
Distributed Maximization of Submodular and Approximately
Submodular Functions

Lintao Ye and Shreyas Sundaram

Abstract— We study the problem of maximizing a submod-
ular function, subject to a cardinality constraint, with a set
of agents communicating over a connected graph. We propose
a distributed greedy algorithm that allows all the agents to
converge to a near-optimal solution to the global maximization
problem using only local information and communication with
neighbors in the graph. The near-optimal solution approaches
the (1−1/e) approximation of the optimal solution to the global
maximization problem with an additive factor that depends on
the number of communication steps in the algorithm. We then
analyze convergence guarantees of the proposed algorithm. This
analysis reveals a tradeoff between the number of communi-
cation steps and the performance of the algorithm. Finally, we
extend our analysis to nonsubmodular settings, using the notion
of approximate submodularity.

I. INTRODUCTION

In recent years, the analysis of large-scale networks has
received much attention from researchers, where the net-
works consist of a group of agents with different local
objective functions. For such networks, the goal is to design
a resource allocation method that operates in a decentralized
way with local communication and fast convergence to an
(approximately) optimal operating point. Scenarios where
the local objective functions depend on the entire resource
allocation vector are of particular interest. For such scenarios,
there is a vast literature on designing distributed algorithms
that guarantee convergence of the solution obtained by each
agent to an optimizer of the average of all the local objective
functions (e.g., [1]–[5] and the references therein).

Much of the existing work has been devoted to optimiza-
tion problems in the continuous domain, where the local
objective functions are convex. In contrast, settings with
(discrete) submodular objective functions have been less
explored (e.g., [6]–[8]). Nonetheless, the problem of max-
imizing submodular functions (subject to constraints) arises
in many different applications including, for instance, budget
allocation [9], sensor placement [10], sensor scheduling [11]
and influence maximization in social networks [12]. Thus, in
this paper we focus on scenarios in distributed optimization
where the local objective functions are submodular.

Related Work
In [6], the authors considered maximizing a discrete sub-

modular function subject to a general matroid constraint and
proposed a decentralized algorithm to solve this problem.
The algorithm relies on first lifting the local discrete sub-
modular functions to continuous domains and then applying

This research was supported by NSF grant CMMI-1635014. Lintao
Ye and Shreyas Sundaram are with the School of Electrical and Computer
Engineering at Purdue University. Email: {ye159,sundara2}@purdue.edu.

appropriate rounding schemes to the obtained solution. The
authors in [7] considered the scenario where a group of
agents sequentially maximize a submodular function. The
problem reduces to the canonical problem of maximizing
a submodular function subject to a partitioned matroid
constraint, which can be solved by greedy algorithms with
a 1/2 multiplicative approximation ratio [13]. In contrast,
we consider the setting where a group of agents maximize
a (global) submodular function (subject to a cardinality
constraint) in parallel using a decentralized (i.e., distributed)
greedy algorithm, which does not require any lifting or
rounding process.

Regarding the maximization of nonsubmodular functions,
the notion of approximate submodularity has been used
to provide performance guarantees for (centralized) greedy
algorithms applied to such problems (e.g., [14]–[16]). Here,
we aim to propose a distributed greedy algorithm that can
also solve such problems in a distributed manner.

Contributions

We propose a distributed greedy algorithm with a group
of agents communicating over a connected network, which
allows each agent to converge to within an additive factor of
the (1 − 1/e) approximation of the optimal solution to the
global optimization problem. This additive factor is a func-
tion of the number of the agents, the cardinality constraint,
properties of the local functions and design parameters in
the distributed greedy algorithm. In particular, the analysis
reveals a tradeoff between the performance of the algorithm
and the number of communication steps in the algorithm.
Finally, we extend our analysis to cases when the objective
function is approximately submodular.

Notation and terminology

The sets of integers and real numbers are denoted as Z and
R, respectively. For x ∈ R, let |x| denote its absolute value.
For a set S , let |S| denote its cardinality. Let 1n denote a
column vector of dimension n with all of its elements equal
to 1. For a matrix P ∈ Rm×n and a vector y ∈ Rn, let P ′

and y′ be their transposes, respectively. Let Pij denote the
element in the ith row and jth column of P . Let Pi denote
the ith row of P . The eigenvalues of P are ordered with
nonincreasing magnitude (i.e., |λ1(P)| ≥ · · · ≥ |λn(P)|).
Given two functions ϕ1 : R≥0 → R and ϕ2 : R≥0 → R,
ϕ1(n) is O(ϕ2(n)) if there exist positive constants c and N
such that |ϕ1(n)| ≤ c|ϕ2(n)| for all n ≥ N .

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7447-1/20/$31.00 ©2020 IEEE 2979

Authorized licensed use limited to: Purdue University. Downloaded on December 29,2021 at 21:57:37 UTC from IEEE Xplore. Restrictions apply.

