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Abstract—In this article, we are interested in through-wall gait-
based identification of multiple people who are simultaneously
walking in an area, using only the WiFi magnitude measure-
ments of a small number of transceivers. This is a considerably
challenging problem as the gait signatures of the walking peo-
ple are mixed up in the WiFi measurements. In order to solve
this problem, we propose a novel multidimensional framework,
spanning time, frequency, and space domains, that can separate
the signal reflected from each walking person and extract its
corresponding gait content, in order to identify multiple peo-
ple through walls. To the best of our knowledge, this is the first
time that WiFi signals can identify multiple people in an area. We
extensively validate our proposed system with 92 test experiments
conducted in four different areas, where the WiFi transceivers
are placed behind walls, and where two or three people (ran-
domly selected from a pool of six test subjects) are walking in
the area. Our system achieves an overall average accuracy of
82% in correctly identifying whether a person walking in the
test experiment (referred to as a query) is the same as a can-
didate person, based on 6404 query-candidate test pairs. It is
noteworthy that none of the test subjects/areas has been seen in
the training phase.

Index Terms—Gait analysis, multiperson identification, radio-
frequency (RF) sensing, through-wall sensing, WiFi.

I. INTRODUCTION

DUE TO the emergence of smart homes and Internet of
Things, recent years have seen a rapid growth in the

number of devices with wireless capabilities. These devices
emit radio-frequency (RF) signals (e.g., WiFi), which interact
with people and objects in the environment. As such, there
has been considerable interest in utilizing these RF signals to
extract various types of information about the people and/or
the environment, e.g., occupancy estimation [1], [2], activ-
ity detection/recognition [3], localization [4], [5], tracking [6],
and imaging [7]. In particular, identifying a person based on
their gait signature (i.e., the way they walk), using RF signals,
has recently started to gain a considerable attention [8]–[11].
Using RF signals for identification is appealing since it can
recognize a person from a distance, without requiring them
to perform any specific active task (e.g., fingerprint scanning).
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In addition, unlike cameras, it is more versatile as it does not
require a clear, unobstructed view of the walking person, and
is not affected by lighting conditions. Utilizing off-the-shelf
WiFi for person identification is, in addition, useful due to
the low cost and ubiquity of WiFi transceivers. In general,
using existing RF signals for identification can open up new
possibilities in the areas of security, personalized service pro-
visioning, crowd analytics, and public health. For instance, an
existing home WiFi network can identify the house members
who just entered the house and provide personalized service
accordingly. In addition, the WiFi network in a mall can iden-
tify the people (while anonymizing the data) and track where
they go, which will be helpful for analyzing people’s shop-
ping preferences and the traffic flow. Furthermore, thanks to
the wide coverage of WiFi nowadays, RF-based identification
can also be used for contact tracing to help slow down the
spread of diseases (e.g., COVID-19).

All the existing RF-based gait identification approaches,
however, can only be used in situations where there is only
one person walking in the area, which is an overly restric-
tive condition that significantly limits the practical use of this
technology. In addition, most of the existing work on person
identification with RF signals require training the system with
extensive measurements of the same subjects to be identified,
as well as training in the same operation area. This further
limits the applicability of these systems since they cannot be
used for new people or in new areas, without additional data
collection and retraining.

In this article, we propose a novel multiperson identifica-
tion system, using off-the-shelf WiFi devices, which is capable
of recognizing the identities of multiple people when they are
simultaneously walking in an area behind a wall. More specif-
ically, given only the WiFi channel state information (CSI)
magnitude signal received when a number of unknown people
are walking in an unknown area behind a wall, our proposed
system is able to extract the gait information of each individ-
ual person and identify them from the overall WiFi magnitude
measurement. By identifying a person, we mean determin-
ing if this person is the same as the person that was walking
in another area where a WiFi receiver measured its received
power. In other words, given a WiFi sample measurement
where a person was walking in an area (candidate sample) and
WiFi measurements where a number of people are walking in
another area behind the wall (query samples), our system can
determine if the candidate person is among those behind the
wall, without any need for collecting training data of any of
these people. Moreover, our proposed system only uses the
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CSI magnitude measurements of a WiFi link, which is more
preferable in practice since the phase measurements are either
unavailable or not reliable on off-the-shelf devices [12]. To
the best of our knowledge, this is the first time that WiFi-
based identification is made possible for the setting of multiple
simultaneously walking people, which can lead to a signifi-
cantly broader applicability of WiFi-based gait identification
systems. Furthermore, the ability to identify people, without
any prior training data of them, can have a tremendous impact
on this technology.

The main challenge in identifying multiple simultaneously
walking people is that their gait information will be all mixed
up in the received WiFi signal magnitude measurement. We
then propose a novel technique that jointly processes the
received signal across time, frequency, and the Angle-of-
Arrival (AoA) domains, in order to separate, extract, and track
the parts that correspond to each person’s gait from the overall
received WiFi signal magnitude. We then extract key features
from each separated part of the signal for the purpose of identi-
fication. We extensively evaluate our proposed approach using
a large test set, where all the test subjects and test areas are
completely disjoint from the training data, thus allowing us
to demonstrate the applicability of our system to new people
and new areas. In the test set, there are six subjects and four
areas where the transceivers are placed behind a wall. In each
test experiment, two or three randomly selected test subjects
walk simultaneously in a test area, amounting to a total of 92
such test experiments. Given a candidate spectrogram gener-
ated from the received WiFi signal measured when a person
was walking in another area, our system then determines if
a person behind the wall, among the multiple walking peo-
ple, is the same as the candidate person. For the two-people
case, given a pair of query and candidate spectrograms, our
proposed system achieves an identification accuracy of 82%, in
determining whether the two data samples belong to the same
person, based on 4892 test pairs. Additionally, for the test
experiments with three simultaneously walking people behind
a wall, our system achieves an identification accuracy of 83%,
based on 1512 test pairs. Overall, our results demonstrate the
performance of the proposed approach for multiple people
identification.

II. RELATED WORK AND PRELIMINARIES

In this section, we provide a brief overview of the related
work on gait-based person identification using RF signals and
a brief primer on spectrogram-based gait analysis.

A. RF-Based Gait Identification

Early work on gait analysis utilize dedicated radar hardware
and/or wideband signals to analyze a single person’s walk-
ing pattern. For instance, Tahmoush and Silvious [13] and
Orović et al. [14] used radar to estimate the motion param-
eters of different body parts. Vignaud et al. [15] discussed the
challenge of multiperson gait analysis, stating that it was not
possible to interpret the individual gait signatures of simulta-
neously walking people without sophisticated radar equipment
with a very high range resolution.

Fig. 1. (Left) Single-person gait-based identification scenario, where the
person walks near a WiFi link. (Right) Spectrogram of the received WiFi
magnitude measurements capturing the reflections off of different body parts.

