
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. S49--S74

PARAMETER ESTIMATION IN EPIDEMIC SPREAD NETWORKS
USING LIMITED MEASUREMENTS\ast 

LINTAO YE\dagger , PHILIP E. PAR\'E\ddagger , AND SHREYAS SUNDARAM\ddagger 

Abstract. We study the problem of estimating the parameters (i.e., infection rate and recovery
rate) governing the spread of epidemics in networks. Such parameters are typically estimated by
measuring various characteristics (such as the number of infected and recovered individuals) of the
infected populations over time. However, these measurements also incur certain costs, depending on
the population being tested and the times at which the tests are administered. We thus formulate
the epidemic parameter estimation problem as an optimization problem, where the goal is to either
minimize the total cost spent on collecting measurements or to optimize the parameter estimates
while remaining within a measurement budget. We show that these problems are NP-hard to solve
in general and then propose approximation algorithms with performance guarantees. We validate
our algorithms using numerical examples.
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1. Introduction. Models of spreading processes over networks have been widely
studied by researchers from different fields (see, e.g., [15, 24, 6, 3, 26, 21]). The case
of epidemics spreading through networked populations has received a particularly
significant amount of attention, especially in light of the ongoing COVID-19 pandemic
(see, e.g., [21, 22]). A canonical example is the networked SIR model, where each
node in the network represents a subpopulation or an individual and can be in one
of three states: susceptible (S), infected (I), or recovered (R) [19]. There are two
key parameters that govern such models: the infection rate of a given node and the
recovery rate of that node. In the case of a novel virus, these parameters may not be
known a priori, and must be identified or estimated from gathered data, including, for
instance, the number of infected and recovered individuals in the network at certain
points of time. For instance, in the COVID-19 pandemic, when collecting the data
on the number of infected individuals or the number of recovered individuals in the
network, one possibility is to perform virus or antibody tests on the individuals,
with each test incurring a cost. Therefore, in the problem of parameter estimation
in epidemic spread networks, it is important and of practical interest to take the
costs of collecting the data (i.e., measurements) into account, which leads to the
problem formulations considered in this paper. The goal is to exactly identify (when
possible) or estimate the parameters in the networked SIR model using a limited
number of measurements. Specifically, we divide our analysis into two scenarios: (1)
when the measurements (e.g., the number of infected individuals) can be collected
exactly without error and (2) when only stochastic measurements can be obtained.
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S50 LINTAO YE, PHILIP E. PAR\'E, AND SHREYAS SUNDARAM

In settings where exact measurements of the infected and recovered proportions of
the population at certain nodes in the network can be obtained, we formulate the pa-
rameter identification measurement selection (PIMS) problem as minimizing the cost
spent on collecting the measurements, while ensuring that the parameters of the SIR
model can be uniquely identified (within a certain time interval in the epidemic dy-
namics). In settings where the measurements are stochastic (thereby precluding exact
identification of the parameters), we formulate the parameter estimation measurement
selection (PEMS) problem. The goal is to optimize certain estimation metrics, while
satisfying the budget on collecting the measurements.

Related work. The authors in [23, 35] studied the parameter estimation problem
in epidemic spread networks using a ``susceptible-infected-susceptible (SIS)"" model of
epidemics. When exact measurements of the infected proportion of the population
at each node of the network can be obtained, the authors proposed a sufficient and
necessary condition on the set of the collected measurements such that the parameters
of the SIS model (i.e., the infection rate and the recovery rate) can be uniquely
identified. However, this condition does not pose any constraint on the number of
measurements that can be collected.

In [25], the authors considered a measurement selection problem in the SIR model.
Their problem is to perform a limited number of virus tests among the population such
that the probability of undetected asymptotic cases is minimized. The transmission of
the disease in the SIR model considered in [25] is characterized by a Bernoulli random
variable which leads to a hidden Markov model for the SIR dynamics.

Finally, our work is also closely related to the sensor placement problem that
has been studied for control systems (see, e.g., [20, 39, 37]), signal processing (see,
e.g., [7, 38]), and machine learning (see, e.g., [18]). The goal of these problems is
to optimize certain (problem-specific) performance metrics of the estimate based on
the measurements of the placed sensors, while satisfying the sensor placement budget
constraints.

Contributions. First, we show that the PIMS problem is NP-hard, which pre-
cludes polynomial-time algorithms for the PIMS problem (if P \not = NP). By exploring
structural properties of the PIMS problem, we provide a polynomial-time approxi-
mation algorithm which returns a solution that is within a certain approximation
ratio of the optimal. The approximation ratio depends on the cost structure of the
measurements and on the graph structure of the epidemic spread network. Next, we
show that the PEMS problem is also NP-hard. In order to provide a polynomial-time
approximation algorithm that solves the PEMS problem with performance guaran-
tees, we first show that the PEMS problem can be transformed into the problem of
maximizing a set function subject to a knapsack constraint. We then apply a greedy
algorithm to the (transformed) PEMS problem and provide approximation guarantees
for the greedy algorithm. Our analysis for the greedy algorithm also generalizes the
results from the literature for maximizing a submodular set function under a knap-
sack constraint to nonsubmodular settings. We use numerical examples to validate
the obtained performance bounds of the greedy algorithm and show that the greedy
algorithm performs well in practice.

Notation and terminology. The sets of integers and real numbers are denoted
as Z and R, respectively. For a set \scrS , let | \scrS | be its cardinality. For any n \in Z\geq 1, let
[n] \triangleq \{ 1, 2, . . . , n\} . Let 0m\times n be a zero matrix of dimension m\times n; the subscript will
be dropped if the dimension can be inferred from the context. For a matrix P \in Rn\times n,
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let PT , tr(P ), and det(P ) be its transpose, trace, and determinant, respectively. The
eigenvalues of P are ordered such that | \lambda 1(P )| \geq \cdot \cdot \cdot \geq | \lambda n(P )| . Let Pij (or (P )ij)
denote the element in the ith row and jth column of P , and let (P )i denote the ith
row of P . A positive semidefinite matrix P \in Rn\times n is denoted by P \succeq 0.

2. Model of epidemic spread network. Suppose a disease (or virus) is spread-
ing over a directed graph \scrG = \{ \scrV , \scrE \} , where \scrV \triangleq [n] is the set of n nodes, and \scrE is
the set of directed edges (and self-loops) that captures the interactions among the
nodes in \scrV . Here, each node i \in \scrV is considered to be a group (or population)
of individuals (e.g., a city or a country). A directed edge from node i to node j,
where i \not = j, is denoted by (i, j). For all i \in \scrV , denote \scrN i \triangleq \{ j : (j, i) \in \scrE \} and
\=\scrN i \triangleq \{ j : (j, i) \in \scrE \} \cup \{ i\} . For all i \in \scrV and for all k \in Z\geq 0, we let si[k], xi[k], and
ri[k] represent the proportions of the population of node i \in \scrV that are susceptible,
infected, and recovered at time k, respectively. To describe the dynamics of the spread
of the disease in \scrG , we will use the following discrete-time SIR model (see, e.g., [12]):

si[k + 1] = si[k] - hsi[k]\beta 
\sum 
j\in \=\scrN i

aijxj [k],(2.1a)

xi[k + 1] = (1 - h\delta )xi[k] + hsi[k]\beta 
\sum 
j\in \=\scrN i

aijxj [k],(2.1b)

ri[k + 1] = ri[k] + h\delta xi[k],(2.1c)

where \beta \in R\geq 0 is the infection rate of the disease, \delta \in R\geq 0 is the recovery rate of the
disease, h \in R\geq 0 is the sampling parameter, and aij \in R\geq 0 is the weight associated
with edge (j, i). Let A \in Rn\times n be a weight matrix, where Aij = aij for all i, j \in \scrV 
such that j \in \=\scrN i, and Aij = 0 otherwise. Denote s[k] \triangleq 

\bigl[ 
s1[k] \cdot \cdot \cdot sn[k]

\bigr] T \in Rn,

x[k] \triangleq 
\bigl[ 
x1[k] \cdot \cdot \cdot xn[k]

\bigr] T \in Rn, and r[k] \triangleq 
\bigl[ 
r1[k] \cdot \cdot \cdot rn[k]

\bigr] T \in Rn for all
k \in Z\geq 0. Throughout this paper, we assume that the weight matrix A \in Rn\times n and
the sampling parameter h \in R\geq 0 are given.

3. Preliminaries. We make the following assumptions on the initial conditions
s[0], x[0], and r[0], and the parameters of the SIR model in (2.1) (see, e.g., [23, 12]).

Assumption 3.1. For all i \in \scrV , si[0] \in (0, 1], xi[0] \in [0, 1), ri[0] = 0, and si[0] +
xi[0] = 1.

Assumption 3.2. Assume that h, \beta , \delta \in R>0 with h\delta < 1. For all i, j \in \scrV with
(j, i) \in \scrE and i \not = j, assume that aij \in R>0. For all i \in \scrV , h\beta 

\sum 
j\in \=\scrN i

aij < 1.

Definition 3.3. Consider a directed graph \scrG = \{ \scrV , \scrE \} with \scrV = [n]. A di-
rected path of length t from node i0 to node it in \scrG is a sequence of t directed edges
(i0, i1), . . . , (it - 1, it). For any distinct pair of nodes i, j \in \scrV such that there exists a
directed path from i to j, the distance from node i to node j, denoted as dij, is defined
as the shortest length over all such paths.

Definition 3.4. Define \scrS I \triangleq \{ i : xi[0] > 0, i \in \scrV \} and \scrS H \triangleq \{ i : xi[0] = 0, i \in 
\scrV \} . For all i \in \scrS H , define di \triangleq minj\in \scrS I

dji, where di \geq 1, and define di \triangleq +\infty if

there is no path from j to i for any j \in \scrS I . For all i \in \scrS I , define di \triangleq 0.

Using arguments similar to those in [12], one can show that si[k], xi[k], ri[k] \in [0, 1]
with si[k] + xi[k] + ri[k] = 1 for all i \in \scrV and for all k \in Z\geq 0 under Assumptions 3.1--
3.2. Thus, given xi[k] and ri[k], we can obtain si[k] = 1  - xi[k]  - ri[k] for all i \in \scrV 
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and for all k \in Z\geq 0. We also have the following result that characterizes properties
of xi[k] and ri[k] in the SIR model over \scrG given by (2.1). The proof is omitted here
in the interest of space and can be found in the extended version of this paper [36].

Lemma 3.5. Consider a directed graph \scrG = \{ \scrV , \scrE \} with \scrV = [n] and the SIR
dynamics given by (2.1). Suppose Assumptions 3.1--3.2 hold. Then, the following
results hold for all i \in \scrV , where k \in Z\geq 0, and \scrS H and di are defined in Definition 3.4:

(a) si[k] > 0 for all k \geq 0.
(b) If di \not = +\infty , then xi[k] = 0 for all k < di, and xi[k] \in (0, 1) for all k \geq di.

1

(c) If di \not = +\infty , then ri[k] = 0 for all k \leq di, and ri[k] \in (0, 1) for all k > di.
(d) If i \in \scrS H with di = +\infty , then xi[k] = 0 and ri[k] = 0 for all k \geq 0.

4. Measurement selection problem in exact measurement setting. In
this section, we assume that \scrS I ,\scrS H \subseteq \scrV defined in Definition 3.4 are known.

4.1. Problem formulation. Given exact measurements of xi[k] and ri[k] for a
subset of nodes, our goal is to estimate (or uniquely identify, if possible) the unknown
parameters \beta and \delta . Here, we consider the scenario where collecting the measurement
of xi[k] (resp., ri[k]) at any node i \in \scrV and at any time step k \in Z\geq 0 incurs a
cost, denoted as ck,i \in R\geq 0 (resp., bk,i \in R\geq 0). Moreover, we can only collect the
measurements of xi[k] and ri[k] for k \in \{ t1, t1+1, . . . , t2\} , where t1, t2 \in Z\geq 0 are given
with t2 > t1. Noting that Lemma 3.5 provides a (sufficient and necessary) condition
under which xi[k] = 0 (resp., ri[k] = 0) holds, we see that one does not need to collect
a measurement of xi[k] (resp., ri[k]) if xi[k] = 0 (resp., ri[k] = 0) from Lemma 3.5.
Given time steps t1, t2 \in Z\geq 0 with t2 > t1, we define a set

(4.1) \scrI t1:t2 \triangleq \{ \lambda i[k] : k \in \{ t1, . . . , t2\} , i \in \scrV , \lambda i[k] > 0, \lambda \in \{ x, r\} \} ,

which represents the set of all candidate measurements from time step t1 to time step
t2. To proceed, we first use (2.1b)--(2.1c) to obtain

(4.2)

\left[          

x[t1 + 1] - x[t1]
...

x[t2] - x[t2  - 1]
r[t1 + 1] - r[t1]

...
r[t2] - r[t2  - 1]

\right]          
= h

\biggl[ 
\Phi x

t1:t2 - 1

\Phi r
t1:t2 - 1

\biggr] \biggl[ 
\beta 
\delta 

\biggr] 
,

where \Phi x
t1:t2 - 1 \triangleq 

\bigl[ 
(\Phi x

t1)
T \cdot \cdot \cdot (\Phi x

t2 - 1)
T
\bigr] T

with

(4.3) \Phi x
k \triangleq 

\left[   s1[k]
\sum 

j\in \=\scrN 1
a1jxj [k]  - x1[k]

...
...

sn[k]
\sum 

j\in \=\scrN n
anjxj [k]  - xn[k]

\right]   \forall k \in \{ t1, . . . , t2  - 1\} ,

and \Phi r
t1:t2 - 1 \triangleq 

\bigl[ 
(\Phi r

t1)
T \cdot \cdot \cdot (\Phi r

t2 - 1)
T
\bigr] T

with

(4.4) \Phi r
k \triangleq 

\left[   0 x1[k]
...