II. PROBLEM FORMULATION

We first introduce the following definitions (e.g., [17]).
Definition 1: Given a ground set V , a set function f :

2V → R≥0 is said to be monotone nondecreasing if for all
A ⊆ B ⊆ V , f(A) ≤ f(B).

Definition 2: Given a set V , a set function f : 2V → R≥0

is said to be submodular if for all A ⊆ B ⊆ V and for all
v ∈ V \B, f({v} ∪A)− f(A) ≥ f({v} ∪B)− f(B).

Consider a set of n agents that communicate over a graph
to maximize a global objective function. Each agent can
be viewed as a node i ∈ N , {1, . . . , n}. Denote the
communication graph as G = (N , E), which is assumed
to be undirected and connected throughout this paper. An
edge (i, j) ∈ E , which is an unordered pair, indicates a
bidirectional communication between agents i and j, i.e.,
agent i can receive information from agent j at each time
step, and vice versa. Let Ni denote the set of neighbors of
agent i, i.e., Ni , {j ∈ N : (i, j) ∈ E}.

Definition 3: The diameter of a connected graph G =
(N , E) is given by d(G) = maxi,j∈N lij , where lij is the
length of the shortest path (i.e., distance) from i to j in G.

We now consider the scenario where each agent i ∈ N
has access to a local set function fi : 2V → R≥0 with
a cardinality constraint K ∈ Z≥1. The function fi(·) is
assumed to be monotone nondecreasing and submodular for
all i ∈ N .1 Meanwhile, we assume without loss of generality
that fi(·) is normalized such that fi(∅) = 0 for all i ∈ N .
The objective for the agents is to solve, in a distributed
manner (i.e., by repeatedly exchanging information only with
their neighbors), the following global optimization problem:

max
S⊆V,|S|≤K

f(S) = max
S⊆V,|S|≤K

1

n

n∑
i=1

fi(S), (1)

where f(S) , 1
n

∑n
i=1 fi(S), and K ∈ Z≥1.

Since the sum of monotone nondecreasing submodular
functions is monotone nondecreasing submodular, f(·) is
monotone nondecreasing submodular (with f(∅) = 0). Thus,
the global optimization problem (Problem (1)) is to maximize
a monotone nondecreasing submodular function subject to a
cardinality constraint. A (centralized) greedy algorithm has
been proposed to solve Problem (1) with a multiplicative ap-
proximation ratio of (1−1/e) [17]. Moreover, it was shown
in [18] that the greedy algorithm achieves the best possible
approximation ratio of any polynomial-time approximation
algorithm for Problem (1) in the centralized case if P6=NP.
This motivates us to extend the centralized greedy algorithm
to solve Problem (1) in the distributed case.

III. DISTRIBUTED GREEDY ALGORITHM

The main idea of the distributed greedy algorithm (Algo-
rithm 1) is as follows. Based on the centralized greedy algo-
rithm, the distributed greedy algorithm runs for K rounds in
total. Given a current set Sk (|Sk| = k) of selected elements
before the (k + 1)th (k ≤ K − 1) round of the algorithm,

1We will generalize our analysis to monotone nondecreasing nonsub-
modular functions later.

the (k+ 1)th round of the algorithm lets all the agents reach
consensus at an element s′ ∈ V \Sk (after a certain number of
communication steps) that maximizes (f({s′}∪Sk)−f(Sk))
with some additive error (suboptimality) and add s′ to Sk to
obtain Sk+1. After K rounds, all the agents obtain a set
SK (|SK | = K) that gives a solution to Problem (1) with a
suboptimality bound which we will discuss later.

Algorithm 1 Distributed Greedy Algorithm
Input: fi : 2V → R≥0, K ∈ Z≥1, G = (N , E)
Design parameters: W ∈ Rn×n, T ∈ Z≥1, T ′ = T + 1 +
d(G), ψ ∈ R≥0

Output: S̄K

1: k = 0, S̄0
i = ∅

2: while k ≤ K − 1 do
3: Calculate x0

i,v = fi({v}∪S̄ki)−fi(S̄ki), ∀v ∈ V \S̄ki
4: Stack x0

i,v into a vector x0
i ∈ R|V \S̄k

i |

5: for t = 0, . . . , T − 1 do
6: Update xt+1

i = wiix
t
i +
∑
j∈Ni

wijx
t
j

7: end for
8: Find xTi,vi∗ = maxv∈V x

T
i,v

9: Set ST+1
i = {v : xTi,v ≥ xTi,vi∗ − ψ}

10: for t = T + 1, . . . , T ′ − 1 do
11: Update St+1

i =
⋂
j∈Ni

Stj
12: end for
13: Find jmin = min{j : vj ∈ ST

′

i }
14: Update S̄k+1

i = {vjmin} ∪ S̄ki
15: k = k + 1
16: end while
17: S̄K = S̄Ki

Specifically, denote V , {v1, . . . , v|V |}. Each agent i ∈
N initializes a local variable S̄ki = ∅ with k = 0. In
the first round of the distributed greedy algorithm (with
k = 0), each agent i ∈ N starts with t = 0, and calculates
x0
i,v = fi({v}) − fi(∅) for all v ∈ V , where fi(∅) = 0.

