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Abstract 

Nakoa Kristen Webber  
IDENTIFYING INHIBITORS TARGETING THE NONSTRUCTURAL PROTEIN 15 
AND MAIN PROTEASE OF CORONAVIRUSES USING MOLECULAR DOCKING 

AND MOLECULAR DYNAMICS SIMULATION 
2020-2021 

Nathaniel V. Nucci Ph.D  
Master of Science in Bioinformatics 

 

 The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) in 2020 has impacted daily life globally for over a year. While multiple vaccines 

have been authorized for emergency use and one oral medication has entered clinical 

trials, we are still seeking antiviral drugs for a long-term treatment for SARS-CoV-2 as 

well as other coronaviruses. Computational drug screenings of two SARS-CoV-2 protein 

target candidates are presented in this thesis: the nidoviral RNA uridylate-specific 

endoribonuclease (Nsp15) and the main protease (Mpro) of SARS-CoV-2. Nonstructural 

proteins of coronaviruses were selected as targets as they are more conserved across 

coronavirus strains than structural proteins.  High throughput virtual screening of small 

molecule libraries including DrugBank and ZINC 15 resulted in several promising 

compounds for each of these targets. Molecular dynamics simulation allowed us to 

predict the binding energies for these compounds using molecular mechanics with 

generalized born surface area solvation calculations (MM-GBSA). Four top compounds 

were discovered for Nsp15 and eight compounds for Mpro. 
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Chapter 1 

Introduction 

Coronaviruses  

  Coronaviruses are pathogens which target the respiratory system of both humans 

and animals (Shereen et al., 2020). The coronaviruses known to infect humans are all 

zoonotic in nature (Latinne et al., 2020). Currently, there are seven known human 

coronaviruses (H-CoVs) (Shereen et al., 2020). Most H-CoVs have origins in bats, with 

the exception of beta-CoVs, which are thought to originate from rodents (Forni et al., 

2017). The most common and pathogenic coronaviruses that threaten human life are 

severe acute respiratory syndrome (SARS-CoV), middle east respiratory syndrome 

MERS-CoV, and SARS-CoV-2 (Liu et al., 2020). 

Zoonotic viruses such as SARS-CoV2 remain a threat to public health as they all 

have potential to evolve into pandemics. There are two key factors that lead a virus to 

become a pandemic. First, the virus must be introduced into a population (Santacroce et 

al., 2020). Humans are exposed to a new virus through contact with blood, feces, saliva, 

food, or water contamination, or via an arthropod such as a mosquito or a tick 

(Woolhouse et al., 2012). Next, the virus must spread and maintain itself throughout that 

population (Santacroce et al., 2020). Virus spread is measured by a Ro value. A Ro greater 

than 1 indicates that a single case leads to more than one additional case (Woolhouse et 

al., 2012). Transmission of the virus through a population depends on how infectious the 

host is the duration of infectability, and the behavior of the infected population 

(Woolhouse et al., 2012). The most recent impactful coronaviruses (SARS-CoV, MERS-
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CoV, and SARS-CoV-2) had Ro values of 2.9, 1.3 and 5.7 prior to public intervention 

(Sanche et al., 2020) (Liu et al., 2020). Social distancing efforts to prevent the spread of 

coronaviruses by lowering Ro values is disruptive and devastating to local economies. 

Further understanding of these viruses and efficacious methods of treatment will directly 

save lives. We hope to be prepared should the world be faced with a similar (or worse) 

pandemic in the future.  

SARS-CoV, MERS-CoV, and SARS-CoV-2 

Coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 are structurally and 

genetically conserved. Each virus is a positive-sense, single-stranded RNA virus 

(Alexandersen et al., 2020). While most RNA viruses tend to lack the 3’ exonuclease 

proofreading capabilities that make DNA viruses less error-prone, Coronaviruses contain 

a 3’ exonuclease domain found in Nsp14 (Sanjuán & Domingo-Calap, 2016). The 

function of this exonuclease is likely responsible for the maintenance of a genome of this 

size (Robson et al., 2020). The genomes of coronaviruses contain approximately 30,000 

nucleotides with the majority of the genome coding for the replicase gene of the 

coronavirus (Sanders et al., 2021). The replicase gene consists of two open reading 

frames (ORF), ORF1a which encodes for polyprotein (pp) 1a and ORF1b. ORF1a and 

ORF1b encode for polyprotein pp1ab together. These polyproteins are cleaved into 16 

nonstructural proteins (Nsps) by the chymotrypsin-like (Mpro) and papain-like (PLpro) 

proteases. The PLpro cleaves at five sites, working in the N-terminal direction, Nsp1-4.  

The Mpro, which is Nsp5, cleaves the polyprotein at eleven sites working in the C-

terminal direction. Mpro auto-cleaves itself from the polyprotein, then cleaves Nsp6-16 

(Sanders et al., 2021) (Figure 1).  
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Figure 1 

Replication Cycle of SARS-CoV2 

 

 

Note. In the replication cycle of SARS-CoV-2, viral RNA is released into the cell. From 
the RNA viral genome, ORF1a and ORF1b are translated into polyproteins pp1a and 
pp1ab. To begin the cleavage of nonstructural proteins, the Mpro first cleaves itself. 
Nonstructural proteins next combine to begin the replication process (Sanders et al., 
2021). 

 

Structural Proteins of SARS-CoV2 

There are four main structural proteins within SARS-CoV2: a spike glycoprotein, 

small envelope glycoprotein, membrane glycoprotein, and a nucleocapsid protein (Astuti 

& Ysrafil, 2020). The spike glycoprotein is a transmembrane protein approximately 150 

kDa in size and is located on the outside of the virus structure (Astuti & Ysrafil, 2020). 

The spike protein is responsible for host-virus attachment. Small envelope glycoproteins 

form homotrimers within the viral surface which facilitate binding of envelope viruses to 
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host cells by attracting angiotensin-converting enzyme 2 (ACE2) (Astuti & Ysrafil, 

2020). The small envelope glycoprotein is cleaved by a host cell furin-like protease into 

S1 and S2 (Astuti & Ysrafil, 2020). The S1 subunit contains a receptor-binding domain 

which recognizes and binds to the host receptor angiotensin-converting enzyme 2 (Huang 

et al., 2020). The S2 subunit forms a six-helical bundle that plays a role in mediating viral 

cell membrane fusion (Huang et al., 2020). 

 

Figure 2 

Structural Proteins of SARS-CoV2 

 

Note. The structural proteins of SARS-CoV2 include nucleocapsid proteins, membrane 
glycoproteins, spike glycoproteins, and envelope proteins. The spike protein is shown in 
this figure interacting with ACE2 for host attachment (Saxena et al., 2020). 
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Nonstructural Proteins of SARS-CoV2 

The nonstructural proteins of SARS-CoV2 play an important role in genome 

replication and transcription of the virus (Gasmalbari & Abbadi, 2020).  Each Nsp plays a 

role in virus infection or replication as shown in Table 1. Nsp’s are promising targets for 

vaccines and medications as targeting one or more can reduce or halt viral replication. 

Most nonstructural proteins have conserved amino acid sequences among different 

coronaviruses which would allow one drug to target them all.  