...
0 xn[k]

\right]   \forall k \in \{ t1, . . . , t2  - 1\} .

1Note that for the case when di = 0, i.e., i \in \scrS I , part (b) implies xi[k] > 0 for all k \geq 0.
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We can then view (4.2) as a set of 2(t2  - t1)n equations in \beta and \delta . Noting that si[k]
for all i \in \scrV can be obtained from si[k] = 1 - xi[k] - ri[k] as argued in section 3, we see
that the coefficients in the set of equations in \beta and \delta given by (4.2), i.e., the terms
in (4.2) other than \beta and \delta , can be determined given that x[k] and r[k] are known for
all k \in \{ t1, . . . , t2\} . Also note that given x[k] and r[k] for all k \in \{ t1, . . . , t2\} , we can
uniquely identify \beta and \delta using (4.2) if and only if rank(

\bigl[ 
(\Phi x

t1:t2 - 1)
T (\Phi r

t1:t2 - 1)
T
\bigr] 
) =

2.
Next, let \scrI \subseteq \scrI t1:t2 denote a measurement selection strategy, where \scrI t1:t2 is given

by (4.1). We will then consider identifying \beta and \delta using measurements contained in
\scrI \subseteq \scrI t1:t2 . To illustrate our analysis, given any i \in \scrV and any k \in \{ t1, . . . , t2  - 1\} , we
first consider the following equation from (4.2):

(4.5) xi[k + 1] - xi[k] = h
\bigl[ 
si[k]

\sum 
w\in \=\scrN i

aiwxw[k]  - xi[k]
\bigr] \biggl[ \beta 

\delta 

\biggr] 
,

where si[k] = 1  - xi[k]  - ri[k], and we index the equation in (4.2) corresponding to
(4.5) as (k, i, x). Note that in order to use (4.5) in identifying \beta and \delta , one needs
to determine the coefficients (i.e., the terms other than \beta and \delta ) in the equation.
Also note that in order to determine the coefficients in equation (k, i, x), one can use
the measurements contained in \scrI \subseteq \scrI t1:t2 and use Lemma 3.5 to determine whether
xi[k] = 0 (resp., ri[k] = 0) holds. Supposing xi[k+1] = 0, we see from Lemma 3.5 and
(2.1b) that xi[k] = 0 and si[k]

\sum 
w\in \=\scrN i

aiwxw[k] = 0, which makes equation (k, i, x)
useless in identifying \beta and \delta . Thus, in order to use equation (k, i, x) in identifying \beta 
and \delta , we need xi[k + 1] \in \scrI with xi[k + 1] > 0. Similarly, given any i \in \scrV and any
k \in \{ t1, . . . , t2  - 1\} , we consider the following equation from (4.2):

(4.6) ri[k + 1] - ri[k] = h
\bigl[ 
0 xi[k]

\bigr] \biggl[ \beta 
\delta 

\biggr] 
,

where we index the above equation as (k, i, r). Supposing ri[k + 1] = 0, we see from
Lemma 3.5 and (2.1c) that ri[k] = xi[k] = 0, which makes equation (k, i, r) useless in
identifying \beta and \delta . Hence, in order to use equation (k, i, r) in identifying \beta and \delta ,
we need to have \{ xi[k], ri[k+1]\} \subseteq \scrI with xi[k] > 0 and ri[k+1] > 0. More precisely,
we observe that equation (k, i, r) can be used in identifying \beta and \delta if and only if
\{ xi[k], ri[k + 1]\} \subseteq \scrI , and ri[k] \in \scrI or ri[k] = 0 (from Lemma 3.5).

In general, let us denote the following two coefficient matrices corresponding to
equations (k, i, x) and (k, i, r) in (4.2), respectively:

\Phi x
k,i \triangleq 

\bigl[ 
si[k]

\sum 
j\in \=\scrN i

aijxj [k]  - xi[k]
\bigr] 
,(4.7a)

\Phi r
k,i \triangleq 

\bigl[ 
0 xi[k]

\bigr] 
(4.7b)

for all k \in \{ t1, . . . , t2  - 1\} and for all i \in \scrV . Moreover, given any measurement
selection strategy \scrI \subseteq \scrI t1:t2 , we let

(4.8) \=\scrI \triangleq \{ (k, i, x) : xi[k + 1] \in \scrI , xi[k] = 0\} \cup \{ (k, i, x) : \{ xi[k + 1], xi[k]\} \subseteq \scrI \} 
\cup \{ (k, i, r) : \{ ri[k+1], xi[k]\} \subseteq \scrI , ri[k] = 0\} \cup \{ (k, i, r) : \{ ri[k+1], ri[k], xi[k]\} \subseteq \scrI \} 

be the set that contains indices of the equations from (4.2) that can be potentially
used in identifying \beta and \delta , based on the measurements contained in \scrI . In other
words, the coefficients on the left-hand side of equation (k, i, x) (resp., (k, i, r)) can be
determined using the measurements from \scrI and using Lemma 3.5 for all (k, i, x) \in \=\scrI 
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(resp., (k, i, r) \in \=\scrI ). Let us now consider the coefficient matrix \Phi x
k,i (resp., \Phi r

k,i)

corresponding to (k, i, x) \in \=\scrI (resp., (k, i, r) \in \=\scrI ). One can then show that it is possi-
ble that there exist equations in \=\scrI whose coefficients cannot be (directly) determined
using the measurements contained in \scrI or using Lemma 3.5, where the undetermined
coefficients come from the first element in \Phi x

k,i given by (4.7a). Nevertheless, it is also

possible that one can perform algebraic operations among the equations in \=\scrI such
that the undetermined coefficients get cancelled. Formally, we define the following.

Definition 4.1. Consider a measurement selection strategy \scrI \subseteq \scrI t1:t2 , where
\scrI t1:t2 is given by (4.1). Stack coefficient matrices \Phi x

k,i \in R1\times 2 for all (k, i, x) \in \=\scrI and

\Phi r
k,i \in R1\times 2 for all (k, i, r) \in \=\scrI into a single matrix, where \Phi x

k,i and \Phi r
k,i are given

by (4.7) and \=\scrI is given by (4.8). The resulting matrix is denoted as \Phi (\scrI ) \in R| \=\scrI | \times 2.
Moreover, define \~\Phi (\scrI ) to be the set that contains all the matrices \Phi \in R2\times 2 such that
(\Phi )1 and (\Phi )2 can be obtained via algebraic operations among the rows in \Phi (\scrI ), and
the elements in (\Phi )1 and (\Phi )2 can be fully determined using the measurements from
\scrI \subseteq \scrI t1:t2 and using Lemma 3.5.

In other words, \Phi \in \~\Phi (\scrI ) corresponds to two equations (in \beta and \delta ) obtained
from (4.2) such that the coefficients on the right-hand side of the two equations can
be determined using the measurements contained in \scrI and using Lemma 3.5 (if the
coefficients contain xi[k] = 0 or ri[k] = 0). Moreover, one can show that the coeffi-
cients on the left-hand side of the two equations obtained from (4.2) corresponding to
\Phi can also be determined using measurements from \scrI and using Lemma 3.5. Putting
the above arguments together, we see that given a measurement selection strategy
\scrI \subseteq \scrI t1:t2 , \beta and \delta can be uniquely identified if and only if there exists \Phi \in \~\Phi (\scrI ) such
that rank(\Phi ) = 2. Equivalently, denoting

(4.9) rmax(\scrI ) \triangleq max
\Phi \in \~\Phi (\scrI )

rank(\Phi ),

where rmax(\scrI ) \triangleq 0 if \~\Phi (\scrI ) = \emptyset , we see that \beta and \delta can be uniquely identified using
the measurements from \scrI \subseteq \scrI t1:t2 if and only if rmax(\scrI ) = 2.

Remark 4.2. Note that if a measurement selection strategy \scrI \subseteq \scrI t1:t2 satisfies
rmax(\scrI ) = 2, it follows from the above arguments that | \=\scrI | \geq 2, i.e., \Phi (\scrI ) \in R| \=\scrI | \times 2 has
at least two rows, where \=\scrI is defined in (4.8).

Recall that collecting the measurement of xi[k] (resp., ri[k]) at any node i \in \scrV 
and at any time step k \in Z\geq 0 incurs cost ck,i \in R\geq 0 (resp., bk,i \in R\geq 0). Given any
measurement selection strategy \scrI \subseteq \scrI t1:t2 , we denote the cost associated with \scrI as

(4.10) c(\scrI ) \triangleq 
\sum 

xi[k]\in \scrI 

ck,i +
\sum 

ri[k]\in \scrI 

bk,i.

We then define the parameter identification measurement selection (PIMS) problem
in the perfect measurement setting as follows.

Problem 4.3. Consider a discrete-time SIR model given by (2.1) with a directed
graph \scrG = \{ \scrV , \scrE \} , a weight matrix A \in Rn\times n, a sampling parameter h \in R\geq 0, and
sets \scrS I ,\scrS H \subseteq \scrV defined in Definition 3.4. Moreover, consider time steps t1, t2 \in Z\geq 0

with t1 < t2, and a cost ck,i \in R\geq 0 of measuring xi[k] and a cost bk,i \in R\geq 0 of
measuring ri[k], for all i \in \scrV and for all k \in \{ t1, . . . , t2\} . The PIMS problem is to
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find \scrI \subseteq \scrI t1:t2 that solves

min
\scrI \subseteq \scrI t1:t2

c(\scrI )

s.t. rmax(\scrI ) = 2,
(4.11)

where \scrI t1:t2 is defined in (4.1), c(\scrI ) is defined in (4.10), and rmax(\scrI ) is defined in
(4.9).

We show that the PIMS problem is NP-hard via a polynomial-time reduction
from the exact cover by 3-sets problem which is known to be NP-complete [10]. The
proof is omitted here in the interest of space and can be found in [36].

Theorem 4.4. The PIMS problem is NP-hard.

Theorem 4.4 indicates that there is no polynomial-time algorithm that solves
all instances of the PIMS problem optimally (if P \not = NP). Moreover, we note from
the formulation of the PIMS problem given by Problem 4.3 that for a measurement
selection strategy \scrI \subseteq \scrI t1:t2 , one needs to check whether max\Phi \in \~\Phi (\scrI ) rank(\Phi ) = 2
holds, before the corresponding measurements are collected. However, in general, it
is not possible to calculate rank(\Phi ) when no measurements are collected. In order to
bypass these issues, we will explore additional properties of the PIMS problem in the
following.

4.2. Solving the PIMS problem. We start with the following result.

Lemma 4.5. Consider a discrete time SIR model given by (2.1). Suppose As-
sumptions 3.1--3.2 hold. Then, the following results hold, where \Phi x

k1,i1
\in R1\times 2 and

\Phi r
k2,i2

\in R1\times 2 are defined in (4.7), \scrS \prime 
I \triangleq \{ i \in \scrS I : aii > 0\} , \scrS \prime \triangleq \{ i \in \scrV \setminus \scrS \prime 

I : \scrN i \not =
\emptyset ,min\{ dj : j \in \scrN i\} \not = \infty \} , and \scrS I and di are defined in Definition 3.4 for all i \in \scrV .

(a) For any i1 \in \scrS \prime 
I and any i2 \in \scrV with di2 \not = \infty , rank

\bigl( \bigl[ 
(\Phi x

k1,i1
)T (\Phi r

k2,i2
)T
\bigr] \bigr) 

=
2 for all k1 \geq 0 and for all k2 \geq di2 , where k1, k2 \in Z\geq 0.

(b) For any i1 \in \scrS \prime and any i2 \in \scrV with di2 \not = \infty , rank
\bigl( \bigl[ 

(\Phi x
k1,i1

)T (\Phi r
k2,i2

)T
\bigr] \bigr) 

=
2 for all k1 \geq min\{ dj : j \in \scrN i1\} , and for all k2 \geq di2 , where k1, k2 \in Z\geq 0.

Proof. Noting from (4.7), we have

(4.12)

\biggl[ 
\Phi x

k1,i1

\Phi r
k2,i2

\biggr] 
=

\biggl[ 
si1 [k1]

\sum 
j\in \=\scrN i1

ai1jxj [k1]  - xi1 [k1]

0 xi2 [k2]

\biggr] 
.

To prove part (a), consider any i1 \in \scrS \prime 
I and any i2 \in \scrV with di2 \not = \infty , where

we note xi1 [0] > 0 and ai1i1 > 0 from the definition of \scrS \prime 
I . We then see from

Lemma 3.5(a)--(b) that si1 [k1] > 0 and xi1 [k1] > 0 for all k1 \geq 0. It follows that
si1 [k1]

\sum 
j\in \=\scrN i1

ai1jxj [k1] > 0 for all k1 \geq 0. Also, we obtain from Lemma 3.5(b)

xi2 [k2] > 0 for all k2 \geq di2 , which proves part (a).
We now prove part (b). Considering any i1 \in \scrS \prime and any i2 \in \scrV with d2 \not = \infty ,

we see from the definition of \scrS \prime that \scrN i1 \not = \emptyset and there exists j \in \scrN i1 such that
dj \not = \infty . Letting j1 be a node in \scrN i1 such that dj1 = min\{ dj : j \in \scrN i1\} \not = \infty , we note
from Lemma 3.5(a) that xj1 [k1] > 0 for all k1 \geq min\{ dj : j \in \scrN i1\} . Also note that
ai1j1 > 0 from Assumption 3.2. The rest of the proof of part (b) is then identical to
that of part (a).