In other words, each agent i ∈ N maintains a local variable

xti =
[
xti,v1 · · · xti,v|V |

]′
∈ R|V | at time step t = 0. Given

design parameter T ∈ Z≥1 of the algorithm, agent i first
updates xti (using xti and xtj for all j ∈ Ni) from time step
t = 0 to time step t = T . Then, agent i obtains a set ST+1

i

and maintains a local variable Sti . Given design parameter
T ′ ∈ Z≥1 of the algorithm, where T ′ > T + 1,2 agent i now
updates Sti (using Stj for all j ∈ Ni) from time step t = T+1
to time step t = T ′. At the end of the first round of the
distributed greedy algorithm (i.e., at t = T ′), all the agents
in N choose the same element s0 from ST

′

i and update S̄0
i as

S̄1
i = S̄0

i ∪{s0}. After finishing the first round, the distributed
greedy algorithm enters the second round (with k = 1).
Again, each agent i ∈ N starts with t = 0 and calculates

x0
i =

[
x0
i,vj1

· · · x0
i,vj|V1|

]′
∈ R|V1|, where V1 , V \S̄1

i =

{vj1 , . . . , vj|V1|
} and x0

i,v = fi({v} ∪ S̄1
i) − fi(S̄1

i) for all
v ∈ V1. Similarly to the first round of the distributed greedy

2We will explain the choice of T ′ in the algorithm later.

2980

Authorized licensed use limited to: Purdue University. Downloaded on December 29,2021 at 21:57:37 UTC from IEEE Xplore. Restrictions apply.

algorithm, agent i obtains the updated local variables xTi and
ST
′

i , which leads to the update of S̄1
i as S̄2

i = S̄1
i ∪ {s1},

where s1 is an element chosen from ST
′

i by all the agents
in N . The distributed greedy algorithm repeats the above
process for K rounds. Note from the above arguments that
for all k ∈ {0, . . . ,K − 1}, S̄ki = S̄kj for all i, j ∈ N .

Remark 1: As we will see in the following, our distributed
greedy algorithm has a consensus phase (with a limited
number of communications) among the set of agents in each
round of the algorithm. Similar consensus-based distributed
algorithms have been used in, for example, distributed task
allocation [19] and distributed Kalman filtering [20].

To implement Algorithm 1, we assume the following.
Assumption 1: The set N of agents has a synchronized

clock such that all the agents in N know the current values
of k ∈ Z≥0 and t ∈ Z≥1. Moreover, the agents in N know
the design parameters T and T ′ before running the algorithm,
where T, T ′,K ∈ Z≥1 and T ′ > T + 1.

We now describe (distributed) update rules for the agents
in N to update the local variables xti, S

t
i and S̄ki from

Algorithm 1, respectively. Consider the (k+1)th round of the
distributed algorithm, where k ≤ K − 1 (k ∈ Z≥0). Noting
that S̄ki = S̄kj for all i, j ∈ N , we denote S̄k = S̄ki .

First, we describe the update rule for xti ∈ R|Vk|, where
Vk , V \ S̄ki . Note that each agent i ∈ N initializes x0

i in
lines 3-4 of Algorithm 1 as

x0
i =

[
x0
i,vl1

· · · x0
i,vl|Vk|

]′
∈ R|Vk|, (2)

where x0
i,v = fi({v}∪ S̄ki)−fi(S̄ki) for all v ∈ Vk and Vk =

{vl1 , . . . , vl|Vk|
}. Since fi(·) is monotone nondecreasing for

all i ∈ N , we have x0
i,v ≥ 0 for all i ∈ N and for all v ∈ Vk.

Starting from time step t = 0 with x0
i , each agent i ∈ N

computes xt+1
i in line 6 of Algorithm 1 according to the

following update rule:

xt+1
i = wiix

t
i +

∑
j∈Ni

wijx
t
j , (3)

where agent i assigns a weight wij ∈ R to agent j for all
j ∈ Ni ∪ {i} and updates xt+1

i as a weighted average of
xtj from j ∈ Ni ∪ {i}. Denote W ∈ Rn×n as the weight
matrix (or mixing matrix) such that Wij = wij for all
i, j ∈ N . We assume that the weight matrix W satisfies the
following assumptions, which are standard in the distributed
optimization literature (e.g., [5]).

Assumption 2: The weight matrix W ∈ Rn×n (associated
with G = (N , E)) is assumed to satisfy: (1) Wij ∈ R≥0 for
all i, j ∈ N and Wij = 0 if (i, j) /∈ E ; (2) W1n = 1n; (3)
W = W ′ and (4) µ(W) , max{λ2(W),−λn(W)} < 1.