 

Table 1 

Nonstructural Proteins of Coronaviruses and their Function 

NSP1 Suppresses host gene expression by degrading the host cell’s RNA (Sanders et al., 2021), 
prevents hosts cells from performing antiviral functions (Gasmalbari & Abbadi, 2020) 

NSP2 Thought to play a crucial role in viral RNA synthesis (Sanders et al., 2021), the specific 
mechanism of action requires further research 

NSP3 Papain-like protease (Plpro) protein responsible for processing of the viral polypeptide 
(Cornillez-Ty et al., 2009) 

NSP4 Required for viral replication by assembly of, and localizing to, double-membrane 
cytoplasmic vesicles (with nsp3) (Sakai et al., 2017) 

NSP5 Mpro (3CL), main protease, cleaves at 11 sites (Zhang et al., 2020) 

NSP6 Induces double membrane vesicles, interferes with delivery of viral factors to lysosomes for 
destruction (Angelini et al., 2013) 

NSP7 Forms a super complex with NSP8, works as a cofactor for the RNA-dependent RNA 
polymerase nsp12 (Snijder et al., 2016) 

NSP8 Forms a super complex with NSP 7 that supports viral replication works as a cofactor for the 
RNA-dependent RNA polymerase nsp12 (Snijder et al., 2016) 
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NSP 9 Plays a role in the binding of ssRNA and dsDNA and affects viral growth (Sanders et al., 
2021) 

NSP 10  Forms a part of the viral mRNA cap methylation complex (Sanders et al., 2021) 

NSP 11 Function of NSP 11 is unknown  

NSP 12 Responsible for priming the dependent RNA polymerase (Sanders et al., 2021) 

NSP 13 A helicase with RNA and DNA unwinding capabilities, possesses dNTPase activity, helping 
form the 5’ cap of viral mRNA (Sanders et al., 2021) 

NSP 14  Responsible for proofreading during RNA replication and viral mRNA capping (Snijder et 
al., 2016)  

NSP 15 Processes viral RNA, aids in evasion of hosts defense system (Hsu 2021)  

NSP 16  Adds Nsp10 and Nsp14 to form the mRNA cap methylation complex. (Sanders et al., 2021) 

 

 

Current Variants of SARS-CoV-2 

As of June 2021, there are currently seven variants of interest of novel SARS-

CoV-2: B.1.525 originally detected in the United Kingdom/Nigeria (2020), B.1.526 and 

B.1526.1 originally detected in the United States (2020), B.1617, B.1.617.1, and 

B.1.617.3 originally detected in India (2021 and 2020), and P.2 originally detected in 

Brazil (2020) (CDC). A variant is classified as of interest if it contains genetic markers 

that have been associated with changes to receptor binding, reduced neutralization by 

antibodies generated against previous infection or vaccination, reduced efficacy of 

treatments, potential diagnostic impact, or predicted increase in transmissibility or disease 

severity (CDC 2020).   
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According to the CDC there are currently 6 variants of concern: B.1.1.7 originally 

detected in UK(2020), B.1.351 originally detected in South Africa (2020), B.1.427 and 

B.1.429 originally detected in the US (2021), B.1.617.2 originally detected in India 

(2020), and P.1 originally detected in Japan/Brazil (2021). A variant is considered to be 

of concern when there is evidence of increased transmissibility, increased severity of 

disease, significant reduction in neutralization by antibodies generated during previous 

infection or vaccination, reduced effectiveness of treatments or vaccines, or diagnostic 

detection failures (CDC 2020).  

In silico Screening for a SARS-CoV-2 Inhibitor 

Lack of treatment or vaccine for SARS CoV-2 led to extreme loss of life and 

economic disruption in the years 2020 and 2021 (V’kovski et al., 2020). Scientists from 

all over the world are searching diligently for an effective inhibitor-target duo to lessen 

the severity of this virus (V’kovski et al., 2020). One beneficial starting point in the 

search for a potential drug suitable as a specific inhibitor for SARS-CoV-2 is in silico 

screening (Chandra et al., 2020). When searching for potential inhibitors for SARS-CoV-

2, researchers are initially screening previously developed compounds in libraries 

including the Food and Drug Administration (FDA) approved drug database for structure 

based virtual screening (SBVS) as well using molecular docking to compare drugs that 

are used in the treatment of other viruses (Chandra et al., 2020). The first strategy is 

designing the compound based on the existing broad spectrum of antivirals. The 

advantage of this approach is that the established pharmacological properties for these 

compounds allow them to be readily used (Baby et al., 2021).  The downside to this 

strategy is the limitation of available compounds within the library search. 
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 In our study, we investigated small molecules and their potential to inhibit Nsp15 

and the Mpro (Nsp 5) of SARS-CoV2 using in-silico screening. Targeting Nsp proteins 

for inhibition as opposed to the structural proteins of coronaviruses is advantageous due 

to strong conservation across viral strains. The spike protein, for example, is highly 

mutagenic (Zhou et al., 2021). All variants of SARS-CoV-2 (as classified by the CDC) 

contain spike protein amino acid substitutions. In a study by Khan et al, a multiple 

sequence alignment was performed comparing sequences of the SARS-CoV-2 Mpro from 

thirteen different countries. From these alignments, only a single point mutation was 

found from the Vietnam strain (Khan et al., 2020). There are no known mutations of the 

Nsp15 protein in any of the new SARS-CoV-2 strains (CDC 2020). Our objective is to 

find an inhibitor not only for SARS-CoV2, but one with potential to treat its variants and 

future coronaviruses as well.  

Nonstructural Protein 15 of SARS-CoV2 

NSP 15 is a nidoviral RNA uridylate-specific endoribonuclease (NendoU). Nsp 

15 contains a carboxy-terminal catalytic domain that functions by cleaving RNA at the 

3′-position of uridylates to form a 2′-3′ cyclic phosphodiester product (Chandra et al., 

2020). The structure of Nsp15 is 84.38 kDa in size (Kim et al., 2020). The C- terminal 

NendoU domain contains two antiparallel β-sheets (β16–β17–β18 and β19–β20–β21) 

with the active site between them. The active site carries six key residues which are 

conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV coronaviruses (figures 3 

& 4) : His235, His250, Lys290, Ser 294, Thr341, Tyr343) and is thought to play a role in 

processing viral RNA as well as aiding in the evasion of host defense mechanisms (Kim 

et al., 2020).  
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Figure 3 

Active Site Overlay of Nsp 15 of SARS-CoV, MERS, SARS-CoV-2 

 

Note. An active site overlay of Nsp 15 of SARS-CoV2 (teal) SARS (pink), and MERS 
(grey) shows structural similarity among these Coronaviruses. Key residues involved in 
ligand binding (His235, His250, Lys290, Ser294, Thr341, and Tyr343) are highlighted 
(Kim et al., 2020).   

 

While its exact function is unclear, conservation among coronaviruses, confirmed 

by multiple sequence alignment presented in Figure 4, suggests that Nsp15 is essential 

for viral replication. Previous studies suggest that there are multiple Nsp15 cleavage 

targets that are important to regulate the accumulation of viral RNA and prevent 

activation of RNA-activated antiviral responses (Pillon et al., 2021) (Ancar et al., 2020). 

By targeting this protein with a small molecule inhibitor, we can disrupt the viral 

replication process or potentially prevent the evasion of the body’s immune response to 

the virus.  
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Figure 4 

Multiple Sequence Alignment of Nsp15 of SARS, MERS, and SARS-CoV2 

 

Note. Amino acid multiple sequence alignment of Nsp15 of SARS, MERS, and SARS-
CoV2 performed using T-Coffee (Notredame et al., 2000). Amino acids highlighted in 
black are conserved among SARS, MERS, and SARS-CoV2. Individual amino acids 
highlighted in grey show amino acids with similar characteristics or properties to those in 
the same position on different coronaviruses. Figure created using BoxShade 
(https://embnet.vital-it.ch/software/BOX_form.html). 

 

Main Protease of SARS-CoV2 

 The Mpro (also referred to as 3CLpro) was selected due to its significant role in 

viral replication by processing polypeptides after translation from viral RNA (Zhang et 

al., 2020). This enzyme is ~34 kDa in size (Kneller et al., 2020). The Mpro’s function is 

cleaving 11 sites on polyprotein 1ab to continue the replication cycle which suggests 

inhibition would block replication by preventing cleavage of non-structural proteins from 

pp1a and pp1ab (Zhang et al., 2020) (Sanders et al., 2021). As one of the most 

https://embnet.vital-it.ch/software/BOX_form.html
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characterized targets of the SARS-CoV2 virus, the Mpro displays high genetic and 

structural conservation with earlier coronaviruses with no human analogues (Mengist et 

al., 2021). A multiple sequence alignment shown in Figure 5 confirms the conserved 

amino acid sequence of the Mpro across coronaviruses SARS, MERS, and SARS CoV2. 