Recalling the way we index the equations in (4.2) (see (4.5)--(4.6) for examples),
we define the set that contains all the indices of the equations in (4.2):

(4.13) \scrQ \triangleq \{ (k, i, \lambda ) : k \in \{ t1, . . . , t2  - 1\} , i \in \scrV , \lambda \in \{ x, r\} \} .
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Following the arguments in Lemma 4.5, we denote

\scrQ 1 \triangleq \{ (k, i, x) \in \scrQ : i \in \scrS \prime 
I\} \cup \{ (k, i, x) \in \scrQ : k \geq min\{ dj : j \in \scrN i\} , i \in \scrS \prime \} ,(4.14)

\scrQ 2 \triangleq \{ (k, i, r) \in \scrQ : k \geq di, i \in \scrV , di \not = \infty \} ,(4.15)

where \scrS \prime 
I and \scrS \prime are defined in Lemma 4.5, and di is defined in Definition 3.4. Next,

for all (k, i, x) \in \scrQ , we define the set of measurements that are needed to determine
the coefficients in equation (k, i, x) (when no other equations are used) to be

\scrI (k, i, x) \triangleq 
\bigl( 
\{ xi[k + 1], ri[k]\} \cup \{ xj [k] : j \in \=\scrN i\} 

\bigr) 
\cap \scrI t1:t2 ,

where \scrI t1:t2 is defined in (4.1). Similarly, for all (k, i, r) \in \scrQ , we define

\scrI (k, i, r) \triangleq 
\bigl( 
\{ ri[k + 1], ri[k], xi[k]\} 

\bigr) 
\cap \scrI t1:t2 .

Moreover, let us denote

(4.16) \scrI ((k1, i1, \lambda 1), (k2, i2, \lambda 2)) \triangleq \scrI (k1, i1, \lambda 1) \cup \scrI (k2, i2, \lambda 2)

for all (k1, i1, \lambda 1), (k2, i2, \lambda 2) \in \scrQ . Similarly to (4.10), denote the sum of the costs of
the measurements from \scrI ((k1, i1, \lambda 1), (k2, i2, \lambda 2)) as c(\scrI ((k1, i1, \lambda 1), (k2, i2, \lambda 2))).

Algorithm 4.1. Algorithm for PIMS.

1: Input: An instance of PIMS
2: Find (k1, i1, x) \in \scrQ 1, (k2, i2, r) \in \scrQ 2 s.t. c(\scrI ((k1, i1, x), (k2, i2, r))) is minimized
3: return \scrI ((k1, i1, x), (k2, i2, r))

Based on the above arguments, we propose an algorithm defined in Algorithm 4.1
for the PIMS problem. Note that Algorithm 4.1 finds an equation from \scrQ 1 and an
equation from \scrQ 2 such that the sum of the costs of the two equations is minimized,
where \scrQ 1 and \scrQ 2 are defined in (4.14) and (4.15), respectively.

Proposition 4.6. Consider an instance of the PIMS problem under Assumptions
3.1--3.2. Algorithm 4.1 returns a solution \scrI ((k1, i1, x), (k2, i2, r)) to the PIMS problem
that satisfies the constraint in (4.11) and the following:
(4.17)

c(\scrI ((k1, i1, x), (k2, i2, r)))
c(\scrI  \star )

\leq 
min(k,i,x)\in \scrQ 1

(bk+1,i + bk,i + ck+1,i +
\sum 

j\in \=\scrN i
ck,j)

3cmin
,

where \scrI  \star is an optimal solution to the PIMS problem, \scrQ 1 is defined in (4.14), and
cmin \triangleq min\{ minxi[k]\in \scrI t1:t2

ck,i,minri[k]\in \scrI t1:t2
bk,i\} > 0 with \scrI t1:t2 given by (4.1).

Proof. The feasibility of \scrI ((k1, i1, x), (k2, i2, r)) follows directly from the definition
of Algorithm 4.1 and Lemma 4.5. We now prove (4.17). Consider any equations
(k, i, x) \in \scrQ 1 and (k, i, r) \in \scrQ 2. We have from (4.16) the following:

\scrI ((k, i, x), (k, i, r))
=
\bigl( 
\{ xi[k + 1], ri[k]\} \cup \{ xj [k] : j \in \=\scrN i\} \cup \{ ri[k + 1], ri[k], xi[k]\} 

\bigr) 
\cap \scrI t1:t2 ,

which implies

c(\scrI ((k1, i1, x), (k2, i2, r))) \leq min
(k,i,x)\in \scrQ 1

\Biggl( 
bk+1,i + bk,i + ck+1,i +

\sum 
j\in \=\scrN i

ck,j

\Biggr) 
.
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Next, since \scrI  \star satisfies rmax(\scrI  \star ) = 2, we recall from Remark 4.2 that | \=\scrI  \star | \geq 2, where

\=\scrI  \star = \{ (k, i, x) : xi[k + 1] \in \scrI  \star , xi[k] = 0\} \cup \{ (k, i, x) : \{ xi[k + 1], xi[k]\} \subseteq \scrI  \star \} 
\cup \{ (k, i, r) : \{ ri[k+1], xi[k]\} \subseteq \scrI  \star , ri[k] = 0\} \cup \{ (k, i, r) : \{ ri[k+1], ri[k], xi[k]\} \subseteq \scrI  \star \} ,

which implies | \scrI  \star | \geq 2. In fact, suppose \{ xi[k + 1], xj [k + 1]\} \subseteq \scrI  \star , where i, j \in \scrV 
and k \in \{ t1  - 1, . . . , t2  - 1\} . Since the elements in \Phi x

k,i and \Phi x
k,j (defined in (4.7))

cannot all be zero, we see that there exists xw[k] \in \scrI  \star (with xw[k] > 0), where w \in \scrV .
This further implies | \scrI  \star | \geq 3. Using similar arguments, one can show that | \scrI  \star | \geq 3
holds in general, which implies c(\scrI  \star ) \geq 3cmin. Combining the above arguments leads
to (4.17).

Finally, note that \scrQ 1, \scrQ 2, and \scrI t1:t2 can be obtained by calling the breadth-first-
search algorithm (see, e.g., [8]) | \scrS I | times with O(| \scrS I | (n+ | \scrE | )) total time complexity.
Also note that the time complexity of line 2 in Algorithm 4.1 is O(n2(t2  - t1 + 1)2).
Thus, the overall time complexity of Algorithm 4.1 is O(| \scrQ | 2 + | \scrS I | | \scrE | ).

5. Measurement selection problem in random measurement setting.
In this section, we assume that the initial condition l \triangleq [(s[0])T (x[0])T (r[0])T ]T is
known. Nevertheless, our analysis can potentially be extended to cases where the
initial condition l is given by a probability distribution.

5.1. Problem formulation. We consider the scenario where the measurement
of xi[k] (resp., ri[k]), denoted as \^xi[k] (resp., \^ri[k]), is given by a pmf p(\^xi[k]| xi[k])
(resp., p(\^ri[k]| ri[k])). Note that one can express xi[k] in terms of l and \theta \triangleq [\beta \delta ]T using
(2.1b). Hence, given l and \theta , we can alternatively write p(\^xi[k]| xi[k]) as p(\^xi[k]| l, \theta )
for all i \in \scrV and for all k \in Z\geq 1. Since the initial conditions are assumed to be
known, we drop the dependency of p(\^xi[k]| l, \theta ) on l and denote the pmf of \^xi[k] as
p(\^xi[k]| \theta ) for all i \in \scrV and for all k \in Z\geq 1. Similarly, given l and \theta , we denote the
pmf of \^ri[k] as p(\^ri[k]| \theta ) for all i \in \scrV and for all k \in Z\geq 1. Note that when collecting
measurement \^xi[k] (resp., \^ri[k]) under a limited budget, one possibility is to give virus
(resp., antibody) tests to a group of randomly and uniformly sampled individuals of
the population at node i \in \scrV and at time k \in Z\geq 1 (see, e.g., [2]), where a positive
testing result indicates that the tested individual is infected (resp., recovered) at time
k (see, e.g., [1]). Thus, the obtained random measurements \^xi[k] and \^ri[k] and the
corresponding pmfs p(\^xi[k]| \theta ) and p(\^ri[k]| \theta ) depend on the total number of conducted
virus tests and antibody tests at node i and at time k, respectively. Consider any
node i \in \scrV and any time step k \in Z\geq 1, where the total population of i is denoted by
Ni \in Z\geq 1 and is assumed to be fixed over time. Suppose we are allowed to choose
the number of virus (resp., antibody) tests that will be performed on the (randomly
sampled) individuals at node i and at time k. Assume that the cost of performing
the virus (resp., antibody) tests is proportional to the number of the tests. For any
i \in \scrV and for any k \in \{ t1, . . . , t2\} , let

(5.1) \scrC k,i \triangleq \{ \zeta ck,i : \zeta \in (\{ 0\} \cup [\zeta i])\} 

be the set of all possible costs that we can spend on collecting the measurement \^xi[k],
where ck,i \in R\geq 0 and \zeta i \in Z\geq 1. Similarly, for any i \in \scrV and any k \in \{ t1, . . . , t2\} , let

(5.2) \scrB k,i \triangleq \{ \eta bk,i : \eta \in (\{ 0\} \cup [\eta i])\} 

denote the set of all possible costs that we can spend on collecting the measurement
\^ri[k], where bk,i \in R\geq 0 and \eta i \in Z\geq 1. For instance, \zeta ck,i can be viewed as the cost
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of performing virus tests on \zeta Nx
i (randomly sampled) individuals in the population

at node i, where Nx
i \in Z\geq 1 and \zeta Nx

i \leq Ni. To reflect the dependency of the pmf
p(\^xi[k]| \theta ) (resp., p(\^ri[k]| \theta )) of measurement \^xi[k] (resp., \^ri[k]) on the cost spent on
collecting the measurement of xi[k] (resp., ri[k]), we further denote the pmf of \^xi[k]
(resp., \^ri[k]) as p(\^xi[k]| \theta , \varphi k,i) (resp., p(\^ri[k]| \theta , \omega k,i)), where \varphi k,i \in \scrC k,i (resp., \omega k,i \in 
\scrB k,i) with \scrC k.i (resp., \scrB k,i) given by (5.1) (resp., (5.2)). Note that \varphi k,i (resp., \omega k,i)
is the cost spent on collecting measurement \^xi[k] (resp., \^ri[k]), and \varphi k,i = 0 (resp.,
\omega k,i = 0) indicates that measurement \^xi[k] (resp., \^ri[k]) is not collected.

In contrast with the exact measurement case studied in section 4, it is not possible
to uniquely identify \beta and \delta using measurements \^xi[k] and \^ri[k] which are now random
variables. Thus, we will consider estimators of \beta and \delta based on the measurements
indicated by a measurement selection strategy. Similarly to section 4, given time steps
t1, t2 \in Z\geq 1 with t2 \geq t1, define the set of all candidate measurements as

(5.3) \scrU t1:t2 \triangleq \{ \^xi[k] : i \in \scrV , k \in \{ t1, . . . , t2\} \} \cup \{ \^ri[k] : i \in \scrV , k \in \{ t1, . . . , t2\} \} .

Recalling \scrC k,i and \scrB k,i defined in (5.1) and (5.2), respectively, we let \mu \in Z\scrU t1:t2

\geq 0 be a
measurement selection that specifies the costs spent on collecting measurements \^xi[k]
and \^ri[k] for all i \in \scrV and for all k \in \{ t1, . . . , t2\} . Moreover, we define the set of all
candidate measurement selections as

(5.4) \scrM \triangleq \{ \mu \in Z\scrU t1:t2

\geq 0 : \mu (\^xi[k]) \in (\{ 0\} \cup [\zeta i]), \mu (\^ri[k]) \in (\{ 0\} \cup [\eta i])\} ,

where \zeta i, \eta i \in Z\geq 1 for all i \in \scrV . In other words, a measurement selection \mu is

defined over the integer lattice Z\scrU t1:t2

\geq 0 so that \mu is a vector of dimension | \scrU t1:t2 | ,
where each element of \mu corresponds to an element in \scrU t1:t2 and is denoted as \mu (\^xi[k])

(or \mu (\^ri[k])). The set \scrM contains all \mu \in Z\scrU t1:t2

\geq 0 such that \mu (\^xi[k]) \in (\{ 0\} \cup [\zeta i]) and
\mu (\^ri[k]) \in (\{ 0\} \cup [\eta i]) for all i \in \scrV and for all k \in \{ t1, . . . , t2\} . Thus, for any \varphi k,i \in \scrC k,i
and for any \omega k,i \in \scrB k,i, there exists \mu \in \scrM \scrU t1:t2

\geq 0 such that \mu (\^xi[k])ck,i = \varphi k,i and
\mu (\^ri[k])bk,i = \omega k,i. In other words, \mu (\^xi[k])ck,i (resp., \mu (\^ri[k])bk,i) indicates the cost
spent on collecting the measurement of xi[k] (resp., ri[k]). Given a measurement
selection \mu \in Zt1:t2

\geq 0 , we can also denote the pmfs of \^xi[k] and \^ri[k] as p(\^xi[k]| \theta , \mu (\^xi[k]))
and p(\^ri[k]| \theta , \mu (\^ri[k])), respectively, where we drop the dependencies of the pmfs on
ck,i and bk,i for notational simplicity.

To proceed, we consider the scenario where measurements can only be collected
under a budget constraint given by B \in R\geq 0. Using the above notations, the budget
constraint can be expressed as

(5.5)
\sum 

\^xi[k]\in \scrU t1:t2

ck,i\mu (\^xi[k]) +
\sum 

\^ri[k]\in \scrU t1:t2

bk,i\mu (\^ri[k]) \leq B.

