

Proof. Let γ : I → K be a smooth orientation-preserving parametrization of the knot K, with
γ(0) = γ(1) = x. We take the arc Al : I → I ×K to be

Al(t) = (t, γ(lt)).

Let (e1, e2, e3) be a positive orthonormal basis of TxS
3 such that e1 is positively tangent to K. Then

there is a loop ψ : I → SO(4) based at idR4 such that, if we view ψ(t) as an automorphism of S3,
then ψ(t)(x) = γ(t), dψ(t)(e1) is a positive tangent to K for every t ∈ I, and (dψ(t)(e2), dψ(t)(e3))
corresponds to an odd framing of K.

We claim that ψ is null-homotopic in SO(4). Indeed, let S be a Seifert surface for K, and choose
tangent vector fields v1 and v2 on S such that v1 is generic, v1|K is tangent to K, and v2 is obtained
by rotating v1 through an angle of π/2 in TS. Let p1, . . . , pk ∈ int(S) be the zeros of v1, and let
Di ⊆ int(S) be a small disk about pi. Furthermore, let v3 be the normal of S in S3, and v4(p) = p
for p ∈ S ⊆ R4. Then v := (v1/|v1|, . . . , v4/|v4|) maps S \ {p1, . . . , pk} to SO(4). The cycle v|K
is homologous to v|∂D1∪···∪∂Dk

in SO(4), where the homology is given by v|S\int(D1∪···∪Dk). Along
∂Di, the vector fields v1 and v2 rotate ±1, depending on the index of the zero of v1 at pi, while
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v3 and v4 are nearly constant if Di is sufficiently small, for i ∈ {1, . . . , k}. Hence v|∂Di
generates

H1(SO(4)) ∼= Z2. By the Poincaré–Hopf theorem,

k
∑

i=1

indpi(v1) = χ(S),

which is odd. It follows that v|K generates H1(SO(4)) ∼= π1(SO(4)). As the loop ψ differs from v|K
by changing v2 and v3 to an odd framing, it follows that ψ is null-homotopic in SO(4).

We extend ψ : I → SO(4) periodically to a map ψ : R → SO(4). We construct a diffeomorphism
Ψl : I × S3 → I × S3 via

Ψl(t, p) := (t, ψ(lt)(p)).

Since ψ is null-homotopic in π1(SO(4)), the diffeomorphism Ψl is isotopic to idI×S3 relative to
{0, 1} × S3. By construction, Ψl maps the framed arc Al to A0. Let B be a ball about x so
small that ψ(t)(B) intersects K in an unknotted arc for every t ∈ I. We let N(A0) = I × B and
N(Al) = Ψ−1

l (N(A0)), and set dl = Ψl|(I×S3)\N(Al); see Figure 3.1.

Write rt : S
3 → S3 for the isotopy of S3 obtained by rotating K by 2πt radians and keeping

S3\N(K) fixed pointwise, such that r0 = idS3 and r1 = r. Note that ψlt◦rlt is an isotopy of S3 from
IdS3 to rl that fixes the ball B pointwise. By definition, the slice disk DK,rl is obtained by removing
I × B from the trace of the isotopy ψlt ◦ rlt. The isotopy rlt fixes the knot K setwise, so it follows
that the trace of ψlt◦rlt is simply the trace of ψlt. Hence DK,rl is isotopic to dl((I×K)\N(Al)). �

This construction can be generalized, as follows.

Definition 3.7. Let K and K ′ be knots in S3 that both pass through a point x ∈ S3, and let
(I × S3, C, σ) be a decorated concordance from K to K ′, such that one of the components A of σ
has boundary {(0, x), (1, x)}. Then we can obtain a slice disk DC for −K#K ′ in

(I × S3) \N(I × {x}) ≈ D4

by ambient isotoping A to I × {x}, with framings as above, and applying the induced diffeomor-
phism d to C \N(A); see Figure 3.1. As d is well-defined up to Diff(D4, S3), we obtain that DC is
unique up to isotopy by Lemma 2.2.

Conversely, every slice disk of −K#K ′ arises from this construction:

Lemma 3.8. Let K and K ′ be knots in S3 that both pass through a point x ∈ S3. Given a slice
disk D of −K#K ′, there is a decorated concordance C from K to K ′ such that D = DC.