Recently, there has been considerable interest in using off-
the-shelf WiFi devices for gait-based person identification.
WiFiU [8] uses WiFi CSI to generate spectrogram-based gait
features, which are then used to classify the identities of a
predefined set of people. WiWho [16] uses the time-domain
signals, measured when a person is walking, for identifi-
cation. Similarly, [11], [17]–[20] identify a person from a
predefined set of people. In our previous work [10], we
have proposed XModal-ID, a cross-modal person identifica-
tion system from video to WiFi. More specifically, XModal-ID
identifies whether a single walking person measured by WiFi
is the same as a walking person in a video footage [10].

All the existing gait-based identification systems, however,
are only applicable to situations where there is only one per-
son walking in the WiFi area, and will fail when multiple
people are simultaneously walking. In addition, with the only
exception of our previous work [10], all the existing RF-based
work on person identification need to collect training data of
the same person that they want to identify. Furthermore, they
need the training and test areas to be the same.

In this article, we propose a novel through-wall gait-based
multiperson identification system using off-the-shelf WiFi
devices. Our system is able to extract the gait information
of each individual person from the aggregate WiFi magnitude
measurement when multiple people walk simultaneously in
an area. Furthermore, it does not require training with prior
measurements of the subjects to be identified, does not need
prior knowledge of the test/operation areas, and can identify
people through walls. Finally, it only uses the CSI magnitude
measurements of the received signal.

B. Spectrogram-Based Gait Analysis

Spectrograms are commonly utilized in existing work on
gait analysis and gait-based person identification to extract the
attributes of a person’s gait [8], [10], [19], [21]. In this part,
we provide some preliminaries on spectrograms and discuss
the gait information that they capture.

Consider the scenario shown in Fig. 1 (left), where one
person is walking near a pair of WiFi transmitter (Tx) and
receiver (Rx). The squared magnitude of the received signal
can be written as follows, as a function of time [10]:

s(t) = PDC +
∑

m

αm cos

(
2π

λ
ψvm(t)t +�

)
(1)

where PDC is the DC component that does not carry motion
information about the gait, αm is the magnitude of the
reflection of the mth body part, vm is the speed of the mth
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Fig. 2. Flowchart showing the modules of our proposed system for multiple
people identification.

body part as a function of time, ψ = cosφR + cosφT with φR

and φT defined in Fig. 1 (left), � is a random initial phase, and
λ is the wavelength of the wireless signal. It should be noted
that ψ can, in general, be time varying. Equation 1 shows
that the received signal consists of multiple sinusoids whose
frequencies are related to the speeds of different body parts.
Hence, by utilizing a time-frequency analysis technique (e.g.,
short-time Fourier transform), one can obtain the frequency
content of the signal (i.e., the speed profile of the body parts)
as a function of time, which is called the spectrogram of the
signal. Fig. 1 (right) shows a sample spectrogram of the sig-
nal measured when a person is walking near the WiFi link. In
the spectrogram, for instance, the stronger signal (indicated by
the brighter colors) corresponds to the strong reflection from
the torso of the person, while higher frequency weaker sig-
nals represent the reflections from the legs, which have higher
speeds as compared to the average torso speed.

III. SYSTEM OVERVIEW

In this article, we propose a system that can perform
through-wall person identification on multiple people walk-
ing simultaneously in an area, all of whom have not been
seen during the training phase of the system. The overall
system architecture is outlined in the flowchart of Fig. 2, and
summarized as follows.

1) Given the CSI magnitude of a WiFi signal measured at
a small number of receivers when multiple people are
walking simultaneously behind the wall in an area, we
first detect and track the AoAs of the signal reflections
from these people, using a combination of 2-D spec-
trum analysis, joint probabilistic data association filter
(JPDAF), and track management techniques.

2) Given the AoAs corresponding to the different walk-
ing people in the area as a function of time, we extract
the gait signal of each walking person by projecting the
total received signal to the AoA of this person. Next,
given the separated WiFi signal of one person (referred
to as the query), we calculate the spectrogram of this
signal to capture the time-frequency characteristics of
this person’s gait.

3) We then detect the segments from each spectrogram that
are informative for identification. For each such segment,

we extract several features to capture the person’s gait
signature.

4) In order to determine whether a detected spectrogram
segment (i.e., a query segment) belongs to the same
person as the candidate person, we calculate the fea-
ture distances between a query segment and a candidate
spectrogram, and feed them to a neural network which
determines whether these two spectrograms correspond
to the same person. As there can be multiple informa-
tive segments from the query spectrogram of a person’s
entire track during a measurement period, we use an
algorithm based on maximum likelihood estimation to
fuse the segment-based decisions. The combined deci-
sion then indicates whether the query person of a
walking track is the same as a candidate person.

IV. PROPOSED METHODOLOGY

In this section, we describe our proposed methodology for
multiple people identification. We first describe the multiper-
son identification scenario and the corresponding signal model.
We then show how to estimate and track the AoAs of the
reflections from the walking people, based on only the received
signal magnitude measurements, and subsequently separate the
signals relevant to each walking person by projecting the over-
all signal to the respective AoAs. Given the separated signal
that contains the walk of one person, a frequency-time spec-
trogram is generated and the informative segments of it are
extracted for identification.

A. Signal Model for Joint Processing Based on Only
Magnitude Measurements

Consider the scenario shown in Fig. 3, where a WiFi trans-
mitter (Tx) transmits WiFi signals that are reflected off of
N people walking in an area with S static objects, and then
received by a receiver array (Rx). The received signal is then
a combination of the direct signal from the Tx to the Rx, the
reflected signals off of the S static objects, and the reflected
signals off of the N walking people. More specifically, the
time-domain received signal as a function of the distance �
along the array, where � is measured with respect to the first
antenna, can be written as follows [6]:

c(t, �) =

Direct signal
from Tx to Rx︷ ︸︸ ︷

αDe−j 2π
λ
� cos θD +

S∑

s=1

Reflected signal off of
the s-th static scatterer︷ ︸︸ ︷
α̃se

−j 2π
λ
� cos θ̃s

+
N∑

n=1

(
∑

m

αn,me−j 2π
λ

vn,mψ
T
n t

)
e−j 2π

λ
� cos θn

︸ ︷︷ ︸
Reflected signals off of the nth person

+η(t, �) (2)

where αD, α̃s, and αn,m are, respectively, the complex values
of the direct path from Tx to Rx, the sth static path (path
reflected off of a static object), and the reflected path off of
the mth body part of the nth person at � = 0, while θD, θ̃s, θn

are their AoAs (measured with respect to the x-axis). S is the
total number of static paths, vn,m is the speed of the mth body
part of the nth person, ψT

n = cosφT
n + cosφR

n is a parameter
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Fig. 3. Multiple people are walking simultaneously in an area, where a WiFi
transmitter and a small number of receivers (placed behind a wall, without a
direct view of the people) are used to collect WiFi measurements. The black
arrows in the figure indicate the respective walking directions of the people.