We then consider estimators of \theta = [\beta \delta ]T based on any given measurement selection
\mu \in \scrM . Considering any \mu \in \scrM , we denote

(5.6) \scrU \lambda 
i \triangleq \{ k : \mu (\^\lambda i[k]) > 0, k \in \{ t1, . . . , t2\} \} 

for all i \in \scrV and for all \lambda \in \{ x, r\} . For all i \in \scrV and for all \lambda \in \{ x, r\} with \scrU \lambda 
i \not = \emptyset ,

denote y(\scrU \lambda 
i ) \triangleq 

\Bigl[ 
\^\lambda i[k1] \cdot \cdot \cdot \^\lambda i[k| \scrU \lambda 

i | ]
\Bigr] T

, where \scrU \lambda 
i = \{ k1, . . . , k| \scrU \lambda 

i | \} . Letting

\scrU \lambda \triangleq \{ i : \scrU \lambda 
i \not = \emptyset , i \in \scrV \} \forall \lambda \in \{ x, r\} ,
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we denote the measurement vector indicated by \mu \in \scrM as

(5.7) y(\mu ) \triangleq 
\Bigl[ 
y(\scrU x

i1
)T \cdot \cdot \cdot y(\scrU x

i| \scrU x| 
)T y(\scrU r

j1
)T \cdot \cdot \cdot y(\scrU r

j| \scrU r| 
)T
\Bigr] T

,

where \scrU x = \{ i1, . . . , i| \scrU x| \} and \scrU r = \{ j1, . . . , j| \scrU r| \} . Note that \^xi[k] and \^ri[k] are
(discrete) random variables with pmfs p(\^xi[k]| \theta , \mu (\^xi[k])) and p(\^ri[k]| \theta , \mu (\^ri[k])), re-
spectively. We then see from (5.7) that y(\mu ) is a random vector whose pmf is denoted
as p(y(\mu )| \theta , \mu ). Similarly, the pmf of y(\scrU x

i ) (resp., y(\scrU r
i )) is denoted as p(y(\scrU x

i )| \theta , \mu )
(resp., p(y(\scrU r

i )| \theta , \mu )). Given t1, t2 \in Z\geq 1 with t2 \geq t1, we make the following assump-
tion on measurements \^xi[k] and \^ri[k].

Assumption 5.1. For any i \in \scrV and for any k1, k2 \in \{ t1, . . . , t2\} (k1 \not = k2), \^xi[k1],
\^xi[k2], \^ri[k1], and \^ri[k2] are independent of each other. Moreover, for any i, j \in \scrV 
(i \not = j) and for any k1, k2 \in \{ t1, . . . , t2\} , \^xi[k1] and \^xj [k2] are independent and \^xi[k1]
and \^rj [k2] are independent.

The above assumption ensures that measurements from different nodes or from
different time steps are independent and the measurements of xi[k] and ri[k] are also
independent. It then follows from (5.7) that the pmf of y(\mu ) can be written as

(5.8) p(y(\mu )| \theta , \mu ) =
\prod 
i\in \scrU x

p(y(\scrU x
i )| \theta , \mu ) \cdot 

\prod 
j\in \scrU r

p(y(\scrU r
j )| \theta , \mu ),

where we can further write p(y(\scrU x
i )| \theta , \mu ) =

\prod 
k\in \scrU x

i
p(\^xi[k]| \theta , \mu (\^xi[k])) for all i \in \scrU x,

and p(y(\scrU r
j )| \theta , \mu ) =

\prod 
k\in \scrU r

j
p(\^rj [k]| \theta , \mu (\^rj [k])) for all j \in \scrU r.

In order to quantify the performance (e.g., precision) of estimators of \theta based on
\mu , we use the Bayesian Cramer--Rao lower bound (BCRLB) (see, e.g., [34]) associated
with \mu . In the following, we introduce the BCRLB and explain why we choose it
as a performance metric. First, given any measurement \mu \in \scrM , let F\theta (\mu ) be the
corresponding Fisher information matrix defined as

(5.9) F\theta (\mu ) \triangleq  - E

\Biggl[ 
\partial 2 ln p(y(\mu )| \theta ,\mu )

\partial \beta 2

\partial 2 ln p(y(\mu )| \theta ,\mu )
\partial \beta \partial \delta 

\partial 2 ln p(y(\mu )| \theta ,\mu )
\partial \delta \partial \beta 

\partial 2 ln p(y(\mu )| \theta ,\mu )
\partial \delta 2

\Biggr] 
with the expectation E[\cdot ] taken with respect to p(y(\mu )| \theta , \mu ). Under Assumption 5.1
and some regularity conditions on the pmfs of \^xi[k] and \^ri[k], (5.9) can be written as
(see, e.g., [14])
(5.10)

F\theta (\mu ) =
\sum 

\lambda \in \{ x,r\} 

\sum 
i\in \scrU \lambda 

\sum 
k\in \scrU \lambda 

i

E
\biggl[ 
\partial ln p(\^\lambda i[k]| \theta , \mu (\^\lambda i[k]))

\partial \theta 

\biggl( 
\partial ln p(\^\lambda i[k]| \theta , \mu (\^\lambda i[k]))

\partial \theta 

\biggr) T \biggr] 
.

Consider any estimator \^\theta (\mu ) of \theta based on a measurement selection \mu \in \scrM , and
assume that we have a prior pdf of \theta = [\beta \delta ]T , denoted as p(\theta ). Under some regularity
conditions on the pmfs of \^xi[k] and \^ri[k], and p(\theta ), we have (see, e.g., [33, 34])

(5.11) R\^\theta (\mu ) = E[(\^\theta (\mu ) - \theta )(\^\theta (\mu ) - \theta )T ] \succeq \=C(\mu ),

where R\^\theta (\mu ) \in R2\times 2 is the error covariance of the estimator \^\theta (\mu ), the expectation E[\cdot ]
is taken with respect to p(y(\mu )| \theta , \mu )p(\theta ), and \=C(\mu ) \in R2\times 2 is the BCRLB associated
with the measurement selection \mu . The BCRLB is defined as (see, e.g., [33, 34])

(5.12) \=C(\mu ) \triangleq (E\theta [F\theta (\mu )] + Fp)
 - 1,
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where E\theta [\cdot ] denotes the expectation taken with respect to p(\theta ), F\theta (\mu ) is given by (5.9),
and Fp \in R2\times 2 encodes the prior knowledge of \theta as

(5.13) Fp =  - E\theta 

\Biggl[ 
\partial 2 ln p(\theta )

\partial \beta 2

\partial 2 ln p(\theta )
\partial \beta \partial \delta 

\partial 2 ln p(\theta )
\partial \delta \partial \beta 

\partial 2 ln p(\theta )
\partial \delta 2

\Biggr] 
= E\theta 

\biggl[ 
\partial ln p(\theta )

\partial \theta 

\biggl( 
\partial ln p(\theta )

\partial \theta 

\biggr) T \biggr] 
\succeq 0,

where the second equality holds under some regularity conditions on p(\theta ) (see, e.g.,
[33]).

Thus, the above arguments motivate us to consider (functions of) \=C(\cdot ) as op-
timization metrics in the measurement selection problem studied in this section, in
order to characterize the estimation performance corresponding to a measurement
selection \mu \in \scrM . In particular, we will consider tr( \=C(\cdot )) and ln det( \=C(\cdot )), which are
widely used criteria in parameter estimation (see, e.g., [13]) and are also known as the
Bayesian A-optimality and D-optimality criteria, respectively, in the context of exper-
imental design (see, e.g., [28]). First, considering the optimization metric tr( \=C(\cdot )), we
see from the above arguments that (5.11) directly implies tr(R\^\theta (\mu )) \geq tr( \=C(\mu )) for all

estimators \^\theta (\mu ) of \theta and for all \mu \in \scrM . Therefore, a measurement selection \mu  \star that

minimizes tr( \=C(\mu )) potentially yields a lower value of tr(R\^\theta (\mu )) for an estimator \^\theta (\mu )

of \theta . Furthermore, there may exist an estimator \^\theta (\mu ) that achieves the BCRLB (see,
e.g., [33]); i.e., tr( \=C(\mu )) provides the minimum value of tr(R\^\theta (\mu )) that can possibly

be achieved by any estimator \^\theta (\mu ) of \theta , given a measurement selection \mu . Similar
arguments hold for ln det( \=C(\cdot )). To proceed, denoting

(5.14) fa(\mu ) \triangleq tr( \=C(\mu )) and fd(\mu ) \triangleq ln det( \=C(\mu )) \forall \mu \in \scrM ,

we define the parameter estimation measurement selection (PEMS) problem.

Problem 5.2. Consider a discrete-time SIR model given by (2.1) with a directed
graph \scrG = \{ \scrV , \scrE \} , a weight matrix A \in Rn\times n, a sampling parameter h \in R\geq 0, and an
initial condition l = [((s[0])T (x[0])T (r[0])T ]T . Moreover, consider time steps t1, t2 \in 
Z\geq 1 with t2 \geq t1; a set \scrC k,i = \{ \zeta ck,i : \zeta \in (\{ 0\} \cup [\zeta i])\} with ck,i \in R\geq 0 and \zeta i \in Z\geq 1

for all i \in \scrV and for all k \in \{ t1, . . . , t2\} ; a set \scrB k,i = \{ \eta bk,i : \eta \in (\{ 0\} \cup [\eta i])\} with
bk,i \in R\geq 0 and \eta i \in Z\geq 1 for all i \in \scrV and for all k \in \{ t1, . . . , t2\} ; a budget B \in R\geq 0;
and a prior pdf p(\theta ). Suppose \^xi[k] (resp., \^ri[k]) is given by a pmf p(\^xi[k]| \theta , \varphi k,i)
(resp., p(\^ri[k]| \theta , \omega k,i)), where \varphi k,i \in \scrC k,i (resp., \omega k,i \in \scrB k,i). The PEMS problem is
to find a measurement selection \mu that solves

min
\mu \in \scrM 

f(\mu )

s.t.
\sum 

\^xi[k]\in \scrU t1:t2

ck,i\mu (\^xi[k]) +
\sum 

\^ri[k]\in \scrU t1:t2

bk,i\mu (\^ri[k]) \leq B,
(5.15)

where \scrM is defined in (5.4), f(\cdot ) can be either of fa(\cdot ) or fd(\cdot ) with fa(\cdot ) and fd(\cdot )
defined in (5.14), \scrU t1:t2 is defined in (5.3), and \=C(\mu ) is given by (5.12).

Note that Fp \succeq 0 from (5.13), and fa(0) = tr( \=C(0)) = tr((Fp)
 - 1) and fd(0) =

ln det( \=C(0)) = ln det((Fp)
 - 1) from (5.12). We further assume that Fp \succ 0 in what

follows, which implies f(\mu ) > 0 for all \mu \in \scrM .

5.2. Solving the PEMS problem. In this section, we consider a measurement
model with specific pmfs of \^xi[k] and \^ri[k] (see, e.g., [4, 12]). Nonetheless, our analysis
can potentially be extended to other measurement models.
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5.2.1. Pmfs of measurements \^\bfitx \bfiti [\bfitk ] and \^\bfitr \bfiti [\bfitk ]. Consider any i \in \scrV and any
k \in \{ t1, . . . , t2\} . Assume that the total population of node i is fixed over time and
is denoted as Ni \in Z\geq 1. Given any measurement selection \mu \in \scrM with \scrM defined
in (5.4), we recall from section 5.1 that \mu (\^xi[k])ck,i can be viewed as the cost of
performing virus tests on \mu (\^xi[k])N

x
i randomly and uniformly sampled individuals in

the population of node i \in \scrV , where \mu (\^xi[k]) \in (\{ 0\} \cup [\zeta i]) (with \zeta i \in Z\geq 1), ck,i \in R\geq 0,
and Nx

i \in Z\geq 1 with \zeta iN
x
i \leq Ni. Note that xi[k] is the proportion of the population

at node i and at time k that is infected, and xi[k] \in [0, 1) under Assumptions 3.1--3.2
as shown by Lemma 3.5. Thus, a randomly and uniformly sampled individual in the
population at node i and at time k will be an infected individual (at time k) with
probability xi[k] and will be a noninfected (i.e., susceptible or recovered) individual
with probability 1  - xi[k]. Supposing the tests are accurate,2 we see from the above
arguments that the obtained number of individuals that test positive, i.e., Ni\^xi[k],
is a binomial random variable with parameters Nx

i \mu (\^xi[k]) \in Z\geq 1 and xi[k] \in [0, 1).
Thus, for any i \in \scrV and for any k \in \{ t1, . . . , t2\} , the pmf of \^xi[k] is

(5.16) p(\^xi[k] = x| \theta , \mu (\^xi[k])) =

\biggl( 
Nx

i \mu (\^xi[k])

Nix

\biggr) 
(xi[k])

Nix(1 - xi[k])
Nx

i \mu (\^xi[k]) - Nix,

where x \in \{ 0, 1
Ni

, 2
Ni

, . . . ,
Nx

i \mu (\^xi[k])
Ni

\} with x \in [0, 1] since Nx
i \zeta i \leq Ni. Note that

we do not define the pmf of measurement \^xi[k] when Nx
i \mu (\^xi[k]) = 0, i.e., when