Proof. Let us view D4 as (I×S3)\N(I×{x}), with K in {0}×S3 and K ′ in {1}×S3. From the slice
disk D, we obtain the decorated concordance C = (C, σ) by reattaching the 3-handle N(I × {x}) to
D4, and setting C = D∪R, where R is a band attached along the two arcs of (−K#K ′)∩N(I×{x})
that contains I × {x}. Finally, we choose the decoration σ such that it consists of two parallel arcs,
one of which is I × {x}. �

Definition 3.9. Let D be a slice disk of a knot K in S3. Then we call the homomorphism

hD : π1(S
3 \K) → π1(D

4 \D)

induced by the embedding the peripheral map of the slice disk D. Given slice disks D and D′ of K,
we say that hD and hD′ are equivalent if there is a homomorphism g : π1(D

4 \D) → π1(D
4 \D′) for

which hD′ = g ◦ hD.

If D and D′ are isotopic, then clearly their peripheral maps hD and hD′ are equivalent. Gor-
don [Gor81, Lemma 3.1] proved that if D is a ribbon disk, then hD is surjective.

Proposition 3.10. Let DK,d and DK,d′ be deform-spun slice disks of a knot −K#K in S3, where
d and d′ are automorphisms of (S3,K) that are fixed in a neighborhood B of a point on K. Then
DK,d and DK,d′ are isotopic if and only if d and d′ are isotopic in Diff(S3,K,B).
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for every γ, η ∈ π1(K). If we set η = 1, then we see that g = Idπ1(K). Hence, if we set γ = 1, we
obtain that d∗ = d′∗.
Let X = S3 \ N(K) be the knot exterior, and suppose that the basepoint p ∈ ∂X. Since

π1(∂X) → π1(X) is injective unless K is the unknot, (d|∂X)∗ and (d′|∂X)∗ agree on π1(∂X). As
both d and d′ are orientation preserving, d|∂X and d′|∂X are isotopic. Hence, we can assume that d
and d′ agree on ∂X.
We now construct a homotopy between d and d′ that fixes ∂X pointwise. Choose a triangulation

of X. Let T be a spanning tree of the 1-skeleton of X such that T ∩ ∂X is a spanning tree of the
1-skeleton of ∂X. We can homotope d|T to d′|T , fixing T ∩ ∂X, since π1(T, T ∩ ∂X) = 0. Given any
1-simplex e not in T or ∂X, it determines an element of π1(X). As d∗(e) = d′∗(e), we can homotope
d|e to d

′|e relative to ∂e. Once d and d′ agree on the 1-skeleton, we can extend the homotopy to the
2- and 3-skeleta as π2(X) = π3(X) = 0.

It now follows from the work of Waldhausen [Wal68, Theorem 7.1] that d and d′ are isotopic in
Homeo+(X, ∂X), and hence also in Diff+(X, ∂X) according to Cerf [Cer59] and Hatcher [Hat83].
In particular, the isotopy can be chosen to be the identity on B, so DK,d and DK,d′ are isotopic in
Diff+(S

3,K,B). �

Corollary 3.11. If K is a non-trivial knot in S3, then the roll-spun slice disks DK,rk and DK,rl

are isotopic if and only if k = l.

Proof. Let λ ∈ π1(K) be the homotopy class of the longitude of K. Then r∗(γ) = λγλ−1 for every
γ ∈ π1(K). Since no power of λ is central in π1(K) for a non-trivial knot K, we see that rk and rl

are isotopic in Diff(S3,K,B) if and only if k = l. The result now follows from Proposition 3.10. �

4. An invariant of slice disks in knot Floer homology

In this section, we review the necessary background on concordance maps and slice disk invariants
in knot Floer homology.

Definition 4.1. A decorated knot (K,P ) in S3 consists of an oriented knot K in S3, and a pair of
basepoints P = {w, z} ⊆ K. A decorated concordance (I×S3, C, σ) from the decorated knot (K0, P0)
to (K1, P1) consists of an embedded annulus C ⊆ I × S3 such that C ∩ ({i} × S3) = {i} ×Ki for
i ∈ {0, 1}, together with a pair of disjoint arcs σ on the annulus A, both connecting K0 \ P0 and
K1\P1. Furthermore one component of C \σ contains w0 and w1, and the other component contains
z0 and z1.

