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Abstract Firewalls are widely deployed to manage enterprise networks. Because enterprise-
scale firewalls contain hundreds or thousands of rules, ensuring the correctness of firewalls —
that the rules in the firewalls meet the specifications of their administrators — is an important
but challenging problem. Although existing firewall diagnosis and verification techniques can
identify potentially faulty rules, they offer administrators little or no help with automatically
fixing faulty rules. This paper presents FireMason, the first effort that offers automated repair
by example for firewalls. Once an administrator observes undesired behavior in a firewall, she
may provide input/output examples that comply with the intended behaviors. Based on the
examples, FireMason automatically synthesizes new firewall rules for the existing firewall.
This new firewall correctly handles packets specified by the examples, while maintaining the
rest of the behaviors of the original firewall. Through a conversion of the firewalls to SMT
formulas, we offer formal guarantees that the change is correct. Our evaluation results from
real-world case studies show that FireMason can efficiently find repairs.

Keywords Synthesis - Firewall repair - Programming by example - Network configuration

1 Introduction

Firewalls play an important role in today’s individual and enterprise-scale networks. A typical
firewall is responsible for managing all incoming and outgoing traffic between an internal
network and the rest of the Internet by accepting, forwarding, or dropping packets based
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on a set of rules specified by its administrators. Because of the central role firewalls play in
networks, small changes can propagate unintended consequences throughout the networks.
This is especially true in increasingly large and complex enterprise networks.

A single line in a firewall could, for example, allow anyone to access production services,
and therefore it is critical to ensure the correctness of firewall rules. Broadly speaking, a
firewall is correct if the rules of that firewall meet the specification of its administrator. There
have been many efforts that aim to check the correctness of firewall rules through techniques
such as firewall analysis [31,38], verification [30], and root-cause troubleshooting [34,39,43].
For instance, systems like Margrave [34] and Fang [31] build an event tree recording states
of an observed error, and backtrack through it to find the root causes.

While existing tools can identify the cause of an error, administrators still have to
manually find an effective repair to the firewall so that it meets the specification. We propose
a framework, called FireMason, that is the first to not only detects errors in firewall behaviors,
but also automatically repair the firewall. Specifically, a user provides a list of examples
of packet routing (e.g., all packets with a certain source IP address should be dropped) to
describe what the firewall should do. The current firewall might or might not route the packets
as specified in the examples. Given the complexity of enterprise-scale networks, finding such
a repair requires considerable expertise on the part of the administrator. To the best of our
knowledge, there is no existing effort that automates firewall repair.

The main challenge of firewall repair is to show that a generated firewall is indeed repaired
and that new rules do not change the routing of packets which are not described by the given
examples. We employ an SMT solver for this task. In a nutshell, FireMason translates a given
firewall into a sequence of first-order logic formulas falling into the EUF+LIA logic [33], thus
allowing us to use an SMT solver for reasoning about the firewalls. By using SMT solvers,
FireMason provides formal guarantees that the repaired firewalls satisfy two important
properties:

— Those packets described in the examples will be routed in the repaired firewall, as
specified.

— All other packets will be routed by the repaired firewall exactly as they were in the
original firewall.

Taken together, these two properties allow administrators confidence that the repairs had the
intended effect.

Furthermore, FireMason is also a stand-alone verification tool. The user specifies a
property of interest, and FireMason will either prove that the given property holds, or if it
does not hold, it produces counterexamples. As an illustration, if the user wants to verify that
all packets with the IP address 1.2.3.4 should be dropped, FireMason either confirms that
as correct, or it outputs an example of a packet with an IP address of 1.2.3.4 that would be
accepted by the firewall.

By having a description of a firewall as a set of first-order logic formulas we reduce
verification to the formula entailment problem, which we decide again using an SMT solver.
Additionally, this description is useful as a formal specification of the correct behavior of a
firewall implementation. The only existing specification for iptables is a man page [6], which,
as a textual description, is inherently imprecise.

Due to this imprecision, developing the set of first-order logic formulas in this work
required two steps. First, we careful read the man page specification. When the man page
was unclear, we turned to testing on actual implementations, to decide how to resolve the
ambiguously. By specifying the behavior as first-order logic formulas, we provide future tool
implementors with a precise description of iptables behavior.



Previous work has modeled firewalls using less expressive logics. For example, Zhang et
al. [43] use SAT and QBF formulas, while Margrave [34], uses first-order relational logic
(specifically, through the use of KodKod [38]). By using our formalism we are able to check
some important and widely used, but previously out-of-scope, properties. In particular, the
ability to reason about linear integer arithmetic with an SMT solver is invaluable in handling
rate limits. Rate limits, which are frequently used in all modern firewalls, put a restriction on
the number of packets matched in a given amount of time. Using SMT solvers we are able to
efficiently reason about limiting rules. Due to the complexity of modeling limits, no previous
work has considered firewalls with such rules. Such rules say, for example, that we can only
accept 6 packets per minute from a certain IP address. As before, the user provides a list of
examples, but with relative times. This requires reasoning about the priorities and permissions
of each firewall entry, as well as the temporal patterns of the incoming packets. In comparison
to the conference version of this work [25], we have expanded the input language, and taken
advantage of the new input options with further case studies.

We evaluated our tool using real-world firewall issues, and observed that FireMason
is able to efficiently generate correct firewalls meeting administrators’ examples, without
introducing any new problems. In addition, our evaluations show that FireMason scales well
to enterprise-scale networks.

In summary, we make the following contributions:

— We describe a formalism to model firewalls and their behavior. This formalism allows us
to use SMT solvers to prove formal guarantees, which is useful both for verification and
repair.

— We explain the first method to automatically repair firewalls based on easily specified
examples. Administrators can conveniently specify their desired behaviors, and automate
the repair process.

— We describe using SMT solvers to efficiently reason about limit rules, which are not
considered by any existing tool.

— We built a workable system that scales well with real-world examples and larger-scale
datasets.

This work is an extension of [25], and includes an extended grammar for the input
example language, and an expanded evaluation.

2 Preliminaries

Repair by Example. In this paper, we introduce the repair by example paradigm, which
repairs faulty code so that it satisfies the given examples. In some ways, this resembles the
programming by example paradigm [21,29]. However, in programming by examples, the
output is code which generalizes the given input examples. On the other hand, in the repairing
by example paradigm the input is both an existing program and a set of examples. The goal is
to adjust the input program to satisfy the examples, but otherwise to have only a small effect
on the programs behavior. This allows a user to easily specify instances of faulty behavior,
but have confidence that the program will continue to function as it did before. With repair by
example, it is important that the effect of the changes is constrained, whereas in programming
by example there is no such restriction.