related to the motion direction of the nth person (see Fig. 3
for definitions of φT

n and φR
n ), η(t, �) is additive noise, and λ

is the wavelength of the WiFi signal.
Traditional AoA estimation relies on phase measurements

across the receiver array. In our case, however, we only have
the received magnitude measurements. We next show how the
AoA information can be preserved in the magnitude measure-
ments as well. The squared magnitude of the received WiFi
signal can be calculated from (2), as shown in (3), at the bot-
tom of the page. In (3), P = |αD|2+∑

n
∑

m |αn,m|2+∑
s |α̃s|2

denotes the total power of the signal, ψA
n = cos θD − cos θn

is the difference between the cosine of the AoA of the direct
path and the cosine of the AoA from the nth person, ψ̃A

s =
cos θD−cos θ̃s is the difference between the cosine of the AoA
of the direct path from Tx to the Rx and the cosine of the AoA
from the sth static object, and η′(t, �) is additive noise. Since
the Tx and the Rx are close to each other, the direct path from
Tx to Rx will be much stronger than the other reflected paths
(i.e., |αD| � |αn,m| and |αD| � |α̃s|). Hence, the first three
terms in (3) dominate the rest of the terms, which can then be
neglected. Furthermore, by subtracting the temporal mean of
the received signal at each of the receiver antennas (which can
be easily implemented in practice), all the time-independent
terms of (3) are zeroed out. More specifically, after subtract-
ing the temporal mean, the squared magnitude of the received
signal can be approximated as

cmov(t, �) = |c(t, �)|2 − Et{|c(t, �)|2}

≈
N∑

n=1

∑

m

2|αDαn,m| cos

(
2π

(
ψA

n + vn,mψ
T
n t

)

λ
+ μ

)

+η′(t, �) (4)

where μ = ∠αD − ∠αn,m, and Et{.} denotes the temporal
mean of the argument. The first term in (4) is a superposi-
tion of N terms, each of which corresponds to one of the
moving persons, and contains a combination of sinusoids
whose frequencies depend on the AoA of that person to the
receiver (ψA

n ) and the speeds of that person’s body parts
(vn,mψ

T
n ). This shows that cmov(t, �) carries vital information

about the AoAs of the reflected signals off of the walking
people.

By taking the 2-D Fourier Transform of cmov(t, �) with
respect to time t and distance �, we then have

C(fT , fD) =
∣∣∣∣
∫∫

cmov(t, �)e
−j 2π

λ (fT t+fD�)dt d�

∣∣∣∣

=
N∑

n=1

∑

m

|αDαn,m|δ
(

fT − vn,mψ
T
n , fD − ψA

n

)

+
N∑

n=1

∑

m

|αDαn,m|δ
(

fT + vn,mψ
T
n , fD +ψA

n

)
+ N◦

(5)

where fT is the temporal frequency, fD is the spatial frequency,
δ(∗, ∗) is the 2-D Dirac Delta function, and N◦ is the noise
floor.

It can be seen from (5) that each reflector in the operation
area results in 2 deltas in the 2-D spectrum C(fT , fD). By plac-
ing the Tx such that the AoA of the direct path from Tx to
Rx is zero (i.e., cos θD = 1), the values of ψA

n = 1 − cos θn

are restricted to the interval [0, 2], which is disjoint from the
range of values of −ψA

n [6]. Therefore, by constraining the
search space for ψA

n to [0, 2] (e.g., using only positive values
for fD), we obtain only one delta function for each reflector in
the area at (fT , fD) = (vn,mψ

T
n , ψ

A
n ) in the 2-D spectrum. For

the delta functions of the body parts of the same person, the
one with the largest coefficient corresponds to the strongest
reflecting part of the body, which is the torso. We refer to this
strongest delta of a person as a peak and denote its location
in the 2-D spectrum by (ψ̄T

n , ψ
A
n ). Fig. 4 shows an example

of a 2-D spectrum C(fT , fD) generated from WiFi measure-
ments collected using an 8-element antenna array in a real
experiment, where two people are walking simultaneously in
an area. The ground-truth AoAs of the two people are 90◦
and 125◦ (i.e., ψA

1 = 1 and ψA
2 = 1.57), respectively. It can

be seen that there are two peaks at (fT , fD) = (−25, 1) and
(fT , fD) = (54, 1.6) in the 2-D spectrum, which correspond to
the strong torso reflections of the two walking people.

|c(t, �)|2 = c(t, �)c∗(t, �) = P +
N∑

n=1

∑

m

2|αDαn,m| cos

(
2π

λ

(
ψA

n �+ vn,mψ
T
n t

)
+ ∠αD − ∠αn,m

)

+
S∑

s=1

2|αDα̃s| cos

(
2π

λ
ψ̃A

s �+ ∠αD − ∠α̃s

)
+

∑

(n,m)

∑

s

2|αn,mα̃s| cos

(
2π

λ

(
vn,mψ

T
n t + (cos θn − cos θ̃s)�

)
+ ∠αn,m − ∠α̃s

)

+
∑

s

∑

s′ �=s

α̃sα̃
∗
s′e

j 2π
λ
(cos θ̃s−cos θ̃s′ )� +

∑

(n,m)

∑

(n′,m′)
(n′,m′) �=(n,m)

αn,mα
∗
n′,m′e

j 2π
λ

(
(vn,mψ

T
n −vn′,m′ψT

n′ )t+(cos θn−cos θn′ )�
)

+ η′(t, �) (3)
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Fig. 4. Sample 2-D spectrum in the (fT , fD) domain for the case where
two people are walking simultaneously in an area, based on a 0.4-s WiFi
measurement. It can be seen that there are two peaks appearing in the 2-D
spectrum, corresponding to the strong torso reflections of the two walking
people.

Our new 2-D model can additionally detect whether a per-
son is walking toward or away from the link. As can be seen
from Fig. 3, the reflected signal from a person walking away
from the link has a negative ψT , while that from a person
walking toward the link has a positive ψT . The peak location in
the 2-D spectrum then indicates the walking direction, as can
be seen in Fig. 4, where the first person (whose ψ̄T = −25) is
walking away from the link while the second person (whose
ψ̄T = 54) is walking toward it. Hence, even if two people
have the same AoA at the receiver array but are walking in
different directions, their reflections are separable in the 2-D
spectrum C(fT , fD). On the other hand, in the traditional 1-D
signal model of (1), the peak corresponding to a walking per-
son appears twice, at ±vmψ

T at each time instance, which
makes the motion direction of the walking person ambiguous,
unless the information of all the subcarriers are exploited.

