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Distributed Maximization of Submodular and Approximately
Submodular Functions

Lintao Ye and Shreyas Sundaram

Abstract— We study the problem of maximizing a submod-
ular function, subject to a cardinality constraint, with a set
of agents communicating over a connected graph. We propose
a distributed greedy algorithm that allows all the agents to
converge to a near-optimal solution to the global maximization
problem using only local information and communication with
neighbors in the graph. The near-optimal solution approaches
the (1—1/e) approximation of the optimal solution to the global
maximization problem with an additive factor that depends on
the number of communication steps in the algorithm. We then
analyze convergence guarantees of the proposed algorithm. This
analysis reveals a tradeoff between the number of communi-
cation steps and the performance of the algorithm. Finally, we
extend our analysis to nonsubmodular settings, using the notion
of approximate submodularity.

I. INTRODUCTION

In recent years, the analysis of large-scale networks has
received much attention from researchers, where the net-
works consist of a group of agents with different local
objective functions. For such networks, the goal is to design
a resource allocation method that operates in a decentralized
way with local communication and fast convergence to an
(approximately) optimal operating point. Scenarios where
the local objective functions depend on the entire resource
allocation vector are of particular interest. For such scenarios,
there is a vast literature on designing distributed algorithms
that guarantee convergence of the solution obtained by each
agent to an optimizer of the average of all the local objective
functions (e.g., [1]-[5] and the references therein).

Much of the existing work has been devoted to optimiza-
tion problems in the continuous domain, where the local
objective functions are convex. In contrast, settings with
(discrete) submodular objective functions have been less
explored (e.g., [6]-[8]). Nonetheless, the problem of max-
imizing submodular functions (subject to constraints) arises
in many different applications including, for instance, budget
allocation [9], sensor placement [10], sensor scheduling [11]
and influence maximization in social networks [12]. Thus, in
this paper we focus on scenarios in distributed optimization
where the local objective functions are submodular.

Related Work

In [6], the authors considered maximizing a discrete sub-
modular function subject to a general matroid constraint and
proposed a decentralized algorithm to solve this problem.
The algorithm relies on first lifting the local discrete sub-
modular functions to continuous domains and then applying
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appropriate rounding schemes to the obtained solution. The
authors in [7] considered the scenario where a group of
agents sequentially maximize a submodular function. The
problem reduces to the canonical problem of maximizing
a submodular function subject to a partitioned matroid
constraint, which can be solved by greedy algorithms with
a 1/2 multiplicative approximation ratio [13]. In contrast,
we consider the setting where a group of agents maximize
a (global) submodular function (subject to a cardinality
constraint) in parallel using a decentralized (i.e., distributed)
greedy algorithm, which does not require any lifting or
rounding process.

Regarding the maximization of nonsubmodular functions,
the notion of approximate submodularity has been used
to provide performance guarantees for (centralized) greedy
algorithms applied to such problems (e.g., [14]-[16]). Here,
we aim to propose a distributed greedy algorithm that can
also solve such problems in a distributed manner.

Contributions

We propose a distributed greedy algorithm with a group
of agents communicating over a connected network, which
allows each agent to converge to within an additive factor of
the (1 — 1/e) approximation of the optimal solution to the
global optimization problem. This additive factor is a func-
tion of the number of the agents, the cardinality constraint,
properties of the local functions and design parameters in
the distributed greedy algorithm. In particular, the analysis
reveals a tradeoff between the performance of the algorithm
and the number of communication steps in the algorithm.
Finally, we extend our analysis to cases when the objective
function is approximately submodular.

Notation and terminology

The sets of integers and real numbers are denoted as Z and
R, respectively. For « € R, let |x| denote its absolute value.
For a set S, let |S| denote its cardinality. Let 1,, denote a
column vector of dimension n with all of its elements equal
to 1. For a matrix P € R™*"™ and a vector y € R", let P’
and ' be their transposes, respectively. Let P;; denote the
element in the ¢th row and jth column of P. Let P; denote
the ¢th row of P. The eigenvalues of P are ordered with
nonincreasing magnitude (i.e., [A\1(P)] > -+ > | . (P))).
Given two functions ¢; : R>o — R and ¢5 : Ryg — R,
p1(n) is O(p2(n)) if there exist positive constants ¢ and N
such that |1 (n)| < ¢|pa(n)| for all n > N.
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II. PROBLEM FORMULATION

We first introduce the following definitions (e.g., [17]).