Remark 2: Assumption 2.(1)-(3) ensure that W is sym-
metric and doubly stochastic. Thus, the eigenvalues of W
are real and satisfy 1 = λ1(W) ≥ λ2(W) ≥ · · · ≥
λn(W) ≥ −1 (e.g., [21]). Assumption 2.(4) is satisfied if the
Markov chain corresponding to matrix W is irreducible and
aperiodic (e.g., [21], [22]). Note that the weight matrix W is
also a design parameter of the distributed greedy algorithm.

Similarly to Assumption 1, we assume that each agent i ∈ N
knows Wi (i.e., wij for all j ∈ N ∪ {i}).

By repeatedly running update rule (3), xti will converge
to 1

n

∑
j∈N x

0
j as t → ∞ (e.g., [21]) for all i ∈ N , so that

xti,v will converge to 1
n

∑
j∈N x

0
j,v as t→∞ for all v ∈ Vk.

To analyze finite-time performance of update rule (3), let us
first consider the following function of t ∈ Z≥1:

δk(t) = max
i∈N ,v∈Vk

∣∣∣xti,v − 1

n

∑
j∈N

x0
j,v

∣∣∣, (4)

which is the maximum deviation of xti,v from the limiting
value 1

n

∑
j∈N x

0
j,v over all agents i ∈ N and all elements

v ∈ Vk at any (finite) time step t. Moreover, note that for
each agent i ∈ N and an element v ∈ Vk, we can view xti,v
as an estimate of 1

n

∑
j∈N (fj({v} ∪ S̄k)− fj(S̄k)) at time

step t. Thus, δk(t) captures the maximum error (in absolute
value) of such estimates over all i ∈ N and all v ∈ Vk at
time step t. We will use the following result (e.g., [22]).

Lemma 1: Consider a weight matrix W ∈ Rn×n that
satisfies Assumption 2. The following inequality holds:

max
i∈N

∑
j∈N

∣∣∣(W t)ij −
1

n

∣∣∣ ≤ √n(µ(W))t,

where µ(W) = max{λ2(W),−λn(W)}.
We then have the following results.
Lemma 2: Consider the update rule (3) initialized with x0

i

given by Eq. (2). Suppose Assumptions 1 and 2 hold. For
all time steps t ∈ Z≥1, the following inequality holds:

δk(t) ≤
√
n(µ(W))tFh, (5)

where δk(t) is defined in Eq. (4) and Fh , maxi∈N fi(V).

Proof: Denoting x̄tv =
[
xt1,v · · · xtn,v

]′
for all v ∈

Vk and for all t ∈ Z≥0, we have from Eq. (3) x̄t+1
v = Wx̄tv ,

which implies x̄tv = W tx̄0
v . It then follows that

δk(t) = max
i∈N ,v∈Vk

∣∣∣(W t)ix̄
0
v −

1

n

∑
j∈N

x0
j,v

∣∣∣
= max
i∈N ,v∈Vk

∣∣∣ ∑
j∈N

(W t)ijx
0
j,v −

1

n

∑
j∈N

x0
j,v

∣∣∣
= max
v∈Vk

max
i∈N

∣∣∣ ∑
j∈N

((W t)ij −
1

n
)x0
j,v

∣∣∣
≤ max
v∈Vk

max
i∈N

(∑
j∈N

∣∣∣(W t)ij −
1

n

∣∣∣x0
j,v

)
≤
√
n(µ(W))t max

j∈N
max
v∈Vk

x0
j,v ≤

√
n(µ(W))tFh, (6)

where the first inequality in (6) follows from Lemma 1. For
the second inequality in (6), we note that x0

j,v = fj({v} ∪
S̄ki)−fj(S̄ki) ≤ fj(V) for all j ∈ N and for all v ∈ Vk, since
fj(·) is monotone nondecreasing with fj(∅) = 0.3 Thus, we
have maxj∈N maxv∈Vk

x0
j,v ≤ maxj∈N fj(V) = Fh.

3Noting that fj({v} ∪ S̄k
i) − fj(S̄k

i) ≤ fj(v) − fj(∅) ≤ fj(V)
∀j ∈ N and ∀v ∈ Vk by the submodularity of fj(·), the bound in (5) can
potentially be tightened by defining F ′

h , maxi∈N maxv∈V fi(v).

2981

Authorized licensed use limited to: Purdue University. Downloaded on December 29,2021 at 21:57:37 UTC from IEEE Xplore. Restrictions apply.

Lemma 3: Consider the update rule (3) initialized with
x0
i given by Eq. (2). Suppose Assumptions 1 and 2 hold.