Based on the properties of the Fourier Transform, we sum-
marize the following properties about the shape of C(fT , fD)
in the fD dimension.

1) The width of a peak in the fD dimension is inversely pro-
portional to the length of the Rx antenna array. Thus, to
increase the resolution (or separability) of the measure-
ments in the AoA domain, one can increase the length
of the array.

2) Based on the Nyquist sampling theorem, the maximum
allowable antenna separation in the antenna array is
determined by the maximum possible ψA. More specif-
ically, the maximum antenna separation is given by:
�� = λ/(2ψA

max). Therefore, if the AoAs of the reflected
signals from the walking people span the range of
[0, 180◦], the maximum allowable antenna separation
is λ/4.

Let Ct(fT , fD) be the 2-D spectrum generated from a time
window of the WiFi measurements from t to t + Twin.
We then measure the temporal sequence of peaks appear-
ing in consecutive snapshots of .Ct(fT , fD)|t=0:�t:Tmax (where
Tmax is the total measurement duration and �t is the
time step) to keep track of the AoAs of different people,
as we show next.

B. AoA Tracking

Given the 2-D spectrum Ct(fT , fD) generated from a time
window of the received WiFi signal from t to t + Twin, we

Algorithm 1 AoA Tracking Algorithm
Input: Set of peaks in the 2-D spectrum over time: 
t|t=0:�t:Tmax
Output: Set of active tracks and finished tracks: A, F

1: Initialize the sets of active tracks A, potential tracks P , and
finished tracks F to empty sets: A = ∅, P = ∅, F = ∅.

2: for t = 0 : �t : Tmax do
3: Find the association between the current set of peaks 
t in the

2-D spectrum Ct(fT , fD) and the current active and potential
tracks using the JPDAF.

4: For each track T ∈ A ∪ P that is associated with a peak in

t, update its ψ̄T and ψA using the associated peak.

5: For each peak ψj ∈ 
t that is not associated with any active
or potential tracks in A ∪ P , initialize a new potential track
Tnew with ψj and add it to the current set of potential tracks:
P = P ∪ {Tnew}.

6: for each T ∈ P do
7: if the potential track T meets confirmation criteria then
8: T is confirmed as an active track and is then moved to

the set of active tracks: P = P\T , A = A ∪ {T }.
9: else

10: T is a false alarm and is then deleted from the set of
potential tracks: P = P\T .

11: end if
12: end for
13: for each T ∈ A do
14: if the active track T meets the termination criteria then
15: remove T from A and add it to the set of finished tracks:

A = A\T , F = F ∪ {T }.
16: end if
17: end for
18: end for

extract a set of Jt peaks located at ψj = (ψ̄T
j , ψ

A
j ), for j ∈

{1, . . . , Jt}. We denote the set of peak locations at this time
instance by 
t = {ψj:j = 1, . . . , Jt}. In order to separate and
extract the part of the received signal that is relevant to each
of the walking people in the area, the system needs to perform
two main tasks as described as follows.

1) AoA Track Management: A track T is defined as a tem-
poral sequence of peaks in the 2-D spectrum resulting from the
same moving person. As we do not assume that the system has
any prior knowledge about the number of people in the area
or when each person starts walking, it is necessary to auto-
matically initialize a track when a new person starts walking
in the area, or terminate a track when the corresponding per-
son stops walking or leaves the area. We refer to a track for
a person currently walking in the area as an active track, a
newly initialized but not yet confirmed track (due to the pos-
sibility of false alarm) as a potential track, and a terminated
track for which the person does not walk in the area anymore
as a finished track.

2) AoA Data Association: At each time instance, given a
set of active and potential tracks and the set of new peaks in
the 2-D spectrum, the system needs to automatically associate
each peak with the track of the corresponding walking person.

In order to perform these tasks, we propose an AoA tracking
algorithm, as described in Algorithm 1. The algorithm takes
as input the measurement sequence, in the form of the set
of peaks in the 2-D spectrum over time. We then utilize the
JPDAF to associate the peaks with the current active or poten-
tial tracks (lines 3 and 4 in Algorithm 1), with filter parameters

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 29,2021 at 18:27:21 UTC from IEEE Xplore.  Restrictions apply. 



6968 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 8, APRIL 15, 2021

Fig. 5. Sample output of the AoA tracking algorithm. Measurements of
person A are first detected at t = 2.2 s (blue solid curve). Measurements of
person B are first detected at t = 5.1 s (red dashed curve). Both tracks remain
active till the end of the experiment.

pertaining to the association process estimated from the train-
ing measurements. We refer the reader to [22] for more details
on JPDAF. During the association, a measured AoA closer (in
terms of Euclidean distance) to the current AoA of a track is
more likely to belong to that track, as compared to an AoA
that is farther away.

Once the JPDAF associates the peaks/measurements to the
current set of tracks, our proposed algorithm enforces the
following set of rules for track management.

1) Initialization Criterion (Line 5 in Algorithm 1): A poten-
tial track is initialized if a peak in the 2-D spectrum is
not associated with any active or potential tracks at the
current time instance.

2) Confirmation Criterion (Line 7 in Algorithm 1): A
potential track is confirmed active if it is associated with
some peaks in the 2-D spectrum for more than a per-
centage pTC of the time during the first TC seconds after
initialization. Otherwise, it is considered as a false alarm
and discarded.

3) Termination Criterion (Line 14 in Algorithm 1): An
active track is finished if it is not associated with any
peaks for more than a percentage pTF of the time during
the past TF seconds.

Then, the total number of people in the area, N, will be
estimated as the total number of active and finished tracks at
the end of the experiment. We can then obtain the AoA time
series of the nth person: θ̂n(t) = cos−1(1 − ψA

n (t)), where
ψA

n (t) is the time series of ψA in the nth track Tn. Fig. 5
shows a sample output of the AoA tracking algorithm for a
40-s experiment of two people walking. The track of person
A is initialized at t = 2.2 s. The AoA time series of person A
is shown by the blue solid curve in Fig. 5. Similarly, the track
of person B is initialized at t = 5.1 s, with the correspond-
ing AoA time series shown by the red dashed curve in the
figure. For each track, the AoA sequence θ̂n(t), n = 1, . . . ,N,
is utilized to generate the spectrogram that only contains the
gait information of the corresponding person, isolated from
the signals of the other walking people, as we show next.