 

Figure 5 

Multiple Sequence Alignment of Mpro of SARS, MERS, and SARS-CoV2 

 

Note.  Amino Acid multiple sequence alignment (MSA) of the Mpro of SARS, MERS, 
and SARS CoV2. Amino acids highlighted in black are conserved among SARS, MERS, 
and SARS-CoV2. Individual amino acids highlighted in grey show amino acids with 
similar characteristics or properties to those in the same position on different 
coronaviruses. MSA performed by T-Coffee (Notredame et al., 2000). Figure created 
using BoxShade.  
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Structurally, the Mpro is functional as a homodimer with each monomer 

consisting of three domains (Sanders et al., 2021). The active site is formed by 

antiparallel beta sheets from domains I (residues 1-101) and II (residues 102-184) 

containing a Cys-His dyad (Figure 6 A, B). Eight residues (Ser 46, leu141, Asn 142, Glu 

166, Pro168, Ala191, Thr190, and Gln189) surround the active site and play roles in 

ligand binding (Figure 6 B). Domain III (residues 185-200) contains five alpha helices 

and facilitates dimerization (Kneller et al., 2020) (Verschueren et al., 2008). Dimerization 

is essential for function as the monomer is not catalytically active (Kneller et al., 2020).  

 

Figure 6 

Active Site of Mpro 

 

  

Note. The three-dimensional structure of the SARS-CoV-2 Mpro. A. The dimerized Mpro 
is shown with one monomer in orange and the other (containing the catalytic domain) is 
shown in teal. B. The catalytic site of Mpro is shown with the catalytic dyad of Cys145 
and His41 colored purple. Nearby residues interacting within the binding pocket are 
shown in green. (Figure created by Kneller et al., 2020 and is used under Creative 
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Commons Attribution 4.0 International License    
https://creativecommons.org/licenses/by/4.0/legalcode). 

 

First Small Molecule Inhibitor Targeting Mpro  

 Pfizer recently announced its first antiviral small molecule inhibitor targeting the 

Mpro of SARS-CoV2, PF-07321332. This inhibitor is currently in Phase 1 clinical trials 

(NCT04535167) and is delivered orally (Halford, 2020). Scientists originally discovered 

this compound in an attempt to target SARS in 2002, and with most targets of 

coronaviruses remaining structurally conserved, they began testing this compound for 

SARS-CoV2. Early data suggests that compound PF-07321332, which is a prodrug, 

releases active antiviral compound PF-00835231in tissue (Halford, 2020). PF-00835231 

exhibits antiviral activity in multiple strains of SARS-CoV2 as well as other 

coronaviruses suggesting the possibility of a broad spectrum therapeutic for 

coronaviruses (Halford, 2020). Currently, the projected effective dose of this proposed 

inhibitor is 500mg/day delivered intravenously which is considered high. 

Conclusion 

 With its first small molecule inhibitor in clinical trials, the Mpro of coronaviruses 

remains a promising drug target. We continue to search for to a small molecule inhibitor 

for the Nsp15 of Coronaviruses. Structures of these key proteins involved in coronavirus 

replication are well characterized making them a prime candidate for high throughput 

virtual screening to discover an inhibitor. Using high throughput virtual screening, 

molecular docking, and molecular dynamics simulation, we have presented several 

promising compounds from the Zinc15 library targeting the NSP15 and Mpro proteins.  
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Chapter 2 

Methods  

Introduction 

In Silico high-throughput virtual screening provided us with a method to search 

for compounds with potential to bind favorably to our protein targets (Nsp15 and Mpro) 

for inhibition.  Because the Nsp15 and the Mpro structures are well characterized, we 

were able to prepare their structures from PDB files 6WXC and 6LU7 respectively in 

maestro for molecular docking. Using pharmacophore screening of each protein’s natural 

ligand, we searched the FDA approved drug bank, Zinc15 library, and the 

SwissSimilarity library for compounds with structural similarities to each natural ligand 

(Zoete et al., 2016). Following the workflow presented in Figure 7, compounds were 

narrowed down to top candidates which were first docked using Glide docking in 

Maestro. Top candidates were then induced fit docked to each target protein where those 

with the best docking scores were evaluated by molecular dynamics (MD) simulations. 

The molecular mechanics generalized Born surface area solvation calculation (MM-

GBSA) was used to predict the binding energy of each ligand to the Nsp15 and Mpro.  
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Figure 7 

High Throughput Virtual Screening Workflow 

 

Note. High throughput virtual screening workflow starting with protein structure 
preparation using Maestro, compound search of three different libraries, molecular 
docking to identify hit compounds, and finally, molecular dynamics simulation.  

 

Multiple Sequence Alignment 

Multiple sequence alignment (MSA) of the amino acid sequences of the Nsp15 

and Mpro of SARS, MERS and SARS-CoV2 was performed using T-Coffee (Notredame 

et al., 2000). MSA allowed us to confirm structural conservation of key residues involved 

in binding among these different coronaviruses.  

Protein Structure and Receptor Grid Preparation  

The structures of Nsp 15 and of Mpro were retrieved from the Protein Data Bank 

as PDB ID: 6WXC  6LU7, respectively. The protein structure was prepared for molecular 

docking using the Maestro protein preparation wizard (Madhavi Sastry et al., 2013). 
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Water molecules beyond 5 Å from the surface of each protein were deleted, and both 

proteins were optimized at pH 7.0. The optimized proteins were subject to a restrained 

minimization to relax the protein structure using an OPLS3 force field. The active site 

was located by the center of the natural ligand for receptor grid preparation.  

Ligand Preparation  

The three-dimensional ligand structures were prepared using Maestro Elements 

2.2, a feature within the Maestro 10.2 software. Ionization/tautomeric states were 

generated at pH =7 using EPIK which employs the refined Hammett and Taft method 

(Madhavi Sastry et al., 2013). The lowest ionization/tautomeric state was selected. The 

ligand structure was relaxed via restrained minimization in Maestro.  

Glide Docking of the Natural Ligand  

The natural ligand of both Nsp15 and the Mpro of SARS-CoV2 was first docked 

using Glide dock. Docking the natural ligand back to the protein allows us to validate our 

docking methods. Glide XP docking searches for the most favorable ligand-receptor 

conformations for a protein-drug complex. Standard Glide dock was used to dock each 

crystal ligand into its respective receptor grid under default parameters.  

High Throughput Virtual Screening: Zinc Drug-Like Library 

To search for promising small molecule inhibitors, virtual libraries were searched 

using the natural ligand as a model for structure similarity. Libraries included within the 

search for Nsp15 inhibitors were SwissSimilarity, DrugBank, and Zinc15 (Sterling & 

Irwin, 2015). The library searched for Mpro inhibitors was Zinc15. Initial screening of 
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over 7 million compounds presented several promising compounds with structural 

similarity to the natural ligand for both protein targets.  

QikProp ADME Filtering of Compounds  

QikProp from Schrodinger was used as an ADME (absorptions, distribution, 

metabolism, excretion) filter to quickly reduce molecular candidates which fall outside of 

the normal range of known drug limits of properties such as molecular weight, logP 

value, .and oral absorption.  
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Figure 8 

Workflow of Virtual Screening Compounds for Inhibition of Coronaviruses 

 

Note. Workflow of virtual screening compounds for inhibition of coronaviruses 

 

Glide Docking 

Promising molecules for inhibition were docked to the prepared Nsp15 (PDB: 

6WXC) (Kim et al., 2020) and Mpro (PDB:6LU7) (X. Liu et al., 2020) protein structures 

using the Glide feature of Maestro software. Glide is a quick and rigid method of 

molecular docking which calculates a docking score based on protein-ligand coulomb-

vdW energy with a small contribution from GlideScore (Friesner et al., 2004). The 
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GlideScore is a value meant to separate molecules with strong versus weak binding 

potential (Friesner et al., 2004). While the docking scoring function used by Glide is 

proprietary, we do know it rewards Van der Waals and Coulomb energy contributions, 

hydrophobic terms, hydrogen bonds, and polar interactions within the binding site. Glide 

penalizes the inhibition of rotatable bonds and other binding interactions (Friesner et al., 

2006).  Molecules with docking scores greater than the score of the natural ligand were 

considered for further evaluation. Compounds with high structure similarity were 

eliminated to diversify the screening.  