\mu (\^xi[k]) = 0, since \mu (\^xi[k]) = 0 indicates that no measurement is collected for state
xi[k]. Also note that when xi[k] = 0, the pmf of \^xi[k] given in (5.16) reduces to
p(\^xi[k] = 0| \theta , \mu (\^xi[k])) = 1. Moreover, since the weight matrix A \in Rn\times n and the
sampling parameter h \in R\geq 0 are assumed to be given, we see that given \theta = [\beta \delta ]T

and initial condition l = [(s[0])T (x[0])T (r[0])T ]T , xi[k] can be obtained using (2.1b)
for all i \in \scrV and for all k \in \{ t1, . . . , t2\} , where we can view xi[k] as a function in
the unknown parameter \theta . In other words, given l, \theta , \mu (\^xi[k]), N

x
i , and Ni, one can

obtain the right-hand side of (5.16). Again, we only explicitly express the dependency
of the pmf of \^xi[k] on \theta and \mu (\^xi[k]) in (5.16). Following arguments similar to those
above, we assume that for any i \in \scrV and for any k \in \{ t1, . . . , t2\} , measurement \^ri[k]
has the following pmf:

(5.17) p(\^ri[k] = r| \theta , \mu (\^ri[k])) =
\biggl( 
Nr

i \mu (\^ri[k])

Nir

\biggr) 
(ri[k])

Nir(1 - ri[k])
Nr

i \mu (\^ri[k]) - Nir,

where r \in \{ 0, 1
Ni

, 2
Ni

, . . . ,
Nr

i \mu (\^ri[k])
Ni

\} with r \in [0, 1], \mu (\^ri[k]) \in \{ 0, . . . , \eta i\} , Nr
i \in Z\geq 1,

and Nr
i \mu (\^ri[k]) \leq Ni. Similarly, we note that the pmf of \^ri[k] given in (5.17) reduces

to p(\^ri[k] = 0| \theta , \mu (\^ri[k])) = 1 when ri[k] = 0. Considering any measurement selection

\mu \in \scrM and any measurement \^\lambda i[k] \in \scrU t1:t2 , where \lambda \in \{ x, r\} and \scrU t1:t2 is defined in
(5.3), we have the following:

E
\biggl[ 
\partial ln p(\^\lambda i[k]| \theta , \mu (\^\lambda i[k]))

\partial \theta 

\biggl( 
\partial ln p(\^\lambda i[k]| \theta , \mu (\lambda i[k]))

\partial \theta 

\biggr) T \biggr] 
= E

\biggl[ \biggl( 
\partial ln p(\^\lambda i[k]| \theta , \mu (\^\lambda i[k]))

\partial \lambda i[k]

\biggr) 2

\cdot \partial \lambda i[k]

\partial \theta 

\biggl( 
\partial \lambda i[k]

\partial \theta 

\biggr) T \biggr] 
(5.18)

=
N\lambda 

i \mu (
\^\lambda i[k])

\lambda i[k](1 - \lambda i[k])
\cdot \partial \lambda i[k]

\partial \theta 

\biggl( 
\partial \lambda i[k]

\partial \theta 

\biggr) T

,(5.19)

2Here, ``accurate"" means that an infected individual (at time k) will test positive with probability
one, and an individual that is not infected will test negative with probability one.
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where the expectation E[\cdot ] is taken with respect to p(\^\lambda i[k]| \theta , \mu (\^\lambda i[k])), and \lambda i[k] \in 
[0, 1). To obtain (5.18), we note the form of ln p(\^\lambda i[k]| \theta , \mu (\^\lambda i[k])) in (5.16) (or (5.17))

and use the chain rule. Moreover, one can obtain (5.19) from the fact that \^\lambda i[k]

is a binomial random variable. Noting that the pmf of \^\lambda i[k] reduces to p(\^\lambda i[k] =

0| \theta , \mu (\^\lambda i[k])) = 1 if \lambda i[k] = 0 as argued above, we let the right-hand side of (5.19) be
zero if \lambda i[k] = 0.

5.2.2. Complexity of the PEMS problem. Under the measurement model
described above, we show that the PEMS problem is also NP-hard via a polynomial-
time reduction from the knapsack problem which is known to be NP-hard [10]. That
is, there exist instances of the PEMS problem that cannot be solved optimally by any
polynomial-time algorithm (if P \not = NP). The proof is omitted here in the interest of
space and can be found in [36].

Theorem 5.3. The PEMS problem is NP-hard.

5.2.3. An equivalent formulation for the PEMS problem. Theorem 5.3
motivates us to consider approximation algorithms for solving the PEMS problem.
To begin with, we note that the objective function in the PEMS problem can be
viewed as a function defined over an integer lattice. We then have fa : \scrM \rightarrow R\geq 0

and fd : \scrM \rightarrow R\geq 0, where \scrM is defined in (5.4). First, considering fa : \scrM \rightarrow R\geq 0,

we will define a set function fPa : 2
\=M \rightarrow R\geq 0, where \=\scrM is a set constructed as

(5.20) \=\scrM \triangleq \{ (\^xi[k], l1) : i \in \scrV , k \in \{ t1, . . . , t2\} , l1 \in [\zeta i]\} 
\cup \{ (\^ri[k], l2) : i \in \scrV , k \in \{ t1, . . . , t2\} , l2 \in [\eta i]\} .

In other words, for any i \in \scrV and for any k \in \{ t1, . . . , t2\} , we associate elements
(\^xi[k], 1), . . . , (\^xi[k], \zeta i) (resp., (\^ri[k], 1), . . . , (\^ri[k], \eta i)) in set \=\scrM to measurement \^xi[k]
(resp., \^ri[k]). The set function fPa(\cdot ) is then defined as

(5.21) fPa(\scrY ) \triangleq fa(0) - fa(\mu \scrY ) = tr( \=C(0)) - tr( \=C(\mu \scrY )) \forall \scrY \subseteq \=\scrM ,

where for any \scrY \subseteq \=\scrM , we define \mu \scrY \in \scrM such that \mu \scrY (\^xi[k]) = | \{ (\^xi[k], l1) :
(\^xi[k], l1) \in \scrY \} | and \mu \scrY (\^ri[k]) = | \{ (\^ri[k], l2) : (\^ri[k], l2) \in \scrY \} | for all i \in \scrV and for all
k \in \{ t1, . . . , t2\} . In other words, \mu \scrY (\^xi[k]) (resp., \mu \scrY (\^ri[k])) is set to be the number
of elements in \scrY that correspond to the measurement \^xi[k] (resp., \^ri[k]). Also note
that fPa(\emptyset ) = 0. Following the arguments leading to (5.19), we define

(5.22) Hy \triangleq 

\Biggl\{ 
E\theta 

\bigl[ Nx
i

xi[k](1 - xi[k])
\partial xi[k]
\partial \theta 

\bigl( \partial xi[k]
\partial \theta 

\bigr) T \bigr] 
if y = (\^xi[k], l1)

E\theta 

\bigl[ Nr
i

ri[k](1 - ri[k])
\partial ri[k]
\partial \theta 

\bigl( \partial ri[k]
\partial \theta 

\bigr) T \bigr] 
if y = (\^ri[k], l2)

\forall y \in \=\scrM ,

where xi[k], ri[k] \in [0, 1), i \in \scrV , k \in \{ t1, . . . .t2\} , l1 \in [\zeta i], l2 \in [\eta i], and the expec-
tation E\theta [\cdot ] is taken with respect to the prior pdf p(\theta ). Given any \theta = [\beta \delta ]T , we

see from the arguments for (5.19) that
Nx

i

xi[k](1 - xi[k])
\partial xi[k]
\partial \theta 

\bigl( \partial xi[k]
\partial \theta 

\bigr) T \succeq 0. Moreover,

one can show that E\theta 

\bigl[ Nx
i

xi[k](1 - xi[k])
\partial xi[k]
\partial \theta 

\bigl( \partial xi[k]
\partial \theta 

\bigr) T \bigr] \succeq 0. Similarly, one can obtain

E\theta 

\bigl[ Nr
i

ri[k](1 - ri[k])
\partial ri[k]
\partial \theta 

\bigl( \partial ri[k]
\partial \theta 

\bigr) T \bigr] \succeq 0, which implies Hy \succeq 0 for all y \in \=\scrM . Now, sup-

pose the pmfs of \^xi[k] and \^ri[k] are given by (5.16) and (5.17), respectively. Recall
from (5.12) that tr( \=C(\mu )) = tr((E\theta [F\theta (\mu )] + Fp)

 - 1) for all \mu \in \scrM , where Fp and
F\theta (\mu ) are given by (5.13) and (5.10), respectively. Supposing Assumption 5.1 holds,
for all \scrY \subseteq \=\scrM , one can first express F\theta (\mu \scrY ) using (5.19) and then use (5.22) to obtain
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E\theta [F\theta (\mu \scrY )] =
\sum 

y\in \scrY Hy \triangleq H(\scrY ), where \mu \scrY is defined above given \scrY \subseteq \=\scrM . Putting
the above arguments together, we have from (5.21) the following:

(5.23) fPa(\scrY ) = tr
\bigl( 
(Fp)

 - 1
\bigr) 
 - tr

\bigl( 
(Fp +H(\scrY )) - 1

\bigr) 
\forall \scrY \subseteq \=\scrM .

Next, let the cost of (\^xi[k], l1) be ck,i, denoted as c(\^xi[k], l1), for all (\^xi[k], l1) \in \=\scrM ,
and let the cost of (\^ri[k], l2) be bk,i, denoted as c(\^ri[k], l2), for all (\^ri[k], l2) \in \=\scrM , where
ck,i \in R>0 and bk,i \in R>0 are given in the instance of the PEMS problem. Setting the
cost structure of the elements in \=\scrM in this way, we establish an equivalence between
the cost of a subset \scrY \subseteq \=\scrM and the cost of \mu \scrY \in \scrM , where \mu \scrY is defined above.
Similarly, considering the objective function fd : \scrM \rightarrow R\geq 0 in the PEMS problem,

we define a set function fPd : 2
\=\scrM \rightarrow R\geq 0 as

(5.24) fPd(\scrY ) \triangleq fd(0) - fd(\mu \scrY ) = ln det(Fp +H(\scrY )) - ln det(Fp) \forall \scrY \subseteq \=\scrM ,

where we define \mu \scrY \in \scrM such that \mu \scrY (\^xi[k]) = | \{ (\^xi[k], l1) : (\^xi[k], l1) \in \scrY \} | and
\mu \scrY (\^ri[k]) = | \{ (\^ri[k], l2) : (\^ri[k], l2) \in \scrY \} | for all i \in \scrV and for all k \in \{ t1, . . . , t2\} .
Note that given an instance of the PEMS problem in Problem 5.2, we can construct
the set \=\scrM with the associated costs of the elements in \=\scrM in O(n(t2  - t1 + 1)(\zeta + \eta ))
time, where n is the number of nodes in graph \scrG = \{ \scrV , \scrE \} , and \zeta , \eta \in Z\geq 1 with
\zeta i \leq \zeta and \eta i \leq \eta for all i \in \scrV . Assuming that \zeta and \eta are (fixed) constants, the
construction of the set \=\scrM with the associated costs takes O(n(t2 - t1+1)) time, which
is polynomial in the parameters of the PEMS problem (Problem 5.2). Based on the
above arguments, we further consider the following problem:

max
\scrY \subseteq \=\scrM 

fP (\scrY )

s.t. c(\scrY ) \leq B,
(P)

where fP (\cdot ) can be either of fPa(\cdot ) or fPd(\cdot ) with fPa(\cdot ) and fPd(\cdot ) given by (5.23)
and (5.24), respectively, and c(\scrY ) \triangleq 

\sum 
y\in \scrY c(y) for all \scrY \subseteq \=\scrM . By the way we

construct fP (\cdot ) and the costs of elements in \=\scrM , one can verify that \scrY  \star 
a \subseteq \=\scrM (resp.,

\scrY  \star 
d \subseteq \=\scrM ) is an optimal solution to problem (P) with fP (\cdot ) = fPa(\cdot ) (resp., fP (\cdot ) =

fPd(\cdot )) if and only if \mu \scrY  \star 
a
(resp., \mu \scrY  \star 

d
) defined above is an optimal solution to (5.15)

in Problem 5.2 with f(\cdot ) = fa(\cdot ) (resp., f(\cdot ) = fd(\cdot )). Thus, given a PEMS instance
we can first construct \=\scrM with the associated cost for each element in \=\scrM and then
solve problem (P).

5.3. Greedy algorithm for the PEMS problem. Note that problem (P) can
be viewed as a problem of maximizing a set function subject to a knapsack constraint,
and greedy algorithms have been proposed to solve this problem with performance
guarantees when the objective function is monotone nondecreasing and submodular3

(see, e.g., [17, 30]). Before we formally introduce the greedy algorithm for the PEMS
problem, we first note from (5.22)--(5.24) that given a prior pdf of \theta and any \scrY \subseteq \=\scrM ,
one has to take the expectation E\theta [\cdot ] in order to obtain the value of fP (\scrY ). However,
it is in general intractable to explicitly calculate the integration corresponding to E\theta [\cdot ].
Hence, one may alternatively evaluate the value of fP (\scrY ) using numerical integration
with respect to \theta = [\beta \delta ]T (see, e.g., [29]). Specifically, a typical numerical integration

3A set function g : 2\scrV \rightarrow R, where \scrV = [n] is the ground set, is said to be monotone nondecreasing
if g(\scrA ) \leq g(\scrB ) for all \scrA \subseteq \scrB \subseteq \scrV . g(\cdot ) is called submodular if g(\{ y\} \cup \scrA ) - g(\scrA ) \geq g(\{ y\} \cup \scrB ) - g(\scrB )
for all \scrA \subseteq \scrB \subseteq \scrV and for all y \in \scrV \setminus \scrB .
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method (e.g., the trapezoid rule) approximates the integral of a function (over an
interval) based on a summation of (weighted) function values evaluated at certain
points within the integration interval, which incurs an approximation error (see, e.g.,
[29] for more details). We then see from (5.22)--(5.24) that in order to apply the
numerical integration method described above to fP (\scrY ), one has to obtain the values

of xi[k], ri[k],
\partial xi[k]
\partial \theta , and \partial ri[k]

\partial \theta for a given \theta (within the integration interval), where
i \in \scrV and t1 \leq k \leq t2 with t1, t2 given in an instance of the PEMS problem. Recall
that the initial conditions s[0], x[0], and r[0] are assumed to be known. We first
observe that for any given \theta , the values of xi[k] and ri[k] for all i \in \scrV and for all
k \in \{ t1, . . . , t2\} can be obtained using the recursions in (2.1) in O((t2  - t1 + 1)n2)

time. Next, noting that \partial xi[k]
\partial \theta = [\partial xi[k]

\partial \beta 
\partial xi[k]
\partial \delta ]T and \partial ri[k]

\partial \theta = [\partial ri[k]\partial \beta 
\partial ri[k]
\partial \delta ]T , we take

the derivative with respect to \beta on both sides of the equation in (2.1a) and obtain
(5.25)

\partial si[k + 1]

\partial \beta 
=

\partial si[k]

\partial \beta 
 - h

\biggl( 
\partial si[k]

\partial \beta 
\beta +si[k]

\biggr) \Biggl( \sum 
j\in \=\scrN i

aijxj [k]

\Biggr) 
 - hsi[k]\beta 

\Biggl( \sum 
j\in \=\scrN i

aij
\partial xj [k]

\partial \beta 

\Biggr) 
.