C. Spectrogram Generation and Segmentation

Given the time series of the AoA of the reflected path off
of a walking person, we project the received signal at the
Rx array, cmov(t, �), to the AoA of this person. The pro-
jected signal contains only the reflections from this person,
and thus makes it possible to analyze this person’s gait and

perform identification. We then perform time-frequency anal-
ysis on the projected signal. More specifically, given ψ̂A

n (t),
the spectrogram for the nth walking person is generated by

Sn(t, f )

=
∣∣∣∣
∫

τ

(∫

�

cmov(τ, �)e
−j 2π

λ
ψ̂A

n (τ )�d�

)

︸ ︷︷ ︸
projecting the signal

to the nth person’s AoA

χ(τ ; t)e−j2π f τdτ

∣∣∣∣
2

(6)

where ψ̂A
n (t) = 1 − cos θ̂n(t) and χ(τ ; t) is a time window

function starting at time t. In other words, the measured sig-
nal cmov(τ, �) across all the Rx antennas as a function of time
is first projected to the nth person’s AoA, using the operation
inside the inner brackets in (6). This results in a 1-D sig-
nal (as a function of time) which contains only the reflected
signal off of the nth person. This 1-D signal is then time-
windowed using a window χ(τ ; t) and the frequency content
of the time-windowed signal (which contains that person’s gait
information) is obtained using FFT. Different window func-
tions χ(t) result in different favorable characteristics in the
spectrogram. For instance, as shown in the literature, a rectan-
gular window [in which case Sn(t, f ) is the short-time Fourier
transform of the projected signal] produces a spectrogram that
has clearer information on the speeds of the limbs, whereas the
Hermite window functions produce spectrograms with better
time-frequency resolution [10]. As such, we utilize a multiwin-
dow spectrogram by additively combining the spectrograms
generated using different window functions, as follows:

Sn(t, f )

=
K∑

k=0

∣∣∣∣
∫

τ

(∫

�

cmov(τ, �)e
−j 2π

λ
ψ̂A

n (τ )�d�

)
χk(τ ; t)e−j2π f τdτ

∣∣∣∣
2

where χ0(τ ; t) is the rectangular window function starting at
time t, and χk(τ ; t) is the kth Hermite function [14].

As an illustrative example for our spectrogram generation
method, Fig. 6 (left) shows the spectrogram of the overall
measured WiFi signal squared magnitude in a real experiment
when two people are walking simultaneously in an area. It
can be seen that the gait signals of the two people severely
interfere with each other, making it extremely challenging
to identify them. On the other hand, by utilizing our AoA
tracking and spectrogram generation approach, we obtain two
separate spectrograms [Fig. 6 (right)], where each spectrogram
carries the gait information of only one individual.

When a person is walking toward/away from the WiFi link,
the value of ψT is approximately constant when the Tx and
Rx are close to each other. Hence, the frequency compo-
nents of the spectrogram Sn(t, f ) directly correspond to the
speeds of different body parts of the nth person [see (5)] and
we do not have to consider the walking route to compensate
for ψT .1 Furthermore, in our previous work on cross-modal
person identification [10], we have shown that the most infor-
mative segments of a spectrogram are those that correspond
to the person walking away from the WiFi link as the reflec-
tion from the back of the body results in a cleaner signal. We

1See [10, Secs. 4 and 8] for more detailed discussions on ψT .
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Fig. 6. (Left) Sample spectrogram of the received WiFi signal when two
people are walking simultaneously in an area, showing that their gait signa-
tures are mixed up in the overall signal. (Right) The output of our 2-D signal
processing pipeline, showing two separate spectrograms each carrying the gait
information of only one person.

then utilize the spectrogram segmentation algorithm in [10]
to extract these informative segments (where ψT is constant
and the person is walking away from the link) from the spec-
trogram of the entire walking duration of a person, with the
same algorithm parameters as in [10]. The subjects can walk
on any general path. The segmentation algorithm will then
extract only the informative segments of each person’s walk.
Note that there can be more than one such informative seg-
ments from a person’s track, depending on the duration and
the path.

In case the reflected signals from two (or more) people are
not separable for a long time, e.g., due to them always walking
very close to each other, a corresponding extracted spectro-
gram segment could contain the mixed gait information of
both people. Such segments, which are not useful for iden-
tification, can be automatically detected and removed, since
their energy spread over frequency is very large due to the
combined gait patterns. More specifically, we consider the
energy spread of a segment obtained during operation to be
abnormally large if it is 20% more than the maximum energy
spread observed in the training spectrograms generated from
single-person walking scenarios. The energy spread of a spec-
trogram is measured by the 80th percentile of the difference
between the 60th and 40th percentiles of the frequency distri-
bution across time. Additionally, when two people are walking
very closely, it is also possible that a spectrogram segment
of one person gets dominated by the gait information of
the other person (e.g., due to a possibly stronger reflection
from the person who is close-by). Such a segment can be
automatically detected and discarded, based on its very high
similarity to the segments of another person/track. The final
remaining spectrogram segments are then considered as the
valid segments to be used for identification.

V. FEATURE EXTRACTION AND PERSON IDENTIFICATION

Given a spectrogram segment of a person’s walk derived
from the separated WiFi signal, our proposed system identifies
this person by comparing this query segment with a candidate
spectrogram. More specifically, we extract several features
from both the query segment and the candidate spectrogram,
and then compute a set of distances between them. Given
these feature distances, we train a neural network to determine
whether a pair of query segment and candidate spectrogram

belong to the same person. In this way, the neural network is
able to identify people who have not been seen during train-
ing. Furthermore, if multiple valid segments are obtained from
a person’s track, we can fuse the neural network’s decisions
on these segments via a maximum likelihood approach.

A. Spectrogram Features and Distances

We extract 10 key features from a spectrogram to capture
a person’s gait. More specifically, we look at the frequency
and time dimensions of the spectrogram, which carry differ-
ent types of gait information that are useful for identification.
The frequency dimension carries information about the speeds
of different body parts, as shown in (4). We use the fol-
lowing features to capture various aspects of the frequency
information.

1) Frequency Distribution: This feature is obtained by aver-
aging the spectrogram over time. This feature captures
the average distribution of the frequency components,
i.e., the speed distribution of the body parts, during the
person’s walk.

2) Frequency Distribution in Four Gait Phases: These are
the time averages of the spectrogram for each of the 4
phases of the gait cycle [8]. This feature provides more
detailed information on the speed profile of the body
parts of the walking person in each gait phase.

3) Average Leg and Torso Speeds: We calculate the aver-
ages of the torso speed curve and the leg speed curve,
respectively, over time. These speed curves can be
extracted from the spectrogram using the method in [8].

In addition, we use several time-domain features to cap-
ture the temporal information on a person’s gait (e.g., the gait
cycle) as follows.

1) Average Autocorrelation: Given a spectrogram, we com-
pute the autocorrelation across time (with a maximum
lag of 2 s) for each frequency bin. We then compute
a weighted sum of the autocorrelation curves of the
frequency bins, based on the energy distribution over the
frequencies. This autocorrelation-based feature captures
the periodic pattern of the speed profile of the person’s
body during walking.