Given a decorated knot (K,P ), Ozsváth–Szabó [OS04b], and independently Rasmussen [Ras03],
defined a bigraded F2-vector space

ĤFK (K,P ) =
⊕

i,j∈Z

ĤFK i(K,P, j),

called the knot Floer homology of (K,P ). Thurston and the first author [JTZ12, Theorem 1.8]
showed that this is natural with respect to the mapping class group of (S3,K, P ). By the work of
Sarkar [Sar15, Theorem 1.1], if we apply a positive Dehn twist r along K (see Definition 3.5), the
induced map

r∗ : ĤFK (K,P ) → ĤFK (K,P )

is given by the formula

r∗ = Id
ĤFK (K,P )

+ΦΨ,

where Φ and Ψ are commuting endomorphisms of ĤFK (K,P ) such that Φ2 = Ψ2 = 0.
To a decorated concordance (C, σ) from (K0, P0) to (K1, P1), the first author [Juh16] assigned a

linear map

FC,σ : ĤFK (K0, P0) → ĤFK (K1, P1).
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According to [JM16], this is always non-vanishing. Given a decorated knot (K,P ) in S3 and a slice
disk D for K in D4, Marengon and the first author [JM16] defined an element

tD,P ∈ ĤFK 0(K,P, 0)

that is invariant under smooth isotopies ofD. It is obtained by removing a ball fromD4 about a point
of D that intersects D in a disk, choosing an arbitrary decoration σ on the resulting concordance C
from the decorated unknot (U,PU ) to (K,P ), and setting tD,P = F(C,σ)(1), where

F(C,σ) : ĤFK (U,PU ) ∼= F2 → ĤFK (K,P )

is the induced map on knot Floer homology. The element tD,P is independent of the choice of
decoration σ.
In fact, tD,P is invariant under stable isotopy. Indeed, we have the following:

Lemma 4.2. Let D be a slice disk of the based knot (K,P ) in S3. If S is a 2-knot in D4, then

tD,P = tD#S,P .

Proof. Remove a ball from D4 about a point of S that intersects D#S in a disk, and choose
decorations compatible with PU and P . Then the resulting decorated concordance from (U,PU )
to (K,P ) is the composition C ◦ CS , where C = (C, σ) is a decorated concordance from (U,PU ) to
(K,P ), and CS = (CS , σS) is a decorated concordance from (U,PU ) to itself with |σS | = 2. The map

FCS
: ĤFK (U,PU ) → ĤFK (U,PU )

is non-vanishing by [JM16, Corollary 1.3], and ĤFK (U,PU ) ∼= F2, hence

tD#S,P = FC◦CS
(1) = FC ◦ FCS

(1) = FC(1) = tD,P ,

as claimed. �

With the help of our work joint with Ghiggini [GJZ18] on constructing canonical orientation
systems in sutured Floer homology, we will be able to lift the above constructions and results from
F2 to Z coefficients.

5. Invariants of deform-spun slice disks

It has been an open problem [JM16, Question 1.4] whether there is a decorated knot (K,P ) with
two slice disks D and D′ such that tD,P 6= tD′,P . In this section, we give an affirmative answer to
this question, by giving a formula for the invariant of a deform-spun slice disk. Before we state our
theorem, we recall some notation from [Zem19, Section 5.1].

Let (K,P ) and (K ′, P ′) be decorated knots in S3, and pick points p ∈ K \ P and p′ ∈ K ′ \ P ′.
Furthermore, we choose positive normal framings (v1, v2, v3) of p and (v′1, v

′
2, v

′
3) of p′ such that

v1 is positively tangent to K and v′1 is positively tangent to K ′. We now construct a decorated
concordance

(W,F) : (−S3,−K,P ) t (S3,K ′, P ′) → (S3,−K#K ′, P )

corresponding to taking the connected sum along −p and p′; see Figure 5.1. The cobordism W is
obtained by attaching a 4-dimensional 1-handle D1 × D3 to I × (−S3 t S3) along {(1, p), (1, p′)}.
The underlying surface F of F = (F, σ) is obtained by attaching the 2-dimensional 1-handle

D1 × {(t, 0, 0) : t ∈ [−1, 1]} ⊆ D1 ×D3

to I× (−K tK) along {(1, p), (1, p′)}. Let q be a point in the component of K \P not containing p,
and Let q′ be a point in the component of K \ P ′ not containing p′. Then the decoration σ on F is
the union of I × {p, p′, q, q′} and the core of the 2-dimensional 1-handle, and consists of three arcs.

Let us write
G : ĤFK (−K,P )⊗ ĤFK (K ′, P ′) → ĤFK (−K#K ′, P )

for the cobordism map induced by (W,F). According to [Zem19, Proposition 5.1], the map G is
an isomorphism, whose inverse E is the cobordism map induced by (W ′,F ′), obtained by turning
around and reversing the orientation of (W,F). Note that, given −K#K ′, the isomorphism E
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Corollary 5.2. Let (K,P ) be a decorated knot in S3, and B an open 3-ball about a point of K that
intersects it in an unknotted arc. If d, d′ ∈ Diff(S3,K) are the identity on B, then tDK,d,P = tDK,d′ ,P

if and only if d∗ = d′∗ on ĤFK (K,P ).