ACL-Based Firewalls. We focus on one of the most representative types of firewalls, Access
Control List (ACL) firewalls, such as iptables [6], Juniper [26], and Cisco firewalls [20],
are widely used in practice. A typical ACL-based firewall contains an ordered list of rules,
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Figure 1: An visualization of a limit, as packets try to match a rule.

each of which has criteria and an action. A criterion describes which preconditions need to
hold for the action to take place (e.g., dropping or accepting a packet) [36]. When a network
packet is received by an ACL-based firewall, the packet is evaluated against all the rules
according to the order in which they appear. After the firewall finds the first rule with criteria
satisfied by the packet, it performs the corresponding action. The criteria in a rule may refer
to properties of the packet that is currently being processed, or to information tracked by the
firewall. For instance

iptables -A INPUT -p 16 -s 123.23.12.1 -3 DROP

has criteria denoting packets with a protocol of 16 and a source IP addressof 123.23.12.1,
and an action specifying those packets should be dropped.

Actions are either terminating or non-terminating. Terminating actions end the packet’s
traversal. For example, once a packet is accepted or dropped, it no longer checks other rules
in the ACL. Non-terminating actions (such as printing to a log file) allow a packet to continue
traversing the ACL rules and match more rules. An action might also refer to another ACL,
which then needs to be used to evaluate the packet. We refer to this as a jump to a different
ACL.

The ACL jumps cannot form a loop. That is, if ACL A; contains a jump to ACL As,
there can be no jumps from A2 back to .4;. However, suppose a packet is evaluated against
all rules in an ACL A> and does not match any rule with a terminating action. The packet
will then continue being evaluated at the next rule in .A; . If the packet started in A1, and the
packet does not match any rule in .4; with a terminating action, the packet will be routed
according to the policy of A;. The policy is the default action on packets that start in a given
ACL, and must be to either accept or drop the packet [14].

Rate Limiting Rules. Rate limiting rules are used when an administrator wants to restrict
the amount of packets matching a certain rule, for example the amount of packets arriving
from some IP address. We call a firewall with such rules a rate limiting firewall. In many
firewalls, including iptables [14], Juniper [26], and Cisco [20] firewalls, a limit is a criterion
that specifies how frequently a rule can be matched. A limit is implemented as a counter [,
and a match is possible only if a packet satisfies rule’s criteria and [ > 0. A rate limiting
behavior is specified through two parameters: an average rate of packets per some time unit,
ra, and a burst limit, b. Whereas other criteria are based solely on evaluating a single packet,
a limit requires the firewall to maintain its counter, and hence warrants special consideration.

Rate limiting firewalls use the token bucket algorithm [37] to determine if a packet should
be dropped or further processed. The counter [ decrements when a packet matches the rule,
and increments every 1/ra time units. The counter can never exceed the burst limit b. The
next example shows how limits work in practice:



(a) Original Firewall

R1| iptables -A INPUT -p udp --dport 80 -j ACCEPT

R2| iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
R3| iptables -A INPUT -m state --state RELATED -j ACCEPT

R4 | iptables -A INPUT -p tcp --dport 22 -j ACCEPT

R5| iptables -A INPUT -p tcp --dport 80 -j ACCEPT

R6| iptables -A INPUT -p tcp -s 172.168.14.6 -j DROP

(b) Example *

repair (INPUT, protocol = 6, i
source_ip = 172.168.14.6 => DROP) FlreMaSOn

(c) Repaired Firewall

iptables -A INPUT -p udp --dport 80 -j ACCEPT

iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
iptables -A INPUT -p tcp -s 172.168.14.6 -j DROP

iptables -A INPUT -m state —--state RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -j ACCEPT

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

Figure 2: An example of a firewall repair problem.

Example. Suppose that we set a limit on incoming packets, with ra = 6 packet / minute
and b = 3 packets. The firewall is initialized with [ = b = 3. If we do not exceed the limit,
we will accept incoming packets. If we do exceed it, we will drop them. As shown in Fig. 1
suppose that at times 0, 5, 9, and 17 seconds, we receive 1 packet, and at time 16 seconds we
receive 2 packets.

At the end of the fifth second, I = 3 — 1 = 2 since 1 packet arrives. Similarly, at the
end of the ninth second, [ = 2 — 1 = 1 since 1 packet arrives. At the beginning of the tenth
second, [ is incremented again to 2. At the sixteenth second, we receive two packets. Both
will be accepted, but it drains the limit completely. Therefore, since I = 0 when the fourth
packet arrives, that packet does not match the limit, and is dropped.

3 Motivating Examples

Stateless Firewall Repairing Example 1. An example given in Figure 2 demonstrates the
basic functionality of FireMason. The example is inspired by a StackExchange post [2].
An administrator is maintaining firewall rules written in iptables [6], one of the most rep-
resentative firewall script languages. The firewall initially contained rules labeled R1 to
RS.

If the administrator wants to block TCP requests coming from the IP address 172.168.14.6,
she may try expressing that as a rule and putting it at the end of the current firewall, cf. rule
R6 in Figure 2. Such an action is very common in enterprise-scale firewall management,
because administrators prefer appending a new rule to the existing rules [28].

FireMason can be used as a standard firewall analysis tool. To test her changes, the
administrator can execute the query:

verify (INPUT, protocol = tcp,
source_ip = 172.168.14.6 => DROP)

FireMason reports to the administrator that the specification is violated, and gives an example
of a packet that will be incorrectly routed (For example, a TCP packet with the SYN flag set,



a source ip address of 172.168.14.6, and a destination port of 22. Such a packet would be
accepted by R3 or R4).

Knowing that her repair does not work as intended, the administrator can also use
FireMason as a repair tool. She provides an example of what should be changed in the
firewall and invokes FireMason as shown in Figure 2 (b).

FireMason returns a repaired firewall, Figure 2 (c), to the administrator. The new rule
is positioned close to similar rules, namely, those rules related to the TCP protocol. This
positioning is very important. While one may argue that directly appending a rule to the
top of firewall can also make the firewall behave correctly (in terms of functionality), this
method would, unfortunately, destroy the structure and organization of the firewall. Much
like traditional code, keeping the firewall rules organized is important to facilitate later
understanding and maintaining. Most importantly, the rule is positioned so that any packet
matching the user provided example is guaranteed to be dropped. Rule R1 specifies a protocol
other than TCP, and so never matches such a packet. A packet matching the example could
match rule R2, but rule R2 drops any matching packet anyway.

This whole example also showed that placing a rule at a wrong place can change the
behavior of a firewall. FireMason provides formal guarantees that for every packet, which is
not covered by the user provided examples, the original firewall and in the repaired firewall
will invoke the same action.

Stateless Firewall Repairing Example 2. Inspired by posts on ServerFault [5, 8], consider
an administrator who wants to ensure that the local host, and only the local host, can access
the web server at 1.2.3.4. Any traffic not from the local host, but trying to access the ip
address 1.2.3.4, should be dropped. To solve this with FireMason, one approach would be to
write two examples:

repair (INPUT, destination_ip - 1

2. source_ip = 127.0.0.1 => ACCEPT)
repair (INPUT, destination_ip - 1.2.