2) Autocorrelation of Percentile Curves: Given a spectro-
gram, we extract the 50th and 70th percentiles of the
frequency distribution over time. We then compute the
autocorrelation of these two percentile curves, respec-
tively. These features also capture the periodicity of the
gait and are more robust to noise.

In order to quantitatively compare the similarity between the
query spectrogram segment and the candidate spectrogram, for
each of the 10 spectrogram features, we compute the distance
between the corresponding features of the query spectrogram
segment and the candidate spectrogram, which results in a vec-
tor of 10 feature distances. More specifically, for the frequency
distributions, we use the Kullback–Leibler Divergence (KLD)
as the distance metric, which is commonly used to compare
distributions. For the autocorrelation-based features, we use
the cosine similarity, which compares both the values and pat-
terns of the autocorrelations. For the average speed features,
we use the Euclidean distance.
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B. Identification

Given a pair of a query spectrogram segment and a can-
didate spectrogram, we compute the 10 feature distances as
described previously. We then utilize a simple fully connected
neural network, which has 1 hidden layer with 30 units, to
combine these distances into a binary identification decision.
More specifically, the neural network takes as input a 10-D
vector consisting of the feature distances and outputs a binary
classification decision indicating whether or not the person of
the query segment from the multiple people scenario is the
same as the person of the candidate spectrogram. The neu-
ral network is trained on spectrogram pairs of subjects and
locations disjoint from those of the test set (more details on
the training set in Section VI-C). During training, these 10
distances between a pair of spectrograms of the training sub-
jects are fed into the neural network, along with a binary label
indicating whether these two spectrograms belong to the same
person. A positive label of 1 indicates that the pair of spec-
trograms belong to the same person and a negative label of 0
indicates otherwise. Utilizing the softmax operation, the neural
network outputs a scalar soft decision s ∈ [0, 1] that resem-
bles the probability of declaring a same-person spectrogram
pair given the input, i.e., s = p(1|input). The neural network
is trained using the cross-entropy loss and does not suffer from
overfitting due to its simple structure. After training, we esti-
mate the distribution of the values of the output s on all the
positive-label training data, p(s|1), as well as its distribution
on all the negative-label training data, p(s|0). We then estimate
a Likelihood Ratio function: LLR(s) = p(s|1)/p(s|0).

During the testing phase, we first compute the distances
between the previously described 10 features of the query
segment (a valid spectrogram segment of a person among
the group of walking people) and the candidate spectrogram.
This 10-D distance vector is then fed into the trained neural
network, for identifying whether or not the query spectro-
gram segment and the candidate spectrogram belong to the
same person. The neural network outputs a soft decision s,
for which we calculate LLR(s) using the LLR function esti-
mated from the training set. If LLR(s) > 1, a positive binary
decision is declared that the person of the query spectro-
gram segment is the same as the person of the candidate
spectrogram. Otherwise, the system declares that the query
segment and the candidate spectrogram belong to two different
people.

C. Multisegment Decision Fusion

As previously discussed in Section IV-C, there can be
multiple valid spectrogram segments for the same track/person
in an experiment. Let Gn be the number of valid segments
for the nth person from a group of walking people. Let
si, i ∈ {1, . . . ,Gn}, be the soft decision outputs when the
ith valid segment is tested against the candidate spectro-
gram. To optimally combine these soft decisions, in terms of
maximum likelihood, we adopt the following decision rule:

p(s1, . . . , sGn |1)
1
≷
0

p(s1, . . . , sGn |0). Furthermore, assuming

independent decisions by the neural network on the different

Gn inputs, the decision rule becomes:
∏Gn

i=1 LLR(si)
1
≷
0

1,

where the query person is declared to be the same as the one
of the candidate spectrogram if the product of the LLR values
corresponding to the multiple segments is greater than 1.

VI. EXPERIMENTAL SETUP AND DATA COLLECTION

In this section, we discuss our experiments used to validate
our proposed system.

A. Experiment Setup

For the WiFi data collection, we use laptops equipped with
the Intel 5300 WiFi Card to act as WiFi transmitter and
receiver. For the transmitter, we use a tripod-mounted antenna
connected to one port of the Intel card in one laptop, which
transmits 1000 WiFi packets per second on WiFi channel 36
(with a center frequency of 5.18 GHz). For the receiver array,
we use 4 laptops. More specifically, we use 8 antennas in a
linear placement (with antenna separation of λ/4, except for
one area, for which we use λ/2 separation), mounted to a
tripod 1 m away from the Tx and connected to the ports of
the Intel WiFi cards of 4 laptops, where each laptop provides
2 antenna ports. Since we rely only on the CSI magnitude
measurements of the received WiFi signals, no calibration or
synchronization between the multiple NICs is needed. This
also facilitates increasing the antenna array length if needed.
The CSI measurements of the receiver laptops are logged using
Csitool [23] and processed offline using our proposed algo-
rithm in Section IV. For spectrogram generation, we use a
time window of length Twin = 0.4 s and a time shift of 4 ms.

The Intel 5300 WiFi cards report the CSI measurements on
30 different subcarriers. We utilize the extra measurements in
the subcarrier domain to denoise the signals. More specifically,
we utilize principal component analysis (PCA) to find the top 5
PCA components of the subcarrier measurements, and sum up
their spectrograms in order to generate the denoised spectro-
gram. As opposed to traditional PCA denoising [8], where the
measurement on each subcarrier is a 1-D temporal signal, the
measurement on each subcarrier in our case is a 2-D spatiotem-
poral signal c(t, �). Hence, we utilize the multidimensional
PCA to find the top 5 PCA components [24].

For the AoA track management criteria (discussed in
Section IV-B), we set the parameters as follows: pTC = 50%,
TC = 2, pTF = 90%, and TF = 10 s.

B. Training Experiments

Training Subjects: We have recruited a total of 13 train-
ing subjects (ten male subjects and three female subjects)
to collect data for training the neural network described in
Section V-B. The training subjects have an average walk-
ing speed of 1.22 m/s (standard deviation: 0.19 m/s) and an
average gait cycle of 1 s (standard deviation: 0.1 s).

Training Areas and Data Collection: The training data are
collected in the two areas shown in Fig. 7(a) and (b), in a
line-of-sight (non-through-wall) setting. For each training sub-
ject, we collect nine WiFi measurements of their walk in each
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Fig. 7. (a) and (b) WiFi training areas: We collect the WiFi measurements of the training subjects in a line-of-sight setting in these two areas. (c) Test
candidate area: We collect the measurements of the test subjects in this hallway area, in a line-of-sight setting, to be used for the candidate spectrograms.
(d)–(g) Test areas: We conduct the test experiments in these four behind-wall areas (lounge, conference room, parking lot, and outdoor area), which represent
a variety of real-world scenarios. The WiFi transmitter and receiver are placed behind the wall in each area, as shown by the black arrow.

of the two training areas. For each measurement, the train-
ing subject walks away from the link for about 10 m. We
then transform each WiFi measurement into a corresponding
spectrogram, which results in a total of 234 spectrograms for
training.