For each time step t ∈ Z≥1, denote xti,vi∗ = maxv∈Vk
xti,v ,

where v∗i , arg maxv∈Vk
xti,v , for all i ∈ N . The following

holds:
xti,vj∗ ≥ x

t
i,vi∗
− 4ε(t), ∀i, j ∈ N , (7)

where
ε(t) ,

√
n(µ(W))tFh (8)

is a function of t ∈ Z≥1, and Fh = maxi∈N fi(V).
Proof: Consider any time step t ∈ Z≥1, and any two

(distinct) agents i, j ∈ N . We have from Lemma 2∣∣∣xti,vi∗ − 1

n

∑
q∈N

x0
q,vi∗

∣∣∣ ≤ ε(t), (9)

and ∣∣∣xtj,vi∗ − 1

n

∑
q∈N

x0
q,vi∗

∣∣∣ ≤ ε(t). (10)

It then follows from (9)-(10) that∣∣∣xti,vi∗ − xtj,vi∗ ∣∣∣ ≤ 2ε(t). (11)

Similarly, we have∣∣∣xtj,vj∗ − xti,vj∗ ∣∣∣ ≤ 2ε(t). (12)

Therefore, we have the following:

xti,vi∗ − x
t
i,vj∗

≤ xtj,vi∗ + 2ε(t)− xtj,vj∗ + 2ε(t) ≤ 4ε(t),

where the first inequality follows from (11)-(12) and the sec-
ond inequality follows from the fact xtj,vj∗ = maxv∈Vk

xtj,v ,
i.e. xtj,vi∗ ≤ x

t
j,vj∗

.
Note that each agent i ∈ N updates xti from time step

t = 0 to time step t = T , where we recall from Assumption 1
that T ∈ Z≥1 is a design parameter of the algorithm that is
known to all the agents in N .

Next, we describe the update rule for Sti . Specifically, after
running update rule (3) from time step t = 0 to time step
t = T and obtaining xTi , each agent i ∈ N obtains ST+1

i as

ST+1
i = {v : xTi,v ≥ xTi,vi∗ − ψ}, (13)

where ψ ∈ R≥0 is a design parameter of the algorithm that
needs to satisfy the following condition:

ψ ≥ 4
√
n(µ(W))TFh. (14)

Note that we also assume that each agent i ∈ N knows
the design parameter ψ. We then see from Lemma 3 and
update rule (13) with condition (14) that vj∗ ∈ ST+1

i for
all j ∈ N , where vj∗ = arg maxv∈Vk

xTj,v . This implies that
V ∗ ⊆ ST+1

i for all i ∈ N , where V ∗ , {v1∗ , . . . , vn∗}.
Starting from ST+1

i at time step t = T + 1, each agent
i ∈ N computes Sti according to the following update rule:

St+1
i =

⋂
j∈Ni

Stj . (15)

We will use the following result whose proof follows
directly from induction and is thus omitted for conciseness.

Lemma 4: Consider the communication graph G =
(N , E) and the update rule (15) initialized with ST+1

i given
by Eq. (13). Suppose Assumption 1 holds. For each t ≥
T + 1 + d(G) (t ∈ Z), Sti =

⋂
j∈N S

T+1
j for all i ∈ N ,

where d(G) is given by Definition 3.
Given any T ∈ Z≥1, we then set the design parameter

T ′ = T + 1 + d(G) in the sequel. After running update
rule (15) until time step t = T ′ (starting from time step
t = T + 1), we have from Lemma 4 ST

′

i = ST
′

j for all
i, j ∈ N . Moreover, noting from the above arguments that
V ∗ ⊆ ST+1

i for all i ∈ N , where V ∗ = {v1∗ , . . . , vn∗},
we have V ∗ ⊆ ST

′

i , i.e., ST
′

i 6= ∅. Finally, denoting jmin =
min{j : vj ∈ ST

′

i }, each agent i ∈ N updates S̄ki as

S̄k+1
i = {vjmin} ∪ S̄ki .4 (16)

Noting that S̄ki = S̄kj for all i, j ∈ N , we obtain S̄k+1
i =

S̄k+1
j for all i, j ∈ N . Denote S̄k+1 = S̄k+1

i . Combining
update rules (3) and (13)-(16) leads to the following result.

Lemma 5: Consider the update rules (3), (13) and (15)-
(16), where (3) is initialized with x0

i given by Eq. (2).
Suppose Assumptions 1 and 2 hold and ψ ∈ R≥0 satisfies
condition (14). Then

f(S̄k+1)−f(S̄k) ≥ {max
v∈Vk

f({v}∪S̄k)−f(S̄k)}−ψ−2ε(T),

(17)
where ε(T) =

√
n(µ(W))TFh, and Fh = maxi∈N fi(V).