Similarly, we take the derivative with respect to \beta on both sides of the equations in
(2.1b) and (2.1c). Considering any given \beta , we can then use the recursion in (2.1)
together with the recursion in (5.25) (and those obtained from (2.1b) and (2.1c), as

we described above) to obtain the values of \partial xi[k]
\partial \beta and \partial ri[k]

\partial \beta for all i \in \scrV and for all

k \in \{ t1, . . . , t2\} in O((t2  - t1 + 1)n2) time. Similarly, considering any given \delta , one

can obtain the values of \partial xi[k]
\partial \delta and \partial ri[k]

\partial \delta for all i \in \scrV and for all k \in \{ t1, . . . , t2\} in
O((t2  - t1 + 1)n2) time.

Putting the above arguments together and considering the prior pdf of \theta , i.e.,
p(\theta ), we see from (5.22)--(5.24) that for all \scrY \subseteq \=\scrM , an approximation of fP (\scrY ),

denoted as \^fP (\scrY ), can be obtained in O(nI(t2  - t1 + 1)n2) time, where nI \in Z\geq 1 is
the number of points used for the numerical integration method with respect to \theta , as
we described above.4 Furthermore, in what follows, we may assume that \^fP (\cdot ) satisfies
| \^fP (\scrY ) - fP (\scrY )| \leq \varepsilon /2 for all \scrY \subseteq \=\scrM (with \^fP (\emptyset ) = 0), where \varepsilon \in R\geq 0.

5 We are now
ready to introduce the greedy algorithm given in Algorithm 5.1 to solve the PEMS
problem, where \^fP (\cdot ) can be either of \^fPa(\cdot ) or \^fPd(\cdot ), and \^fP (\cdot ) is the approximation
of fP (\cdot ), as we described above. From the definition of Algorithm 5.1, we see that the

number of function calls of \^fP (\cdot ) required in the algorithm is O(| \=\scrM | 2), and thus the
overall time complexity of Algorithm 5.1 is given by O(nI(t2  - t1 + 1)n2| \=\scrM | 2).

We proceed to analyze the performance of Algorithm 5.1 when applied to the
PEMS problem. First, one can observe that fPd(\scrY ) = ln det(Fp +H(\scrY )) - ln det(Fp)
in problem (P) shares a form similar to that in [31]. Thus, using arguments simi-
lar to those in [31], one can show that fPd(\cdot ) is monotone nondecreasing and sub-

modular with fPd(\emptyset ) = 0. Noting the assumption that | \^fPd(\scrY )  - fPd(\scrY )| \leq \varepsilon /2
for all \scrY \subseteq \=\scrM , one can show that y \star given in line 6 of Algorithm 5.1 satisfies that
fPd(\{ y \star \} \cup \scrY 2) - fPd(\scrY 2)+\varepsilon 

c(y \star ) \geq fPd(\{ y\} \cup \scrY 2) - fPd(\scrY 2) - \varepsilon 
c(y) for all y \in \scrC . Moreover, one can show

that maxy\in \=\scrM fPd(y) \leq fPd(\scrY 1)+\varepsilon , where \scrY 1 is given in line 3 in Algorithm 5.1. One
can then use arguments similar to those for Theorem 1 in [17] and obtain the following
result; the detailed proof is omitted for conciseness.

4We assume that nI is polynomial in the parameters of the PEMS instance.
5Note that \varepsilon is related to the approximation error of the numerical integration method, and \varepsilon 

will decrease if nI increases; see, e.g., [29] for more details about the numerical integration method.

D
ow

nl
oa

de
d 

12
/2

9/
21

 to
 1

28
.2

10
.1

26
.1

99
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETER ESTIMATION IN EPIDEMIC SPREAD NETWORKS S65

Theorem 5.4. Consider problem (P) with the objective function fPd : 2
\=\scrM \rightarrow R\geq 0

given by (5.24). Then Algorithm 5.1 yields a solution, denoted as \scrY g
d , to problem (P)

that satisfies

(5.26) fPd(\scrY g
d ) \geq 

1

2
(1 - e - 1)fPd(\scrY  \star 

d ) - 
\biggl( 

B

cmin
+

3

2

\biggr) 
\varepsilon ,

where \scrY  \star 
d \subseteq \=\scrM is an optimal solution to problem (P), cmin = miny\in \=\scrM c(y),6 and

\varepsilon \in R\geq 0 satisfies | \^fPd(\scrY ) - fPd(\scrY )| \leq \varepsilon /2 for all \scrY \subseteq \=\scrM .

Algorithm 5.1. Greedy algorithm for PEMS.

1: Input: An instance of PEMS transformed into the form of (P)
2: Output: \scrY g

3: Find \scrY 1 \in argmaxy\in \=\scrM 
\^fP (y)

4: Initialize \scrY 2 = \emptyset and \scrC = \=\scrM 
5: while \scrC \not = \emptyset do

6: Find y \star \in argmaxy\in \scrC 
\^fP (\{ y\} \cup \scrY 2) - \^fP (\scrY 2)

c(y)

7: if c(y \star ) + c(\scrY 2) \leq B then
8: \scrY 2 = \{ y \star \} \cup \scrY 2

9: end if
10: \scrC = \scrC \setminus \{ y \star \} 
11: end while
12: \scrY g = argmax\scrY \in \{ \scrY 1,\scrY 2\} \{ \^fP (\scrY 1), \^fP (\scrY 2)\} 

It is worth noting that in general, the problem of maximizing a submodular func-
tion under a cardinality constraint cannot be approximated within (1  - 1/e) (if P
\not = NP) [9]. In contrast to fPd(\cdot ), the objective function fPa(\cdot ) is not submodular
in general (see, e.g., [18]). In fact, one can construct instances of the PEMS prob-
lem where the objective function fPa(\scrY ) = tr((Fp)

 - 1
\bigr) 
 - tr

\bigl( 
(Fp + H(\scrY )) - 1) is not

submodular. Hence, in order to provide performance guarantees of the greedy algo-
rithm when applied to problem (P) with f(\cdot ) = fPa(\cdot ), we will extend the analysis
in [17] to nonsubmodular settings. To proceed, note that for all \scrA \subseteq \scrB \subseteq \=\scrM , we
have Fp +H(\scrA ) \preceq Fp +H(\scrB ), which implies (Fp +H(\scrA )) - 1 \succeq (Fp +H(\scrB )) - 1 and
tr(Fp + H(\scrA )) - 1) \geq tr(Fp + H(\scrB )) - 1). Therefore, the objective function fPa(\cdot ) is
monotone nondecreasing with fPa(\emptyset ) = 0. We then characterize how close fPa(\cdot ) is
to being submodular by introducing the following definition.

Definition 5.5. Consider problem (P) with fP (\cdot ) = fPa(\cdot ), where fPa : 2
\=\scrM \rightarrow 

R\geq 0 is defined in (5.21). Suppose Algorithm 5.1 is applied to solve problem (P).

For all j \in \{ 1, . . . , | \scrY 2| \} , let \scrY j
2 = \{ y1, . . . , yj\} denote the set that contains the first

j elements added to set \scrY 2 in Algorithm 5.1, and let \scrY 0
2 = \emptyset . The type-1 greedy

submodularity ratio of fPa(\cdot ) is defined to be the largest \gamma 1 \in R that satisfies

(5.27)
\sum 

y\in \scrA \setminus \scrY j
2

\bigl( 
fPa(\{ y\} \cup \scrY j

2) - fPa(\scrY j
2)
\bigr) 
\geq \gamma 1

\bigl( 
fPa(\scrA \cup \scrY j

2) - fPa(\scrY j
2)
\bigr) 

for all \scrA \subseteq \=\scrM and for all j \in \{ 0, . . . , | \scrY 2| \} . The type-2 greedy submodularity ratio of
fPa(\cdot ) is defined to be the largest \gamma 2 \in R that satisfies

(5.28) fPa(\scrY 1) - fPa(\emptyset ) \geq \gamma 2
\bigl( 
fPa(\{ y\} \cup \scrY j

2) - fPa(\scrY j
2)
\bigr) 

6Note that we can assume without loss of generality that c(y) \leq B for all y \in \=\scrM .
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for all j \in \{ 0, . . . , | \scrY 2| \} and for all y \in \=\scrM \setminus \scrY j
2 such that c(y) + c(\scrY j

2) > B, where

\scrY 1 \in argmaxy\in \=\scrM 
\^fPa(y).

Remark 5.6. Note that fPa(\cdot ) is monotone nondecreasing as argued above. Not-
ing the definition of \gamma 1 in (5.27), one can use arguments similar to those in [5] and
show that \gamma 1 \in [0, 1]; if fPa(\cdot ) is submodular, then \gamma 1 = 1. Similarly, one can show
that \gamma 2 \geq 0. Supposing that \scrY 1 \in argmaxy\in \=\scrM fPa(y), one can further show that if
fPa(\cdot ) is submodular, then \gamma 2 \geq 1.

Note that since we approximate fPa(\cdot ) using \^fPa(\cdot ), we may not be able to obtain
the exact values of \gamma 1 and \gamma 2 from Definition 5.5. Moreover, finding \gamma 1 may require
an exponential number of function calls of fPa(\cdot ) (or \^fPa(\cdot )). Nonetheless, it will be
clear from our analysis below that obtaining lower bounds on \gamma 1 and \gamma 2 suffices. In
particular, given \scrY j

2 for all j \in \{ 0, . . . , | \scrY 2| \} from Algorithm 5.1, one can show that
a lower bound on \gamma 2 (defined in (5.28)) can be obtained via O(| \=\scrM | 2) function calls

of \^fPa(\cdot ) (see [36] for details). We defer our analysis for lower bounding \gamma 1 to the
end of this section, which requires more careful analysis. Based on Definition 5.5,
the following result extends the analysis in [16, 17] and characterizes the performance
guarantees of Algorithm 5.1 for problem (P) with fP (\cdot ) = fPa(\cdot ).

Theorem 5.7. Consider problem (P) with the objective function fPa : 2
\=\scrM \rightarrow R\geq 0

given by (5.21). Then Algorithm 5.1 yields a solution, denoted as \scrY g
a , to problem (P)

that satisfies

(5.29) fPa(\scrY g
a) \geq 

min\{ \gamma 2, 1\} 
2

(1 - e - \gamma 1)fPa(\scrY  \star 
a) - 

\biggl( 
B + cmax

cmin
+ 1

\biggr) 
\varepsilon ,

where \scrY  \star 
a \subseteq \=\scrM is an optimal solution to problem (P), \gamma 1 \in R\geq 0 and \gamma 2 \in R\geq 0 are

defined in Definition 5.5, cmin = miny\in \=\scrM c(y), cmax = maxy\in \=\scrM c(y), and \varepsilon \in R\geq 0

satisfies | \^fPa(\scrY ) - fPa(\scrY )| \leq \varepsilon /2 for all \scrY \subseteq \=\scrM .

Proof. Noting that (5.29) holds trivially if \gamma 1 = 0 or \gamma 2 = 0, we assume that \gamma 1 > 0

and \gamma 2 > 0. In this proof, we drop the subscript of fPa(\cdot ) (resp., \^fPa(\cdot )) and denote

f(\cdot ) (resp., \^f(\cdot )) for notational simplicity. First, recall that for all j \in \{ 1, . . . , | \scrY 2| \} ,
we let \scrY j

2 = \{ y1, . . . , yj\} denote the set that contains the first j elements added to
set \scrY 2 in Algorithm 5.1 and let \scrY 0

2 = \emptyset . Now, let jl be the first index in \{ 1, . . . , | \scrY 2| \} 
such that a candidate element y \star \in argmaxy\in \scrC 

\^f(\{ y\} \cup \scrY jl
2 ) - \^f(\scrY jl

2 )
c(y) for \scrY 2 (given in line

6 of Algorithm 5.1) cannot be added to \scrY 2 due to c(y \star )+ c(\scrY jl
2 ) > B. In other words,

for all j \in \{ 0, . . . , jl  - 1\} , any candidate element y \star \in argmaxy\in \scrC 
\^f(\{ y\} \cup \scrY j

2) - \^f(\scrY j
2)

c(y) for

\scrY 2 satisfies c(y \star ) + c(\scrY j
2) \leq B and can be added to \scrY 2 in Algorithm 5.1. Noting that

| \^fP (\scrY ) - fP (\scrY )| \leq \varepsilon /2 for all \scrY \subseteq \=\scrM , one can then show that the following holds for
all j \in \{ 0, . . . , jl  - 1\} :

(5.30)
f(\scrY j+1

2 ) - f(\scrY j
2) + \varepsilon 

c(yj+1)
\geq f(\{ y\} \cup \scrY j

2) - f(\scrY j
2) - \varepsilon 

c(y)
\forall y \in \=\scrM \setminus \scrY j

2 .