Definition 1: Given a ground set V, a set function f :
2V — Ry is said to be monotone nondecreasing if for all
ACBCV, f(A) < f(B).

Definition 2: Given a set V, a set function f : 2V — Rx
is said to be submodular if for all A C B C V and for all
veVAB, f({v}UA) - f(4) =z f{v}UB) - f(B).

Consider a set of n agents that communicate over a graph
to maximize a global objective function. Each agent can
be viewed as a node i € N £ {1,...,n}. Denote the
communication graph as G = (N, &), which is assumed
to be undirected and connected throughout this paper. An
edge (i,j) € &, which is an unordered pair, indicates a
bidirectional communication between agents ¢ and j, i.e.,
agent ¢ can receive information from agent j at each time
step, and vice versa. Let N; denote the set of neighbors of
agent i, i.e., N; =2 {j € N': (4,7) € E}.

Definition 3: The diameter of a connected graph G =
(N, E) is given by d(G) = max; jenr l;j, where [;; is the
length of the shortest path (i.e., distance) from i to j in G.

We now consider the scenario where each agent i € N
has access to a local set function f; : 2V — R>o with
a cardinality constraint K € Zs;. The function f;(-) is
assumed to be monotone nondecreasing and submodular for
all i € N.! Meanwhile, we assume without loss of generality
that f;(-) is normalized such that f;()) = 0 for all i € N.
The objective for the agents is to solve, in a distributed
manner (i.e., by repeatedly exchanging information only with
their neighbors), the following global optimization problem:

1 n
max =Y fi(S), (D)
=1

max  f(8) = SCV,|S|I<KK N

SCV,|S|<K

where f(S) £ 13" | f;(S), and K € Z>1.

Since the sum of monotone nondecreasing submodular
functions is monotone nondecreasing submodular, f(-) is
monotone nondecreasing submodular (with f({)) = 0). Thus,
the global optimization problem (Problem (1)) is to maximize
a monotone nondecreasing submodular function subject to a
cardinality constraint. A (centralized) greedy algorithm has
been proposed to solve Problem (1) with a multiplicative ap-
proximation ratio of (1 —1/¢e) [17]. Moreover, it was shown
in [18] that the greedy algorithm achieves the best possible
approximation ratio of any polynomial-time approximation
algorithm for Problem (1) in the centralized case if P#NP.
This motivates us to extend the centralized greedy algorithm
to solve Problem (1) in the distributed case.

III. DISTRIBUTED GREEDY ALGORITHM

The main idea of the distributed greedy algorithm (Algo-
rithm 1) is as follows. Based on the centralized greedy algo-
rithm, the distributed greedy algorithm runs for K rounds in
total. Given a current set Sy, (|Si| = k) of selected elements
before the (k + 1)th (k < K — 1) round of the algorithm,

'We will generalize our analysis to monotone nondecreasing nonsub-
modular functions later.

the (k+ 1)th round of the algorithm lets all the agents reach
consensus at an element s’ € V'\ Sy, (after a certain number of
communication steps) that maximizes (f({s'}USg)— f(Sk))
with some additive error (suboptimality) and add s’ to Sy to
obtain Si41. After K rounds, all the agents obtain a set
Sk (|Sk| = K) that gives a solution to Problem (1) with a
suboptimality bound which we will discuss later.

Algorithm 1 Distributed Greedy Algorithm
Input: f;: 2V - R>o, K € Z>1, G = (N, €)
Design parameters: W € R"*" T € Z>1, T' =T + 1+
d(G), ¥ € Ry
Output: S

