Downloaded 12/29/21 to 128.210.126.199 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. CONTROL OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. S49-S74

PARAMETER ESTIMATION IN EPIDEMIC SPREAD NETWORKS
USING LIMITED MEASUREMENTS*

LINTAO YET, PHILIP E. PARE!, AND SHREYAS SUNDARAM#

Abstract. We study the problem of estimating the parameters (i.e., infection rate and recovery
rate) governing the spread of epidemics in networks. Such parameters are typically estimated by
measuring various characteristics (such as the number of infected and recovered individuals) of the
infected populations over time. However, these measurements also incur certain costs, depending on
the population being tested and the times at which the tests are administered. We thus formulate
the epidemic parameter estimation problem as an optimization problem, where the goal is to either
minimize the total cost spent on collecting measurements or to optimize the parameter estimates
while remaining within a measurement budget. We show that these problems are NP-hard to solve
in general and then propose approximation algorithms with performance guarantees. We validate
our algorithms using numerical examples.

Key words. epidemic spread networks, parameter estimation, optimization algorithms
AMS subject classifications. 93C10, 93E10, 68Q25, 68W25

DOI. 10.1137/20M1377801

1. Introduction. Models of spreading processes over networks have been widely
studied by researchers from different fields (see, e.g., [15, 24, 6, 3, 26, 21]). The case
of epidemics spreading through networked populations has received a particularly
significant amount of attention, especially in light of the ongoing COVID-19 pandemic
(see, e.g., [21, 22]). A canonical example is the networked SIR model, where each
node in the network represents a subpopulation or an individual and can be in one
of three states: susceptible (S), infected (I), or recovered (R) [19]. There are two
key parameters that govern such models: the infection rate of a given node and the
recovery rate of that node. In the case of a novel virus, these parameters may not be
known a priori, and must be identified or estimated from gathered data, including, for
instance, the number of infected and recovered individuals in the network at certain
points of time. For instance, in the COVID-19 pandemic, when collecting the data
on the number of infected individuals or the number of recovered individuals in the
network, one possibility is to perform virus or antibody tests on the individuals,
with each test incurring a cost. Therefore, in the problem of parameter estimation
in epidemic spread networks, it is important and of practical interest to take the
costs of collecting the data (i.e., measurements) into account, which leads to the
problem formulations considered in this paper. The goal is to exactly identify (when
possible) or estimate the parameters in the networked SIR model using a limited
number of measurements. Specifically, we divide our analysis into two scenarios: (1)
when the measurements (e.g., the number of infected individuals) can be collected
exactly without error and (2) when only stochastic measurements can be obtained.
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In settings where exact measurements of the infected and recovered proportions of
the population at certain nodes in the network can be obtained, we formulate the pa-
rameter identification measurement selection (PIMS) problem as minimizing the cost
spent on collecting the measurements, while ensuring that the parameters of the SIR
model can be uniquely identified (within a certain time interval in the epidemic dy-
namics). In settings where the measurements are stochastic (thereby precluding exact
identification of the parameters), we formulate the parameter estimation measurement
selection (PEMS) problem. The goal is to optimize certain estimation metrics, while
satisfying the budget on collecting the measurements.

Related work. The authors in [23, 35] studied the parameter estimation problem
in epidemic spread networks using a “susceptible-infected-susceptible (SIS)” model of
epidemics. When exact measurements of the infected proportion of the population
at each node of the network can be obtained, the authors proposed a sufficient and
necessary condition on the set of the collected measurements such that the parameters
of the SIS model (i.e., the infection rate and the recovery rate) can be uniquely
identified. However, this condition does not pose any constraint on the number of
measurements that can be collected.

In [25], the authors considered a measurement selection problem in the SIR model.
Their problem is to perform a limited number of virus tests among the population such
that the probability of undetected asymptotic cases is minimized. The transmission of
the disease in the SIR model considered in [25] is characterized by a Bernoulli random
variable which leads to a hidden Markov model for the SIR dynamics.

Finally, our work is also closely related to the sensor placement problem that
has been studied for control systems (see, e.g., [20, 39, 37]), signal processing (see,
e.g., [7, 38]), and machine learning (see, e.g., [18]). The goal of these problems is
to optimize certain (problem-specific) performance metrics of the estimate based on
the measurements of the placed sensors, while satisfying the sensor placement budget
constraints.

Contributions. First, we show that the PIMS problem is NP-hard, which pre-
cludes polynomial-time algorithms for the PIMS problem (if P # NP). By exploring
structural properties of the PIMS problem, we provide a polynomial-time approxi-
mation algorithm which returns a solution that is within a certain approximation
ratio of the optimal. The approximation ratio depends on the cost structure of the
measurements and on the graph structure of the epidemic spread network. Next, we
show that the PEMS problem is also NP-hard. In order to provide a polynomial-time
approximation algorithm that solves the PEMS problem with performance guaran-
tees, we first show that the PEMS problem can be transformed into the problem of
maximizing a set function subject to a knapsack constraint. We then apply a greedy
algorithm to the (transformed) PEMS problem and provide approximation guarantees
for the greedy algorithm. Our analysis for the greedy algorithm also generalizes the
results from the literature for maximizing a submodular set function under a knap-
sack constraint to nonsubmodular settings. We use numerical examples to validate
the obtained performance bounds of the greedy algorithm and show that the greedy
algorithm performs well in practice.

Notation and terminology. The sets of integers and real numbers are denoted
as Z and R, respectively. For a set S, let |S| be its cardinality. For any n € Z>1, let
[n] £ {1,2,...,n}. Let 0,,x, be a zero matrix of dimension m x n; the subscript will
be dropped if the dimension can be inferred from the context. For a matrix P € R®*",
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let P, tr(P), and det(P) be its transpose, trace, and determinant, respectively. The
eigenvalues of P are ordered such that |\ (P)| > --- > |\, (P)|. Let P;; (or (P)ij)
denote the element in the ith row and jth column of P, and let (P); denote the ith
row of P. A positive semidefinite matrix P € R™*™ is denoted by P > 0.

2. Model of epidemic spread network. Suppose a disease (or virus) is spread-
ing over a directed graph G = {V, €}, where V £ [n] is the set of n nodes, and & is
the set of directed edges (and self-loops) that captures the interactions among the
nodes in V. Here, each node i € V is considered to be a group (or population)
of individuals (e.g., a city or a country). A directed edge from node i to node j,
where i # j, is denoted by (i,7). For all i € V, denote N; = {j : (j,i) € £} and
N; £ {j:(j,i) € E}U{i}. For alli € V and for all k € Z>o, we let s;[k], x;[k], and
r;[k] represent the proportions of the population of node ¢ € V that are susceptible,
infected, and recovered at time k, respectively. To describe the dynamics of the spread
of the disease in G, we will use the following discrete-time SIR model (see, e.g., [12]):

(2.1&) Sz[k/’ + 1] = Sz[k] — hsz[kz]ﬁ Z aijmj[k:],
JEN;
(2.1b) ilk + 1] = (1 — hd)a;[k] + hs;[K]B > aija;(k],
JEN;
(2.1C) Ti[ki + 1] =7 [k‘] + hdl‘l[k‘],

where 3 € R>( is the infection rate of the disease, § € R> is the recovery rate of the
disease, h € R>( is the sampling parameter, and a;; € R>¢ is the weight associated
with edge (j,4). Let A € R™*™ be a weight matrix, where A;; = a;; for all 4,5 € V
such that j € NV;, and A;; = 0 otherwise. Denote s[k] £ [s1[k] --- sn[k]]T e R”,
olk] £ [e1k] - zok]]" € R", and r[k] £ [m[k] --- r.[K]]" € R for all
k € Z>¢. Throughout this paper, we assume that the weight matrix A € R"*" and
the sampling parameter h € R>( are given.

3. Preliminaries. We make the following assumptions on the initial conditions
s[0], z[0], and r[0], and the parameters of the SIR model in (2.1) (see, e.g., [23, 12]).

Assumption 3.1. For all i € V, s;[0] € (0,1], ;[0] € [0,1), r;[0] = 0, and s;[0] +
Assumption 3.2. Assume that h, (3,0 € Ry with hé < 1. For all 4,5 € V with
(j,i) € € and i # j, assume that a;; € Ryo. Foralli € V, h3 5, aij < 1.

DEFINITION 3.3. Consider a directed graph G = {V,E} with V = [n]. A di-
rected path of length t from mode ig to node iy in G is a sequence of t directed edges
(i0,81), ..., (it—1,%t). For any distinct pair of nodes i,j € V such that there exists a
directed path from i to j, the distance from node i to node j, denoted as d;j, is defined
as the shortest length over all such paths.

DEFINITION 3.4. Define S; £ {i : 2;[0] > 0,5 € V} and Sy = {i : 2;[0] = 0,i €
V}. For all i € Sy, define d; =S minjes, dj;, where d; > 1, and define d; L 400 if
there is no path from j to i for any j € S;. For alli € Sy, define d; £ 0.

Using arguments similar to those in [12], one can show that s;[k], z;[k], r;[k] € [0, 1]
with s;[k] + z;[k] +r;[k] = 1 for all ¢ € V and for all k € Z>, under Assumptions 3.1-
3.2. Thus, given z;[k] and r;[k], we can obtain s;[k] = 1 — xz;[k] — r;[k] for all i € V
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and for all & € Z>o. We also have the following result that characterizes properties
of z;[k] and r;[k] in the SIR model over G given by (2.1). The proof is omitted here
in the interest of space and can be found in the extended version of this paper [36].

LEMMA 3.5. Consider a directed graph G = {V,E} with V = [n] and the SIR
dynamics given by (2.1). Suppose Assumptions 3.1-3.2 hold. Then, the following
results hold for all© € V, where k € Z>¢, and Sy and d; are defined in Definition 3.4:

(a) s;[k] >0 for all k > 0.