Proof: Denote v∗ , arg maxv∈Vk
f({v}∪ S̄k)−f(S̄k)

and note that S̄k+1 \ S̄k = vjmin , where jmin = min{j : vj ∈
ST
′

i }. We see from Lemma 2 and the definition of x0
j,v that∣∣∣xTi,v∗ − (f({v∗} ∪ S̄k)− f(S̄k))

∣∣∣ ≤ ε(T), (18)

and ∣∣∣xTi,vjmin
− (f({vjmin} ∪ S̄k)− f(S̄K))

∣∣∣ ≤ ε(T). (19)

Noting that ST
′

i ⊆ ST+1
i and vjmin ∈ ST

′

i , we have from
update rule (13)

xTi,vjmin
≥ xTi,vi∗ − ψ, (20)

where xTi,vi∗ = maxv∈Vk
xTi,v . We then have the following:

(f({vjmin} ∪ S̄K)− f(S̄k))− (f({v∗} ∪ S̄k)− f(S̄k))

≥(f({vjmin} ∪ S̄K)− f(S̄k))− xTi,v∗ − ε(T) (21)

≥(f({vjmin} ∪ S̄K)− f(S̄k))− xTi,vi∗ − ε(T) (22)

≥(f({vjmin} ∪ S̄K)− f(S̄k))− xTi,vjmin
− ψ − ε(T) (23)

≥− ψ − 2ε(T), (24)

where (21) and (24) follow from (18) and (19), respectively,
(23) follows from (20), and (22) follows from the fact
xTi,vi∗ = maxv∈Vk

xTi,v .
In summary, after running (3), (13) and (15)-(16) as

described above in the (k + 1)th round of the distributed
greedy algorithm, each agent i ∈ N obtains xTi , ST

′

i and

4Note that all the agents in N label the elements in V such that vj
refers to the same element in V for all j ∈ {1, . . . ,m}.

2982

Authorized licensed use limited to: Purdue University. Downloaded on December 29,2021 at 21:57:37 UTC from IEEE Xplore. Restrictions apply.

S̄k+1
i , where T ′ = T + 1 + d(G) and S̄k+1

i = S̄k+1
j for

all i, j ∈ N . The algorithm then enters the next round
(with k incremented by 1) and repeats the same processes
as described above, where all the results derived still hold.

The procedure described in this section is summarized in
Algorithm 1, where the algorithm is implemented at each i ∈
N in a distributed way. As argued above, Algorithm 1 allows
all the agents in i ∈ N to reach consensus at a solution S̄K

to Problem (1), i.e., S̄Ki = S̄K ∀i ∈ N .

IV. CONVERGENCE ANALYSIS

In this section, we analyze the performance (i.e., conver-
gence) of Algorithm 1. Note that the (centralized) greedy
algorithm solves Problem (1) in the centralized case with the
multiplicative approximation ratio of (1−1/e), i.e., f(Sg) ≥
(1 − 1/e)f(S∗), where Sg is the solution returned by the
greedy algorithm and S∗ is an optimal solution to Problem
(1). Hence, we analyze the performance of Algorithm 1 by
comparing the convergence of f(S̄Ki) to (1−1/e)f(S∗). We
will use the following result from [23].

Lemma 6: Consider Problem (1) in the centralized case.
Denote Ḡ1 , ∅ and Ḡj , {ḡ1, . . . , ḡj−1} for all j ∈
{2, . . . ,K + 1}. Suppose

f({ḡj}∪Ḡj)−f(Ḡj) ≥ { max
v∈V \Ḡj

(f({v}∪Ḡj)−f(Ḡj))}−τj

for all j ∈ {1, . . . ,K}, where τj ∈ R≥0. Then

f(ḠK+1) ≥ (1− 1

e
)f(S∗)−

K∑
k=1

τk, (25)

where S∗ is an optimal solution to Problem (1).
The result below follows directly from Lemmas 5 and 6.
Theorem 1: Consider Algorithm 1 for Problem (1) with

a set N of agents. Suppose Assumptions 1 and 2 hold and
ψ ∈ R≥0 satisfies condition (14). Then Algorithm 1 lets all
the agents in N reach consensus at a solution S̄K to Problem
(1) that satisfies

f(S̄K) ≥ (1− 1

e
)f(S∗)−K(ψ + 2ε(T)),

where ε(T) =
√
n(µ(W))TFh with Fh = maxi∈N fi(V),

and S∗ is an optimal solution to Problem (1).
Theorem 1 shows that S̄K approaches the (1 − 1/e)

approximation of S∗ with an additive factor Er , K(ψ +
2ε(T)). We know from the definition of ε(T) that Er is a
function of the number of the agents, the bound on the local
functions and the design parameters (i.e., W , T and ψ). In
the context of Theorem 1, we analyze how the additive factor
(i.e., Er) behaves in terms of those quantities under different
scenarios. In particular, we are interested in how the additive
factor depends on the number of communication steps in
each round of the algorithm. First, let us consider the fast
communication scenario (e.g., [20]). In this scenario, agents
can communicate sufficiently fast, i.e., T → ∞, in each
round of the distributed greedy algorithm. Since µ(W) < 1
from Assumption 2, ε(T) → 0 as T → ∞. Moreover, the
lower bound on ψ in (14) tends to zero. Consequently, we

can choose the design parameter ψ to be arbitrarily close to
zero and obtain Er → 0.

Next, we consider the scenario where the communication
among the agents in each round of the distributed algorithm
is limited. Suppose n is fixed and the input to Algorithm 1
is also fixed, i.e., K and Fh are fixed. We then have Er =
Kψ+O((µ(W))T). If we can choose the design parameter ψ
such that ψ = O((µ(W))T), we obtain Er = O((µ(W))T),
which implies that Er vanishes at an exponential rate. In
contrast, if we assume that ψ is fixed, we have Er = Kψ+
O((µ(W))T), which implies that Er converges exponentially
to Kψ.