1. k=0, 5'10 =0

2: while £ < K — 1 do

3 Caleulate ¥, = fi({v}US})— fi(S}), Yo € V\SF
IV\S?|

4 Stack 7, into a vector zj € R

5: fort=0,...,7—1do

6: Update =/t = w2t + >N, WijTh
7 end for

8 Find x;fv = MaXyey va

9 Set ST = {v: al, >al, =}

10: fort=T+1,...,7"—1do
1: Update S{*' =, 5!
12: end for

13: Find jpin = min{j : v; € ST’}
14: Update SF = {v; . U Sk
15: k=k+1

16: end while

17. SK = 8K

Specifically, denote V' £ {vy,... ,v|v|}. Bach agent i €
N initializes a local variable SF¥ = () with k& = 0. In
the first round of the distributed greedy algorithm (with
k = 0), each agent 5 € A starts with ¢ = 0, and calculates
20, = fil{v}) — fi(0) for all v € V, where f;(#) = 0.
In other words, each agent/z’ € N maintains a local variable
xt = |xf :cﬁ’vvg € RIVI at time step t = 0. Given
design parameter T' € Zx>; of the algorithm, agent 4 first
updates x} (using z} and 2% for all j € N;) from time step
t = 0 to time step ¢ = T'. Then, agent ¢ obtains a set SiT +1
and maintains a local variable S!. Given design parameter
T € Z>1 of the algorithm, where T' "'>T+1.2 agent i now
updates S} (using S for all j € N;) from time step t = T'+1
to time step t = T”. At the end of the first round of the
distributed greedy algorithm (i.e., at ¢ = T"), all the agents
in \V' choose the same element sq from S7 and update SO as
S} = S%U{so}. After finishing the first round, the distributed
greedy algorithm enters the second round (with & = 1).

Again, each agent 1 € N starts with ¢ = 0 and calculates

— |9 e g9 Vi A Gl —
0 = [mwh xz,q,jw} € RVl where V1 £ V\S} =
{Ujl’ s 7’Uj\v1\} and x(i),v = fl({v} U Szl) - fl(Szl) for all
v € V;. Similarly to the first round of the distributed greedy

2We will explain the choice of T in the algorithm later.
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algorlthm agent i obtains the updated local variables =" and
ST', which leads to the update of S} as S? = S} U {sl}
where s; is an element chosen from ST by all the agents
in A. The distributed greedy algorithm repeats the above
process for K rounds. Note from the above arguments that
for all k € {0,...,K —1}, Sf =S¥ for all i,j € N.

Remark 1: As we will see in the followmg, our distributed
greedy algorithm has a consensus phase (with a limited
number of communications) among the set of agents in each
round of the algorithm. Similar consensus-based distributed
algorithms have been used in, for example, distributed task
allocation [19] and distributed Kalman filtering [20].

To implement Algorithm 1, we assume the following.

Assumption 1: The set N of agents has a synchronized
clock such that all the agents in A/ know the current values
of kK € Z>o and t € Z>,. Moreover, the agents in N know
the design parameters T and T’ before running the algorithm,
where T, 7" K € Z>y and T" > T + 1.

We now describe (distributed) update rules for the agents
in N to update the local variables z!, S! and SF from
Algorithm 1, respectively. Consider the (k+1)th round of the
distributed algorithm, where kK < K — 1 (k € Z>(). Noting
that S} = S¥ for all i,j € N, we denote 5 = SF.

First, we descrlbe the update rule for 1‘1 S R'Vk‘, where
Vi £V \ SF. Note that each agent i € A initializes ¢ in
lines 3-4 of Algorithm 1 as

0 0 !
1’? = xi,vll e xi’vl\vk\ S Rlvk‘, (2)
where 20, = fi({v}USF) — fi(SF) for all v € V; and V}, =
{vi, .- vl‘v  }. Since f;(+) is monotone nondecreasing for

all ¢ 6./\/ we have 20, > 0 for all i eNandforallv € V.
Starting from time step t = 0 with 29, each agent i € NV
computes xt+ in line 6 of Algorithm 1 according to the
following update rule:

t+1 t t
et = wal + > wiah, 3)
JEN;

where agent ¢ assigns a weight w;; € R to agent j for all
j € N; U {i} and updates 2! as a weighted average of
! from j € Nj U {i}. Denote W € R"*" as the weight
matrix (or mixing matrix) such that W;; = w;; for all
i,7 € N. We assume that the weight matrix W satisfies the
following assumptions, which are standard in the distributed
optimization literature (e.g., [5]).

Assumption 2: The weight matrix W € R™*" (associated
with G = (N, €)) is assumed to satisfy: (1) W;; € Rx for
all i,j € N and W;; = 0if (4,5) ¢ &, (2) W1, =1,; (3)
W =W’ and (4) p(W) £ max{ (W), =\, (W)} < 1.