(b) If d; # +o0, then z;[k] =0 for all k < d;, and z;[k] € (0,1) for all k > d;.!

(¢c) If d; # 400, then ri[k] =0 for all k < d;, and r;[k] € (0,1) for all k > d;.

(d) If i € Sy with d; = +oo, then z;[k] =0 and r;[k] =0 for all k > 0.

4. Measurement selection problem in exact measurement setting. In
this section, we assume that S;, Sy C V defined in Definition 3.4 are known.

4.1. Problem formulation. Given exact measurements of x;[k] and r;[k] for a
subset of nodes, our goal is to estimate (or uniquely identify, if possible) the unknown
parameters 8 and d. Here, we consider the scenario where collecting the measurement
of z;[k] (resp., r;[k]) at any node i € V and at any time step k € Z>¢ incurs a
cost, denoted as ¢, ; € R>q (resp., by, € R>g). Moreover, we can only collect the
measurements of x;[k] and r;[k] for k € {t1,t1+1,...,t2}, where t1,t3 € Z>( are given
with ¢t > ¢;. Noting that Lemma 3.5 provides a (sufficient and necessary) condition
under which z;[k] = 0 (resp., r;[k] = 0) holds, we see that one does not need to collect
a measurement of z;[k] (rvesp., r;[k]) if ;[k] = 0 (resp., r;[k] = 0) from Lemma 3.5.
Given time steps t1,t2 € Z>( with ¢t > t;, we define a set

(4.1) Tiyto = {NJE] ik € {t1,... ta}, i €V, Ni[k] > 0, ) € {m,7}},

which represents the set of all candidate measurements from time step ¢; to time step
to. To proceed, we first use (2.1b)—(2.1c) to obtain

_$[t1 + 1] — x[tl]_
afta] = afta — 1| _, [®7., 1] [3
(4.2) vl 1] — [t h{@; o J M
[ rfta] — vt — 1]
where &2, 2 [(@2)T ... (®7_)7]" with

s1[k] X2 en, arjjlk]  —wi[k]
(4.3) oy & : : Vk € {t1,...,ta — 1},
snlk] D jen, anjzilk]  —xnlk]

and 7, 2 [(®7)7 - (®7,_)T]" with
0 l’l[k}

(4.4) A : Vk € {t1,...,ta — 1}.
0 x,[k]

INote that for the case when d; = 0, i.e., i € Sy, part (b) implies z;[k] > 0 for all k > 0.
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We can then view (4.2) as a set of 2(¢2 — t1)n equations in § and §. Noting that s;[k]
for all 4 € V can be obtained from s;[k] = 1 —x;[k] —r;[k] as argued in section 3, we see
that the coefficients in the set of equations in 5 and ¢ given by (4.2), i.e., the terms
in (4.2) other than 8 and §, can be determined given that x[k] and r[k] are known for
all k € {t1,...,t2}. Also note that given z[k] and r[k] for all k € {t1,...,t2}, we can
uniquely identify 8 and & using (4.2) if and only if rank([(®7,.,, )" (®,., 1)"]) =
2.

Next, let Z C Z;, .+, denote a measurement selection strategy, where Z;, .4, is given
by (4.1). We will then consider identifying 5 and J using measurements contained in
T C T4,.4,. To illustrate our analysis, given any ¢ € V and any k € {t1,...,t2 — 1}, we
first consider the following equation from (4.2):

(4.5) ik + 1] —z;[k] = h [Si[k] Zwe/(/i Wiy Ty [K] —xz[kﬂ [?] ,

where s;[k] = 1 — x;[k] — r;[k], and we index the equation in (4.2) corresponding to
(4.5) as (k,i,z). Note that in order to use (4.5) in identifying 8 and §, one needs
to determine the coefficients (i.e., the terms other than S and §) in the equation.
Also note that in order to determine the coefficients in equation (k,,x), one can use
the measurements contained in 7 C Z;, .+, and use Lemma 3.5 to determine whether
x;[k] = 0 (resp., r;[k] = 0) holds. Supposing z;[k+1] = 0, we see from Lemma 3.5 and
(2.1b) that z;[k] = 0 and s;[k] > _,,c 5, @iwTw([k] = 0, which makes equation (k,i, )
useless in identifying 8 and §. Thus, in order to use equation (k, i, z) in identifying 3
and 0, we need z;[k + 1] € Z with z;[k + 1] > 0. Similarly, given any ¢ € V and any
k€ {t1,...,ta — 1}, we consider the following equation from (4.2):

(4.6) rilk+ 1] —ri[k] = h [O xl[k]] [g} ,
where we index the above equation as (k,4,r). Supposing r;[k + 1] = 0, we see from
Lemma 3.5 and (2.1c) that r;[k] = x;[k] = 0, which makes equation (k,%,r) useless in
identifying 8 and §. Hence, in order to use equation (k,,r) in identifying 8 and 4,
we need to have {z;[k],r;[k+ 1]} C Z with z;[k] > 0 and r;[k+ 1] > 0. More precisely,
we observe that equation (k,4,7) can be used in identifying 8 and § if and only if
{z;[k],ri[k + 1]} CZ, and r;[k] € T or r;[k] = 0 (from Lemma 3.5).

In general, let us denote the following two coefficient matrices corresponding to
equations (k,4,z) and (k,4,r) in (4.2), respectively:

(4.7a) bi = [silk] X en, aijos k] —ailk]],
(4.7b) ke = [0 @ilk]]
for all k € {t1,...,t2 — 1} and for all i € V. Moreover, given any measurement

selection strategy Z C 1y, .;,, we let

(4.8) T2 {(k,i,x):z[k+1] €T, a;[k] =0y U{(k,i,x): {z;[k + 1], 2;[k]} C T}

U {(ka i, T) : {rl[k + 1]7 xi[k]} c17, Tl[k} = 0} U {(ka i T) : {Tl[k + 1]7 ri[k]v xi[k]} c I}
be the set that contains indices of the equations from (4.2) that can be potentially
used in identifying 8 and J, based on the measurements contained in Z. In other

words, the coefficients on the left-hand side of equation (k,,z) (resp., (k,4,7)) can be
determined using the measurements from Z and using Lemma 3.5 for all (k,i,x) € T
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(vesp., (k,i,7) € ). Let us now consider the coefficient matrix ® ; (resp., ®} ;)
corresponding to (k,i,xz) € T (resp., (k,i,7) € Z). One can then show that it is possi-
ble that there exist equations in Z whose coefficients cannot be (directly) determined
using the measurements contained in Z or using Lemma 3.5, where the undetermined
coefficients come from the first element in 7 ; given by (4.7a). Nevertheless, it is also
possible that one can perform algebraic operations among the equations in Z such
that the undetermined coefficients get cancelled. Formally, we define the following.

DEFINITION 4.1. Consider a measurement selection strateqy T C T, ..,, where
Ti,:t, 18 given by (4.1). Stack coefficient matrices @, ; € RY2 for all (k,i,z) € T and
L € RY2 for all (k,i,r) € T into a single matriz, where i, and @y, are given
by (4.7) and T is given by (4.8). The resulting matriz is denoted as ®(Z) € RIZI*2,
Moreover, define @(I) to be the set that contains all the matrices ® € R?>*? such that
(@)1 and (P)2 can be obtained via algebraic operations among the rows in ®(Z), and
the elements in (®); and (P)s can be fully determined using the measurements from
L C 14y, and using Lemma 3.5.

In other words, ® € é(I) corresponds to two equations (in 8 and d) obtained
from (4.2) such that the coefficients on the right-hand side of the two equations can
be determined using the measurements contained in Z and using Lemma 3.5 (if the
coefficients contain z;[k] = 0 or 7;[k] = 0). Moreover, one can show that the coeffi-
cients on the left-hand side of the two equations obtained from (4.2) corresponding to
® can also be determined using measurements from Z and using Lemma 3.5. Putting
the above arguments together, we see that given a measurement selection strategy
T C Ty, B and § can be uniquely identified if and only if there exists ® € ®(Z) such
that rank(®) = 2. Equivalently, denoting

(4.9) Tmax(Z) £ max rank(®),
Ped(T)

where ryax(Z) 2 0 if ®(Z) = (), we see that § and & can be uniquely identified using
the measurements from Z C Zy, .1, if and only if rmax(Z) = 2.

Remark 4.2. Note that if a measurement selection_ strategy Z C 7,., satisfies
Tmax(Z) = 2, it follows from the above arguments that [Z| > 2, i.e., ®(Z) € R**2 has
at least two rows, where 7 is defined in (4.8).

Recall that collecting the measurement of z;[k] (resp., r;[k]) at any node i € V
and at any time step k € Zx¢ incurs cost c;; € R>o (resp., br; € R>¢). Given any
measurement selection strategy Z C 7;,.,, we denote the cost associated with Z as

(4.10) )& > it Y, bra

I,,[k‘]ez T4 [k]eI

We then define the parameter identification measurement selection (PIMS) problem
in the perfect measurement setting as follows.

PROBLEM 4.3. Consider a discrete-time SIR model given by (2.1) with a directed
graph G = {V,E}, a weight matriz A € R"*", a sampling parameter h € R>q, and
sets S;, Sy C V defined in Definition 3.4. Moreover, consider time steps t1,ts € Z>q
with t1 < t2, and a cost ¢,; € R>¢ of measuring x;[k] and a cost by; € R>g of
measuring 1;[k|, for all i € V and for all k € {t1,...,t2}. The PIMS problem is to
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find T C 7y, .4, that solves

min ¢(Z)
(4.11) TET
s.t. rmax(Z) = 2,

where Ty, 4, is defined in (4.1), ¢(Z) is defined in (4.10), and rmax(Z) is defined in
(4.9).