3.4,

3.4, not source_ip = 127.0.0.1 => DROP)
Unfortunately, this is redundant and hard to read: it is easy to miss the not on the second

line. To make this sort of task easy, we introduce two keywords: onlyif and unless. We can

demonstrate the desired behavior in a single example, using the onlyif keyword, as follows:

repair (INPUT, destination_ip - 1.2.3.4 => ACCEPT
onlyif source_ip = 127.0.0.1)

Equivalently, the administrator could write the example with the unless keyword:

repair (INPUT, destination_ip - 1.2.3.4 => DROP
unless source_ip = 127.0.0.1)

In either case, FireMason will create and add two new rules:

iptables -A INPUT -d 1.2.3.4/32 -s 127.0.0.1/32 -j ACCEPT
iptables -A INPUT -d 1.2.3.4/32 ! -s 127.0.0.1/32 -j DROP

which ensure the firewall has the desired behavior.

Rate Limiting Rule Repairing Example. We next show how an administrator can use
FireMason to add/repair rate limiting rules. To the best of our knowledge no existing firewall
analysis tools can address this problem. Suppose an administrator wants to allow TCP
connections with the SYN flag set once every 10 seconds (a task inspired by a forum post
on StackExchange [9].) To do this, the administrator may provide a sequence of example
packets and relative times, in seconds:
repair (INPUT, SYN, time = 0 => ACCEPT;

INPUT, SYN, time = 5 => DROP;

INPUT, SYN, time = 10 => ACCEPT)



| Original Firewall || Example(s)/Specification(s) |

| Consistency Checking |

Stateless Rate Limiting
Examples |[Examples
Rate Limiting

Rules Generation

y

Rule Set

Correctness Checking
| Verification | Repair Algorithm

| OK/Counterexamples | | Repaired Firewall

Figure 3: The workflow overview of FireMason.

As a result FireMason creates and inserts two new rules:

iptables -A INPUT -m limit --Iimit 6/minute \
——limit-burst 1 -p tcp —--tcp-flags SYN SYN -3j ACCEPT
iptables —-A INPUT -p tcp --tcp-flags SYN SYN -j DROP

This limit satisfies the administrator’s requirement. Only one TCP SYN packet can be
received every 10 seconds.

4 System Design

Figure 3 shows the overview of FireMason’s workflow. FireMason takes as input a firewall
and a user command, which can be either a verification command or a repair command and
contains a list of examples.

FireMason first translates the firewall and examples into a set of formulas belonging to
a fragment of first-order logic. The translation (described in Sec. 4.1) produces two sets of
EUF+LIA formulas [33], which means we can use an SMT solver to reason about firewalls.

The verification process (described in Sec. 4.2) checks if the rules specified in the
examples are violated by the new firewall. If there are such rules, FireMason reports coun-
terexamples to the user.

The repair process first checks consistency of the input examples and reports to the user
if they are contradictory (Sec. 4.4). This also allows us to detect sets of examples that can
be used to generate rate limiting rules. FireMason creates any needed rate limiting rules to
handle provided examples. (Sec. 4.6). FireMason next runs the repair algorithm (Sec. 4.7).
Finally, FireMason adds the rules to the firewall (Sec. 4.3), checks if there are redundant
rules in the newly generated firewall (Sec. 4.8), and outputs a correct firewall.



4.1 Encoding Firewalls and Examples as FOL Formulas

Translating Examples. FireMason starts with a list of examples provided by the user, either
for a verification or a repair process. Those examples are expressed using the grammar:

comm := verify({ (acl, rule)} ") | repair({(acl, rule)} ™)

+ +

rule := precon™ = action | precon™ = action cond

precon := protocol = INT | source_ip = IP_ADDRESS
| destination_port = INT | ... | not precon
action := ACCEPT | DROP | ...
cond := onlyif precon | unless precon
acl := STRING \\ ACL Name

We represent every example by a tuple (n,r,t), where n is the name of the ACL to
which the rule r applies, and ¢ is the time given in the example. If no time was given, we
set ¢ = (. This tuple is then used in FireMason’s algorithms. For instance, the example
repair(protocol = 16,time = 5 = ACCEPT) is translated to (INPUT, protocol = 16 =
ACCEPT, 5).

Adding a cond to a rule allows for stronger statements about the desired behavior. On
forums, we noticed users would often ask for rules that implement a certain behavior only
if (or, conversely, unless) some condition is met. To help users write down these types of
conditions, we introduce two keywords: onlyif and unless. To define these precisely, we use
a function on the actions:

ACCEPT a = DROP

flipAction(a) = {DROP a = ACCEPT

Then, we translate the example p = a onlyif ¢1 ... ¢n into the rules:

PAGIN...\Nqn = a
p A ~q1 = flipAction(a)

p A —gn = flipAction(a)
and, similarly, translate p; = a Unless q1 A ... A gn into the rules:

p1 A =g A ... A —gn = flipAction(a)
P1ANqL = a

P1A\gn = a

Translating Firewall Scripts. Broadly speaking, FireMason describes a firewalls behavior
with a sequence of first-order logic formulas. The translation results in formulas that are
amenable for reasoning with a SMT solver. Such encoding has two benefits: the computational
burden of checking consistencies or finding redundant rules is done by a solver. In addition,
we can easily formalize that the repaired firewall is indeed repaired and that only packets
described by the examples will be treated differently and according to the specification.

While the majority of the rules could be easily translated to first-order formulas, one

obstacle is when the firewall contains jumps. This becomes an issue especially when the
ACL also uses limits. Consider, for example, an ACL that has at least two jumps to an ACL
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Figure 4: In a FirewallMap, ACL’s are duplicated for each point that they can be jumped to
from.

Aj. Let us assume that the ACL .A; has some limit rules. If a packet has to go through both
the jumps, then when it reaches the limit in .A; the second time, the limit in .A; will have
counted the packet twice.

We introduce a data structure, called a FirewallMap, which simplifies modeling of jumps
and limits. A FirewallMap M maps unique IDs (we use natural numbers) to tuples of ACL
names and lists of the ACLs rules. A rule is modeled as an implication, where a set of criteria
implies an action. Possible actions are ACCEPT, DROP, and GO(a). GO is parameterized by a
natural number a, and represents a jump to the ACL with ID a. In the FirewallMap M there
is at most one GO referring to a particular ACL ID. Every rule in M is assigned a tuple (a, ),
where a is an ID of the ACL where the rule appears and r is an ID of the rule in that ACL.
This way there exists a single unique path through the FirewallMap to reach any individual
rule. Without this property, it would be significantly more difficult to correctly model the
order in which rules must be checked. Any ACL jumped to from more than one place in the
original firewall is duplicated and assigned multiple IDs, as shown in Figure 4. The ACL
mapped to by each of these IDs is identical, except any GOs in them must also have different
IDs. We refer to these duplicated ACLs as equivalent to each other.

Language for Encoding Firewall Behavior into Formulas. We now describe a first-order
language that we use to model firewalls and packets. Most of these predicates take a Fire-
wallMap M as an argument. One can think of M as a firewall script.

Table 1 lists a selection of those predicates, functions, and their meanings. FireMason
uses these functions and predicates to encode the firewall.

For example, if rule » in ACL a in a FirewallMap M had criteria specifying that it
matched a packet p with protocol 17 and destination port 8, then FireMason translates that as



Table 1: Partial list of predicates and functions used to model firewalls.