Induced Fit Docking 

Induced fit docking was performed on the top 19 compounds of Nsp15 and top 30 

compounds of Mpro to validate top compounds by allowing conformational changes 

within the binding pocket of the protein. Induced fit docking files were ordered by 

highest docking score and processed for molecular dynamics simulation.   

Molecular Dynamics Simulation  

Molecular dynamics simulations were performed using Desmond Molecular 

Dynamics simulation by Schrodinger. Molecular dynamics allows us to observe how 

compounds may bind to a protein target by estimating kinetics and binding energy. Each 

system was solvated in an orthorhombic water box using the SPC water model with a 10 

Å water buffer (Mark & Nilsson, 2001). To neutralize the systems, Na+ ions were added 

with a salt concentration of 0.15 M NaCl. After successful solvation of each system, the 

OPLS3 force field (Harder et al., 2015) was used to represent the receptor-ligand 

complex.  For each system, the default relaxation protocols were followed in the 
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Desmond simulation package (Jorgensen et al., 1996). Simulations were run for 200 

nanoseconds at a temperature of 300 K.  

Protein and Ligand Root-Mean-Square Deviation of Atomic Position (RMSD)  

Calculation  

 Root mean square deviation calculations were performed for both the protein and 

ligand for conformation of binding stability throughout the simulation using equation 1: 

RMSD = √
1

𝑁
∑ (𝑟𝑖

′(𝑡𝑥)) − 𝑟𝑖(𝑡𝑟𝑒𝑓))
2)𝑁

𝑖=1                                            (1) 

Where N is the number of atoms in the atom selection; tref is the reference time, (the first 

frame is used as the reference as time t=0); and ri' is the position of the selected atoms in 

frame x after superimposing on the reference frame, where frame x is recorded at time tx. 

This calculation is repeated for every frame in the simulation trajectory. 

Protein RMSD values were expected to stabilize toward the end of each 

simulation which indicated a steady state within the binding pocket.  Ligand RMSD 

values significantly larger than the protein RMSD suggest the ligand has likely moved 

from the binding site.  

Protein Root Means Square Fluctuation (RMSF) Calculation 

Protein RMSF was calculated to determine individual amino acid changes 

throughout the simulation. RMSF was calculated using equation 2:  
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RMSF = √
1

𝑇
∑ < (𝑟𝑖

′(𝑡)) − 𝑟𝑖(𝑡𝑟𝑒𝑓))
2) >𝑇

𝑡=1                               (2) 

Where T is the trajectory time over which the RMSF is calculated, tref is the reference 

time, ri is the position of residue i; ri' is the position of atoms in residue i after 

superposition on the reference, and the angle brackets indicate that the average of the 

square distance is taken over the selection of atoms in the residue. 

Binding Energy Calculation     

Molecular Mechanics-General Born Surface Area (MM-GBSA) binding energies 

were calculated for the last 10 nanoseconds of the combined trajectory for each system 

where the RMSD calculation suggested binding stability within the system. This method 

of binding energy prediction was selected as it balances accuracy and computational 

power. The OPLS3 force field, VSGB 2.0 solvation model (Li et al., 2011) and the 

default prime protocol (Cournia et al., 2017) was used to separately minimize the 

receptor, ligand, and receptor-ligand complex using equation 3 for the total binding free 

energy: 

  ΔG(bind) = Ecomplex (minimized) – (Eligand (minimized) + Ereceptor (minimized))  (3) 

Binding components (Coulombic + H-bond + GB solvation+ van der Waals + π-π 

packing + self-contact + hydrophobic) were evaluated into separate groups: Eelectrostatic, 

EvdW, and Ehydrophobic, where (Eelectrostatic = Ecoulombic + EH-bond + EGB-solvation) and (EvdW = 

EvdW + Epi-pi stacking + Eself-contact).  
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Simulation Interaction Diagram Analysis 

The Simulation Interaction Diagram in Desmond and Glide was used to view 

interactions between the protein and ligand in each simulation. Residues interacting with 

the protein for at least 30 % of the simulation are highlighted. 2D interaction diagrams 

are included for proteins and compounds simulated in Figures 13 and 18.  

ADME Property Prediction  

 Predicted ADME (absorption, distribution, metabolism, and excretion) properties 

were evaluated using the Swiss ADME server (http://www.swissadme.ch) to determine 

the potential for any compounds to be functional as a drug from pharmacokinetic and 

physicochemical properties (Daina et al., 2017).  
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Chapter 3 

Molecular Docking and Molecular Dynamics Simulation of Inhibitors Targeting 

Nsp15  

Introduction  

 The Nsp15 protein of Coronaviruses plays a key role in viral replication making it 

a potential target for a small molecular inhibitor. In this chapter, I present the results of 

our high throughput virtual screening of small molecule libraries including DrugBank 

and ZINC 15. Four promising compounds were identified for Nsp15. Molecular 

dynamics simulation allowed us to predict the binding energies (calculated by MM-

GBSA) for these compounds and further understand the interactions supporting binding. 

Using the SwissADME server we were able to identify structurally based ADME 

properties that determine the likelihood of our compounds to perform successfully as 

drugs.  

Molecular Docking 

Natural Ligand Docking  

Using Glide docking software in Maestro, we measured the binding score of the 

natural ligand of Nsp15 to validate our docking protocol (Figure 9). The binding score of 

the natural ligand docked to the binding site of PDB:6LU7 was calculated at -7.295 

kcal/mol. When evaluating compounds for molecular docking, we searched for 

compounds with preliminary docking scores better (more negative) or equivalent to this 

value.  
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Figure 9 

NSP15 Complex with its Natural Ligand and 2D Structure 

 

Note. A. Nsp15 is shown in complex with its natural ligand (PDB:6WXC). B. The two-
dimensional structure of the natural ligand of Nsp15 is presented.  
 
 

Glide and Induced Fit Docking   

Molecules from the high throughput virtual screening of the DrugBank and 

Zinc15 databases were docked to NSP15 using GlideXP. Compounds found to have an 

initial docking score greater than or equal to the docking score of the natural ligand were 

selected for further evaluation by induced fit docking. Compounds with high structure 

similarity to each other were eliminated to diversify the screening.   

Nineteen compounds from the Zinc15 database were selected for further 

consideration because their docking scores ranged from -7.33 kcal/mol to -10.32 

kcal/mol. The docking score allows us to easily compare binding probability among 

compounds. No targets were selected for further evaluation from the DrugBank library 

due to low docking scores. An induced fit docking protocol as described in Chapter 2, 
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was employed to optimize the docking pose of those compounds for molecular dynamics 

simulation.  

Molecular Dynamics Simulation 

Molecular dynamics simulation was performed as described in Chapter 2 to 

further evaluate binding of hit compounds to NSP15. Output of the MD simulations 

included docking scores from the previous induced fit docking, MM-GBSA free energy, 

and RMSD values for the protein and ligand. The RMSD value for each compound 

averaged over the last 20 ns of the simulation was presented. The last 20 ns were 

averaged as we expected the complex to be stable for this portion of the simulation. 