Indeed, using techniques in, e.g., [21], one can optimally
choose the weight matrix W such that µ(W) is minimized
in the above scenarios, which leads to accelerations in
the convergence rate. In summary, we observe a tradeoff
between the performance of the distributed greedy algorithm
and the number of communication steps in each round of
the algorithm. Moreover, the performance of the algorithm
also depends on the choice of ψ. It is also worth noting
that our distributed greedy algorithm achieves exponential
convergence rates (as described above), while the algorithm
proposed in [6] only achieves sublinear convergence rates.

V. NONSUBMODULAR OBJECTIVE FUNCTIONS

In this section, we extend our previous analysis to cases
when the objective functions in Problem (1) are nonsubmod-
ular. In other words, we consider the scenario where the local
objective function fi(·) is monotone nondecreasing with
fi(∅) = 0, but not necessarily submodular, for all i ∈ N . We
first note that the (centralized) greedy algorithm has also been
applied to solve Problem (1) with nonsubmodular objective
functions using the notion of submodularity ratio (e.g., [15]).

Definition 4: (Submodularity ratio) Given a set V , the
submodularity ratio of a nonnegative set function f : 2V →
R≥0 is the largest γ ∈ R≥0 that satisfies

∑
a∈A\B

(
f({a} ∪

B)− f(B)
)
≥ γ

(
f(A ∪B)− f(B)

)
for all A,B ⊆ V .

Remark 3: For a nonnegative and nondecreasing function
set f(·) with submodularity ratio γ, we have γ ∈ [0, 1], and
f(·) is submodular if and only if γ = 1 [15].

We now extend Lemma 6 to nonsubmodular functions; a
proof of the following result is included in the appendix.

Lemma 7: Consider Problem (1) in the centralized case,
where the objective function f(·) is monotone nondecreasing
with submodularity ratio γ ∈ R>0. Denote Ḡ1 , ∅ and
Ḡj , {ḡ1, . . . , ḡj−1} for all j ∈ {2, . . . ,K + 1}. Suppose

f({ḡj}∪Ḡj)−f(Ḡj) ≥ { max
v∈V \Ḡj

(f({v}∪Ḡj)−f(Ḡj))}−τj

for all j ∈ {1, . . . ,K}, where τj ∈ R≥0. Then

f(ḠK+1) ≥ (1− e−γ)f(S∗)−
K∑
k=1

τk, (26)

where S∗ is an optimal solution to Problem (1).
Using similar arguments to those for Theorem 1, one can

obtain the following result from Definition 4 and Lemma 7;
the proof is omitted for conciseness.

2983

Authorized licensed use limited to: Purdue University. Downloaded on December 29,2021 at 21:57:37 UTC from IEEE Xplore. Restrictions apply.

Corollary 1: Consider Algorithm 1 for Problem (1) with
a set N of agents. Suppose Assumptions 1 and 2 hold and
ψ ∈ R≥0 satisfies condition (14). Denote the submodularity
ratio of the local objective function fi(·) as γi ∈ R for all
i ∈ N and denote γc , mini∈N γi. Suppose γi > 0 for
all i ∈ N . Then Algorithm 1 lets all the agents in N reach
consensus at a solution S̄K to Problem (1) that satisfies

f(S̄K) ≥ (1− e−γc)f(S∗)−K(ψ + 2ε(T)),

where ε(T) =
√
n(µ(W))TFh with Fh = maxi∈N fi(V),

and S∗ is an optimal solution to Problem (1).
Similarly to Section IV, Corollary 1 leads to a tradeoff

between the performance of the distributed greedy algorithm
and the number of communication steps in each round of the
algorithm, under the nonsubmodular setting.

VI. CONCLUSIONS

In this paper, we proposed a distributed greedy algorithm
for maximizing a global submodular function, subject to a
cardinality constraint, with a group of agents communicating
over a network. The distributed greedy algorithm allows
each agent to converge to within an additive factor of the
(1 − 1/e) approximation of the optimal solution to the
global maximization problem. The additive factor reveals
a tradeoff between the performance of the algorithm and
the number of communication steps in each round of the
algorithm. Finally, we extended our analysis to cases when
the objective function is not submodular by leveraging the
notion of submodularity ratio.

APPENDIX

Proof of Lemma 7:

The proof is based on the idea of the proof for Theorem 6
in [23]. Denote ∆j , f(S∗)−f(Ḡj) for all j ∈ {1, . . . ,K+
1} and β̄j , f({ḡj ∪ Ḡj})− f(Ḡj) = f(Ḡj+1)− f(Ḡj) for
all j ∈ {1, . . . ,K}. We then have from Definition 4

f(Ḡj ∪ S∗)− f(Ḡj) ≤
1

γ
(
∑

v∈S∗\Ḡj

f({v} ∪ Ḡj)− f(Ḡj)).