Training Data Set: As our neural network of Section V-B
is designed to predict whether a query spectrogram segment
and a candidate spectrogram belong to the same person, we
construct the training set in the form of spectrogram pairs.
More specifically, based on the 234 training spectrograms, we
generate a total of 27 261 spectrogram pairs. For each pair,
we calculate the distances between the corresponding features
of the two spectrograms and use this distance vector as one
training sample. A training sample is given a positive label
if the pair of spectrograms belong to the same training sub-
ject and a negative label otherwise. Since we have different
numbers of positive and negative training samples, we utilize
oversampling to obtain a balanced training set [25].

C. Test Experiments

Given the WiFi measurements when a person was walking
in an area (referred to as the candidate person), and the WiFi
measurements when multiple people are walking behind the
wall in another area (test area), our system can separate the
gait information of each person in the test area and determine
if he/she (referred to as the query person) is the same as the
candidate person. Both query and candidate people were not
seen during training. In this part, we describe the details of our
evaluation setup, including the test subjects, the data collection
of the candidate spectrograms, and the test experiments.

Test Subjects: Our test set has 6 subjects (5 male subjects
and 1 female subject), none of whom is part of the training
set. Their heights range from 162 cm to 186 cm. They have an
average speed of 1.31 m/s (standard deviation: 0.27 m/s) and
an average gait cycle of 1.01 s (standard deviation: 0.15 s).

Candidate Spectrograms: We collect 10 WiFi measurements
for each test subject in the area of Fig. 7 (c) in a line-of-sight
(non-through-wall) setting to serve as candidate spectrograms.
For each measurement, one test subject walks away from the
link for about 10 m. The WiFi measurements are transformed

into spectrograms, which then serve as the candidate spectro-
grams for identification. As a WiFi measurement in this setting
only involves one person walking away from the link, each
candidate spectrogram translates into one valid segment that
continuously spans the entire walking duration. Thus, instead
of using the term “candidate spectrogram segment”, we use
the shortened form “candidate spectrogram” in this article.

Test Experiments: We conduct the test experiments in four
different test areas, as shown in Fig. 7(d)–(g), which are dis-
joint from both the training areas of Fig. 7(a) and (b) and the
area where the candidate spectrogram was generated. These
test areas represent several real-world scenarios with a variety
of area size, geometry, and clutterness. More specifically, the
area of Fig. 7(d) is a lounge area with couches and coffee
tables. The area of Fig. 7(e) is a conference room with sev-
eral tables and chairs. The area of Fig. 7(f) is located inside
a parking structure. The area of Fig. 7(g) is a roofed outdoor
area near a building. We conduct a total of 92 test exper-
iments in these test areas, where the WiFi Tx and Rx are
placed behind walls, with no direct view of the walking sub-
jects. The walls consist of wooden panels that attenuate the
wireless signals by 4 to 5 dB, which is similar to or larger
than those of common nonconcrete and nonmetal building
materials [26]. It is worth noting that wood is used for the
walls of 90% of the residential and small commercial buildings
in the U.S. [27].

First, consider the test experiments with two people (total of
80 experiments). In each such experiment, 2 of the 6 test sub-
jects are randomly selected to walk simultaneously in the area.
Each subject then walks casually on general paths. During
the experiment, the AoAs of the walking subjects are tracked
at the receiver, and their respective individual spectrograms
are separated and extracted from the aggregate WiFi signal as
described in Section IV. The informative and valid segments
of the spectrograms of the tracks are automatically detected as
discussed in Section IV-C, which are then used as the query
segments. In the test experiments with three people, three
of the six test subjects are randomly selected in a total of
12 experiments. The AoAs of the three walking people are
then tracked to extract individual spectrograms, whose valid
segments then serve as the query segments.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 29,2021 at 18:27:21 UTC from IEEE Xplore.  Restrictions apply. 



6972 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 8, APRIL 15, 2021

TABLE I
SEGMENT-BASED AND TRACK-BASED IDENTIFICATION ACCURACIES OF

OUR PROPOSED SYSTEM ON THE TEST SET, IN 4 DIFFERENT

THROUGH-WALL AREAS. THE LAST ROW SHOWS THE AVERAGE

PERFORMANCE OVER ALL THE AREAS

Test Data Set for the Case of Two People: This test set
consists of the test subjects’ candidate spectrograms and the
query spectrogram segments from the test experiments when
two people were present, in the form of query-candidate pairs.
More specifically, each test pair consists of a candidate spec-
trogram and a query spectrogram segment, and is assigned a
positive label if they belong to the same person and a negative
one otherwise. Our test set has in total 15 792 such test pairs.

Since there can be more than one query spectrogram seg-
ment obtained from the same person’s track in an experiment,
we also look at the test cases where the system identifies
whether the person of a track is the same as the person of
a candidate spectrogram, by fusing the decisions of all the
valid segments from this track as discussed in Section V-C. In
this setting, we have a total of 4892 pairs of a query track and
a candidate spectrogram. We refer to the first setting where
each query is one single segment as the segment-based setting
and the second setting where the query consists of all the valid
segments from a track of a person as the track-based setting.

Test Data Set for the Case of Three People: For the test
experiments with three people walking simultaneously, the cor-
responding test set has 2416 query-candidate test pairs in the
segment-based setting and 1512 test pairs in the track-based
setting.

VII. SYSTEM EVALUATION

In this section, we present extensive experimental evalua-
tions of our proposed system in four different through-wall
areas (see Fig. 7), and for both cases of two and three peo-
ple in the area. Furthermore, the subjects and areas in the
test experiments have never been seen during the training
phase.

A. Evaluation Criteria

We evaluate our proposed system by using pairs of a query
spectrogram segment and a candidate spectrogram. Given
such a test pair, the system identifies whether they belong
to the same person or not. The resulting binary classifica-
tion accuracy is used as the evaluation metric. As we have
different numbers of test pairs with positive (same-person)
labels and negative (different-people) labels, we report the bal-
anced classification accuracy, i.e., the average of the respective
accuracies over the same-person and different-people pairs.

Fig. 8. ROC curve for identification in the track-based setting.

Fig. 9. Track-based identification accuracy as a function of the angular
separation between the subjects’ tracks in the two-people experiments.

B. Evaluation With Two Walking People

We evaluate our proposed system on our extensive test set,
as described in Section VI-C, which contains only areas and
subjects not seen during training. The results are summarized
in Table I. For the track-based metric, our proposed system
achieves identification accuracies of 81%, 82%, 86%, and
78% for the four areas, respectively, with an overall average
accuracy of 82%. This indicates that given the spectrogram
segments of a person’s track in an experiment, our system is
able to correctly identify whether this person is the same as
the test subject of a candidate spectrogram for 82% of the
time. As for the segment-based setting, our system achieves
identification accuracies of 79%, 83%, 84%, and 77% for the
4 areas, respectively, with an overall average of 81%.