Remark 2: Assumption 2.(1)-(3) ensure that W is sym-
metric and doubly stochastic. Thus, the eigenvalues of W
are real and satisfy 1 = A\ (W) > (W) > .- >
An(W) > —1 (e.g., [21]). Assumption 2.(4) is satisfied if the
Markov chain corresponding to matrix W is irreducible and
aperiodic (e.g., [21], [22]). Note that the weight matrix W is
also a design parameter of the distributed greedy algorithm.

Similarly to Assumption 1, we assume that each agent i €
knows W; (i.e., w;; for all j € N U {i}).

By repeatedly running update rule (3), z! will converge
to L =Y en oY ast—>oo (e.g., [21]) for all i € N, so that
zt, W111 converge to - de/\/ 3:“} ast — oo forall v € V.
To analyze finite-time performance of update rule (3), let us

first consider the following function of ¢ € Z>1:

1
t § : 0
xi,v n Ij,’u

JEN

max
iEN WEV)

dk(t) =

; “4)

which is the maximum deviation of z, from the limiting
value

%Z JeN x?’v over all agents 4 € A and all elements
v € Vi at any (finite) time step ¢t. Moreover, note that for
each agent i € A and an element v € V4, we can view z} ,
as an estimate of - > \(f;({v} U S*) — f;(5%)) at time
step ¢. Thus, dx(¢) captures the maximum error (in absolute
value) of such estimates over all ¢ € A/ and all v € V}, at
time step t. We will use the following result (e.g., [22]).
Lemma 1: Consider a weight matrix W € R"*™ that
satisfies Assumption 2. The following inequality holds:

1
max > [(Wy; = —| < Valu(w))",
1EN 4 n
JEN
where u(W) = max{ (W), =\, (W)}. 0
We then have the following results.
Lemma 2: Consider the update rule (3) initialized with x?

given by Eq. (2). Suppose Assumptions 1 and 2 hold. For
all time steps t € Z>1, the following inequality holds:

Ok (t) < Vn(u(W)) Fp, (5)

where 8 () is defined in Eq. (4) and Fj, £ max;en fi(V).
O
Proof: Denoting z!, = [J:l " T, 1,] for all v €
V4 and for all ¢ 6 Z>0, we have from Eq. 3) z,™! = Wz!,
which implies Z! = Wz%. It then follows that

(1) = (Wt~ L3,

JEN

z;/(wt)lj jv % Z x?,v
je

JEN

max
€N, WEV)

max
iEN ,WEV)

:maxmax‘g Wt - — jv

VeV iEN
(> o

)) max max:v
JEN veV,

< max max - — a:?v)
vEV) iEN ni -

< Vn(u(W o <Vn(u(W

where the first inequality in (6) follows from Lemma 1. For
the second inequality in (6), we note that 29, = fi({v} U
SEY—f;(SF) < f;(V) forall j € N and for all v € V, since
f;(+) is monotone nondecreasing with f;(0) = 0.° Thus, we

have max;cn maxyey, & J » <maxjen f;(V) = Fy,. ]

)) Fh7 (6)

*Noting that f;({v} U §F) — f5(SF) < f;(v) = £;(0) < f;(V)
Vj € N and Vv € Vj, by the submodularity of f;(-), the bound in (5) can
potentially be tightened by defining F! £ max;c s max,cv fi(v).
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Lemma 3: Consider the update rule (3) initialized with
2Y given by Eq. (2). Suppose Assumptions 1 and 2 hold.
For each time step ¢ € Z>,, denote x}, , = max,cv; =},
where v} £ arg max,cv; %, for all i € NV. The following
holds:

:L.E,vj* > xﬁ,vi* - 46(t)a V’L,] € N? (7N

where
e(t) £ Vn(u(W))" Fy ®)
is a function of ¢ € Z>1, and F}, = max;en fi(V). O

Proof: Consider any time step ¢ € Z>1, and any two
(distinct) agents 4,5 € N. We have from Lemma 2

1
e = = D Tg. | S €(t), ©)
qeEN
and 1
e = = D e | S €t): (10)
qeEN
It then follows from (9)-(10) that
Foee T | < 2e(t). (11
Similarly, we have
t t
‘xj,vj* - xi,'uj* < 26(t) (12)