Proposition 5.3. Let (K,P ) be a decorated knot in S3, and let DK,r be the slice disk obtained by
1-roll-spinning K. Then tDK,Id

= tDK,r
if and only if the basepoint moving map Id

ĤFK (K,P )
+ΦΨ,

defined by Sarkar [Sar15], is the identity.

Proof. By Theorem 5.1, we have tDK,Id
= (IdS3)∗ = IdV and tDK,r

= r∗. According to Definition 3.5,
the diffeomorphism r is a positive Dehn twist along K. Consequently, r∗ is the basepoint moving
map. By Sarkar [Sar15, Theorem 1.1], the latter is IdV +ΦΨ. �

According to [Sar15, Section 6], the map ΦΨ is non-vanishing for the majority of prime knots up
to nine crossings. For example, by [Sar15, Theorem 6.1], this holds for any alternating knot K such
that

t
σ(K)

2 ∆K(t) 6=
1 + t2m+1

1 + t

for any integer m. Clearly, there are infinitely many such knots K. Hence, in all these cases,
DK,Id and DK,r are stably non-isotopic slice disks of K. Furthermore, they have diffeomorphic
complements by Proposition 3.2.
Note that (ΦΨ)2 = 0. Hence, if the formula IdV +ΦΨ also holds for the basepoint moving map

r∗ over the integers, then

tD
K,rl

= (IdV +ΦΨ)l = IdV +l · ΦΨ.

Consequently, all the slice disks DK,rl for l ∈ Z would be pairwise stably non-isotopic. Hence, with
this caveat, we have obtained the following result:

Theorem 5.4. Assume Sarkar’s basepoint moving formula holds over the integers, and let K be an
alternating knot such that

t
σ(K)

2 ∆K(t) 6=
1 + t2m+1

1 + t

for any integer m. Then the slice disks DK,rl for l ∈ Z, obtained by roll-spinning, are distinguished
by tD

K,rl
up to stable isotopy, but have diffeomorphic complements.

Note that, if we work with F2 coefficients, then we are only able to distinguish DK,rl for l even
and odd.

6. Invariants of slice disks arising from concordances, and their rank

We have the following straightforward generalization of Theorem 5.1 to slice disks arising from
concordances as in Definition 3.7:

Theorem 6.1. Let (K,P ) and (K ′, P ′) be decorated knots in S3 that both pass through a point
x ∈ S3, and let C = (C, σ) be a decorated concordance from (K,P ) to (K ′, P ′), as in Definition 3.7.

If we write V := ĤFK (K,P ) and V ′ := ĤFK (K ′, P ′), then

E(tDC,P ) = FC ∈ Hom(V, V ′) ∼= V ∗ ⊗ V ′,

where the isomorphism E : ĤFK (−K#K ′, P ) → V ∗ ⊗ V ′ is described above.

Consequently, if C and C′ are decorated concordances from (K,P ) to (K ′, P ′), then tDC
= tDC′ if

and only if FC = FC′ .

Corollary 6.2. Let (K,P ) and (K ′, P ′) be decorated knots in S3 that both pass through a point
x ∈ S3. If a slice disk D of −K#K ′ is the boundary connected sum of slice disks of K and K ′, then
tD ∈ Hom(V, V ′) has rank one.
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Proof. SinceK andK ′ are prime, there is an isotopically unique connected sum sphere S for −K#K ′

by the uniqueness of prime factorization of knots. Indeed, if S′ is another connected sum sphere,
then we can make it transverse to S, and remove innermost components of S3 \ (S ∪S′) by isotopies
through connected sum spheres until S and S′ become parallel. Furthermore, as K ′ 6= −K and K ′

has to lie on the positive side of both S and S′, the spheres S and S′ are oriented coherently.
As −K#K ′ is a decorated knot, the ambient isotopy taking S′ to S might move the decoration

P around −K#K ′ a number of times. We now show that the element E(tD,P ) ∈ Hom(V, V ′) is
invariant under moving P around K#K ′. This corresponds to winding σ around the boundary
component −K#K ′ of the surface F ′ in the connected sum cobordism (W ′,F ′). Recall that tD,P
is defined by removing a ball from D4 about a point of D, choosing a decoration ν on the resulting
concordance C from (U,PU ) to (−K#K ′, P ), and setting tD,P = F(C,ν)(1). By the functoriality of
the decorated link cobordism maps in link Floer homology,

E(tD,P ) = F(W ′,F ′) ◦ F(C,ν)(1) = F(W ′,F ′)◦(C,ν)(1);

see Figure 5.1. Let σ′ be another decoration on F ′ that differs from σ by winding it around −K#K ′.
Then, for a suitable choice of decoration ν′ on C, the decorations σ ∪ ν and σ′ ∪ ν′ are isotopic in
C ∪ F ′ relative to their boundaries. As tD,P is independent of the choice of ν, the result follows.