Finally, we show the receiver operating characteristic (ROC)
curve for the track-based identification in Fig. 8. It can be
seen that the ROC curve is significantly above the 45-degree
line. In particular, the area under curve (AUC) is 0.89 in
the track-based setting (and 0.88 in the segment-based set-
ting), indicating a good performance. The AUC is equal to
the probability that a randomly drawn positive sample has a
higher score [e.g., the LLR(s) in Section V-B] than a randomly
drawn negative sample.2 It should be noted our threshold
is automatically given by the neural network as described
in Sections V-B and V-C. These results further confirm the
performance of our system.

C. Angular Separation

We analyze the system’s performance with respect to the
angular separation between two walking people (difference
between their AoAs) in the test areas. Fig. 9 shows the aver-
age identification accuracy as a function of the angle. It can
be seen that even when the angle between the two people is

2See [28] for more details on ROC and AUC.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 29,2021 at 18:27:21 UTC from IEEE Xplore.  Restrictions apply. 



KORANY et al.: MULTIPLE PEOPLE IDENTIFICATION THROUGH WALLS USING OFF-THE-SHELF WiFi 6973

as small as 20◦,3 our system still performs robustly with an
accuracy similar to those when the angular separation is larger.

D. Evaluation With Three Walking People

For the three-people test experiments, our proposed system
achieves overall segment-based and track-based identification
accuracies of 80% and 83%, respectively, averaged over the
4 through-wall test areas. It can be seen that even with three
people simultaneously walking in the area, our system still
achieves a good identification accuracy.

Overall, these extensive test results show that our proposed
system can successfully perform identification when multiple
people are simultaneously walking in the area, even though the
people and areas have never been seen during training, and in
a through-wall setting. They thus demonstrate the efficacy and
applicability of our system in various real-world scenarios.

VIII. DISCUSSION AND FUTURE EXTENSIONS

In this section, we provide discussions on various aspects of
our proposed framework, as well as possible future extensions.

Gait as a Unique Signature: While some studies suggest
that gait identification errors are inevitable for large groups
(e.g., 100 people) [29], other studies have shown that RF-
based gait identification can be effective for small to medium
group sizes (e.g., up to 50 people) [8], [16]. It should be noted,
however, that these papers have the same subjects in training
and test, which makes the learning problem considerably sim-
pler. They nonetheless show that gait-based identification has a
good potential for applications that involve a small to medium
pool of subjects (e.g., in a residential or an office setting).

Resolution of Peaks in the AoA Domain: The maximum
number of people that the system can simultaneously detect
is determined by the resolution (or width) of a peak in the
AoA domain, which depends on length of the RX array. In
our experiments, we used an antenna array of total length 2λ,
resulting in a first-null peak resolution of 0.23, i.e., two peaks
are completely separated in the AoA domain if the difference
of their ψA values is greater than 0.23. This resolution can
further be improved by extending the array, which does not add
any synchronization/calibration overhead since we use only the
magnitude of the received WiFi signal. Different processing
techniques (e.g., MUSIC) can also improve the resolution of
the peaks, at the expense of much higher computational costs.

Increasing the Number of People in the Area: While we
have tested our system for up to three people walking simul-
taneously in an area, the proposed approach can be used for
a larger number of people. The maximum number of people
that the system can identify is determined by the resolution
of a peak in the AoA domain, which depends on the length
of the RX antenna array, as discussed above, as well as how
crowded the area gets, how close to each other the people
walk, and their walking directions. For instance, in our cur-
rent setup, the AoA resolution is 10 degrees. This means that

3Note that the minimum angular separation resolvable by the system
depends on the length of the Rx array. For instance, given our current hard-
ware setup, the system will not be able to fully resolve two angles that are 10◦
(or less) apart. See Section VIII for a detailed discussion on AoA resolution.

if two people consistently walk with AoA separation of less
than 10 degrees in the same direction, our current setup can-
not separate them (if they walk in different directions, then
it is still separable). As such, as long as the area is large
enough such that each person’s AoA is not consistently less
than 10 degrees from someone else who is going in the same
direction, then the current system is able to identify all the
people. As the area gets more crowded for its size, then one
can increase the length of the array to allow for a better AoA
resolution, which would allow our system to identify peo-
ple even if they are consistently walking close to each other
in the same direction. One can also utilize more resources,
such as positioning more transceivers in different locations in
the space in order to capture different views of the people,
and/or utilizing different frequency subcarriers to capture the
time-of-flight data.

Tracks of the Walking People: In Section IV-C, we have uti-
lized the fact that when people move away/toward the link, ψT

is constant, excluding the need to directly estimate it via track-
ing people’s routes. In the rare case when no such segment is
detected in the entire spectrogram (e.g., if the person’s whole
walking path is parallel to the link), the constantly varying
value of ψT can be estimated by existing RF-based tracking
systems, and then incorporated in the proposed approach to
identify a person walking on any general track.

Impact of Misalignment of the Rx Array: When the Rx
array is rotated by θe, the AoA of a person changes from
θ to θ + θe, where θ is the AoA before the rotation. The
separability of the reflected signals from two people depends
on the difference between their respective ψA values, where
ψA = cos(θe)−cos(θ+θe). As such, given a small θe, the sep-
aration between two people in the 2-D spectrum can slightly
increase or decrease due to the nonlinear cosine operation.
For instance, consider two people whose original AoAs are
120◦ and 150◦. When the array is rotated by 5◦, the sepa-
ration between their ψA values decreases from 0.37 to 0.33.
Note that given our current hardware setup, the two people’s
signals are fully separable in the 2-D spectrum as long as their
ψA values are at least 0.23 apart. Our system is also robust
to small interantenna spacing errors, since they only slightly
affect the width of the main beam and the side lobe levels,
but not the location/AoA of the main beam [30].

IX. CONCLUSION

In this article, we proposed a gait-based identification
system that can, for the first time, identify multiple simul-
taneously walking people through walls, using CSI magnitude
measurements of a small number of off-the-shelf WiFi devices.
In order to do so, our system first estimates the AoA of
the reflected WiFi signals from the walking people, and uses
this information to separate their gait signatures. Given the
extracted signal of an individual person’s walk, our system
generates a spectrogram to capture the frequency-time features
of the gait for identification. We have extensively validated
our proposed system with 92 test experiments in four test
areas. In each experiment, two or three test subjects walk
simultaneously in an area. Overall, our system achieves an
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overall average accuracy of 82% in identifying whether the
person of a query data sample (extracted from a multiperson
walking experiment) is the same as the person of a candidate
spectrogram.
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