Therefore, we have the following:

t t

xi,vi* - xi,vj* < x;,vi* + 26(t) - x;’,vj* + 26(t) < 46(t)7

where the first inequality follows from (11)-(12) and the sec-
ond inequality follows from the fact :chv]_* = maxyev, 5 ,,
ie zj,. <aj, .. ' ]

Note that each agent i € A updates z! from time step
t = 0 to time step t = T, where we recall from Assumption 1
that T' € Z>, is a design parameter of the algorithm that is
known to all the agents in N

Next, we describe the update rule for S!. Specifically, after
running update rule (3) from time step £ = 0 to time step

t = T and obtaining 27, each agent i € N obtains SiT 1 oas

SiT"'1 ={v: oL >al ), (13)

v = Vi,

where 1) € R is a design parameter of the algorithm that
needs to satisfy the following condition:

b > 4y/n(p(W))" F,.

Note that we also assume that each agent ¢ € N knows
the design parameter ¢. We then see from Lemma 3 and
update rule (13) with condition (14) that v;« € S t* for
all j € N, where v;- = argmax,cv;, ) ,. This implies that
V* C SiTJrl for all i € N, where V* £ {v1-,..., 0, }.
Starting from SiT *1at time step t = T + 1, each agent
i € N computes S! according to the following update rule:

St = st
JEN;

(14)

5)

We will use the following result whose proof follows
directly from induction and is thus omitted for conciseness.

Lemma 4: Consider the communication graph G =
(N, €) and the update rule (15) initialized with SiT *1 given
by Eq. (13). Suppose Assumption 1 holds. For each ¢ >
T+1+d(G) (t € Z), S = jenS; " forall i € N,
where d(G) is given by Definition 3. O

Given any T' € Zx>;, we then set the design parameter
T =T+ 1+ d(G) in the sequel. After running update
rule (15) until time step ¢ = T’ (starting from time step
t = T + 1), we have from Lemma 4 ST’ = S]-T/ for all
i,7 € N. Moreover, noting from the above arguments that
V* C SiTJrl for all ¢ € N, where V* = {v1«,..., 0.},
we have V* C SiT/, ie., SiT/ # (). Finally, denoting juin =
min{j : v; € ST'}, each agent i € N updates S* as

SEH = {v;,, b U Sk (16)

Noting that S¥ = S¥ for all i,j € N, we obtain S =
S'JI?H for all 4,5 € N. Denote S¥*! = S¥1. Combining
update rules (3) and (13)-(16) leads to the following result.

Lemma 5: Consider the update rules (3), (13) and (15)-
(16), where (3) is initialized with :c? given by Eq. (2).
Suppose Assumptions 1 and 2 hold and ¢ € R>q satisfies
condition (14). Then

F(S = F(5%) = {max f({v}US") = £(S*)} —v—2¢(T),
) (a7)

where €(T) = /n(u(W))TF,, and F), = max;en fi(V).
|

Proof: Denote v* £ arg max,cv, f({v} US*)— f(5%)

and note that S**1\ S* = v; ., where jmin = min{j : v; €
ST'Y. We see from Lemma 2 and the definition of x?’v that

2l = (J{yUSH) = F(S)| < er),  a8)

and

2l = (F({vs} U SF) = 1(55))| < (D).

%5V min

(19)

Noting that ST C ST*! and v;,, € ST

i, we have from
update rule (13)

T T
z 2 xi,vi* - 7/}7

5 Umin

(20)

. We then have the following:

T _ T
where x; ,, . = maxyev, Z;,

(f ({0 } U S™) = £(S*)) = (F({v*} U §%) = f(5%))
>(f({Vjun} USK) = f(S*) — 2. —e(T) 21
>(f({Vju} USK) = f(S*) — 2], —€(T) (22)
>(f({0ju, } USX) = f(S%)) —al,, —v—e(T) (23)
> — ¢ — 2¢(T), (24)

where (21) and (24) follow from (18) and (19), respectively,
(23) follows from (20), and (22) follows from the fact
a:Z:W = maXycv, x?v u

In summary, after running (3), (13) and (15)-(16) as
described above in the (k + 1)th round of the distributed

greedy algorithm, each agent i € N obtains =7, S¥ " and

“Note that all the agents in N label the elements in V' such that v;
refers to the same element in V for all j € {1,...,m}.
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S'f“, where 7/ = T + 1 4+ d(G) and Sf“ = S'JI?H for
all 4,5 € N. The algorithm then enters the next round
(with k incremented by 1) and repeats the same processes
as described above, where all the results derived still hold.