[ Predicate | Meaning of the predicate |
valid_acl(M, a) There exists an ACL with ID a in FirewallMap M
valid_rule(M, a, r) valid_acl(M, a) and there exists arule with ID 7 in a
matches_criteria(M, p, a,r) | Packet p satisfies the criteria of rule » in ACL a in FirewallMap M
reaches(M, p, a,r) Packet p reaches rule r in ACL a in FirewallMap M
starting_acl(M, a) Returns true if ACL a is not jumped to from some other ACL
is_go(act) Returns whether the action act is GO(a) for some arbitrary a
reaches_end(M, p, a) reaches(M, p, a, acl_length(M, a))
reaches_return(M, p, a) reaches(M, p, a, r) A rule_action(M, a,r) == RETURN
reaches_exit(M, p, a) reaches_end(M, p, a)V reaches_return(M, p, a)
matches_rule(M, p, a, r) matches_criteria(M, p, a, r)A reaches(M, p, a, 1)
matches_example(p, e) Packet p matches the criteria of an example e
protocol(p) The protocol of packet p
acl_length(M, a) Returns the number of rules in ACL a
max_packets Returns the maximum number of packets to be considered
terminates_with(M, p) Returns if the FirewallMap M would ACCEPT or DROP packet p
rule_action(M, a, ) Returns the action of rule 7 in ACL « in FirewallMap M
insert_rule(M, R, a,r) Returns FirewallMap M, but with rule R inserted in ACL a as rule
equivalent(M, n) Returns the set of IDs in FirewallMap M for the ACL named n
go_acl(act) For act = GO(a) returns a, otherwise -1

follows:

matches_criteria(M, p, a,r)

< (protocol(p) = 17 A destination_port(p) = 8)

The predicates are designed to make it easy to write formulas with important properties.
For example, reaches is used to described which rules a packet is evaluated against, while
matches_criteria indicates whether a packet would satisfy the criteria of a rule. Building on
these, matches_rule is true if and only if a packet both reaches a rule and satisfies the rule.

Table 2 shows some axioms describing general relationships between the predicates and
functions, and encoding actual firewall behavior. All formulas in the table are implicitly
universally quantified, with additional guards 0 < p < max_packets and valid_rule(M, a, 7).
Since the sets of values for M, p, a, and r are finite, these formulas (as well as the definitions
of reaches_end, reaches_return, reaches_exit, and matches_rule from Table 1) can be finitely
instantiated. Thus, no universal quantifiers are needed, and we encode the firewalls in the
decidable EUF+LIA logic [33].

Largely, the axioms in Table 2 describe reachability, and how reaches interacts with the
other predicates. As an example, consider:

reaches(M, p, a, ) A —matches_criteria(M, p,a,7) = reaches(M,p,a,r + 1

and
reaches(M,p,a,r + 1) = reaches(M,p,a,r)

The first axioms captures the property that, if a packet has reached a rule, and does not match
(satisfy) the criteria of that rule, the packet will reach the next rule. The second axioms states
that in order for a packet to reach a rule, a packet must have also reached the rule that directly
precedes it.

Modeling Limits. Limits have two attributes: an average rate ra in packets per time unit,
and a burst limit of b packets. Each limit also uses a counter to decide if a packet can match



Table 2: Formulas to model a firewall, and packets that firewall is processing.

a1 # az Areaches(M, p, a1, 0) A starting_acl(M, a1) A starting_acl(M, a2) =
—reaches(M, p, az,0)
reaches(M, p, a, ) A —matches_criteria(M, p,a,r) =—> reaches(M,p,a,r + 1)
reaches(M, p,a,r + 1) = reaches(M, p,a,r)
matches_rule(M, p, a, r) A is_go(rule_action(M, a,r)) =
reaches(M, p, go_acl(rule_action(M, a, r)), 0)
matches_rule(M, p, a, r) A is_go(rule_action(M, a,r)) —
reaches_exit(M, p, go_acl(rule_action(M, a,r))) = reaches(M,p,a,r + 1)
reaches(M,p,a,r) A —is_go(rule_action(M,a,r)) A rule_action(M,a,r) # RETURN A
—terminating(M, a,r) = reaches(M,p,a,r + 1)
reaches_return(M,p,a) = -reaches(M,p,a,r + 1)
matches_rule(M, p, a, r) Aterminating(rule_action(M, p,a,r)) = -—reaches(M,p,a,r+1)
matches_rule(M, p, a, ) A terminating(rule_action(M, p,a,r)) =
terminates_with(M, p) = rule_action(M, p, a, 1)
reaches_end(M, p, a,r) A starting_acl(M,a) = terminates_with(M, p) = policy(M, a)

Table 3: Logical formulas related to limits, all variables are implicitly universally quantified
with additional constraints that rule » in ACL « has a limit with main ID ¢ and secondary ID
j»and 0 < p < max_packets. We use j_max(i) to denote the maximum secondary ID for the
limit with main ID 3.

Vp.p > 1 = arrival_time(p) > arrival_time(p — 1)

arrival_time(p) — arrival_time(p — 1) if 1 < p < max_packets
m@:{ () (p—1)

0 otherwise
counter_post(M, 4,5 — 1,p) ifj>1
counter_pre(M, i, j, p) = mirT(count'er,post(./\/l,i, ifp>1landj=0
j-max(i),p — 1) + ra x At(p),b)
b otherwise
counter_pre(M, i, j,p) — sub  if counter_pre(s, j, p) > subA
counter_post(M, i, j,p) = matches_rule(M, p, a,r)
counter_pre(M, i, j, p) otherwise

the rule. Intuitively, it may seem one could easily model the behavior of a limit using linear
integer arithmetic. However, ra might not be an integer when the units are converted to
seconds. For example, 31 packets per minute is .516 packets per second. Therefore, we
introduce a new sub variable, which represents the time unit used by the limit, converted
to seconds. For example, a limit with an average rate of 31 packets per minute and a burst
of 10 will be assigned ra = 31, sub = 60, and b = 600 in the formula. Essentially, this
corresponds to multiplying the whole formula by sub, to reduce the problem to integers. ra is
now 31 rokens per second, we have a maximum of 600 tokens, and we require 60 tokens to
send a single packet.

To have a correct counter of the number of packets, in our model we assign to each
limit from the firewall two integer IDs, a main ID 4 and a secondary ID j. Limits for the
same rule in equivalent ACLs all have the same main ID. The secondary IDs start from
0, and they increase every time a packet could meet that limit. We define two functions,
counter_pre(M, 4, j,p) and counter_post(M, 4, j, p), parameterized by the limit’s main and
secondary IDs, and the packet ids. They are used to track the value of the counter at any
given point in time. counter_pre(M, 4, §, p) is the value of counter (4, j) immediately before
packet p reaches the rule containing that limit. counter_post(M, i, j,p) is the value of that



counter immediately after. To check if a limit will allow a packet to match, we check if
counter_pre(M, i, j, p) > sub.