Results of these simulations are presented in Table 2. 
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Table 2 

Properties of the Top 19 Compounds were Determined from Molecular Docking 
and MD Simulations  

 

Zinc ID Docking Score 
(kcal/mol) 

MM-GBSA 
(kcal/mol) 

Receptor 
RMSD1 (Å) 

Ligand 
RMSD1 (Å) 

Natural Ligand -7.295 -28±2.7 1.67±0.1 4.48±1.0 

ZINC000013545806 -10.327 -67.3±5.3 3.14±0.3 22.73±3.7 

ZINC000004096690 -10.007 -21.0±4.5 2.87±0.3 44.93±6.8 

ZINC000247434422 -9.799 -76.5±6.7 4.07±0.5 7.97±0.4 

ZINC000004095545 -9.758 -2.7±3.3 2.78±0.7 44.56±8.6 

ZINC000030690671 -9.267 -28.7±13.0 2.63±0.3 45.52±7.7 

ZINC000004096060 -9.067 -6.6±3.2 6.44±0.6 46.49±6.8 

ZINC000043898683 -8.666 -38.3±16.7 2.52±0.2 12.49±3.8 

ZINC000043772626 -8.168 -47.5±9.7 3.19±0.3 5.19±2.5 

ZINC000257311522 -7.708 -41.1±10.0 2.35±0.1 24.65±7.5 

ZINC000002573902 -7.66 -33.8±4.6 4.1±0.4 13.2±1.1 

ZINC000097814854 -7.633 -40.0±9.0 2.2±0.3 6.92±0.8 

ZINC000005811925 -7.585 -19.8±6.9 2.7±0.3 21.0±0.9 

ZINC000095447896 -7.478 -30.5±9.9 2.4±0.2 15.9±6.5 

ZINC000033902452 -7.478 -49.0±3.3 2.7±0.2 3.0±0.5 

ZINC000044020013 -7.463 -50.0±3.0 2.7±0.3 7.4±1.0 

ZINC000584892418 -7.461 -28.3±3.8 3.1±0.3 21.3±1.1 

ZINC000257288396 -7.423 -36.0±9.0 4.5±0.5 36.25±10.7 

ZINC000009716294 -7.388 -39.1±8.1 2.8±0.3 7.05±2.9 

ZINC000014728394 -7.338 -28.9±19.3 2.7±0.2 17.53±3.1 

     
Note. Properties presented are the docking score, MM-GBSA calculation, and 
Receptor and Ligand RMSD. 1 Receptor and Ligand RMSD values are averaged 
from the last 20 ns of the simulation. Top promising compounds are shown in 
bold. 
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MM-GBSA Binding Energy Calculations Predict Top Compounds for Nsp15 

Inhibition 

 MM-GBSA was used to calculate the enthalpic terms of the binding 

energy as previously described in Chapter 2. The MM-GBSA binding energy 

makes several assumptions, including the use of an implicit solvent model. Using 

an implicit model assumes the solvent is one continuous medium with a specified 

dielectric. This significantly decreases protein-solvent interactions as compared to 

an explicit solvent model. These interactions play a non-negligible role in protein-

ligand binding and should be considered in the future (J. Zhang et al., 2017). 

Using this method also removes viscosity from consideration, which speeds up 

the conformational search of the solvent. Despite these assumptions, MM-GBSA 

provides an accurate prediction of binding energy, while lowering time and 

computational costs (Onufriev & Case, 2019).  

It is important to note that entropic terms are not considered in these 

calculations due to high computational cost. Conformational entropy is known to 

contribute significantly (and usually unfavorably) to binding energy (Genheden & 

Ryde, 2015) (Singh & Warshel, 2010). There are additional computational 

methods available that can be used to accurately predict this contribution 

including normal mode analysis. Including entropic terms would offer a more 

accurate predicted binding energy.  

Analysis of the output from the MD simulations showed four promising 

compounds: ZINC000247434422, ZINC000043772626, ZINC000033902452, 
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and ZINC000044020013. These compounds were considered to be the most 

promising ones because they meet the following criteria: a better (more negative) 

docking score than the natural ligand, a low predicted binding energy as 

calculated by MM-GBSA, and each remained bound to the protein when the 

trajectory stabilized. A two-dimensional structure of each top compound with its 

predicted binding energy is presented in Figure 10. 

 

Figure 10 

Top Four Compounds and their Predicted Binding Energy 

 

Note. The top four compounds for Nsp15 inhibition were determined by docking 
score, predicted binding energy, and the ability to remain bound to the protein 
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when the trajectory stabilized. Predicted binding energies according to MM-
GBSA calculations are listed for each compound in kcal/mol.  

 

RMSD Plots Show the MD Simulation has Stabilized  

Binding stability was evaluated by measuring the RMSD values of each 

complex throughout the entire simulation. At the end of each simulation, we 

expect the RMSD values to converge around a fixed value to confirm 

equilibration of the simulation. The values listed for the RMSD of the protein and 

ligand in Table 2 are averaged over the last 20 ns where we expect the simulation 

to be stabilized. Plots of RMSD values throughout the entire simulation for the 

most promising compounds are presented in Figure 11. Small fluctuations of the 

RMSD values (between 1-3 Å) are expected throughout the simulation. Larger 

fluctuations suggest a larger conformational change and may indicate the ligand 

has moved away from the binding site.  

All compounds appear to have stable RMSD values for the last 40 seconds 

of each simulation except for ZINC000043772626. This compound remained 

stable for most of the simulation, then saw a sharp increase within the last 10 ns 

with the ligand RMSD measuring 10 Å. The protein RMSD remained stable at 

around 4 Å. These findings suggest the ligand may have moved away from the 

binding pocket. A longer simulation may be needed to reach equilibration for this 

simulation. All other compounds appear stable for the last 40 ns of the simulation 

as expected suggesting equilibration.  
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Figure 11 

RMSD of NSP15 Protein and Top 4 Compounds
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Note. Root Mean Square Deviation (RMSD) plots are presented for the MD 
simulation runs of each top protein-ligand complex over the length of the 
trajectory. The Cα-RMSD for the protein is shown in dark grey and the ligand 
RMSD is shown in light grey. Cα-RMSD is based on initial protein alignment.  

 

MM-GBSA Binding Energy Components  

The predicted binding energy calculation combines energy contributions 

from non-covalent interactions including Van der Waals, hydrophobic, and 

electrostatic terms.  The predicted binding energy contribution from each of these 

terms is presented in Table 3. These terms are also rewarded by the Glide 

docking scoring function, so it is expected that compounds with a favorable (more 

negative) docking score will also have a favorable predicted binding energy. An 

example of this relationship is shown by compound ZINC000247434422 which 

presented the most favorable binding energy at -76.5±6.7 kcal/mol and one of the 

highest docking scores at -9.7. The hydrophobic term provided the greatest 

contribution to the total binding energy at -40.7±2.3 kcal/mol with an additional 

heavy contribution from the Van der Waals term at -35.3±0.7 kcal/mol. These 

contributions to the predicted binding energy can be better understood when we 

examine them separately.  
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Table 3 

The MM-GBSA Binding Energy Calculation Components Including the Van der 
Waals, Hydrophobic, and Electrostatic Terms are Presented 

Zinc ID Van der 
Waals 

(kcal/mol) 

Hydrophobic 
(kcal/mol) 

Electrostatic 
(kcal/mol) 

Natural Ligand -22.8±2.2 -7.6±1.4 1.9±1.4 

ZINC000013545806 -35.1±2.8 -43.4± 2.0 11.2±1.5 

ZINC000004096690 -16.6±5.5 -7.0±1.2 2.5±1.1 

ZINC000247434422 -35.3±0.7 -40.7±2.3 -0.5±5.2 

ZINC000004095545 -2.7±3.4 -1.1±1.3 1.2±1.6 

ZINC000030690671 -11.5±4.6 -17.1±8.1 -0.1±7.1 

ZINC000004096060 2.2±3.3 -1.2±1.8 -7.7±4.6 

ZINC000043898683 -24.0±9.1 -23.6±10.2 9.4±2.4 

ZINC000043772626 -25.9±4.1 -24.5±2.1 3.0±5.9 

ZINC000257311522 -18.0±3.5 -13.3±5.8 -9.9±2.7 

ZINC000002573902 -21.6±2.5 -13.9±1.7 1.8±1.4 

ZINC000097814854 -33.3±4.0 -16.8±3.8 10.0±2.7 

ZINC000005811925 -10.2±1.7 -2.6±0.8 -7.0±7.5 

ZINC000095447896 -22.1±4.2 -12.0±4.4 3.6±3.2 

ZINC000033902452 -23.5±4.8 -16.9±0.3 -8.6±6.9 

ZINC000044020013 -29.3±2.2 -20.7±1.0 0.0±4.6 

ZINC000584892418 -15.3±4.5 -12.1±2.9 -0.8±6.1 

ZINC000257288396 -18.5±6.6 -12.6±1.9 -4.9±4.8 

ZINC000009716294 -26.3±4.4 -16.6±2.0 3.7±3.9 

ZINC000014728394 -19.9±12.4 -12.4±7.3 3.4±2.0 

    
  Note. Top promising compounds are shown in bold 
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As described in chapter 2, the Van der Waals term is the sum of Van der 

Waals, π-π stacking, and self-contact energies. The hydrophobic term is measured 

alone while the electrostatic term is the sum of energy contributions made by 

Coulomb interactions, Hydrogen bonds, and general born solvation energies. A 

breakdown of these terms allows us to further understand how the ligand interacts 

with the binding pocket.  