We show that the PIMS problem is NP-hard via a polynomial-time reduction
from the exact cover by 3-sets problem which is known to be NP-complete [10]. The
proof is omitted here in the interest of space and can be found in [36].

THEOREM 4.4. The PIMS problem is NP-hard.

Theorem 4.4 indicates that there is no polynomial-time algorithm that solves
all instances of the PIMS problem optimally (if P # NP). Moreover, we note from
the formulation of the PIMS problem given by Problem 4.3 that for a measurement
selection strategy Z C Zy,.,, one needs to check whether maxgcg 7 rank(®) = 2
holds, before the corresponding measurements are collected. However, in general, it
is not possible to calculate rank(®) when no measurements are collected. In order to
bypass these issues, we will explore additional properties of the PIMS problem in the
following.

4.2. Solving the PIMS problem. We start with the following result.

LEMMA 4.5. Consider a discrete time SIR model given by (2.1). Suppose As-
sumptions 3.1-3.2 hold. Then, the following results hold, where Py, i, € R'*2 and
@y, 5. € RYZ are defined in (4.7), S; £ {i € S : ai > 0}, S’ 2L eV\S) N, #
0, min{d; : j € N;} # oo}, and St and d; are defined in Definition 3.4 for all i € V.

(a) For anyiy € S} and anyiy € V with d;, # oo, rank( [(®F, , )T (®f,.,)7]) =
2 for all k1 > 0 and for all ko > d;,, where ki,ks € Z>g.

(b) For any iy € 8’ and any iz € V with d;, # oo, rank( [(®f, ;)T (®f,:,)"]) =
2 for all ky > min{d; : j € N;, }, and for all ke > d;,, where ki, ko € Z>o.

Proof. Noting from (4.7), we have

k2,12
To prove part (a), consider any iy € S} and any is € V with d;, # 0o, where
we note z;,[0] > 0 and a;;, > 0 from the definition of S7. We then see from
Lemma 3.5(a)—(b) that s;,[k1] > 0 and z;,[k1] > 0 for all &y > 0. It follows that
Siy [k1] Z]‘E/\Til a;,jxjlk1] > 0 for all k; > 0. Also, we obtain from Lemma 3.5(b)
X, [k2] > 0 for all ks > d;,, which proves part (a).

We now prove part (b). Considering any i1 € &’ and any i € V with ds # oo,
we see from the definition of S’ that N;; # 0 and there exists j € A, such that
dj # oo. Letting j; be a node in N;, such that d;, = min{d; : j € N;, } # 0o, we note
from Lemma 3.5(a) that z;, [k1] > 0 for all k; > min{d; : j € N;,}. Also note that
a;,j, > 0 from Assumption 3.2. The rest of the proof of part (b) is then identical to
that of part (a). |

Recalling the way we index the equations in (4.2) (see (4.5)—(4.6) for examples),
we define the set that contains all the indices of the equations in (4.2):

(4.13) Q2 {(kyi,\):k€{ty,....ta —1},i €V, X € {x,7r}}.
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Following the arguments in Lemma 4.5, we denote
(4.14) Q1 =2 {(k,i,v) € Q:ie€ S;}U{(k,i,x) € Q:k>min{d; :j € N;},i € S},
(4.15) Qo 2 {(k,i,7) € Q: k >d;i € V,d; # <},

where S} and &’ are defined in Lemma 4.5, and d; is defined in Definition 3.4. Next,
for all (k,i,2) € Q, we define the set of measurements that are needed to determine
the coefficients in equation (k,4, ) (when no other equations are used) to be

Z(k,i,2) & ({alk + 1], ri[k]} U {a;[k] : j € Ni}) N Ty
where 7y, .1, is defined in (4.1). Similarly, for all (k,4,7) € Q, we define
I(k,i,r) & ({rilk + 1], ri[k], i [k]}) N Ty e,
Moreover, let us denote
(4.16) Z((k1, i1, A1), (K2, i, A2)) = Z(ky, i1, A1) UZ(ko, iz, A2)

for all (k1,41, A1), (k2,i2, A2) € Q. Similarly to (4.10), denote the sum of the costs of
the measurements from Z((k1,71, A1), (k2,i2, A2)) as ¢(Z((k1,i1, A1), (k2,i2, A2))).

Algorithm 4.1. Algorithm for PIMS.

1: Input: An instance of PIMS
2: Find (kl,il,l‘) S Ql, (k’27’i2,7“) S Q2 s.t. C(I((k}l,il,l‘), (k‘g,ig,’r‘))) is minimized
3: return Z((ky,i1,2), (ka,i2,7))

Based on the above arguments, we propose an algorithm defined in Algorithm 4.1
for the PIMS problem. Note that Algorithm 4.1 finds an equation from Q; and an
equation from Qs such that the sum of the costs of the two equations is minimized,
where Q; and Qy are defined in (4.14) and (4.15), respectively.

PRrROPOSITION 4.6. Consider an instance of the PIMS problem under Assumptions
3.1-3.2. Algorithm 4.1 returns a solution Z((ky,41,x), (ka,i2,7)) to the PIMS problem
that satisfies the constraint in (4.11) and the following:

(4.17)
c(Z((ky, iy, ), (koyiz, 7)) < Min(x ; 2)eQ, (br+1,i + 0ki + o1, + D je 7, Chij)
C(I*) - 3Cmin ’

where T* is an optimal solution to the PIMS problem, Q1 is defined in (4.14), and
Conin 2 min{minzi[k]elet2 Chyis MMy, (k)€T, 0, b,i} > 0 with Iy, 4, given by (4.1).

Proof. The feasibility of Z((k1,141, ), (ka, i2, r)) follows directly from the definition
of Algorithm 4.1 and Lemma 4.5. We now prove (4.17). Consider any equations
(k,i,2) € Q1 and (k,i,7) € Q2. We have from (4.16) the following:

Z((k,i,2), (k,i,7))
= ({ailk + 1], 7 (K]} U {=;[K] : j € Ni} U {rilk + 1], 73 (K], 23 [K]}) N Tyyia,s

which implies

c(Z((kryir, x), (k2,d2,7))) < " mi)lég (bk+1,i +bp,i + Crg1,i + E Ck,j)-
31, T 1 .
JEN;
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Next, since T* satisfies ryax(Z*) = 2, we recall from Remark 4.2 that |Z*| > 2, where

T* = {(k,i,x) : x5k + 1] € T, z;[k) = 0y U {(k,i,2) : {zs[k + 1), 2;[k]} C T*}
U{(k,i,r) : {ri[k+1], z;[k]} € T*,r;i[k] = 0}U{(k,4,7) : {ri[k+1],7;]k], x;[k]} C I*},

which implies |Z*| > 2. In fact, suppose {x;[k + 1], z;[k + 1]} C I*, where ¢,j € V
and k € {t; —1,...,f2 — 1}. Since the elements in ®f ; and ®f ; (defined in (4.7))
cannot all be zero, we see that there exists x,,[k] € Z* (with x,,[k] > 0), where w € V.
This further implies |Z*| > 3. Using similar arguments, one can show that |Z*| > 3
holds in general, which implies ¢(Z*) > 3¢pmin. Combining the above arguments leads
to (4.17). O

Finally, note that Q;, Q2, and Z;, ., can be obtained by calling the breadth-first-
search algorithm (see, e.g., [8]) |S;| times with O(|Sy|(n+£])) total time complexity.
Also note that the time complexity of line 2 in Algorithm 4.1 is O(n?(ty —t; + 1)?).
Thus, the overall time complexity of Algorithm 4.1 is O(|Q|* + |S;]|&]).

5. Measurement selection problem in random measurement setting.
In this section, we assume that the initial condition I = [(s[0])" (z[0])T (r[0])7]7 is
known. Nevertheless, our analysis can potentially be extended to cases where the
initial condition [ is given by a probability distribution.

5.1. Problem formulation. We consider the scenario where the measurement
of x;[k] (resp., r;[k]), denoted as &;[k] (resp., 7;[k]), is given by a pmf p(Z;[k]|x;[k])
(resp., p(7i[k]|ri[k])). Note that one can express x;[k] in terms of [ and § = |3 §] using
(2.1b). Hence, given ! and 0, we can alternatively write p(Z;[k]|x;[k]) as p(&;[k]|l,0)
for all ¢ € V and for all kK € Z>;. Since the initial conditions are assumed to be
known, we drop the dependency of p(#;[k]|l,6) on | and denote the pmf of Z;[k] as
p(Z;[k]|0) for all ¢ € V and for all k € Z>,. Similarly, given | and 6, we denote the
pmf of #;[k] as p(#;[k]|0) for all i € V and for all k € Z>,. Note that when collecting
measurement Z;[k] (resp., 7;[k]) under a limited budget, one possibility is to give virus
(resp., antibody) tests to a group of randomly and uniformly sampled individuals of
the population at node ¢ € V and at time k € Z>; (see, e.g., [2]), where a positive
testing result indicates that the tested individual is infected (resp., recovered) at time
k (see, e.g., [1]). Thus, the obtained random measurements Z;[k] and #;[k] and the
corresponding pmfs p(#;[k]|0) and p(7;[k]|¢) depend on the total number of conducted
virus tests and antibody tests at node ¢ and at time k, respectively. Consider any
node 7 € V and any time step k € Z>1, where the total population of 7 is denoted by
N, € Z>; and is assumed to be fixed over time. Suppose we are allowed to choose
the number of virus (resp., antibody) tests that will be performed on the (randomly
sampled) individuals at node ¢ and at time k. Assume that the cost of performing
the virus (resp., antibody) tests is proportional to the number of the tests. For any
1€V and for any k € {t1,...,t2}, let

(5.1) Cri = {Ceri: ¢ € ({0} UG}

be the set of all possible costs that we can spend on collecting the measurement ;[k],
where ¢x; € R>g and (; € Z>;. Similarly, for any ¢ € V and any k € {t1,...,2}, let

(5.2) By = {nbr,i :n € ({0} U [n:])}

denote the set of all possible costs that we can spend on collecting the measurement
7i[k], where by ; € R>¢ and 7; € Z>;. For instance, (ci,; can be viewed as the cost
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of performing virus tests on (N7 (randomly sampled) individuals in the population
at node i, where N € Z>; and (N’ < N;. To reflect the dependency of the pmf
p(2;]k]|0) (resp., p(#;[k]|0)) of measurement &;[k] (resp., 7;[k]) on the cost spent on
collecting the measurement of x;[k| (resp., r;[k]), we further denote the pmf of Z;[k]
(vesp., 7[k]) as p(&;[k]|0, ok,:) (vesp., p(7i[k]|0, wk i), where @y ; € Cr; (resp., wi,; €
By,i) with Cy; (resp., By,;) given by (5.1) (resp., (5.2)). Note that ¢ ; (resp., wk,;)
is the cost spent on collecting measurement Z;[k] (resp., 7;[k]), and ¢g; = 0 (resp.,
wg,; = 0) indicates that measurement &;[k| (resp., 7;[k]) is not collected.