The SMT formulas related to computation of limits are given in Table 3 Note that, since
we multiply ra and At(p), we must know one of their values for this formula to be in LIA.
Fortunately, when reading a limit from an existing firewall script we know ra. In Sec. 4.6 we
explain how At(p) is known in advance from the examples, so we can obtain ra from the
SMT solver.

4.2 Firewall Verification

Since firewalls are not annotated with standard specifications, systems for verifying firewalls,
such as Margrave [34], verify firewalls against user provided queries. When performing the
verification process, FireMason also checks if the given examples violate the firewall rules. In
particular, it is helpful to be able to check that packets with certain attributes will be accepted
or dropped by a firewall. For example, an administrator might want to verify that any packet
received from a certain IP address will be dropped by the firewall.

We first explain the verification process for examples without time (limit) constraints.
Given an example, e = (n,c = act, ) (as described in Sec. 4.1), and a firewall M, we verify
e against M by showing that the following formula F is valid:

Vp,a. a € equivalent(M, n) A reaches(M, p, a,0)
A matches_example(p, €) = terminates_with(M, p) = act

Formula F states that every packet arriving to ACL n and satisfying criteria c terminates with
action a. Note that when negated, the formula is only existentially quantified.

To verify a list of examples with times, e, = (ng, cx = acty, t), for0 < k < N we
apply a similar procedure. After setting up all packets with appropriate times, the verification
condition states that at least one packet does not terminate as desired (expressed already in
the negated form):

VkJa.0 < k < N Aa € equivalent(M, ny)
A reaches(M, py, a.,0) A matches_example(py, 1)

A( \/ terminates_with(M, p;) # act;)
0<j<N

4.3 Adding Rules

Here we outline how to create firewall rules from the provided examples. We first focus on
stateless rules. Generating rate limiting rules is described in Sec. 4.6. The repair algorithm,
Algorithm 2 from Sec. 4.7, assigns each rule a position where it should be placed. After
positions are assigned, translating user provided examples to to the iptables language is rather
straightforward. For example, the tuple

) = ’ -1 = cLe . = )
(INPUT,protocol 6, source_ip = 1.2.3.4 => ACCEPT,0)
translates to a rule

iptables -A INPUT -p 6 -s 1.2.3.4 —3j ACCEPT.



4.4 Consistency Checking

The purpose of consistency checking is both to let the administrator know whether the
provided examples contradict each other, and to detect when to invoke the algorithm for
addressing limits. Consider the two examples below:

repair (INPUT, protocol = 17 => ACCEPT),
repair (INPUT, source_ip = 1.1.0.0/16 => DROP)

If a packet with protocol = 17 and a source IP address of 1.1.1.1 enters the
INPUT ACL, it is not clear whether such a packet should be accepted or dropped. We
consider these examples rule inconsistent.

Formally, we say two examples, (n1,c1 = acti,t1) and (ng,ce = acta,te) are rule
inconsistent if n1 = na, c1 A c2 is satisfiable by a single packet, and act; # actz. We
find the contradictory examples by using an SMT solver and we inform the administrator
about ambiguities. Note that this definition makes no reference to time, and handling of rule
inconsistent examples with different times will be covered in Sec 4.6.

4.5 Formal Guarantees for Repaired Firewalls

FireMason offers two guarantees on the behavior of repaired firewalls. The first guarantee is
the packets or sequences of packets described by the examples are correctly routed in the
repaired firewall. The second guarantee is that the routing of every packet not described by
the examples is the same as it was in the original firewall. Together, these guarantees allow
an administrator to be confident that the repairs had the intended effect, and only the intended
effect.

Here we give formulas which can be used by an SMT solver to check if the formal
guarantees hold.

For given examples of the form e, = (ng, crity = acty,?), for 0 < k < N, the first
guarantee can be written with Formula (1),

Vk,a.0 < k < N A a € equivalent(M, ng)A €]
matches_example(k, e};) A reaches(M, k, a, 0)
= terminates_with(M’, k) = acty,

Now suppose we have examples with relative times, e, = (ng,crity = acty,tx).
Without loss of generality, assume that for k1 < ko, we have ¢, < ty,. In this case we ensure
that packets arriving at the appropriate times, with the appropriate criteria, are correctly
routed, given that no other packets matching the examples criteria are processed before their
arrival. Formally, we write:

Vk,a.0 <k < N Aa € equivalent(M, ny) 2)

/\ (arrival,time(m) = t;m A matches_example(m, em,)
0<m<k

A reaches(M,m, a,0)) /\ nonexample(M, m/, k)
m’'>k
= terminates_with(M, k) = acty,



where we use the predicate nonexample to determine if the packet p either does not correspond
to or arrives after the last relevant example.

nonexample(M, p,e) =
Vk,a.0 <k < e Aa € equivalent(M, ng) =
te < arrival_time(p) V —reaches(M, p, a,0)

v ( /\ ﬁmatches,example(p,em))
0<m<k

The second guarantee, that the changes we make do not affect more packets than intended, is
stated as Formula (3):

Vp.terminates_with(M, p) = terminates_with(M’, p) 3)

Vv (Elk,a.() <k < N Aa € equivalent(M, ny)

A matches_example(p, ey, ) A reaches(M, k, a, 0))

4.6 Rate Limiting Rules Generation

Algorithm 1: Limit Generating Algorithm

input :F, the list of examples, all with relative times, optional parameters minRulesAndLimits and
minTotalSub (both default to ()
output : 7 a list of rules

1 B +[];
2 foreach (n,r,t) € E do
3 ro <— r, with a limit template, consisting of symbolic values for ra, b, sub, and useLimit, and a

Boolean enableRule added to the criteria
E'.append((n, r2,t));
sortByNameByTime(E");
if minRulesAndLimits # 0 and minTotalSub # () then
Assert rulesAndLimits < minRulesAndLimits
L V (rulesAndLimits = minRulesAndLimits N totalSub < minTotalSub)

NS s

Convert E’ to SMT formulas, create formulas defining score and totalSub, run SMT Solver;
sat <— getSat;

10 if sar = UNSAT then

11 L r < getRulesFromModel(model);

o

12 return 7;

13 else

14 model < getModel;

15 (rulesAndLimits, totalSub) <— getScore(model);

16 call this recursively, to lexicographically minimize (rulesAndLimits, totalSub);

After the consistency checking, some examples may have to be resolved via rate limiting.
Specifically, this is required for rules that are rule inconsistent, but have relative times.
Algorithm 1 generates rate limiting rules satisfying these examples. Our algorithm takes a



list of rule inconsistent examples, F, each with a time. It returns an ordered list of satisfying
rules, which are later inserted into the firewall using Algorithm 2.

Recall that we may express an example as consisting of an ACL name, a rule, and a
time. We create E’ from E, by adding two criteria to each examples rule. The first is a limit
template, which uses variables in place of actual integers for ra, b, and sub. It also has a
Boolean variable useLimit, which enables and disables the limit. The second criterion is a
Boolean, enableRule. Packets can match the rule if and only if enableRule is true. We will
use this template with an SMT solver to search for the solution that requires the fewest limits
and rules.