The Van der Waals and hydrophobic terms of the predicted binding 

energy equation dominate ligand binding for these compounds. In Table 3, top 

compounds all had large contributions from both of these terms. It is expected that 

Van der Waals interactions to contribute significantly to the binding energy due to 

the number of these interactions involved in molecular recognition (L. Li et al., 

2015). Hydrophobic interactions are extremely valuable and frequent in 

supporting ligand binding.  These interactions drive nonpolar interactions to 

displace water molecules from interacting surfaces within the binding pocket 

(Wermuth et al., 2015).  

There were minimal favorable and unfavorable contributions to the total 

binding energy from the electrostatic term in all cases as expected. The energy 

from hydrogen bonds can vary in intermolecular interactions, and in these 

simulations their contributions were very small. The contribution from Coulombic 

energy and binding solvation are similar in magnitude, but opposite in their signs 

leaving the sum of the total electrostatic contribution to be a small number of 

either positive or negative value. It is important to note that the electrostatic term 

is highly dependent on the parameters of the simulation including the force field 
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chosen, the dielectric constant of the protein and the refinement of the proteins 

structure (Talley et al., 2008).    

The Protein Cα RMSF Confirms the Stability of Compound Binding by Residue 

Residue fluctuation was measured throughout the simulation and is 

presented by RMSF values in Figure 12. Higher RMSF values indicate more 

fluctuation of amino acids throughout the MD simulation. It is common for the N 

and C terminal tails of the protein to fluctuate significantly, and we observe that 

for all simulations. We expect that secondary structures (alpha helices and beta 

strands) remain more rigid with lower RMSF values, while loop regions have a 

higher rate of fluctuation throughout each simulation.  

Residues fluctuated similarly for each compound and the natural ligand 

with a differing fluctuation observed for the complex with compound 

ZINC000044020013 in residues 13-25. These residues are a part of a loop region 

between an alpha helix structure and a beta strand. An amino acid sequence of 

Nsp15 including secondary structure assignments is presented as Appendix 

Figure 1. This particular compound relies heavily on its binding interaction with 

only its carboxylic acid group. Its binding may not stabilize this loop region as 

well as the other top compounds allowing for some additional protein flexibility. 

Compound ZINC000043772626 also shows additional fluctuation between 

residues 103 through 110 which is a loop region.  

Amino acids interacting within the binding pocket, including His235, 

His250, Lys290, Ser 294, Thr341, Tyr343, appear stable in each simulation with 
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RMSF values under 3 Å. As expected, loop regions show the most flexibly, this is 

apparent in regions 45-52 and 256-265 where RMSF values reach approximately 

5.5 Å.
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Figure 12 

Residue Fluctuation Plotted by RMSF 
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Note. The residue fluctuation plotted by RMSF during binding with each top compound 
(Cyan: Natural Ligand, Orange: ZINC000247434422, Grey: ZINC000043772626, 
Yellow: ZINC000033902452, Dark Blue: ZINC000044020013).  Residues fluctuated 
similarly throughout the simulation for all compounds with an exception in residues 13 
through 25 for ZINC000044020013.  

 

Simulation Interaction Diagrams Reveal Key Binding Residues for Top Compounds 

 Key residues supporting compound binding to Nsp15 for at least 30 % of the 

simulation were identified by the Desmond simulation interaction diagram (Figure 13). 

These interactions are expected to agree with docking score and MM-GBSA binding 

energy prediction value. As shown previously in Table 3, most of the predicted binding 

energy is composed of the Van der Waals and hydrophobic terms so we expect 

interactions to support these energy contributions. Most of the interactions displayed in 

the simulation diagrams were driven by hydrophobic or polar interactions with the 

binding pocket which agrees with these findings. The residues responsible for these 

interactions within the binding pocket are His235, His250, Lys290, Ser 294, Thr341, and 

Tyr343.  

For ZINC000247434422, key interactions include polar interactions through 

water molecules with His250 and Ser 294 for 41% and 39% of the simulation, 

respectively. Hydrophobic interactions with residues Leu346 and Pro344 were 

maintained for 42% and 46% of the simulation respectively. This compound had the 

highest docking score and predicted binding energy which was supported in large by its 

hydrophobic and Van der Waals energy contributions.  

Interactions supporting ZINC000043772626 included a positive charge with 

Lys290 for 40% and 36% of the simulation with two separate oxygens. A polar 
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interaction with Asn278 for 35% of the simulation, and hydrophobic interactions with 

waters and Leu 346 (37%) and Val292 (34%) also contributed to the compounds binding 

to Nsp15. This compound had similar contributions from hydrophobic and Van der 

Waals terms.  

ZINC000033902452 has a positively charged interaction with Lys290 for 69% of 

the simulation and Lys 345 for 37% of the simulation. Hydrophobic interactions for 

ZINC000033902452 include: Val292 (58%), Trp333 (62%), Leu346 through water for 

51%, and Tyr343 through interactions with two separate waters for 40% and 36% of the 

simulation. Polar interactions include His250 through a water for 35% and Ser294 for 

57% of the simulation.  Several interactions between this compound and the binding 

pocket are hydrophobic which is reasonable as the predicted binding energy of this 

compound was supported heavily by its hydrophobic term.  

Compound ZINC000044020013 has a positively charged interaction with Lys290 

with two oxygens for 37% and 32% of the simulation. Gly248 maintained interaction 

with Nsp15 for 36% of the simulation. This compound had the least amount of 

interaction with the binding pocket. This resulted in a less favorable predicted binding 

energy when compared to the other top compounds.   
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Figure 13 

2D Ligand Interaction Diagrams of Top 4 Compounds 
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Note. 2D ligand interaction diagrams from the MD trajectory for the top four 
compounds show the interactions supporting binding to Nsp15. The residues shown 
interacted with each ligand for a minimum of 30% of the simulation time. 

 

SwissADME Predicts Important Drug Discovery Parameters 

Important ADME properties for each compound were predicted using the 

SwissADME server. When evaluating a compound for use in a drug, we must 

consider how it will reach its target and assess absorption, distribution, 

metabolism, and excretion within the body. Properties highlighted in our search 

were GI absorption, blood brain barrier permeability, Lipinski rule of 5 violations, 

Cytochrome P450 enzyme inhibition, PAINS alerts, and Brenk alerts.  