In contrast with the exact measurement case studied in section 4, it is not possible
to uniquely identify 5 and § using measurements &;[k] and #;[k] which are now random
variables. Thus, we will consider estimators of 8 and ¢ based on the measurements
indicated by a measurement selection strategy. Similarly to section 4, given time steps
ti,ta € Z>1 with ty > t1, define the set of all candidate measurements as

(53) Uy, 4, = {i‘z[k’] ieV ke {t1, - ,tg}} U {’/’Az[k] ieV ke {tl, e ,tz}}.

Recalling C, ; and Bg,; defined in (5.1) and (5.2), respectively, we let p € Zztol“ be a
measurement selection that specifies the costs spent on collecting measurements ; [k]
and 7;[k] for all i € V and for all k € {t1,...,t2}. Moreover, we define the set of all
candidate measurement selections as

(5.4) M2 {ueZiy : p(@lk]) € ({0} UG, w(#i[k) € ({0} U )},

where (;,m; € Z>; for all ¢ € V. In other words, a measurement selection p is

defined over the integer lattice ZZ’S“ so that p is a vector of dimension |[Uy,.s,],
where each element of i corresponds to an element in Uy, .+, and is denoted as u(Z;[k])
(or p(7;[k])). The set M contains all u € Zg‘ol:t? such that u(#;[k]) € ({0} U [¢]) and
w(rik]) € ({0}U[n;]) for all i € V and for all k € {t1,...,t2}. Thus, for any ¢ ; € Ck

Uy, ity

and for any wy; € By, there exists p € M such that u(Z;[k])cr: = ¢, and
w(7i[k])br,; = wg,;. In other words, wu(Z;[k])ck,; (vesp., p(7;[k])bg ;) indicates the cost
spent on collecting the measurement of z;[k] (resp., r;[k]). Given a measurement
selection p1 € Z4/?, we can also denote the pmfs of #;[k] and 7;[k] as p(2;[k]|0, u(2:[k]))
and p(7;[k]|0, u(7;[k])), respectively, where we drop the dependencies of the pmfs on
¢k, and by ; for notational simplicity.

To proceed, we consider the scenario where measurements can only be collected
under a budget constraint given by B € R>(. Using the above notations, the budget

constraint can be expressed as

(5.5) Z cr,i(Zi[k]) + Z bi,ip(7i[k]) < B.

Z;[k] €U, 1y Pi[k]€UL, ity

We then consider estimators of § = [3 §]7 based on any given measurement selection
€ M. Considering any p € M, we denote

(5.6) UN 2 (K p(N[k]) > 0.k € {t1, ..., t2}}

for all i € V and for all A € {z,7}. For all i € V and for all A\ € {x,r} with U # 0,
< . T
denote y(U}) = [)\i[kl] cee A [kluﬁl]} , where U} = {ki,..., e} Letting

Uy 2 (i UM £ 0,0 e VY Y€ {a,r),
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we denote the measurement vector indicated by pu € M as

(5.7 oyl 2 [y yds, ) @) e g, )7

where U, = {i1,...,iy,} and U, = {j1,...,ju, }- Note that #;[k] and 7;[k] are
(discrete) random variables with pmfs p(&;[k]|0, u(Z;[k])) and p(7;[k]|0, u(7;[k])), re-
spectively. We then see from (5.7) that y(u) is a random vector whose pmf is denoted
as p(y(u)|0, 1). Similarly, the pmf of y(U) (resp., y(U])) is denoted as p(y(UF)|0, i)
(resp., p(y(U])|0, 1)). Given tq,ts € Z>q with to > t1, we make the following assump-
tion on measurements Z;[k] and 7;[k].

Assumption 5.1. For any i € V and for any kq, ke € {t1,...,ta} (k1 # ko), &:[k1],
Z;i[ka], 7:[k1], and 7;[ke] are independent of each other. Moreover, for any i,j € V
(i # j) and for any ki, ke € {t1,...,t2}, &;[k1] and &;[ks] are independent and Z; k1]
and 7;[ko] are independent.

The above assumption ensures that measurements from different nodes or from

different time steps are independent and the measurements of z;[k] and r;[k] are also
independent. It then follows from (5.7) that the pmf of y(u) can be written as

(5.8) w0, 1) = [T pw@, 1) - T] pw )10, ),

1€EU, JEU,

where we can further write p(y(UF)|0, p) = eruf p(Z;[k]10, p(E;[k])) for all ¢ € Uy,
and p(y(U)10, 1) = [Txeyy p(75 (K16, 0(75[K])) for all j € Us.

In order to quantify the performance (e.g., precision) of estimators of 6 based on
1, we use the Bayesian Cramer—Rao lower bound (BCRLB) (see, e.g., [34]) associated
with p. In the following, we introduce the BCRLB and explain why we choose it
as a performance metric. First, given any measurement pu € M, let Fp(u) be the
corresponding Fisher information matrix defined as

P Inpy(wd,p) % Inp(y(w)|f,p)
E 032 0

306
P Inply(w)d,p) % Inp(y(w)|f,p)
9608 962

(5.9) Fy(u) 2 -

with the expectation E[] taken with respect to p(y(u)|6, ). Under Assumption 5.1
and some regularity conditions on the pmfs of #;[k] and #;[k], (5.9) can be written as
(see, e.g., [14])

(5.10)
O p(As k16, p(Ai[K])) (@Inp(Ailk]|0, p(Ailk])
= > > > E { o0 < o6 ) }

Ae{z,r} i€l kel

Consider any estimator 9(u) of 6§ based on a measurement selection p € M, and
assume that we have a prior pdf of & = [3 §]7, denoted as p(#). Under some regularity
conditions on the pmfs of Z;[k] and 7;[k], and p(#), we have (see, e.g., [33, 34])

(5.11) Ry, = EI0(1) — 0)(0(1) — )7 = Clp),

where Ry ) € R2%2 is the error covariance of the estimator 6(u), the expectation E[/]

is taken with respect to p(y(u)|0, p)p(0), and C(u) € R?*? is the BCRLB associated
with the measurement selection p. The BCRLB is defined as (see, e.g., [33, 34])

(5.12) C(p) 2 (Eo[Fo(p)] + Fp)~ ",
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where Ey[-] denotes the expectation taken with respect to p(6), Fy(u) is given by (5.9),
and Fj, € R2*2 encodes the prior knowledge of 6 as

8% In p(0) 8% In p(0) o1 T
_ B2 GEEN _ np(f) (0lnp(0)
(5.13) Fy=—Eo | 2ipi0) o*lnpio) | = EG[ 90 a0 =0,
508 952

where the second equality holds under some regularity conditions on p(6) (see, e.g.,
33)). ]

Thus, the above arguments motivate us to consider (functions of) C(-) as op-
timization metrics in the measurement selection problem studied in this section, in
order to characterize the estimation performance corresponding to a measurement
selection p1 € M. In particular, we will consider tr(C(-)) and Indet(C(-)), which are
widely used criteria in parameter estimation (see, e.g., [13]) and are also known as the
Bayesian A-optimality and D-optimality criteria, respectively, in the context of exper-

imental design (see, e.g., [28]). First, considering the optimization metric tr(C(-)), we

see from the above arguments that (5.11) directly implies tr(Rj,)) > tr(C'(u)) for all

estimators 0(y) of 6 and for all 4 € M. Therefore, a measurement selection z* that
minimizes tr(C (1)) potentially yields a lower value of tr(Ry,,) for an estimator 6(u)

of . Furthermore, there may exist an estimator f(y) that achieves the BCRLB (see,

e.g., [33]); i.e., tr(C(u)) provides the minimum value of tr(Ré(H)) that can possibly

be achieved by any estimator é(u) of 0, given a measurement selection p. Similar

arguments hold for Indet(C(+)). To proceed, denoting

(5.14) Falp) 2 :(C(n)) and fa(p) 2 Indet(C () Vo € M,

we define the parameter estimation measurement selection (PEMS) problem.