We sort E’ into distinct groups according to which ACL the rules are meant to be added
to, and then sort each group by ascending time, at line 5. We extract the rules from E’ into
lists (ACLs) to form a templated FirewallMap M. This allows us to convert to an SMT
formula, using exactly the same formulas and logic as in Sec. 4.1.

For each original example, e, = (np, cp = actp, tp), we pick a € equivalent(M, np)and
assert that the packet with ID p matches the requirements of that example:

arrival_time(p) A matches_example(p, ep) 4
A reaches(M, p, a, 0) A terminates_with(M, p) = actp

For all the pairs 0 < r,q < length(E’),r # q, we check if ¢, A —¢q is satisfiable by a
single packet. For each pair which is, we assert:

—matches_example(r, eq) Q)]

The SMT solver can then find values for each ra, b, sub, u, and enableRule that guide the
packets as required by the examples. Formula (4) ensures that the found solution satisfies the
requirements of the examples sequence. Formula (5) ensures that the SMT solver does not
make assumptions about packets criteria that the user likely does not intend. For example, if
the administrator provided the examples:
repair (

INPUT, protocol = 17, time = 0 => ACCEPT;

INPUT, protocol = 17, time = 5 => DROP;

INPUT, source_ip 1.1.0.0/16, time = 10 => ACCEPT;
INPUT, source_ip = 1.1.0.0/16, time = 15 => DROP)

Formula (5) would prevent the SMT solver finding a solution that required any of the
packets satisfying protocol = 17 AND source_ip = 1.1.0.0/16.

Such a model is always possible to find. One valid solution is to set all the enableRule to
true, all the bursts to 1, and all the rates and subs such that the limit recharging even once
takes longer than the total time between the first and last packet arriving. Then, each packet
will be sorted according to the rule that came from its modified example.

To make our solution capable of handling more general cases, we assign a lexicographic
score to our formula. The first value is calculated by adding the number of limits and the
number of non-ignored rules, which we call rulesAndLimits. The second value is the sum
of the limit’s sub values, which we call totalSub. We aim to make this score as small as
possible. This can be done by repeatedly asserting there exists a formula with a better score.
If (minRulesAndLimits, minTotalSub) is the current best score, we assert:

rulesAndLimits < minRulesAndLimits V (rulesAndLimits =
minRulesAndLimits N totalSub < minTotalSub)



Algorithm 2: Rule Adding Repair Algorithm

input :E, the list of examples; M, a FirewallMap
output : a FirewallMap with a rule for each e € E added
1 foreach (n,newR,t) € E do
a’ + ACL id of an arbitrary representation of the ACL n in M;
res <— SAT ;
maxR < acl_length(a’) — 1;
while res = SAT do
Pick 7/ < maxR , using a similarity measure to newR;
M’ + insertRule(M, newR, a’, ') ;
res < SMTCheckCorrectness(M, M’, e);
if res = SAT then
| maxR 1'—1;

o AN R W

ot
>

—
—

M+~ M

When the SMT solver returns UNSAT, we can guarantee we found the solution which
minimizes the number of rules plus the number of limits used.

There are two small potential problems with this approach, and luckily, both have
straightforward solutions. First, recall from Sec. 4.1 that the model involves the value of
ra * At(p), but to stay in the theory of LIA, we must avoid multiplying two variables. In
that section, there was an assumption that the value of ra was known, whereas here it clearly
is not. Fortunately, while we do not know the value of ra, we can precompute, and fix as a
constant, the time difference between neighboring packets, At(p).

Second, some firewalls languages constrain the value of sub to a fixed list of possi-
ble values si,...sy. This can be handled through one additional assertion per sub value,
Vy—15ub = sy. This occasionally leads to cases where there is no valid way to generate the
limits, but such cases can be detected when the first call to the SMT solver is UNSAT.

4.7 Repair Algorithms

Given the formulas representing the target firewall and examples, we need to run a repair
algorithm to generate a correct firewall based on the examples. We will first consider rule
insertion for non-rule inconsistent examples. Then, we will explain how this same algorithm
can be used to insert the rate limiting rules found by Algorithm 1. Suppose we have N
non-rule inconsistent examples, e1 = (n1,71 = (c1 = acf1),t1),...,exy = (nn, 7N, EN)-
Given a firewall represented by a FirewallMap M, our goal is to to find a new FirewallMap
M’ which ensures all the examples are satisfied, but that guarantees all non-described packets
maintain the same behavior. We also want M’ to be well organized, meaning that “similar
rules” all appear together. The choice of how similar two rules are is a heuristic. Our procedure
to decide the similarity assigns a score based on the number and kinds of criteria used in the
rules, as well as the action taken by the rule. However, this procedure could be replaced by
any desired scoring algorithm.

Consider the k" example, 1 < k£ < N. We express the desired condition with respect to
example ey, by instantiating k in Formulas 1 and 3. We then show that Algorithm 2 outputs
a firewall which satisfies this condition. For each example e; = (n;,7;,t;), we take some
a’ € equivalent(M, n;) and find the ID +’ of the existing rule most similar to r; in ACL a’.
Next we set M’ = M, and run insert_rule(M’, r;,a’, ') to insert r; in all ACLs equivalent
to a’ at position r’ in M’.



We convert both M and M’ to SMT formulas, and use an SMT solver to check that
Formulas 1 and 3 are valid. To do this, we must eliminate the two universal quantifiers that
remain after instantiating k. There are only a finite number of values that « may attain -
namely, it can only be the values in equivalent to_name(M, o). Using this observation, we
can easily eliminate the universal quantifier using finite instantiation. Once the formula is
only universally quantified by p, we negate it, and try to show that its negation is unsatisfiable.

If the SMT solver does find the formula to be unsatisfiable, we know that the original
formula was valid, i.e. the firewall satisfies the considered example. However, if the formula
is satisfiable, we search for a different place to insert the rule, that comes before rule r’ in
ACL d’. We do not consider any rule after this rule, as any route along which M and M’
could incorrectly diverge would also exist if the new rule was inserted after a’. Also note
that the condition is guaranteed to hold if the new rule is inserted as rule 0 in ACL a’; and
although this placement is often not ideal for the structure of the firewall, it does guarantee
termination.

When rules are from consistent examples, we can insert them in any order. By definition,
two consistent examples cannot describe any of the same packets, so it does not matter
which corresponding rule comes before the other in the firewall. However, the rules found by
Algorithm 1 are rule inconsistent. In this case, insertion of the rules must be done in reverse
order of the corresponding example’s times. This ensures that the inconsistent rules have the
same relative order in E’ (from Sec. 4.6) as in M’, and thus we can expect the same behavior
from the examples in both £’ and M’.

4.8 Redundant Rule Detection

The final step in repairing the firewall is removing redundant rules — that is, rules which
cannot be matched by any packet. An existing approach to redundant rule detection [43] can
be adapted to and implemented in our SMT model. We briefly summarize this approach here.