The procedure described in this section is summarized in
Algorithm 1, where the algorithm is implemented at each i €
N in a distributed way. As argued above, Algorithm 1 allows
all the agents in i € A to reach consensus at a solution S
to Problem (1), i.e., SX = SK Vi e \.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the performance (i.e., conver-
gence) of Algorithm 1. Note that the (centralized) greedy
algorithm solves Problem (1) in the centralized case with the
multiplicative approximation ratio of (1—1/e), i.e., f(Sq) >
(1 —1/e)f(S*), where S, is the solution returned by the
greedy algorithm and S™* is an optimal solution to Problem
(1). Hence, we analyze the performance of Algorithm 1 by
comparing the convergence of f(SX) to (1—1/e)f(S*). We
will use the following result from [23].

Lemma 6: Consider Problem (1) in the centralized case.
Denote Gi = 0 and G; £ {g1,...,gj—1} for all j €
{2,..., K + 1}. Suppose
FR7;30G;) = f(G5) = { max (fF({v}UG;)—f(Gj))}—T;

’UGV\G]‘

for all j € {1,..., K}, where 7; € R>¢. Then

K
F(Gri) > (1= DS =Y me @)
k=1
where S* is an optimal solution to Problem (1). O
The result below follows directly from Lemmas 5 and 6.
Theorem 1: Consider Algorithm 1 for Problem (1) with
a set N of agents. Suppose Assumptions 1 and 2 hold and
1 € R satisfies condition (14). Then Algorithm 1 lets all
the agents in A reach consensus at a solution SX to Problem
(1) that satisfies

F8%) 2 (1= )(57) = K(p +24(T)),

where €(T) = /n(p(W))TF, with F, = max;en fi(V),
and S* is an optimal solution to Problem (1). O

Theorem 1 shows that Sy approaches the (1 — 1/e)
approximation of S* with an additive factor £, £ K (¢ +
2¢(T")). We know from the definition of €(7") that E,. is a
function of the number of the agents, the bound on the local
functions and the design parameters (i.e., W, T and v). In
the context of Theorem 1, we analyze how the additive factor
(i.e., E,) behaves in terms of those quantities under different
scenarios. In particular, we are interested in how the additive
factor depends on the number of communication steps in
each round of the algorithm. First, let us consider the fast
communication scenario (e.g., [20]). In this scenario, agents
can communicate sufficiently fast, i.e., 7' — o0, in each
round of the distributed greedy algorithm. Since u(WW) < 1
from Assumption 2, €(7') — 0 as 7' — oo. Moreover, the
lower bound on % in (14) tends to zero. Consequently, we

can choose the design parameter 1) to be arbitrarily close to
zero and obtain F, — 0.

Next, we consider the scenario where the communication
among the agents in each round of the distributed algorithm
is limited. Suppose n is fixed and the input to Algorithm 1
is also fixed, i.e., K and F}, are fixed. We then have E, =
K+O((p(W))T). If we can choose the design parameter 1)
such that 1 = O((u(W))T), we obtain E, = O((u(W))T),
which implies that E, vanishes at an exponential rate. In
contrast, if we assume that v is fixed, we have F, = K +
O((u(W))T), which implies that E,. converges exponentially
to K.

Indeed, using techniques in, e.g., [21], one can optimally
choose the weight matrix W such that p (1) is minimized
in the above scenarios, which leads to accelerations in
the convergence rate. In summary, we observe a tradeoff
between the performance of the distributed greedy algorithm
and the number of communication steps in each round of
the algorithm. Moreover, the performance of the algorithm
also depends on the choice of . It is also worth noting
that our distributed greedy algorithm achieves exponential
convergence rates (as described above), while the algorithm
proposed in [6] only achieves sublinear convergence rates.