PROBLEM 5.2. Consider a discrete-time SIR model given by (2.1) with a directed
graph G = {V,E}, a weight matrizx A € R"*™, a sampling parameter h € R>q, and an
initial condition I = [((s[0])T (z[0])T (r[0])T]T. Moreover, consider time steps ti,ts €
221 with to > t1; a set Ck,i = {Cck,i : C S ({0} @] Kl])} with Ck,i € RZO and Ci S 221
for alli €V and for all k € {t1,...,t2}; a set Bx; = {nbr,; : n € ({0} U m])} with
be; € R>g and n; € Z>1 for alli € V and for all k € {t1,...,t2}; a budget B € R>g;
and a prior pdf p(0). Suppose &;[k] (resp., 7i[k]) is given by a pmf p(&;[k]|0, vr.i)
(resp., p(7i[k]|0,wri)), where or; € Cri (resp., Wi € Bri). The PEMS problem is
to find a measurement selection p that solves

min, f(w)

5.15 N p

(5.15) st > cp@)+ Y ban(ilk) < B,
& (k] €U, 1y Pilk] €Uy 1y

where M is defined in (5.4), f(-) can be either of fu(:) or fa(-) with fu(-) and fa(:)
defined in (5.14), Uy, .1, is defined in (5.3), and C(u) is given by (5.12).

Note that F}, = 0 from (5.13), and f,(0) = tr(C(0)) = tr((F,)~") and f4(0) =
Indet(C(0)) = Indet((F,)~!) from (5.12). We further assume that F, > 0 in what
follows, which implies f(u) > 0 for all € M.

5.2. Solving the PEMS problem. In this section, we consider a measurement
model with specific pmfs of Z;[k] and #;[k] (see, e.g., [4, 12]). Nonetheless, our analysis
can potentially be extended to other measurement models.
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5.2.1. Pmfs of measurements &;[k] and #;[k]. Consider any i € V and any
k € {t1,...,t2}. Assume that the total population of node i is fixed over time and
is denoted as N; € Z>;. Given any measurement selection ¢ € M with M defined
n (5.4), we recall from section 5.1 that w(#;[k])ck; can be viewed as the cost of
performing virus tests on u(&;[k]) NF randomly and uniformly sampled individuals in
the population of node ¢ € V, where pu(&;[k]) € ({0}U[¢;]) (with ¢; € Z>1), ck,i € R>o,
and N7 € Z>q with ;N7 < N;. Note that x;[k] is the proportion of the population
at node 7 and at time k that is infected, and x;[k] € [0, 1) under Assumptions 3.1-3.2
as shown by Lemma 3.5. Thus, a randomly and uniformly sampled individual in the
population at node ¢ and at time k will be an infected individual (at time k) with
probability z;[k] and will be a noninfected (i.e., susceptible or recovered) individual
with probability 1 — x;[k]. Supposing the tests are accurate,? we see from the above
arguments that the obtained number of individuals that test positive, i.e., N;&;[k],
is a binomial random variable with parameters NFu(Z;[k]) € Z>1 and z;[k] € [0, 1).
Thus, for any ¢ € V and for any k € {t1,...,t2}, the pmf of Z;[k] is

@16 o) = w0utii) = (M Y o0 g s 0

where 2 € {0, % N ]\2, ,...,M} with x € [0,1] since N*¢; < N;. Note that
we do not define the pmf of measurement #;[k] when NZu(&;[k]) = 0, ie., when
w(Z;[k]) = 0, since p(Z;[k]) = 0 indicates that no measurement is collected for state
x;[k]. Also note that when z;[k] = 0, the pmf of #;[k] given in (5.16) reduces to
p(Z;[k] = 0|0, u(@;[k])) = 1. Moreover, since the weight matrix A € R"*™ and the
sampling parameter h € R>( are assumed to be given, we see that given 6 = [ 5)F
and initial condition I = [(s[0])T (z[0O])T (r[0])T]7, x;[k] can be obtained using (2.1b)
for all ¢ € V and for all k € {t1,...,t2}, where we can view z;[k] as a function in
the unknown parameter 6. In other words, given I, 0, u(#;[k]), N, and N;, one can
obtain the right-hand side of (5.16). Again, we only explicitly express the dependency
of the pmf of &;[k] on 6 and p(&;[k]) in (5.16). Following arguments similar to those
above, we assume that for any ¢ € V and for any k € {t1,...,t2}, measurement 7;[k]
has the following pmf:

(5.17)  p(Fi[k] = 710, p(7s[k])) = (M%j;[ﬂ)) (ra[K]) VT (1 — k] NV # D=
where r € {0, &, 2. MBIy with 7 € (0,1], u(filk]) € {0,...,mi}, N} € Zs1,

and N7 pu(7;[k]) < N;. Similarly, we note that the pmf of #;[k] given in (5.17) reduces
to p(#;[k] = 0|0, u(7;[k])) = 1 when r;[k] = 0. Considering any measurement selection
1t € M and any measurement \;[k] € Uy, .+,, where X € {z,7} and U,.,, is defined in
(5.3), we have the following;:

[alnm ilk]]6, (A []))<3lnp( ilk]]0, (N [])))T]

00 00

_ [ (Omplk][0, p(Nilk]) \* OXlk] (ONi[K]\T

(5.18) ‘EK N [H] ) o0 ( 50 ) }
~ NNk oNk] (xR T
(5.19) T ON[E(L = N[R]) 06 ( a0 ) ’

2Here, “accurate” means that an infected individual (at time k) will test positive with probability
one, and an individual that is not infected will test negative with probability one.
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where the expectation E[-] is taken with respect to p(\i[k]|6, w(Ni[k])), and \;[k]

[0,1). To obtain (5.18), we note the form of In p(A;[k]|0, (X:[k])) in (5.16) (or (5.17
and use the chain rule. Moreover, one can obtain (5.19) from the fact that 5\1[
is a binomial random variable. Noting that the pmf of A;[k] reduces to p(A[k]

06, w(As[k])) = 1 if A;[k] = 0 as argued above, we let the right-hand side of (5.19) be
zero if \;[k] = 0.

I == m

5.2.2. Complexity of the PEMS problem. Under the measurement model
described above, we show that the PEMS problem is also NP-hard via a polynomial-
time reduction from the knapsack problem which is known to be NP-hard [10]. That
is, there exist instances of the PEMS problem that cannot be solved optimally by any
polynomial-time algorithm (if P # NP). The proof is omitted here in the interest of
space and can be found in [36].

THEOREM 5.3. The PEMS problem is NP-hard.

5.2.3. An equivalent formulation for the PEMS problem. Theorem 5.3
motivates us to consider approximation algorithms for solving the PEMS problem.
To begin with, we note that the objective function in the PEMS problem can be
viewed as a function defined over an integer lattice. We then have f, : M — R>g
and fq : M — R>¢, where M is defined in (5.4). First, considering f, : M — R>,
we will define a set function fp, : 2" — Rsq, where M is a set constructed as

(5.20) M 2 {(&5[k],l1) i € V,k € {t1,... . ta}, 11 € [G]}
U {(ﬂ[k}],b) eV ke {tl,. .. ,tQ},ZQ S [17,']}.

In other words, for any i € V and for any k € {¢4,... ,tg},_we associate elements
(Z[k], 1), ..oy (&:[K], Gi) (vesp., (7i[k], 1), ..., (7:][k],m:)) in set M to measurement Z:;[k]
(resp., 7;[k]). The set function fp,(-) is then defined as

(5:21)  fra¥) 2 £(0) - fuliy) = tr(C(0) — tr(Cluy)) VY C M,

where for any Y C M, we define uy € M such that uy(#:[k]) = |{(2:[k],lh) :
(Z;[k], 1) € YV} and py(7:[k]) = [{(#:[k], l2) : (7:]k],l2) € V}| for all i € V and for all
k € {t1,...,ta}. In other words, uy(Z;[k]) (resp., py(7i[k])) is set to be the number
of elements in ) that correspond to the measurement Z;[k] (resp., #;[k]). Also note
that fpe(0) = 0. Following the arguments leading to (5.19), we define

NIT 8I1 k 31}1 k Ty . (A
5.29 H. 2 Ee[a:i[k](l—:ci[k]) 66[ ]( 69[ ]) ] lfy - (I’[k]’ll) v M
(5.22) y = E NI ori[k] (i kINTY ¢ = (51k] 1 yeM,
9[7’1-[1@](17”[1@]) 5o (Tap) | ity = (7ilk],12)

where z;[k],mi[k] € [0,1),3 € V, k € {t1,....ta}, l1 € [(i], l2 € [n:], and the expec-
tation Eg[] is taken with respect to the prior pdf p(f). Given any 0 = [B 6|7, we
see from the arguments for (5.19) that m[k](]ﬁxi[k]) age[k] (af;g[k])T > 0. Moreover,
one can show that Ef)[x,;[k](Jlexi[k]) axaie[k] (algg[k])T] > 0. Similarly, one can obtain
Eq [m [k](ffri ) ag(gk] (673(£k])T] > 0, which implies H, = 0 for all y € M. Now, sup-
pose the pmfs of #;[k] and 7;[k] are given by (5.16) and (5.17), respectively. Recall
from (5.12) that tr(C(u)) = tr((Eg[Fp(u)] + Fp)~') for all u € M, where F, and
Fp(p) are given by (5.13) and (5.10), respectively. Supposing Assumption 5.1 holds,
for all Y € M, one can first express Fp(py) using (5.19) and then use (5.22) to obtain
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Eo[Fo(py)] = Y,cy Hy = H(Y), where iy is defined above given ) C M. Putting
the above arguments together, we have from (5.21) the following:

(5.23) Fra@) =t ()™ — tr (B, + HO)™Y) WY € M.