As before, the firewall is converted to an SMT formula. Then, for each ACL name and
rule ID, n and r, respectively, check that there exists a packet that matches the rule, or some
equivalent rule by asserting

3d’.a" € equivalent(M, n) A matches_rule(M, p,a’, r)

If this call returns SAT, then clearly there exists some packet that matches the rule, and the
rule is therefore not redundant. If it returns UNSAT, then there was no packet that matched
the rule, and it is therefore redundant. In this case, it can be commented out. This does involve
a large number of calls to the SMT solver, but these calls tend to be fast.

5 Implementation and Evaluation

FireMason is developed in Haskell and fully implements the design described in Sec. 4. The
default firewall language that we support is the iptables language [6], but the framework can
be easily extended to other firewall languages, such as Juniper [26] and Cisco firewalls [20].
The syntax of these languages varies, but the semantics are largely the same. Therefore, only
the translation step (essentially a parser) needs to be rewritten for a particular language, which
means that FireMason can easily be adapted to repair firewalls written in other languages.
As an SMT solver we used Microsoft’s Z3 [32]. The source code for our implementation is
available at https://github.com/BillHallahan/FireMason.


https://github.com/BillHallahan/FireMason

The evaluation was conducted with an Intel Xeon Quad Core HT 3.7 GHz.

Scalability Evaluation. We first evaluated the scalability of FireMason with regard to real-
world network sizes by using three examples as specification, and varying the number of
rules in the target firewall between 100 and 500. These firewalls were randomly generated.
As shown in Figure 5, FireMason scales well to large-scale firewalls.

One might expect the rate limiting rules insertion to be slower than the non rate limiting
rules insertion, due to the additional runtime of Algorithm 1. However, Algorithm 1’s runtime
depends only on the number of examples, and not on the number of rules in the original
firewall, its runtime is constant across the rate limiting tests. In the rate limiting case our
three examples result in only two rules to insert, whereas in the non rate limiting case, we
insert three rules. Thus, the additional runtime is due to Algorithm 2.

We also evaluated the performance of FireMason for different numbers of provided
examples, as shown in Table 6. In the stateless case this scales linearly. In the rate limiting
case, the time required increases rather sharply as the number of examples generating a single
limit increases. However, this is not a major concern, as we have found that a small number
of examples is typically sufficient to find an appropriate limit.

Case Study: Repairing Real-World Firewalls. We next demonstrate that FireMason can
repair real-world firewalls. To do that, we found firewall repair problems on Server Fault [11]
and Stack Overflow [12]. We recreated each scenario, and generated corrected firewalls using
FireMason.

Tables 4 and 5 present ten such problems. We list the examples which an administrator
may provide to clarify how the firewall should be repaired and present the resulting repairs to
the firewall. We also include the running time, the number of calls to the SMT solver, and the
number of rules in the original iptables script.

We manually checked the correctness of each result and compared them to the repairs
suggested on the forums. We found that the output returned by FireMason not only fixed
the problems, but also avoided any side effects. Furthermore, we manually confirmed the
“minimality” of the repairs, in terms of the impact on the firewalls overall behavior. In
some cases, FireMason outputs a different solution from the posted solution. After manual
comparison, we found that both solutions work correctly, but FireMason’s output required
adding fewer new rules.

Interestingly, two of the case studies involving rate limits took significantly longer than
those only involving stateless examples. This is not at odds with the results of the scalability
evaluation. As shown in Table 6, for a small number of examples, rate limit rule generation is
generally faster, whereas for a larger number of examples, stateless rule generation is faster.

6 Related Work

This section presents existing efforts on firewall analysis, verification and generation, and
discusses why these efforts are not helpful to our target.

Firewall Repair and Synthesis. Chen et al. [18,19] describes an approach to repair stateless
firewalls. The paper develops techniques to localize specific forms of faulty rules, as opposed
to our approach of building a general model. Unlike our approach, rate-limiting rules are not
considered.

Zhang et al. [43] proposed a symbolic firewall synthesis approach such that the synthe-
sized firewall has the same behavior as a given firewall, but with the smallest possible number



Table 4: Case study: Sampled stateless firewall repair problems and our solutions.

Case Study 1 [2]

An administrator appended a rule iptables -A INPUT -s 73.143.129.38 -j
DROP but can still receive packets from 73.143.129.38.

Input example

1. repair (INPUT, source.ip = 73.143.129.38 => DROP)

Results Remove the appended rule, and insert a new rule iptables -A INPUT -s
73.143.129.38/32 -3 DROP in front of an original rule iptables -A INPUT
-i lo -3j ACCEPT.
Original Rule Count 11
Repair Time 109 s
SMT Solver calls 26
Case Study 2 [3] An administrator wants to allow SSH access from the IP address 71 .82.93.101, but does not

know how.

Input examples 1. repair (INPUT, protocol = 22, source_ip = 71.82.93.101
=> ACCEPT)
2. repair (INPUT, protocol = 22, not source_ip = 71.82.93.101
=> DROP)
Results Insert new rules iptables -I INPUT O -p 22 -s 71.82.93.101/32 —j
ACCEPT and iptables -I INPUT 0 -p 22 ! -s 71.82.93.101/32 -3
DROP in front of an original rule iptables -I INPUT -p icmp --icmp-type
time-exceeded —-j ACCEPT.
Original Rule Count 11
Repair Time .088 s
SMT Solver calls 23

Case Study 3 [7]

An administrator has the IP address 192.168.1.99, and wants to SSH to the IP
address 192.168.1.15. She appended a rule iptables -A INPUT -p tcp —-i ethO
--dport 22 -m state --state NEW,ESTABLISHED -3j ACCEPT but still cannot
SSH 192.168.1.15.

Input examples

1. repair (OUTPUT,
2. repair (INPUT,

destination_ip = 192.168.1.15 => ACCEPT)
source_ip = 192.168.1.15 => ACCEPT)

Results Insert two new rules iptables —-A INPUT -s 192.168.1.15/32 -3j ACCEPT and
iptables —-A OUTPUT -d 192.168.1.15/32 in front of the fourth and fifth rules in
the original firewall, respectively.

Original Rule Count | 4
Repair Time .054 s
SMT Solver calls 14

Case Study 4 [8]

An administrator wants to allow only the localhost to have access to a given port, but is having
trouble figuring out the right iptables commands.

Input example

1. repair (INPUT, destination_port = 44344 => ACCEPT
onlyif destination_ip = 127.0.0.1)

Results Inserted four new rules iptables -A INPUT -p 17 --dport 44344 -d
127.0.0.1/32 -j ACCEPT, iptables -A INPUT -p 6 —--dport 44344 -d
127.0.0.1/32 -j ACCEPT, iptables -A INPUT -p 17 --dport 44344 !
-d 127.0.0.1/32 -j DROP, and iptables -A INPUT -p 6 ——-dport 44344
! -d 127.0.0.1/32 -3 DROP in the firewall.

Original Rule Count | 6
Repair Time 204 s
SMT Solver calls 14

Case Study 5 [5]

An administrator wants to prevent all other users from using HTTP or HTTPS connections.