Now, considering any j \in \{ 0, . . . , jl  - 1\} , we have the following:
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f(\scrY  \star 
a \cup \scrY j

2) - f(\scrY j
2) \leq 

1

\gamma 1

\sum 
y\in \scrY  \star 

a\setminus \scrY 
j
2

c(y) \cdot f(\{ y\} \cup \scrY j
2) - f(\scrY j

2)

c(y)
(5.31)

\leq 1

\gamma 1

\sum 
y\in \scrY  \star 

a\setminus \scrY 
j
2

c(y)

\biggl( 
f(\scrY j+1

2 ) - f(\scrY j
2) + \varepsilon 

c(yj+1)
+

\varepsilon 

c(y)

\biggr) 
(5.32)

\leq B

\gamma 1
\cdot f(\scrY 

j+1
2 ) - f(\scrY j

2)

c(yj+1)
+

\varepsilon 

\gamma 1

\sum 
y\in \scrY  \star 

a\setminus \scrY 2
j

\biggl( 
c(y)

c(yj+1)
+ 1

\biggr) 
(5.33)

\leq B

\gamma 1
\cdot f(\scrY 

j+1
2 ) - f(\scrY j

2)

c(yj+1)
+

\varepsilon 

\gamma 1

\biggl( 
B

c(yj+1)
+ | \scrY  \star 

a | 
\biggr) 
,(5.34)

where (5.31) follows from the definition of \gamma 1 in (5.27), and (5.32) follows from (5.30).
To obtain (5.33), we use the fact c(\scrY  \star 

a) \leq B. Similarly, we obtain (5.34). Noting that
f(\cdot ) is monotone nondecreasing, one can further obtain from (5.34) that

(5.35) f(\scrY j+1
2 ) - f(\scrY j

2) \geq 
\gamma 1c(yj+1)

B

\bigl( 
f(\scrY  \star 

a) - f(\scrY j
2)
\bigr) 
 - \varepsilon 

\biggl( 
1 + | \scrY  \star 

a | 
c(yj+1)

B

\biggr) 
.

To proceed, let y\prime \in argmaxy\in \scrC 
\^f(\{ y\} \cup \scrY jl

2 ) - \^f(\scrY jl
2 )

c(y) be the (first) candidate element for

\scrY 2 that cannot be added to \scrY 2 due to c(y\prime ) + c(\scrY jl
2 ) > B, as we argued above.

Similarly to (5.30), one can see that
f(\{ y\prime \} \cup \scrY jl

2 ) - f(\scrY jl
2 )+\varepsilon 

c(y\prime ) \geq f(\{ y\} \cup \scrY jl
2 ) - f(\scrY jl

2 ) - \varepsilon 
c(y) holds

for all y \in \=\scrM \setminus \scrY jl
2 . Letting \=\scrY jl+1

2 \triangleq \{ y\prime \} \cup \scrY jl
2 and following arguments similar to

those leading up to (5.35), we have

(5.36) f( \=\scrY jl+1
2 ) - f(\scrY jl

2 ) \geq \gamma 1c(y
\prime )

B

\bigl( 
f(\scrY  \star 

a) - f(\scrY jl
2 )
\bigr) 
 - \varepsilon 

\biggl( 
1 + | \scrY  \star 

a | 
c(y\prime )

B

\biggr) 
.

Denoting \Delta j \triangleq f(\scrY  \star 
a)  - f(\scrY j

2) for all j \in \{ 0, . . . , jl\} and \Delta jl+1 \triangleq f(\scrY  \star 
a)  - f( \=\scrY jl+1

2 ),
we obtain from (5.35) and (5.36) the following:

(5.37) \Delta j \leq \Delta j - 1

\biggl( 
1 - c(yj)\gamma 1

B

\biggr) 
+ \varepsilon +

c(yj)| \scrY  \star 
a | 

B
\varepsilon \forall j \in [jl + 1].

Unrolling (5.37) yields

\Delta jl+1 \leq \Delta 0

\Biggl( 
jl\prod 

j=1

\biggl( 
1 - c(yj)\gamma 1

B

\biggr) \Biggr) \biggl( 
1 - c(y\prime )\gamma 1

B

\biggr) 
+

\biggl( 
jl + 1 +

c( \=\scrY jl+1
2 )| \scrY  \star 

a | 
B

\biggr) 
\varepsilon 

(5.38)

=\Rightarrow \Delta jl+1 \leq \Delta 0

\Biggl( 
jl\prod 

j=1

\biggl( 
1 - c(yj)\gamma 1

B

\biggr) \Biggr) \biggl( 
1 - c(y\prime )\gamma 1

B

\biggr) 
+

2(B + cmax)

cmin
\varepsilon .

(5.39)

To obtain (5.38), we use the facts that (1  - c(yj)\gamma 1

B ) \leq 1 for all j \in [jl + 1] and

(1 - c(y\prime )\gamma 1

B ) \leq 1, since \gamma 1 \in (0, 1], as we argued in Remark 5.6. To obtain (5.39), we

first note from the way we defined jl that jl + 1 \leq c( \=\scrY jl+1
2 )/cmin \leq (B + cmax)/cmin.

Also noting that | \scrY  \star 
a | \leq B/cmin, we then obtain (5.39).
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Now, one can show that
\bigl( \prod jl

j=1(1 - 
c(yj)\gamma 1

B )
\bigr) 
(1 - c(y\prime )\gamma 1

B ) \leq 
\prod jl+1

j=1 (1 - 
c( \=\scrY jl+1

2 )\gamma 1

(jl+1)B ) \leq 

e - \gamma 1
c( \=\scrY 

jl+1
2 )

B (see, e.g., [16]). We then have from (5.39) the following:

f(\scrY  \star 
a) - f( \=\scrY jl+1

2 ) \leq f(\scrY  \star 
a)e

 - \gamma 1
c( \=\scrY 

jl+1
2 )

B +
2(B + cmax)

cmin
\varepsilon 

=\Rightarrow f( \=\scrY jl+1
2 ) \geq (1 - e - \gamma 1)f(\scrY  \star 

a) - 
2(B + cmax)

cmin
\varepsilon ,(5.40)

where (5.40) follows from c( \=\scrY jl+1
2 ) > B. To proceed with the proof of the theorem, we

note from the definition of \gamma 2 in Definition 5.5 that f(\{ y\prime \} \cup \scrY jl
2 ) - f(\scrY jl

2 ) \leq 1
\gamma 2
f(\scrY 1)

with \gamma 2 > 0, which together with (5.40) implies that

(5.41) f(\scrY jl
2 ) +

1

\gamma 2
f(\scrY 1) \geq f( \=\scrY jl+1

2 ) \geq (1 - e\gamma 1)f(\scrY  \star 
a) - 

2 \=B

cmin
\varepsilon ,

where \=B \triangleq B + cmax. Since f(\cdot ) is monotone nondecreasing, we obtain from (5.41)

(5.42) f(\scrY 2) +
1

\gamma 2
f(\scrY 1) \geq (1 - e\gamma 1)f(\scrY  \star 

a) - 
2 \=B

cmin
\varepsilon .

We will then split our analysis into two cases. First, supposing \gamma 2 \geq 1, we see
from (5.42) that at least one of f(\scrY 2) \geq 1

2 (1  - e - \gamma 1)f(\scrY  \star 
a)  - 

\=B
cmin

\varepsilon and f(\scrY 1) \geq 
1
2 (1 - e - \gamma 1)f(\scrY  \star 

a) - 
\=B

cmin
\varepsilon holds. Recalling that | \^f(\scrY ) - f(\scrY )| \leq \varepsilon /2 for all \scrY \subseteq \=\scrM , it

follows that at least one of \^f(\scrY 2) \geq 1
2 (1 - e - \gamma 1)f(\scrY  \star 

a) - 
\=B

cmin
\varepsilon  - \varepsilon 

2 and \^f(\scrY 1) \geq 1
2 (1 - 

e - \gamma 1)f(\scrY  \star 
a) - 

\=B
cmin

\varepsilon  - \varepsilon 
2 holds. Second, supposing \gamma 2 < 1 and using similar arguments,

we have that at least one of \^f(\scrY 2) \geq 1
2 (1  - e - \gamma 1)f(\scrY  \star 

a)  - 
\=B

cmin
\varepsilon  - \varepsilon 

2 and \^f(\scrY 1) \geq 
\gamma 2

2 (1  - e - \gamma 1)f(\scrY  \star 
a)  - 

\gamma 2
\=B

cmin
\varepsilon  - \varepsilon 

2 holds. Now, we note from line 12 of Algorithm 5.1

that \^f(\scrY g
a) \geq max\{ \^f(\scrY 1), \^f(\scrY 2)\} , which implies f(\scrY g

a) \geq max\{ \^f(\scrY 1), \^f(\scrY 2)\}  - \varepsilon 
2 .

Combining the above arguments together, we obtain (5.29).

Remark 5.8. Note that (5.29) becomes fPa(\scrY g
a) \geq 1

2 (1 - e - \gamma 1)fPa(\scrY  \star 
a) - (B+cmax

cmin
+

1)\varepsilon if \gamma 2 \geq 1. Also note that \gamma 2 \geq 1 can hold when the objective function fPa(\cdot ) is
not submodular, as we will see later in our numerical examples.

Remark 5.9. The authors of [32] also extended the analysis of Algorithm 5.1 to
nonsubmodular settings, when the objective function can be exactly evaluated (i.e.,
\varepsilon = 0). They obtained a performance guarantee for Algorithm 5.1 that depends
on a submodularity ratio defined in a different manner. One can show that the
submodularity ratios defined in Definition 5.5 are lower bounded by the one defined in
[32], which further implies that the performance bound (when \varepsilon is 0) for Algorithm 5.1
given in Theorem 5.7 is tighter than that provided in [32].

Finally, we aim to provide a lower bound on \gamma 1 that can be computed in poly-
nomial time. The lower bounds on \gamma 1 and \gamma 2 together with Theorem 5.7 will also
provide performance guarantees for the greedy algorithm.

Lemma 5.10 (see [11]). For any positive semidefinite matrices P,Q \in Rn\times n,
\lambda 1(P ) \leq \lambda 1(P +Q) \leq \lambda 1(P ) + \lambda 1(Q), and \lambda n(P +Q) \geq \lambda n(P ) + \lambda n(Q).

We have the following result; the proof is included in section 7.1 in the appendix.
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Lemma 5.11. Consider the set function fPa : 2
\=\scrM \rightarrow R\geq 0 defined in (5.21). The

type-1 greedy submodularity ratio of fPa(\cdot ) given by Definition 5.5 satisfies

(5.43) \gamma 1 \geq min
j\in \{ 0,...,| \scrY 2| \} 

\lambda 2(Fp +H(\scrY j
2))\lambda 2(Fp +H(\{ zj\} \cup \scrY j

2))

\lambda 1(Fp +H(\scrY j
2))\lambda 1(Fp +H(\{ zj\} \cup \scrY j

2))
,

where \scrY j
2 contains the first j elements added to \scrY 2 in Algorithm 5.1 for all j \in 

\{ 1, . . . , | \scrY 2| \} with \scrY 0
2 = \emptyset , Fp is given by (5.13), H(\scrY ) =

\sum 
y\in \scrY Hy for all \scrY \subseteq \=\scrM 

with Hy \succeq 0 defined in (5.22), and zj \in argminy\in \=\scrM \setminus \scrY j
2

\lambda 2(Fp+H(\{ y\} \cup \scrY j
2))

\lambda 1(Fp+H(\{ y\} \cup \scrY j
2))

for all

j \in \{ 1, . . . , | \scrY 2| \} .
Recalling our arguments at the beginning of this section, we may only obtain

approximations of the entries in the (2 by 2) matrix Fp + H(\scrY ) for \scrY \subseteq \=\scrM using,
e.g., numerical integration, where H(\scrY ) =

\sum 
y\in \scrY Hy, and Hy (resp., Fp) is defined in

(5.22) (resp., (5.13)). Specifically, for all \scrY \subseteq \=\scrM , let \^H(\scrY ) = (Fp + H(\scrY )) + E(\scrY )
be the approximation of Fp + H(\scrY ), where each entry of E(\scrY ) \in R2\times 2 represents
the approximation error of the corresponding entry in Fp + H(\scrY ). Since Fp and
H(\scrY ) are positive semidefinite matrices, E(\scrY ) is a symmetric matrix. Now, using a
standard eigenvalue perturbation result, e.g., Corollary 6.3.8 in [11], one can obtain

that
\sum 2

i=1 | \lambda i(Fp+H(\scrY )) - \lambda i( \^H(\scrY )| 2 \leq \| E(\scrY )\| 2F for all \scrY \subseteq \=\scrM , where \| E(\scrY )\| F \triangleq \sqrt{} 
tr(E(\scrY )TE(\scrY )). It then follows that

\lambda 2(Fp +H(\scrY ))

\lambda 1(Fp +H(\scrY ))
\geq \lambda 2( \^H(\scrY )) - \| E(\scrY )\| F

\lambda 1( \^H(\scrY )) + \| E(\scrY )\| F
\geq \lambda 2( \^H(\scrY )) - \varepsilon \prime 

\lambda 1( \^H(\scrY )) + \varepsilon \prime 
\forall \scrY \subseteq \=\scrM ,

where \varepsilon \prime \in R\geq 0 and satisfies \| E(\scrY )\| F \leq \varepsilon \prime for all \scrY \subseteq \=\scrM . Combining the above
arguments with (5.43) in Lemma 5.11, we obtain a lower bound on \gamma 1 that can be
computed using O(| \=\scrM | 2) function calls of \^H(\cdot ).