Next, let the cost of (2;[k],11) be ¢k, denoted as c(2;[k], 11), for all (&;[k],11) € M,
and let the cost of (7;[k],l2) be by ;, denoted as c(7;[k], l2), for all (7;[k],l2) € M, where
cki € Rso and b, ; € Ry are given in the instance of the PEMS problem. Setting the
cost structure of the elements in M in this way, we establish an equivalence between
the cost of a subset ) C M and the cost of uy € M, where puy is defined above.
Similarly, considering the objective function fq : M — R>( in the PEMS problem,
we define a set function fpq: 2M — R>q as

(5.24)  fpa(¥) 2 Ja(0) — faluy) = Indet(F, + H(Y)) — Indet(F,) VY C M,

where we define py € M such that py(2;[k]) = [{(&:[k],11) : (Z:[k],11) € Y} and
uy (7:i[k]) = [{(#[k], o) : (7[k],l2) € Y} for all ¢ € V and for all k € {t1,...,ta2}.
Note that given an instance of the PEMS problem in Problem 5.2, we can construct
the set M with the associated costs of the elements in M in O(n(ty —t; +1)(C + 1))
time, where n is the number of nodes in graph G = {V,&}, and (,n € Z>; with
¢ < Cand n; < pforall i €V. Assuming that ¢ and 7 are (fixed) constants, the
construction of the set M with the associated costs takes O(n(ta —t; +1)) time, which
is polynomial in the parameters of the PEMS problem (Problem 5.2). Based on the
above arguments, we further consider the following problem:

®) max fr(Y)

s.t. ¢(Y) < B,

where fp(-) can be either of fp,(-) or fpq(-) with fps(-) and fpa(-) given by (5.23)
and (5.24), respectively, and c()) = dyeycly) for all Y C M. By the way we
construct fp(-) and the costs of elements in M, one can verify that Y* C M (resp.,
Vi C M) is an optimal solution to problem (P) with fp(-) = fpa(:) (vesp., fp(-) =
fra(-)) if and only if py. (resp., py:) defined above is an optimal solution to (5.15)
in Problem 5.2 with f(-) = fo(-) (vesp., f(-) = fa(*)). Thus, given a PEMS instance

we can first construct M with the associated cost for each element in M and then
solve problem (P).

5.3. Greedy algorithm for the PEMS problem. Note that problem (P) can
be viewed as a problem of maximizing a set function subject to a knapsack constraint,
and greedy algorithms have been proposed to solve this problem with performance
guarantees when the objective function is monotone nondecreasing and submodular®
(see, e.g., [17, 30]). Before we formally introduce the greedy algorithm for the PEMS
problem, we first note from (5.22)—(5.24) that given a prior pdf of § and any ) C M,
one has to take the expectation Eg[-] in order to obtain the value of fp()). However,
it is in general intractable to explicitly calculate the integration corresponding to Eg[].
Hence, one may alternatively evaluate the value of fp()) using numerical integration
with respect to 8 = [3 8] (see, e.g., [29]). Specifically, a typical numerical integration

3 A set function g : 2¥ — R, where V = [n] is the ground set, is said to be monotone nondecreasing
if g(A) < g(B) for all A C B C V. g(-) is called submodular if g({y} U.A) —g(A) > g({y} UB) — g(B)
forall ACBCVand forallye V\B.
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method (e.g., the trapezoid rule) approximates the integral of a function (over an
interval) based on a summation of (weighted) function values evaluated at certain
points within the integration interval, which incurs an approximation error (see, e.g.,
[29] for more details). We then see from (5.22)—(5.24) that in order to apply the
numerical integration method described above to fp()’), one has to obtain the values

of z;[k], i[k], aagg[k], and a%k] for a given 0 (within the integration interval), where
1 €V and t; < k <ty with t1,t2 given in an instance of the PEMS problem. Recall
that the initial conditions s[0], x[0], and r[0] are assumed to be known. We first
observe that for any given 6, the values of z;[k] and r;[k] for all ¢ € V and for all
k € {t1,...,t2} can be obtained using the recursions in (2.1) in O((ty — t1 + 1)n?)
time. Next, noting that 8’%“ = [&giﬁ[k] agg’é[k]]T and ag(gk] = [a%k] aggk]]T

the derivative with respect to § on both sides of the equation in (2.1a) and obtain
(5.25)

Osilk +1] _ Osilk] , (0silk] , ) e onlK
55 = (% Z[ko(j% ’ M) }“W<Z " 0p )

JEN;

, we take

Similarly, we take the derivative with respect to 8 on both sides of the equations in
(2.1b) and (2.1c). Considering any given /3, we can then use the recursion in (2.1)
together with the recursion in (5.25) (and those obtained from (2.1b) and (2.1c), as

we described above) to obtain the values of ag’}gk] and a%ék] for all ¢ € V and for all

k € {t1,...,ta} in O((ta — t1 + 1)n?) time. Similarly, considering any given §, one
can obtain the values of a%gk} and a%k] for all i € V and for all k € {¢1,...,t2} in
O((ta — t1 + 1)n?) time.

Putting the above arguments together and considering the prior pdf of 0, i.e.,
p(0), we see from (5.22)-(5.24) that for all Y C M, an approximation of fp()),
denoted as fp(y)7 can be obtained in O(ny(ta — t; + 1)n?) time, where n; € Z> is
the number of points used for the numerical integration method with respect to 6, as
we described above.* Furthermore, in what follows, we may assume that f p(-) satisfies
|fp(V) = fp(V)] < e/2 for all Y € M (with fp(0) = 0), where & € R>(.5 We are now
ready to introduce the greedy algorithm given in Algorithm 5.1 to solve the PEMS
problem, where fp(~) can be either of fpa(~) or fpd('), and fp(~) is the approximation
of fp(:), as we described above. From the definition of Algorithm 5.1, we see that the
number of function calls of fp(-) required in the algorithm is O(|M]?), and thus the
overall time complexity of Algorithm 5.1 is given by O(ny(t2 —t; + 1)n%|M|?).

We proceed to analyze the performance of Algorithm 5.1 when applied to the
PEMS problem. First, one can observe that fpy()) = Indet(F, + H(Y)) — Indet(F},)
in problem (P) shares a form similar to that in [31]. Thus, using arguments simi-
lar to those in [31], one can show that fp4(-) is monotone nondecreasing and sub-
modular with fpg() = 0. Noting the assumption that |fpq(Y) — fra(Y)| < /2
for all Y € M, one can show that y* given in line 6 of Algorithm 5.1 satisfies that

fra{y"}UYs)—fpa(YVa)te - de({y}Uyz()f)de(yZ)fs for all y € C. Moreover, one can show
c(y* - c(y . )

Yy
that max, ¢ vy fra(y) < fra(V1)+e€, where Yy is given in line 3 in Algorithm 5.1. One
can then use arguments similar to those for Theorem 1 in [17] and obtain the following
result; the detailed proof is omitted for conciseness.

4We assume that n; is polynomial in the parameters of the PEMS instance.
5Note that ¢ is related to the approximation error of the numerical integration method, and e
will decrease if ny increases; see, e.g., [29] for more details about the numerical integration method.
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THEOREM 5.4. Consider problem (P) with the objective function fpq : oM R>o
given by (5.24). Then Algorithm 5.1 yields a solution, denoted as Y9, to problem (P)
that satisfies

1 _ B 3
(5.26) fra(Y3) = 5(1 —e N fraV)) — (C — + 2)5,
where Y5 C M s an optimal solution to problem (P), ¢min = ming,e v c(y),® and

e € Rxg satisfies | fpa(Y) — fra(V)| < /2 for allY C M.

Algorithm 5.1. Greedy algorithm for PEMS.
Input: An instance of PEMS transformed into the form of (P)
Output: ),
Find Y, € arg maXyerp(:g)
Initialize Yo = ) and C = M
while C # () do
Find y* € arg maxyecc
if ¢(y*) + ¢()2) < B then
Vo ={y*}UY>
end if
C=C\{y"}

: end while

: yg = argmaxyé{ylny}{fP(yl)vfP(yQ)}

fr({y}uYe)—fp(Y2)
c(y)

= o=

It is worth noting that in general, the problem of maximizing a submodular func-
tion under a cardinality constraint cannot be approzimated within (1 — 1/e) (if P
# NP) [9]. In contrast to fpq(-), the objective function fp,(-) is not submodular
in general (see, e.g., [18]). In fact, one can construct instances of the PEMS prob-
lem where the objective function fpq(Y) = tr((F,)~') — tr ((F, + H(Y))™!) is not
submodular. Hence, in order to provide performance guarantees of the greedy algo-
rithm when applied to problem (P) with f(-) = fpa(-), we will extend the analysis
in [17] to nonsubmodular settings. To proceed, note that for all A C B C M, we
have F, + H(A) < F, + H(B), which implies (F, + H(A))™' = (F, + H(B))™! and
tr(F, + H(A))™') > tr(F, + H(B))~!). Therefore, the objective function fp,(-) is
monotone nondecreasing with fp, () = 0. We then characterize how close fp,(:) is
to being submodular by introducing the following definition.

DEFINITION 5.5. Consider problem (P) with fp(-) = fpa(-), where fpq : oM
R>¢ is defined in (5.21). Suppose Algorithm 5.1 is applied to solve problem (P).

For all j € {1,...,|Y|}, let Y3 = {y1,...,y;} denote the set that contains the first
j elements added to set Vo in Algorithm 5.1, and let VY = 0. The type-1 greedy
submodularity ratio of fpu(-) is defined to be the largest v1 € R that satisfies

(5.27) > (fra{yy UVD) = fra(V3)) = 1 (fralAUYY) — fra(V))
yeA\V]

for all A C M and for all j € {0,...,|Vs2|}. The type-2 greedy submodularity ratio of
fra(*) is defined to be the largest v € R that satisfies

(5.28) Fra(1) = fra(®) > vo(fra({y} U VL) — fra(V]))

6Note that we can assume without loss of generality that c(y) < B for all y € M.
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for all j € {0,...,|Ya|} and for all y € M\ Y} such that c(y) + ¢(Y3) > B, where
V1 € argmax, e x1fpa(y)-

Remark 5.6. Note that fp,(-) is monotone nondecreasing as argued above. Not-
ing the definition of ;7 in (5.27), one can use arguments similar to those in [5] and
show that 1 € [0,1]; if fpu(:) is submodular, then 71 = 1. Similarly, one can show
that 72 > 0. Supposing that V) € argmax,c x4 fpa(y), one can further show that if
fpa(+) is submodular, then o > 1.