 Gastrointestinal absorption and blood brain barrier permeability is 

predicted by the Swiss ADME server using the Brain Or IntestinaL EstimateD 

permeation (BOILED-Egg) method. This method measured the lipophilicity (by 

Log P) and polarity (by polar surface area (PSA) of each compound and sorts 

them based on their likelihood to be passively absorbed by the gastrointestinal 

tract or passively diffused through the blood brain barrier. Parameters of the 

BOILED -Egg considered good gastrointestinal absorption are PSA lower than 

142 Å and log P between −2.3 and +6.8 (Daina & Zoete, 2016). Parameter 

considered good for blood brain barrier permeability are a PSA <79 Å and a 
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lipophilic log P from 0.4 to 6.0.  SARS-CoV-2 and other coronaviruses are most 

commonly detected in the upper airways, lungs, mouth, and the gastrointestinal 

tract so blood brain barrier permeability is not necessary for reaching Nsp15 

(Trypsteen et al., 2020). We are most interested in gastrointestinal tract absorption 

for this study as that is promising for an oral drug which simplifies delivery.  

Lipinski’s rule of five helps determine if a drug meets a set of standards 

known to allow drug absorption and permeability. These five rules include a 

molecular weight less than 500 daltons, a calculated octanol-water partition 

coefficient (LogP) less than or equal to 5, includes hydrogen bonding acceptors 

(less than or equivalent to 10), as well as hydrogen bonding donors less than or 

equivalent to 5 (Benet et al., 2016). Lipinski’s rules consider any compound with 

more than one violation to be a poor candidate for drug use.  

The Swiss ADME server also screens compounds for their ability to 

inhibit top CYP enzymes. Cytochrome P450 enzymes are isoenzymes that play a 

key role in drug elimination (Daina et al., 2017). Inhibition of the enzymes can 

lead to drug-drug interactions which may result in toxic or other adverse effects 

caused by low clearance of the drug (Daina et al., 2017). Understanding the 

potential for a new drug to inhibit the cytochrome P450 enzymes plays an 

important role in predicting potential interactions between drugs and drug 

excretion. 

 Pan Assay Interference Compounds (PAINS), bind non-specifically to 

drug targets. These compounds are known to cause false positives in high 
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throughput virtual screenings. Lack of PAINS alerts suggest a good outlook for 

these compounds to bind specifically to their target in drug form (Baell & 

Holloway, 2010).   

Brenk alert determines lead-likeness of a molecule and focuses on 

physiochemical boundaries. Leads may be subject to chemical modifications to 

optimize the compound which may increase the size of the molecule or its 

lipophilicity. In anticipation of these modifications, leads should begin smaller in 

size and less hydrophobic than other molecules. 

Results of the Swiss ADME predictions are listed in Table 4. Two 

compounds had good gastrointestinal absorption: ZINC000247434422 and 

ZINC000043772626 while none displayed the ability to permeate the blood brain 

barrier. The top four compounds for Nsp15 do not show potential to be inhibitors 

for four of the five subtypes of cytochrome P450 enzymes (CYPs) including 

CYP1A2, CYP2C19, CYP2C9, CYP2D6 (McDonnell, PharmD, BCOP & Dang, 

PharmD, BCPS, 2013).  Two compounds (ZINC000247434422 and 

ZINC000043772626) show potential to inhibit CYP3A4. Compounds had no 

Lipinski rule of five violations, PAINS or Brenk alerts.  

  

 

 

 



 

 

44 

 

Table 4 

The Predicted ADME Properties for the Top 4 Best Compounds by the SwissSimilarity Server are Presented 

Compound GI 
absorption 

BBB 
Permeant 

Lipinski 
Rule 

Violations 

CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 PAINS 
Alerts 

Brenk 
Alerts 

ZINC000247434422 + - - - - - - + - - 

ZINC000043772626 + - - - - - - + - - 

ZINC000033902452 - - - - - - - - - - 

ZINC000096232566 - - - - - - - - - - 

           
Note. Predicted properties include gastrointestinal absorption, blood brain barrier permeability, Cytochrome P450 enzyme inhibition, Lipinski 
Rule of five violations, PAINS alerts, and Brenk alerts + indicates high GI absorption, BBB permeability, a Lipinski rule violation, inhibition of a 
cytochrome P450, or a PAINS or Brenk alert. - indicates low GI absorption, no BBB permeability, no Lipinksi Rule Violations, no CYP 
inhibition, and no PAINS or Brenk alerts.  
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Based on the SwissADME server screening, all four top compounds 

remain promising.  The two compounds without high gastrointestinal absorption 

(ZINC000033902452 and ZINC000096232566) would need further consideration 

for a delivery method as an oral administration may not be suitable. Interactions 

between CYP3A4 and compounds ZINC000247434422 and ZINC000043772626 

should be further investigated. Several effective antiviral drugs are inhibitors of 

CYP3A4, it is just important to consider toxicity levels of the drug and any other 

potential drug-drug interactions.  

Conclusion 

We have presented four promising compounds targeting the Nsp15 protein 

of SARS-CoV-2. The results of our Molecular docking and MD simulations 

conclude that each top compound has a favorable predicted binding energy to the 

Nsp15 active site. The compound performing best through all analyses for Nsp15 

was ZINC000247434422 with the most favorable predicted binding energy at -

76.5±6.7 kcal/mol. The SwissADME screening allowed us to identify preliminary 

parameters suggesting that these compounds may succeed in drug form. Each 

compound remains a candidate for further experimental validation as a Nsp15 

small molecule inhibitor.  
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Chapter 4  

Molecular Docking and Molecular Dynamics Simulation of Inhibitors Targeting 

Mpro 

Introduction 

The Mpro of Coronaviruses plays a significant role in processing viral replication 

making it a potential target for a small molecular inhibitor. In this chapter, I present our 

high throughput virtual screening of ZINC 15. Eight promising compounds were 

identified for Mpro Molecular dynamics simulation allowed us to predict the binding 

energies (calculated by MM-GBSA) for these compounds and further understand the 

interactions supporting binding to their target. Using the SwissADME server we were 

able to identify structurally based ADME properties that determine the likelihood of our 

compounds to perform successfully as drugs.  

Molecular Docking  

Natural Ligand Docking  

Using Glide docking software in Maestro, we measured the binding score of the 

natural ligand of the Mpro (Figure 14). The binding score of the natural ligand to the 

binding site used in our molecular docking and molecular dynamics simulations was 

calculated at -9.607 kcal/mol. When evaluating molecules for docking, we originally 

searched for compounds with preliminary docking scores better (more negative) or 

equivalent to this value. Most compounds in the high throughput virtual screening did not 

meet these criteria so compounds with a Glide docking score less than -8.4 kcal/mol were 
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considered. Values with docking scores close to the natural ligand score are acceptable as 

there is variability in the scoring function.   

 

Figure 14 

Mpro in Complex with its Natural Ligand and 2D Structure 

 

Note. A. Mpro is shown in complex with its natural ligand (PDB:6LU7). B. The two-
dimensional structure of the natural ligand of Mpro is presented.  
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High Throughput Virtual Screening and Molecular Docking  

From our high throughput virtual screening of the DrugBank and Zinc15 

database, 31 molecules were selected from the Zinc15 database for preliminary molecular 

docking to Mpro using structure PDB:6LU7. The compounds listed in Table 5 were found 

to have an initial docking score greater than or equal to -8.4 kcal/mol.  After eliminating 

molecules with high structure similarity, remaining compounds selected by docking 

score, were further evaluated by induced fit docking. Docking scores selected for further 

consideration ranged from -8.4 kcal/mol to -10.1 kcal/mol. These compounds were next 

evaluated by molecular dynamics simulation.  