We remark that we could even wind σ around the boundary components −K and K ′ of F ′

without changing the rank of D. Indeed, the induced map would act on the two factors of V ∗ ⊗ V ′

by basepoint moving automorphisms of V ∗ and V ′, which preserves the rank of each element. �

Recall that a concordance is invertible if it has a left inverse in the cobordism category of links;
see Sumners [Sum71].

Corollary 6.6. Let (K,P ) and (K ′, P ′) be decorated, prime, slice knots in S3, with slice disks D
and D′, such that K ′ 6= −K and K 6= U . Furthermore, let C be an invertible concordance from K
to K ′. Then the slice disk DC of −K#K ′ and the boundary connected sum −D\D′ have different
ranks, and are hence not stably diffeomorphic.

Proof. By Corollary 6.2, we have rk(−D\D′) = 1. On the other hand, tDC
corresponds to FC by

Theorem 6.1. As C is invertible, the map FC is injective, and hence has rank dim(V ); see [JM16]. But
K 6= U , so dim(V ) > 1 by the genus detection of knot Floer homology. It follows that rk(DC) > 1,
and hence DC and −D\D′ are not stably diffeomorphic. �

For example, in the above result, we could take K = K ′ to be any nontrivial, prime, achiral,
slice knot, and C = I ×K, in which case DC is obtained by spinning K. It follows that this spun
slice disk is not a boundary connected sum. Compare this with Example 6.3, which shows that this
fails when K is composite. Note that one can also use the fundamental group to show that DC in
Corollary 6.6 is not stably diffeomorphic to a boundary connected sum. The basic idea is that the
map π1(K) → π1(K) ∗µ π1(K

′) → π1(DC) is injective as C is invertible, while the longitude of K
maps to zero under the composition π1(K) → π1(K)∗µπ1(K

′) → π1(−D\D
′); cf. Remark 6.8 below.

More generally, the rank gives a lower bound on the complexity of certain sections of the slice
disk, in the following sense.

Theorem 6.7. Let (K,P ) and (K ′, P ′) be decorated knots in S3, and let D be a slice disk of
(−K#K ′, P ) with connected sum sphere S. Suppose that there is a properly embedded 3-ball H in
D4 transverse to D, and such that S3 ∩H = S. Consider the link L in S3 obtained by capping off
(H,H ∩D) with the trivial tangle (D3, D1). Then

rkS(D) ≤ dim
(

ĤFK (L)
)

.

Analogous inequalities hold for rkS,j(D, i) and rkS(D, i). Hence, when L is a knot,

max{ i ∈ Z : rkS(D, i) 6= 0 } ≤ g(L).

Proof. By Lemma 3.8, there is a decorated concordance C = (C, σ) in I ×S3 such that D = DC . By
construction, H∪D3 is an embedded S3 in I×S3 that intersects C in the link L. We can isotope σ on
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C such that it intersects each component of L in exactly two points. Hence, the link concordance C
factorizes through the decorated link (H∪D3, L, σ∩L). The result follows by applying the link Floer
homology functor. The grading refined statement follows from the fact that the concordance maps
preserve the Alexander and Maslov gradings. The last inequality holds since knot Floer homology
detects the Seifert genus; see Ozsváth–Szabó [OS04a]. �

Remark 6.8. As in Corollary 6.6, we can consider the special case of Theorem 6.7 when D = DC for
an invertible concordance C. Then FC is injective, so we obtain that

rkS,j(D, i) = dim
(

ĤFK j(K, i)
)

.

In particular, g(K) ≤ g(L). However, the section of C from K to L is also invertible, hence the
genus inequality also follows from [JM16, Corollary 1.7], which can be shown without using knot
Floer homology, instead invoking Gabai’s higher genus generalization of Dehn’s lemma [Gab83,
Corollary 6.23]. When L is the unknot, we recover the last part of Corollary 6.6, stating that DC is
not a boundary connected sum.
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