Note that since we approximate fp,(-) using fpq(-), we may not be able to obtain
the exact values of 1 and -5 from Definition 5.5. Moreover, finding v; may require
an exponential number of function calls of fp.(-) (or fpa(+)). Nonetheless, it will be
clear from our analysis below that obtaining lower bounds on ; and v, suffices. In
particular, given )J for all j € {0,...,]|)2|} from Algorithm 5.1, one can show that
a lower bound on 7 (defined in (5.28)) can be obtained via O(|M|?) function calls
of fra(-) (see [36] for details). We defer our analysis for lower bounding 7; to the
end of this section, which requires more careful analysis. Based on Definition 5.5,
the following result extends the analysis in [16, 17] and characterizes the performance
guarantees of Algorithm 5.1 for problem (P) with fp(:) = fpa(-).

THEOREM 5.7. Consider problem (P) with the objective function fp, : oM R>o
given by (5.21). Then Algorithm 5.1 yields a solution, denoted as Y9, to problem (P)
that satisfies

(5.20) frae) > B2y, ) <B+Cm . 1>E,

2 Cmin

where Y C M is an optimal solution to problem (P), 1 € R>g and 2 € R>q are
defined in Definition 5.5, cpin = min,e c(y), Cmax = max, ¢ v c(y), and € € Rxg

satisfies | fpa(V) — fra(V)| < /2 for all Y C M.

Proof. Noting that (5.29) holds trivially if v; = 0 or 2 = 0, we assume that v; > 0
and v > 0. In this proof, we drop the subscript of fpa(-) (resp., fpa(-)) and denote
f(-) (resp., f()) for notational simplicity. First, recall that for all j € {1,...,[)s]},
we let V3 = {y1,...,y;} denote the set that contains the first j elements added to
set Vo in Algorithm 5.1 and let )Y = (). Now, let j; be the first index in {1,...,|)s|}

—f({y}wi%;))ff(y;l) for Vs (given in line

6 of Algorithm 5.1) cannot be added to Y, due to ¢(y*)+¢(V3') > B. In other words,
FAuvH-F )

, ¢ ()

Yy satisfies c(y*) 4+ ¢(3) < B and can be added to Vs in Algorithm 5.1. Noting that

|fp(V) = fp(Y)| < e/2 for all Y € M, one can then show that the following holds for

all j € {0,...,5 — 1}

such that a candidate element y* € arg maxyecc

for all j € {0,...,7; — 1}, any candidate element y* € arg max,¢ for

FOST) —f ) e ALY —F3) —¢
c(Yj+1) - c(y)

(5.30) Yy e M\ V.

Now, considering any j € {0,...,j; — 1}, we have the following:
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FUyrud) - FO%)
c(y)

(5.31) foa:uyé)—f(y%)s7i O

1 .
yeEVI\Y]

1 (T QR +e | e
(5.32) < yeyz;\yj (y)< o) + c(y)>
B O3 -0 | = v)
(5.33) < ” o) + " ye§y? (C(ijrl) + 1)
B fOH-f0)) (B ;
(5.34) < o c(yji1) o] (C(yj+1) * |ya|),

where (5.31) follows from the definition of y; in (5.27), and (5.32) follows from (5.30).
To obtain (5.33), we use the fact ¢(Y¥) < B. Similarly, we obtain (5.34). Noting that
f(+) is monotone nondecreasing, one can further obtain from (5.34) that

639 04 - 1) = P () - o) - (14 L),

To proceed, let 3 € arg maXyEC%W be the

V> that cannot be added to Yo due to c(y') + ¢( %l) > B, as we argued above.

Similarly to (5.30), one can see that f({y/}uyéasf(ygl”s > f({y}uy;cl()y—)f(ygl)_g holds

for all y € M\ VJ'. Letting V3" £ {3/} U Y] and following arguments similar to
those leading up to (5.35), we have

(first) candidate element for

30 SO - 108 = 290 (0 - 1) e 1+ 2.

Denoting A; £ f(V;) — f(¥3) for all j € {0,...,5i} and Ajq 2 F(V2) — FORT),
we obtain from (5.35) and (5.36) the following:

(5.37) Aj <A (1 = C(yg“) +e+ 76(%23'%‘5 Vj € [i+1].
Unrolling (5.37) yields
(5.38)
Ju i1
c(y;)y c(y')y . (V3 )1Yal
AjH-lSAO(jl:[l(l_ JBl)>(1_ Bl + Jl+1+2T €
(5.39)
Ji ,
c(y;)y c(y)mY | 2B+ cmax)
= Ajin <Ao<j1i[1 (1—jB 1)) (1— 5 S —

To obtain (5.38), we use the facts that (1 — %) < 1 for all j € [j; + 1] and
(1-— C(y/%) <1, since 1 € (0,1], as we argued in Remark 5.6. To obtain (5.39), we

first note from the way we defined j; that j; +1 < ¢(V3)/emin < (B + ¢max)/Cmin-
Also noting that |Y*| < B/cmin, we then obtain (5.39).
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, i
Now, one can show that (H;lzl(l— c(yj;"“ ) (1— °(y )71 ) < H]’H( - 76((3].}’%1)3;1) <
C(y”-H)

e~ 5 (see, e.g., [16]). We then have from (5.39) the following:

Ji+1
F) - PR < Fne T 4 Mﬁ
(5.40) — fT = (1—e ) f(]) - Msy

where (5.40) follows from ¢(Y3'"') > B. To proceed with the proof of the theorem we
note from the definition of 2 in Definition 5.5 that f({y'} UY3") — f(33') < = L)
with 42 > 0, which together with (5.40) implies that

2B

57
Cmin

(5.41) FO + %fom > I > (- e F) —

where B 2 B + cpax. Since f(+) is monotone nondecreasing, we obtain from (5.41)

2B
13

(5.42) f(y2)+ f(yl) (1 —em™)fV) -

Cmin

We will then split our analysis into two cases. First, supposing v > 1, we see
from (5.42) that at least one of f(V2) > (1 — e M) f(YV}) — -2 ) >

%(1—6*%)]‘(3);)—63 . Recalling that |f()) — ( )| <e/2forally C M, it
follows that at least one of f(Jy) > TA—e M) f2) - e— 5 and fon) > 11—
e~ f(Vr) - . Second, supposing vy, < 1 and usmg similar arguments,
we have that at least one of f(),) > 11 —eM)f(Vr) 5 (1) >
LA —e M) f(Vr) - 28, _ 5 holds. Now, we note from hne 12 of Algorithm 5.1

Cmin

that F(V8) > max(7(31), f9)}, which implies F(V9) > max{f(V1), F)} — 5
Combining the above arguments together, we obtain (5.29). O

Remark 5.8. Note that (5.29) becomes fpq(Y9) > 2(1—e™ ") fpo(V5)— (Bjnff“a"-i-

1)e if 45 > 1. Also note that 42 > 1 can hold when the objective function fpaZ) is
not submodular, as we will see later in our numerical examples.

Remark 5.9. The authors of [32] also extended the analysis of Algorithm 5.1 to
nonsubmodular settings, when the objective function can be exactly evaluated (i.e.,
e = 0). They obtained a performance guarantee for Algorithm 5.1 that depends
on a submodularity ratio defined in a different manner. One can show that the
submodularity ratios defined in Definition 5.5 are lower bounded by the one defined in
[32], which further implies that the performance bound (when ¢ is 0) for Algorithm 5.1
given in Theorem 5.7 is tighter than that provided in [32].

Cmin

Finally, we aim to provide a lower bound on ; that can be computed in poly-
nomial time. The lower bounds on v; and v, together with Theorem 5.7 will also
provide performance guarantees for the greedy algorithm.

LEMMA 5.10 (see [11]). For any positive semidefinite matrices P,Q € R™*™
M(P) < AM(P+Q) < AM(P)+M(Q), and Ay (P + Q) > \i(P) + M (Q).

We have the following result; the proof is included in section 7.1 in the appendix.
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LEMMA 5.11. Consider the set function fpg : 2M — R>¢ defined in (5.21). The
type-1 greedy submodularity ratio of fpa(-) given by Definition 5.5 satisfies

(5.43) m> min Ao (B + H3)Ao(Fy + H({z} U Y3))
' T eV} M (F + H))M(E, + H({z} UV)))

where yg contains the first j elements added to Yo in Algorithm 5.1 for all j €
{1, Del} with Y3 =0, F, is given by (5.13), H(Y) = _, oy Hy for allY € M

with H, = 0 defined in (5.22), and z; € argminyeM\yg%M for all
P 2
jge{l,.... )=}

Recalling our arguments at the beginning of this section, we may only obtain
approximations of the entries in the (2 by 2) matrix F, + H(Y) for Y C M using,
e.g., numerical integration, where H(Y) = >_ .y, H,y, and Hy, (resp., F},) is defined in
(5.22) (resp., (5.13)). Specifically, for all ¥ C M, let H(Y) = (F, + H(Y)) + E(Y)
be the approximation of F, + H(Y), where each entry of E()) € R**? represents
the approximation error of the corresponding entry in F, + H()). Since F, and
H(Y) are positive semidefinite matrices, E(}) is a symmetric matrix. Now, using a
standard eigenvalue perturbation result, e.g., Corollary 6.3.8 in [11], one can obtain
that 30, [\(Fp+ HY)) = M(HY)|? < [|ED)|[ for all ¥ € M, where | E(V)|r £

Vir(E(Y)TE(Y)). It then follows that

AoFp + HY)) o A = 1ED)e o de(TID) =)

M(Fp+ HD) ~ MHEH) +IED)lr ~ MHD)) +¢

where ¢/ € Rxq and satisfies [|[E(Y)||p < ¢’ for all Y € M. Combining the above
arguments with (5.43) in Lemma 5.11, we obtain a lower bound on ~; that can be
computed using O(]M|?) function calls of H(-).