(27)
Noting that β̄j ≥ {maxv∈V \Ḡj

(f({v}∪ Ḡj)− f(Ḡj))}− τj
for all j ∈ {1, . . . ,K}, we have f({v} ∪ Ḡj) − f(Ḡj)) ≤
β̄j + τj for all v ∈ S∗ \ Ḡj and for all j ∈ {1, . . . ,K}. It
then follows from |S∗| = K and (27) that

f(S∗) ≤ f(Ḡj ∪ S∗) ≤ f(Ḡj) +
K

γ
(β̄j + τj)

⇒∆j ≤
K

γ
(β̄j + τj)⇒ ∆j ≤

K

γ
(∆j −∆j+1 + τj)

⇒∆j+1 ≤ (1− γ

K
)∆j + τj . (28)

Unrolling (28), we obtain ∆K+1 ≤ (1− γ
K)K∆1 +

∑K
j=1 τj ,

where we use the fact 1 − γ
K < 1. Therefore, f(S∗) −

f(ḠK+1) ≤ (1 − γ
K)Kf(S∗) +

∑K
j=1 τj , which implies

f(ḠK+1) ≥ f(S∗)− e−γf(S∗)−
∑K
j=1 τj .

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. on Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

[2] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” Journal of Optimization Theory and
Applications, vol. 129, no. 3, pp. 469–488, 2006.

[3] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. on Automatic Control, vol. 54, no. 1,
p. 48, 2009.

[4] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Trans. on Automatic
Control, vol. 55, no. 4, pp. 922–938, 2010.

[5] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.

[6] A. Mokhtari, H. Hassani, and A. Karbasi, “Decentralized submodular
maximization: Bridging discrete and continuous settings,” in Proc. of
International Conference on Machine Learning, 2018, pp. 3613–3622.

[7] B. Gharesifard and S. L. Smith, “Distributed submodular maximization
with limited information,” IEEE Trans. on Control of Network Systems,
vol. 5, no. 4, pp. 1635–1645, 2017.

[8] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed
submodular maximization: Identifying representative elements in mas-
sive data,” in Advances in Neural Information Processing Systems,
2013, pp. 2049–2057.

[9] T. Soma, N. Kakimura, K. Inaba, and K.-i. Kawarabayashi, “Optimal
budget allocation: Theoretical guarantee and efficient algorithm,” in
Proc. of International Conference on Machine Learning, 2014, pp.
351–359.

[10] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor place-
ments in gaussian processes: Theory, efficient algorithms and empirical
studies,” Journal of Machine Learning Research, vol. 9, no. Feb, pp.
235–284, 2008.

[11] S. T. Jawaid and S. L. Smith, “Submodularity and greedy algorithms in
sensor scheduling for linear dynamical systems,” Automatica, vol. 61,
pp. 282–288, 2015.

[12] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
of influence through a social network,” in Proc. of international
conference on Knowledge Discovery and Data mining. ACM, 2003,
pp. 137–146.

[13] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis
of approximations for maximizing submodular set functions—ii,” in
Polyhedral combinatorics. Springer, 1978, pp. 73–87.

[14] A. Das and D. Kempe, “Approximate submodularity and its applica-
tions: subset selection, sparse approximation and dictionary selection,”
Journal of Machine Learning Research, vol. 19, no. 1, pp. 74–107,
2018.

[15] A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek,
“Guarantees for greedy maximization of non-submodular functions
with applications,” in Proc. of International Conference on Machine
Learning, 2017, pp. 498–507.

[16] L. Ye and S. Sundaram, “Sensor selection for hypothesis testing: Com-
plexity and greedy algorithms,” in Proc. of Conference on Decision
and Control. IEEE, 2019, pp. 7844–7849.

[17] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions-I,” Mathe-
matical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[18] U. Feige, “A threshold of ln n for approximating set cover,” Journal
of the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[19] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. on Robotics, vol. 25,
no. 4, pp. 912–926, 2009.

[20] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed
Kalman filtering based on consensus strategies,” IEEE Journal on
Selected Areas in communications, vol. 26, no. 4, pp. 622–633, 2008.

[21] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on
a graph,” SIAM review, vol. 46, no. 4, pp. 667–689, 2004.

[22] P. Diaconis, D. Stroock et al., “Geometric bounds for eigenvalues of
Markov chains,” The Annals of Applied Probability, vol. 1, no. 1, pp.
36–61, 1991.

[23] M. Streeter and D. Golovin, “An online algorithm for maximizing
submodular functions,” in Advances in Neural Information Processing
Systems, 2009, pp. 1577–1584.

2984

Authorized licensed use limited to: Purdue University. Downloaded on December 29,2021 at 21:57:37 UTC from IEEE Xplore. Restrictions apply.

		2021-01-09T13:14:19-0500
	Preflight Ticket Signature