5.3.1. Illustrations. Note that one can further obtain from (5.43)

(5.44) \gamma 1 \geq min
j\in \{ 0,...,| \scrY 2| \} 

\lambda 2(Fp) + \lambda 2(H(\scrY j
2))

\lambda 1(Fp) + \lambda 1(H(\scrY j
2))

\cdot \lambda 2(Fp) + \lambda 2(H(zj)) + \lambda 2(H(\scrY j
2))

\lambda 1(Fp) + \lambda 1(H(zj)) + \lambda 1(H(\scrY j
2))

,

where zj \in argminy\in \=\scrM \setminus \scrY j
2

\lambda 2(Fp+H(\{ y\} \cup \scrY j
2))

\lambda 1(Fp+H(\{ y\} \cup \scrY j
2))

. Supposing Fp is fixed, we see from (5.44)

that the lower bound on \gamma 1 would potentially increase if \lambda 2(H(zj))/\lambda 1(H(zj)) and

\lambda 2(H(\scrY j
2))/\lambda 1(H(\scrY j

2)) increase. Recall that Fp given by (5.13) encodes the prior
knowledge that we have about \theta = [\beta \delta ]T . Moreover, recall from (5.22) that H(y)
depends on the prior pdf p(\theta ) and the dynamics of the SIR model in (2.1). Thus, the
lower bound given by Lemma 5.11 and thus the corresponding performance bound
of Algorithm 5.1 given in Theorem 5.7 depend on the prior knowledge that we have
on \theta = [\beta \delta ]T and the dynamics of the SIR model. Also note that the performance
bounds given in Theorem 5.7 are worst-case performance bounds for Algorithm 5.1.
Thus, in practice the ratio between a solution returned by the algorithm and an
optimal solution can be smaller than the ratio predicted by Theorem 5.7. As we will
see in our simulations in the next section, the greedy algorithm provides solutions that
are close to optimal in practice. Moreover, instances with tighter performance bounds
potentially imply better performance of the algorithm when applied to those instances.
Similar arguments hold for the performance bounds provided in Theorem 5.4.
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5.3.2. Simulations. To validate the theoretical results in Theorems 5.4 and
5.7, and Lemma 5.11, we consider various PEMS instances.7 The directed network
\scrG = \{ \scrV , \scrE \} is given in Figure 1(a). According to the existing literature about the
estimated infection and recovery rates for the COVID-19 pandemic (see, e.g., [27]),
we assume that the infection rate \beta and the recovery rate \delta lie in the intervals [3, 7] and
[1, 4], respectively. Let the prior pdf of \beta (resp., \delta ) be a (linearly transformed) Beta
distribution with parameters \alpha 1 = 6 and \alpha 2 = 3 (resp., \alpha 1 = 3 and \alpha 2 = 4), where \beta 
and \delta are also assumed to be independent. The prior pdfs of \beta and \delta are then plotted
in Figures 1(b) and 1(c), respectively. We set the sampling parameter to be h = 0.1.
We randomly generate the weight matrix A \in R5\times 5 such that Assumptions 3.1--3.2
are satisfied, where each entry of A is drawn (independently) from certain uniform
distributions. The initial condition is set to be s1[0] = 0.95, x1[0] = 0.05 and r1[0] = 0,
and si[0] = 0.99, xi[0] = 0.01, and ri[0] = 0 for all i \in \{ 2, . . . , 5\} . In the pmfs of
measurements \^xi[k] and \^ri[k] given in (5.16) and (5.17), respectively, we set Nx

i =
Nr

i = 100 and Ni = 1000 for all i \in \scrV , where Ni is the total population at node i.

(a) Network (b) Prior pdf of \beta (c) Prior pdf of \delta 

Fig. 1. Network structure and prior pdfs of \beta and \delta .

First, let us consider PEMS instances with a relatively smaller size. In such
instances, we set the time steps t1 = t2 = 5; i.e., we only consider collecting mea-
surements at time step k = 5. In the sets \scrC 5,i = \{ \zeta c5,i : \zeta \in (\{ 0\} \cup [\zeta i])\} and
\scrB 5,i = \{ \eta b5,i : \eta \in (\{ 0\} \cup [\eta i])\} , we let c5,i = b5,i and \zeta i = \eta i = 2 for all i \in \scrV and
draw c5,i and b5,i uniformly randomly from \{ 1, 2, 3\} . Here, we can choose to perform
0, 100, or 200 virus (or antibody) tests at a node i \in \scrV and at k = 5. Since the set
\=\scrM defined in (5.20) has size 20, it allows us to compare the solution returned by the
greedy algorithm (Algorithm 5.1) to the optimal solution (found by brute force). In
Figure 2(a), we consider the objective function fPd(\cdot ), given by (5.24), in the PEMS
instances constructed above, and plot the greedy solutions and the optimal solutions
to the PEMS instances under different values of budget B. Note that for all the
simulation results in this section, we obtain the averaged results from 50 randomly
generated A matrices as described above for each value of B. As shown in Theo-
rem 5.4, the greedy algorithm yields a 1

2 (1 - e - 1) \approx 0.31 approximation for fPd(\cdot ) (in
the worst case), and the results in Figure 2(a) show that the greedy algorithm per-
forms near optimally for the PEMS instances generated above. Similarly, in Figure
2(b), we plot the greedy solutions and the optimal solutions to the PEMS instances
constructed above under different values of B, when the objective function is fPa(\cdot )
given in (5.21). Again, the results in Figure 2(b) show that the greedy algorithm per-
forms well for the constructed PEMS instances. Moreover, according to Lemma 5.11,
we plot the lower bound on the submodularity ratio \gamma 1 of fPa(\cdot ) in Figure 2(c). Here,

7In our simulations, we neglect the approximation error corresponding to the numerical integra-
tions discussed in section 5.3 since the error terms are found to be sufficiently small.
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we note that the submodularity ratio \gamma 2 of fPa(\cdot ) is always greater than one in the
PEMS instances constructed above. Hence, Theorem 5.7 yields a 1

2 (1 - e - \gamma 1) worst-
case approximation guarantee for the greedy algorithm, where 1

2 (1 - e - 0.3) \approx 0.13.

(a) OPT vs. Greedy for fPd(\cdot ) (b) OPT vs. Greedy for fPa(\cdot ) (c) Bound on \gamma 1

Fig. 2. Results for PEMS instances of medium size.

We then investigate the performance of the greedy algorithm for PEMS instances
of a larger size. Different from the smaller instances constructed above, we set t1 = 1
and t2 = 5. We let \zeta i = \eta i = 10 for all i \in \scrV in \scrC k,i = \{ \zeta ck,i : \zeta \in (\{ 0\} \cup [\zeta i])\} 
and \scrB k,i = \{ \eta bk,i : \eta \in (\{ 0\} \cup [\eta i])\} , where we also set ck,i = bk,i and draw ck,i and
bk,i uniformly randomly from \{ 1, 2, 3\} , for all k \in [5] and for all i \in \scrV . Here, we
can choose to perform 0, 100, 200, . . . , or 1000 virus (or antibody) tests at a node
i \in \scrV and at a time step k \in [5]. It follows from (5.20) that | \=\scrM | = 500. Moreover,
we modify the parameter of the Beta distribution corresponding to the pdf of \beta to
be \alpha 1 = 8 and \alpha 2 = 3. Since the optimal solution to the PEMS instances cannot be
efficiently obtained when the size of the instances becomes large, we obtain the lower
bound on the submodularity ratio \gamma 1 of fPa(\cdot ) provided in Lemma 5.11, which can be
computed in polynomial time. In Figure 3(a), we plot the lower bound on \gamma 1 obtained
from the PEMS instances constructed above. We note that the submodularity ratio
\gamma 2 of fPa(\cdot ) is also always greater than one. Hence, Theorem 5.7 yields a 1

2 (1 - e - \gamma 1)
worst-case approximation guarantee for the greedy algorithm. We plot in Figure 3(b)
the approximation guarantee using the lower bound that we obtained on \gamma 1.

(a) Bound on \gamma 1 (b) Approx. guarantee of greedy

Fig. 3. Results for PEMS instances of large size.

6. Conclusion. We first considered the PIMS problem under the exact mea-
surement setting, and showed that the problem is NP-hard. We then proposed an
approximation algorithm that returns a solution to the PIMS problem that is within a
certain factor of the optimal one. Next, we studied the PEMS problem under the noisy
measurement setting. Again, we showed that the problem is NP-hard. We applied a
greedy algorithm to solve the PEMS problem and provided performance guarantees
on the greedy algorithm. We presented numerical examples to validate the obtained
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performance bounds of the greedy algorithm and showed that the greedy algorithm
performs well in practice.

7. Appendix.

7.1. Proof of Lemma 5.11. Noting the definition of \gamma 1 in Definition 5.5, we

provide a lower bound on

\sum 
y\in \scrA \setminus \scrY j

2
(fPa(\{ y\} \cup \scrY j

2) - fPa(\scrY j
2))

fPa(\scrA \cup \scrY j
2) - fPa(\scrY j

2)
for all \scrA \subseteq \=\scrM and for all

\scrY j
2 , where we assume that \scrA \setminus \scrY j

2 \not = \emptyset ; otherwise, (5.27) would be satisfied for
all \gamma 1 \in R. Recalling the expression of fPa(\cdot ) in (5.23), we lower bound LHS \triangleq \sum 

y\in \scrA \setminus \scrY j
2

\bigl( 
fPa(\{ y\} \cup \scrY j

2) - fPa(\scrY j
2)
\bigr) 
in the following manner:

LHS =
\sum 

y\in \scrA \setminus \scrY j
2

2\sum 
i=1

\lambda i(Fp +H(\{ y\} \cup \scrY j
2)) - \lambda i(Fp +H(\scrY j

2))

\lambda i(Fp +H(\scrY j
2))\lambda i(Fp +H(\{ y\} \cup \scrY j

2))

\geq 
\sum 

y\in \scrA \setminus \scrY j
2

\sum 2
i=1(\lambda i(Fp +H(\{ y\} \cup \scrY j

2)) - \lambda i(Fp +H(\scrY j
2)))

\lambda 1(Fp +H(\scrY j
2))\lambda 1(Fp +H(\{ z\prime \} \cup \scrY j

2))
(7.1)

=

\sum 
y\in \scrA \setminus \scrY j

2
tr(Hy)

\lambda 1(Fp +H(\scrY j
2))\lambda 1(Fp +H(\{ z\prime \} \cup \scrY j

2))
.(7.2)

To obtain (7.1), we let z\prime \in argmaxy\in \scrA \setminus \scrY j
2
\lambda 1(Fp+H(\{ y\} \cup \scrY j

2)) and note that \lambda 1(Fp+

H(\{ z\prime \} \cup \scrY j
2)) \geq \lambda i(Fp +H(\{ y\} \cup \scrY j

2)) for all i \in \{ 1, 2\} and for all y \in \scrA \setminus \scrY j
2 . Next,

we upper bound fPa(\scrA \cup \scrY j
2) - fPa(\scrY j

2) in the following manner:

fPa(\scrA \cup \scrY j
2) - fPa(\scrY j

2) =

2\sum 
i=1

\lambda i(Fp +H(\scrA \cup \scrY j
2)) - \lambda i(Fp +H(\scrY j

2))

\lambda i(Fp +H(\scrY j
2))\lambda i(Fp +H(\scrA \cup \scrY j

2))

\leq 
\sum 2

i=1

\bigl( 
\lambda i(Fp +H(\scrA \cup \scrY j

2)) - \lambda i(Fp +H(\scrY j
2)
\bigr) 

\lambda 2(Fp +H(\scrY j
2))\lambda 2(Fp +H(\{ z\prime \} \cup \scrY j

2))
(7.3)

=

\sum 
y\in \scrA \setminus \scrY j

2
tr(Hy)

\lambda 2(Fp +H(\scrY j
2))\lambda 2(Fp +H(\{ z\prime \} \cup \scrY j

2))
.(7.4)

To obtain (7.3), we note that \lambda i(Fp +H(\scrA \cup \scrY j
2)) \geq \lambda 2(Fp +H(\scrA \cup \scrY j

2)) \geq \lambda 2(Fp +

\{ z\prime \} \cup \scrY j
2) for all i \in \{ 1, 2\} , where the second inequality follows from Lemma 5.10

with the fact H(\scrA \cup \scrY j
2)  - H(\{ z\prime \} \cup \scrY j

2) \succeq 0, and z\prime is defined above. Combining

(7.2) and (7.4), and noting zj \in argminy\in \=\scrM \setminus \scrY j
2

\lambda 2(Fp+H(\{ y\} \cup \scrY j
2))

\lambda 1(Fp+H(\{ y\} \cup \scrY j
2))

, we have

(7.5)\sum 
y\in \scrA \setminus \scrY j

2
(fPa(\{ y\} \cup \scrY j

2) - fPa(\scrY j
2))

fPa(\scrA \cup \scrY j
2) - fPa(\scrY j

2)
\geq \lambda 2(Fp +H(\scrY j

2))\lambda 2(Fp +H(\{ zj\} \cup \scrY j
2))

\lambda 1(Fp +H(\scrY j
2))\lambda 1(Fp +H(\{ zj\} \cup \scrY j

2))
,

which implies (5.43).
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