5.3.1. Illustrations. Note that one can further obtain from (5.43)

)
)

NS,

G41) v > min 220 OB AaFy) + da(H()) + Aa(HY
TG0} A (Fp) + M (H(YS)) M(Fp) + M(H (%)) + M (H(Y

bl

[\CRCN

o R(FptH({y}ud3))
VEM\YE A1 (Fp+H({}Ud)))
that the lower bound on ; would potentially increase if Ao(H(z;))/A1(H(2;)) and
Xo(H(Y3) /M (H(V])) increase. Recall that F, given by (5.13) encodes the prior
knowledge that we have about 6 = [3 §]7. Moreover, recall from (5.22) that H(y)
depends on the prior pdf p(f) and the dynamics of the SIR model in (2.1). Thus, the
lower bound given by Lemma 5.11 and thus the corresponding performance bound
of Algorithm 5.1 given in Theorem 5.7 depend on the prior knowledge that we have
on § = [ §]7 and the dynamics of the SIR model. Also note that the performance
bounds given in Theorem 5.7 are worst-case performance bounds for Algorithm 5.1.
Thus, in practice the ratio between a solution returned by the algorithm and an
optimal solution can be smaller than the ratio predicted by Theorem 5.7. As we will
see in our simulations in the next section, the greedy algorithm provides solutions that
are close to optimal in practice. Moreover, instances with tighter performance bounds
potentially imply better performance of the algorithm when applied to those instances.
Similar arguments hold for the performance bounds provided in Theorem 5.4.

where z; € argmin Supposing F), is fixed, we see from (5.44)
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5.3.2. Simulations. To validate the theoretical results in Theorems 5.4 and
5.7, and Lemma 5.11, we consider various PEMS instances.” The directed network
G = {V,&} is given in Figure 1(a). According to the existing literature about the
estimated infection and recovery rates for the COVID-19 pandemic (see, e.g., [27]),
we assume that the infection rate § and the recovery rate ¢ lie in the intervals [3, 7] and
[1,4], respectively. Let the prior pdf of 8 (resp., d) be a (linearly transformed) Beta
distribution with parameters a; = 6 and as = 3 (resp., @1 = 3 and as = 4), where
and § are also assumed to be independent. The prior pdfs of 8 and ¢ are then plotted
in Figures 1(b) and 1(c), respectively. We set the sampling parameter to be h = 0.1.
We randomly generate the weight matrix A4 € R>*® such that Assumptions 3.1-3.2
are satisfied, where each entry of A is drawn (independently) from certain uniform
distributions. The initial condition is set to be s1[0] = 0.95, 21[0] = 0.05 and 1 [0] = 0,
and s;[0] = 0.99, z;[0] = 0.01, and ;[0] = 0 for all ¢ € {2,...,5}. In the pmfs of
measurements Z;[k| and 7;[k] given in (5.16) and (5.17), respectively, we set N =
N] =100 and N; = 1000 for all ¢ € V, where N; is the total population at node <.
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F1c. 1. Network structure and prior pdfs of B and §.

First, let us consider PEMS instances with a relatively smaller size. In such
instances, we set the time steps t; = to = 5; i.e., we only consider collecting mea-
surements at time step k¥ = 5. In the sets Cs5; = {(cs; : ¢ € ({0} U [¢;])} and
Bs; = {nbs;:ne€ ({0} U]}, welet c5;, = bs; and (G =n; = 2 for all i € V and
draw c5; and bs ; uniformly randomly from {1,2,3}. Here, we can choose to perform
0, 100, or 200 virus (or antibody) tests at a node ¢ € V and at k = 5. Since the set
M defined in (5.20) has size 20, it allows us to compare the solution returned by the
greedy algorithm (Algorithm 5.1) to the optimal solution (found by brute force). In
Figure 2(a), we consider the objective function fp4(-), given by (5.24), in the PEMS
instances constructed above, and plot the greedy solutions and the optimal solutions
to the PEMS instances under different values of budget B. Note that for all the
simulation results in this section, we obtain the averaged results from 50 randomly
generated A matrices as described above for each value of B. As shown in Theo-
rem 5.4, the greedy algorithm yields a %(1 —e~ 1) =~ 0.31 approximation for fpgs(-) (in
the worst case), and the results in Figure 2(a) show that the greedy algorithm per-
forms near optimally for the PEMS instances generated above. Similarly, in Figure
2(b), we plot the greedy solutions and the optimal solutions to the PEMS instances
constructed above under different values of B, when the objective function is fp,(+)
given in (5.21). Again, the results in Figure 2(b) show that the greedy algorithm per-
forms well for the constructed PEMS instances. Moreover, according to Lemma 5.11,
we plot the lower bound on the submodularity ratio 71 of fp,(-) in Figure 2(c). Here,

"In our simulations, we neglect the approximation error corresponding to the numerical integra-
tions discussed in section 5.3 since the error terms are found to be sufficiently small.
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we note that the submodularity ratio vy of fp,(+) is always greater than one in the

PEMS instances constructed above. Hence, Theorem 5.7 yields a %(1 — e ") worst-
case approximation guarantee for the greedy algorithm, where %(1 — e 93) ~0.13.
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FiG. 2. Results for PEMS instances of medium size.

We then investigate the performance of the greedy algorithm for PEMS instances
of a larger size. Different from the smaller instances constructed above, we set t; = 1
and to = 5. We let Cz =1, = 10 for all ¢ € V in Ckﬁ‘ = {Cck,i : C S ({0} @] [CZ])}
and By ; = {nbk,; : n € ({0} U [n:])}, where we also set ¢, ,; = by; and draw ¢ ; and
bg,; uniformly randomly from {1,2,3}, for all k¥ € [5] and for all i € V. Here, we
can choose to perform 0, 100, 200, ..., or 1000 virus (or antibody) tests at a node
i €V and at a time step k € [5]. It follows from (5.20) that |M| = 500. Moreover,
we modify the parameter of the Beta distribution corresponding to the pdf of g to
be a; = 8 and ay = 3. Since the optimal solution to the PEMS instances cannot be
efficiently obtained when the size of the instances becomes large, we obtain the lower
bound on the submodularity ratio 71 of fp,(-) provided in Lemma 5.11, which can be
computed in polynomial time. In Figure 3(a), we plot the lower bound on ~; obtained
from the PEMS instances constructed above. We note that the submodularity ratio
Yo of fpa(-) is also always greater than one. Hence, Theorem 5.7 yields a (1 —e™ ")
worst-case approximation guarantee for the greedy algorithm. We plot in Figure 3(b)
the approximation guarantee using the lower bound that we obtained on ~;.
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Fic. 3. Results for PEMS instances of large size.

6. Conclusion. We first considered the PIMS problem under the exact mea-
surement setting, and showed that the problem is NP-hard. We then proposed an
approximation algorithm that returns a solution to the PIMS problem that is within a
certain factor of the optimal one. Next, we studied the PEMS problem under the noisy
measurement setting. Again, we showed that the problem is NP-hard. We applied a
greedy algorithm to solve the PEMS problem and provided performance guarantees
on the greedy algorithm. We presented numerical examples to validate the obtained
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performance bounds of the greedy algorithm and showed that the greedy algorithm
performs well in practice.

7. Appendix.
7.1. Proof of Lemma 5.11. Noting the definition of +; in Definition 5.5, we

ZyeA\y%(fPa({y}Uyg)—fPa(yg)) B

: _ c
. FPa(AUY])—fra(¥]) for all A C M and for all
5, where we assume that A\ V3 # 0; otherwise, (5.27) would be satisfied for

all 71 € R. Recalling the expression of fpq(-) in (5 23), we lower bound LHS £
ZyeA\ygj (fra({y} UY3) — fPa(¥3)) in the following manner:

provide a lower bound on

_ i(F,+ H{y} Ud3)) = \i(F, + HQYY))
s= 2 M M(E, + HOD)M(E, + H({y} UY))

yeA\yJ =1

S e
yeA\V] 1 1

(7.2) - 2yeayg r(Hy)

M (Ey + H3)A(F, + H({=} U )

To obtain (7.1), we let 2’ € arg maxyeA\yQJAl(Fp+H({y}Uy§)) and note that Ay (F,+
H({Z'}UYd) > Ni(F, + H({y} UY))) for all i € {1,2} and for all y € A\ V]. Next,
we upper bound fp,(AUY3) — fpa(Y3) in the following manner:

2

ZMF p+ H(AUYY)) - (Fp+H(y§))
— N(Fp+ HY))Ni(F, + HAUYY))
(7.3) _ X Qi+ HAUYY) = N(F, + H())
A2 (Fp +H(Jﬂ))A2(F +H({z'}U)3))
Dyeayi tr(Hy)
No(Fy + HV3) Ao (Fy + H({z'} U Y]))

fPa(AUy2) fPa y2

(7.4) -

To obtain (7.3), we note that A\i(F, + H(AUY])) > Xao(F, + H(AU YY) > \o(F, +
{2/} UY) for all i € {1,2}, where the second mequahty follows from Lemma 5.10

with the fact H(AUY]) — H({z'} UY]) = 0, and 2’ is defined above. Combining
Aa(Fy+ H({y}udi))

yeM\VS X, (Fyt H({y}U3)) have

(7.2) and (7.4), and noting z; € arg min
(7.5) A ‘
2yeay; (fraly} UY3) = fra(3%)) S da(Fy+ HY)ao(Fy + H({z} UYY)

fPa(AUY3) = fra(¥3) M (Fp + HIDIM(Fy + H({z;} U Y3))

which implies (5.43). |
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