V. NONSUBMODULAR OBJECTIVE FUNCTIONS

In this section, we extend our previous analysis to cases
when the objective functions in Problem (1) are nonsubmod-
ular. In other words, we consider the scenario where the local
objective function f;(-) is monotone nondecreasing with
f:(@) = 0, but not necessarily submodular, for all ; € . We
first note that the (centralized) greedy algorithm has also been
applied to solve Problem (1) with nonsubmodular objective
functions using the notion of submodularity ratio (e.g., [15]).

Definition 4: (Submodularity ratio) Given a set V, the
submodularity ratio of a nonnegative set function f : 2V —
R>o is the largest v € Rxq that satisfies -, 4\ 5 (f({a} U
B) — f(B)) > fy(f(AUB) — f(B)) forall AL BCV.

Remark 3: For a nonnegative and nondecreasing function
set f(-) with submodularity ratio -y, we have « € [0, 1], and
f(+) is submodular if and only if v =1 [15].

We now extend Lemma 6 to nonsubmodular functions; a
proof of the following result is included in the appendix.

Lemma 7: Consider Problem (1) in the centralized case,
where the objective function f(-) is monotone nondecreasing
with submodularity ratio v € Rso. Denote G; £ () and
Gj =2 {g1,...,g;—1} forall j €{2,..., K + 1}. Suppose
fF{g;30G;) - f(G)) = {Ug‘l/%‘(f({U}UGj)—f(GJ))}—Tj

J

for all j € {1,..., K}, where 7; € R>¢. Then

K
f@rin) > (1= () =Y ™ (26)
k=1

where S* is an optimal solution to Problem (1). O

Using similar arguments to those for Theorem 1, one can
obtain the following result from Definition 4 and Lemma 7;
the proof is omitted for conciseness.
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Corollary 1: Consider Algorithm 1 for Problem (1) with
a set A/ of agents. Suppose Assumptions 1 and 2 hold and
1 € R satisfies condition (14). Denote the submodularity
ratio of the local objective function f;(-) as v; € R for all
i € N and denote 7. = min;cn ;. Suppose 7; > 0 for
all i € N. Then Algorithm 1 lets all the agents in N\ reach
consensus at a solution S to Problem (1) that satisfies

F(8%) = (1 —e77) f(S*) — K (v + 2¢(T)),

where €(T) = /n(p(W))TF, with F, = max;en fi(V),
and S* is an optimal solution to Problem (1). O

Similarly to Section IV, Corollary 1 leads to a tradeoff
between the performance of the distributed greedy algorithm
and the number of communication steps in each round of the
algorithm, under the nonsubmodular setting.

VI. CONCLUSIONS

In this paper, we proposed a distributed greedy algorithm
for maximizing a global submodular function, subject to a
cardinality constraint, with a group of agents communicating
over a network. The distributed greedy algorithm allows
each agent to converge to within an additive factor of the
(1 — 1/e) approximation of the optimal solution to the
global maximization problem. The additive factor reveals
a tradeoff between the performance of the algorithm and
the number of communication steps in each round of the
algorithm. Finally, we extended our analysis to cases when
the objective function is not submodular by leveraging the
notion of submodularity ratio.

APPENDIX

Proof of Lemma 7:

The proof is based on the idea of the proof for Theorem 6
in [23]. Denote A; £ f(S*)— f(G;) forall j € {1,..., K+
1} and 8; = f({g;UG;}) — [(G)) = [(Gj41) — f(G;) for
all j € {1,..., K}. We then have from Definition 4

FGUS) -G < (Y FR}UG) - (G))).
v UGS*\éj
(27)
Noting that 8; > {max,cy\g, (f({v}UG;) — f(G;))} —7;
for all j € {1,...,K}, we have f({v} UG;) — f(G;)) <
Bj+ 7j forall v € S*\ G, and for all j € {1,...,K}. It
then follows from |S*| = K and (27) that

F(8%) < F(G,US") < F(Gy) + (8, + 1)
gl
=4 < 5(Bj +75) = A5 < %(Aj —Ajp1 +75)

2

< (28)

:Aj+1 < (1 — %)A] =+ Tj-

Unrolling (28), we obtain Ag 41 < (1— )54, —&—Zf:l i,
where we use the fact 1 — & < 1. Therefore, f(S5*) —
f(Gri1) < (1 — 2)5F(S") + ZKzl 7j, which implies
f(Gry1) = f(57) = e f(57) = 2251 75 u
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