Input example

1. repair (INPUT, protocol 6, destination_port = 80 => DROP
unless source_ip = 10.1.1.2)

1
2. repair (INPUT, protocol = 6, destination_port = 443 => DROP
1

unless source_ip = 10.1.1.2)
Results Inserted four new rules iptables -A INPUT -p 6 —--dport 443 ! -s
10.1.1.2/32 -3 DROP, iptables -A INPUT -p 6 --dport 443 -s
10.1.1.2/32 -3j ACCEPT, iptables -A INPUT -p 6 —-dport 80 ! -s
10.1.1.2/32 -3j DROP, and iptables -A INPUT -p 6 --dport 80 -s
10.1.1.2/32 -3 ACCEPT in the firewall.
Original Rule Count | 6
Repair Time 246 's
SMT Solver calls 13
Case Study 6 [13] An administrator wants to accept connections on a range of ports, but does not know how to do

S0.

Input example

1. repair (INPUT,
=> ACCEPT)

protocol = 17, 1000 <= destination_port <= 2000

Results iptables -A INPUT -p 17 --dport 1000:2000 -j ACCEPT
Original Rule Count | 6
Repair Time 057 s
SMT Solver calls 5

Case Study 7 [1]

An administrator wants to block a range of ip addresses, rather than a specific ip address.

Input example

1. repair (INPUT, source.ip = 116.10.191.% => DROP))

Results

iptables -A INPUT -s 116.10.191.0/24 -3j DROP

Original Rule Count | 6
Repair Time 0.106 s
SMT Solver calls 7




Table 5: Case study: Sampled rate limiting firewall repair problems and our solutions.

Case Study 8 [4]

An administrator is trying to limit the number of inbound SSH packets, but it just seems to lock
her out.

Input examples

1. repair (INPUT, protocol = 22, time = 0 => ACCEPT)
2. repair (INPUT, protocol = 22, time = 20 => ACCEPT)
3. repair (INPUT, protocol = 22, time = 30 => ACCEPT)

4. ... (In total, this repair uses 8 examples.)

Results Insert new rules iptables -A INPUT -m limit --limit 2/minute
——limit-burst 4 -p 22 -j ACCEPT and iptables —-A INPUT -p 22 -j
DROP at the beginning of the original firewall.
Original Rule Count | 9
Repair Time 21.10s
SMT Solver calls 44

Case Study 9 [9]

A server is attacked by TCP SYN flooding, so the administrator wants a limit on SYN packets
per second.

Input examples 1. repair (INPUT source_.ip = 192.132.209.0/24, SYN, time = 10
=> ACCEPT)
2. repair (INPUT, source_ip = 192.132.209.0/24, SYN, time = 11
=> ACCEPT)
3. repair (INPUT, source_ip = 192.132.209.0/24, SYN, time = 12
=> ACCEPT)
4. repair (INPUT, source_ip = 192.132.209.0/24, SYN, time = 13
=> DROP)
5.repair (INPUT, source_-ip = 192.132.209.0/24, SYN, time = 19
=> DROP)
6. repair (INPUT, source_ip = 192.132.209.0/24, SYN, time = 21
=> ACCEPT)

Results Append two new rules, iptables -I INPUT 0 -s 192.132.209.0/24 -p 6
—--tcp-flags SYN -j DROP and iptables -I INPUT 0 -m limit --limit
6/minute ——limit-burst 3 —-s 192.132.209.0/24 —-p 6 ——tcp-flags
SYN SYN -3 ACCEPT, to the original firewall.

Original Rule Count | 11
Repair Time 6.046 s
SMT Solver calls 42
Case Study 10 [10] An administrator wants to rate limit the number of new TCP connections to there server.
Input examples 1. repair (INPUT, protocol = 6, destination_port = 22, SYN,
time = 0 => ACCEPT)
2. repair (INPUT, protocol = 6, destination_port = 22, SYN,
time = 0 => ACCEPT)
3. repair (INPUT, protocol = 6, destination_port = 22, SYN,
time = 0 => ACCEPT)
4. repair (INPUT, protocol = 6, destination.port = 22, SYN,

time = 1 => DROP)

Results Append two new rules, iptables -A INPUT -m limit --limit 54/minute
—-limit-burst 3 -p 6 —--dport 22 --tcp-flags SYN SYN -j ACCEPT and
iptables -A INPUT -p 6 —-dport 22 —--tcp-flags SYN SYN -3 DROP, to
the original firewall.

Original Rule Count | 6
Repair Time 0.509 s
SMT Solver calls 10

Table 6: Scalability for number of examples (when inserting into a firewall with 100 rules).

Number of examples | Stateless Time (s) | Rate Limiting Time
3 3.567 2.177
6 4.545 2.004
9 5.804 36.37

of rules. As this approach focuses on automatically simplifying redundant rules, rather than
repairing an observed error, it is not applicable to our goal.

As software defined networks (SDN) have become increasingly popular, automatic
programming approaches for SDN have been proposed [35,42]. Yuan et al. [42] proposed




100 ‘
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80 - Examples with rate limiting —8— "1

40 -

Runtime (second)
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Figure 5: Scalability for number of rules.

an automatic SDN policy generation approach, named NetEgg, based on a scenario-based
programming technique. NetEgg can only generate a new policy, it cannot account for the
effect of a new policy on existing policies in the network. Furthermore, NetEgg cannot
synthesize rate limiting rules.

Firewall Analysis and Verification. Mayer et al. [31] developed the first systematic fire-
wall analysis engine, Fang, to analyze diverse properties of firewalls. Fang and its sequel
Lumeta [39] allow checking the correctness of firewall configurations by sending their anal-
ysis engines queries. Other efforts [15,23] propose packet-filter based schemes to detect
conflicting or violated rules. Frantzen et al. [24] and Kamara et al. [27] proposed different
data-flow based approaches to analyze vulnerability risks in firewalls. Yuan et al. [41] used
BDDs to detect policy violations and misconfigurations in firewalls. Wool [40] conducted a
case study on understanding and classifying the configuration errors of firewalls.

The Margrave firewall verification tool [34] encodes firewall rules and queries into first-
order logic. It uses KodKod [38] to search for finite state models. Compared with another
firewall verification tool, NoD [30], Margrave cannot produce all differences between policies
in a compact way, and does not scale for large firewall rule sets.

Firewall Testing. El-Atawy et al. [22] proposed targeting test packets for better fault cover-
age. Al-Shaer et al. [16] developed a system-wide framework to generate targeted packets
and obtain good coverage during firewall testing. Brucker et al. [17] proposed a formal
firewall conformance testing approach, which uses Isabelle/HOL to generate test-cases from
constraint satisfaction problems.

7 Conclusion

In this paper, we have presented FireMason, a tool for verification and repair of firewalls.
To this end, we use a first-order intermediary language to model firewalls, which allows
us use of an SMT solver to obtain formal guarantees on the correctness of verification and
repair. We showed that FireMason not only generates correctly repairs real-world firewall
scripts, but also is able to scale to large-scale firewalls. Our empirical evaluation suggests
that FireMason could be both practical and effective in assisting administrators with firewall
management. Our goal is to inspire further work on reasoning about firewalls in the formal
methods community.
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