Molecular Dynamics Simulation 

Molecular dynamics simulation was performed to evaluate binding of hit 

compounds to Mpro. Output of the MD simulations included docking scores, MM-GBSA 

free energy, and protein and ligand RMSD. Results of this simulation are presented in 

Table 5.  
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Table 5 

Properties of the Top 31 Compounds from Molecular Docking and MD 
Simulations are Presented  

Zinc ID Docking Score 
(kcal/mol) 

MM-GBSA 
(kcal/mol) 

Receptor 
RMSD1 (Å) 

Ligand 
RMSD1 (Å) 

Natural Ligand  

ZINC000004600917 

-8.4 

-10.1 

-70.08 ± 12.5  

-43.9 ± 10.6 

1.6±0.1 

2.7±0.1 

5.1±1.0  

3.1±0.4 

ZINC000057312352 -9.4 -73.0 ± 13.0 2.1±0.1 4.3±0.9 

ZINC000000090720 -9.4 -51.3 ± 9.0 2.1±0.2 8.8±0.6 

ZINC000020988539 -9.3 -54.8 ± 6.4 2.3±0.1 6.3±0.3 

ZINC000004899522 -9.1 -55.8 ± 8.4 3.0±0.2 5.9±0.3 

ZINC000253630002 -9.1 -62.9 ± 7.9 1.9±0.2 6.0±0.2 

ZINC000014728050 -9.1 -54.5 ± 6.9 2.7±0.1 6.6±0.5 

ZINC000064568387 -9.0 -68.8 ± 8.4 2.3±0.1 10.4±0.4 

ZINC000004897405 -9.0 -62.3 ± 13.6 3.2±0.2 7.7±0.5 

ZINC000223270144 -9.0 -61.7 ± 11.4 2.5±0.2 9.7±0.4 

ZINC000096447388 -8.9 -68.3 ± 14.1 2.7±0.1 7.2±0.3 

ZINC000012119172 -8.8 -39.2 ± 9.4 2.6±0.1 17.8±0.5 

ZINC000000121038 -8.8 -51.6 ± 9.0 2.0±0.1 5.4±0.4 

ZINC000070216736 -8.8 -40.3 ± 8.2 6.7±0.4 8.3±0.6 

ZINC000663523562 -8.8 -72.6 ± 12.1 2.7±0.2 9.3±1.5 

ZINC000005273576 -8.7 -44.5 ± 14.5 3.0±0.1 8.3±2.5 

ZINC000064568512 -8.7 -83.4 ± 8.5 3.1±0.1 2.4±0.2 

ZINC000000632530 -8.7 -59.7 ± 13.9 2.8±0.3 12.2±0.6 

ZINC000261493176 -8.7 -33.6 ± 15.7 2.7±0.1 35.8±2.7 

ZINC000426359607 -8.7 -69.0 ± 13.2 2.7±0.2 8.7±0.3 

ZINC000263585674 -8.6 -69.1 ± 10.7 2.3±0.1 9.2±0.3 

ZINC000057774900 -8.6 -56.5 ± 12.6 3.1±0.2 10.5±0.6 
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Zinc ID Docking Score 
(kcal/mol) 

MM-GBSA 
(kcal/mol) 

Receptor 
RMSD1 (Å) 

Ligand RMSD1 
(Å) 

ZINC000089440373 -8.6 -73.2 ± 12.2 2.3±0.1 9.4±0.6 

ZINC000019341151 -8.6 -84.5 ± 11.9 2.2±0.2 3.1±0.4 

ZINC000193716208 -8.6 -56.7 ± 21.2 3.2±0.2 24.4±4.3 

ZINC000008876585 -8.5 -63.1 ± 7.7 2.9±0.1 4.8±0.4 

ZINC000012165443 -8.5 -85.6 ± 15.3 2.7±0.1 10.2±0.8 

ZINC000012990014 -8.5 -43.0 ± 9.4 2.6±0.2 3.0±0.3 

ZINC000001547992 -8.5 -72.2 ± 9.5 2.5±0.2 2.9±0.3 

ZINC000015680255 -8.4 -71.8 ± 16.4 2.1±0.1 6.5±0.5 

ZINC000005553602 -8.4 -57.8 ± 12.3 2.1±0.1 7.4±0.6 

     

Note. Properties including the docking score, total binding energy as calculated by 
MM-GBSA, and the RMSD for the ligand and protein. 1 Receptor and Ligand 
RMSD values are averaged from the last 20 ns of the simulation. Top promising 
compounds are shown in bold 
 

Analysis of the output from the MD simulation showed eight promising 

compounds: ZINC000057312352, ZINC000663523562, ZINC000064568512, 

ZINC000089440373, ZINC00019341151, ZINC000012165443, 

ZINC000001547992, and ZINC000015680255. These compounds and their 

docking scores are presented in Figure 15. Each compound had a docking score 

higher than -8.4 kcal/mol, a low predicted binding energy, and remained bound to 

the protein after the trajectory stabilized.  
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Figure 15 

Top 8 Compounds and their Predicted Binding Energy 
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Note. Top eight compounds for Nsp15 inhibition were determined by docking score, 
predicted binding energy, and the ability to remain bound to the protein when the 
trajectory stabilized. Predicted binding energies according to MM-GBSA calculations are 
listed for each compound. 

 

RMSD Plots Show the Simulation has Stabilized  

Binding stability was evaluated by measuring the RMSD values of each complex 

throughout the entire simulation. The values listed for the RMSD of the protein and 

ligand in Table 5 are averaged over the last 20 ns. As previously described in chapter 3, 

we expect the RMSD values to converge around toward the end of the simulation to 

confirm equilibration.  Plots of RMSD values throughout the entire simulation for the 

eight most promising compounds are presented in Figure 16. Small fluctuations of the 

RMSD values (between 1-3 Å) are expected throughout the simulation. Larger 

fluctuations suggest a larger conformational change for the protein or may indicate the 

ligand has moved away from the binding site.  

The RMSD values of each complex throughout the simulation is presented in 

figure 16. For all simulations, the protein RMSD remained stable. The RMSD for 

compounds ZINC000057312352, ZINC000064568512, ZINC00019341151, 

ZINC000001547992, and ZINC000015680255 remained stable throughout the simulation 

which suggests the ligand is stable within the binding pocket of the protein. Compounds 

ZINC000663523562, ZINC000089440373, and ZINC000012165443 saw a large change 

in the ligand RMSD value towards the end of the trajectory. A longer simulation may 

allow us to see if stabilization occurs.  
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Figure 16 

RMSD of Mpro and Top 8 Compounds
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Note.  Root Mean Square Deviation (RMSD) plots are presented for the MD simulation 
runs of each top protein-ligand complex over the length of the trajectory. The Cα-RMSD 
for the protein is shown in dark grey and the ligand RMSD is shown in light grey. Cα-
RMSD is based on initial protein alignment.  
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MM-GBSA Binding Energy Components 

The MM-GBSA predicted binding energy calculation combines energies 

contributed from the Van der waals, hydrophobic, and electrostatic terms.  The predicted 

binding energy from each of these terms is presented in Table 6. These terms are 

rewarded by the Glide docking score scoring function, so it is reasonable to expect that 

compounds with a favorable (more negative) docking score will also have a favorable 

predicted binding energy. A breakdown of these terms allows us to further understand 

how the amino acids within the binding pocket interact with the ligand. 

Ligand interactions with the Mpro binding pocket were supported heavily by the 

Van der Waals term. As previously discussed, the Van der Waals term is the sum of 

energy contribution made by Van der Waals interactions, pi-pi stacking, and self-contact 

energies. The hydrophobic term is measured alone while the electrostatic term is the sum 

of energy contributions made by Coulomb interactions, hydrogen bonds, and general 

Born solvation energies. The Van der Waals and hydrophobic terms of the predicted 

binding energy equation are the largest contributors for all top compounds. Electrostatic 

contributions were minimal and mostly unfavorable for this target.  
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Table 6 

The MM-GBSA Binding Energy Calculation Components Including the Van der Waals, 
Hydrophobic, and Electrostatic Terms are Presented  

 

Zinc ID Van der Waals 
(kcal/mol) 

Hydrophobic 
(kcal/mol) 

Electrostatic 
(kcal/mol) 

Natural Ligand  -49.0 ± 5.2 -31.1 ± 5.2 10.2 ± 4.8 

ZINC000004600917 -27.7 ± 4.6 -16.7 ± 2.8 0.5 ± 6.3 

ZINC000057312352 -46.5 ± 7.1 -31.4 ± 5.5 4.9 ± 5.8 

ZINC000000090720 -32.0 ± 4.1 -17.9 ± 2.2 -1.5 ± 6.5 

ZINC000020988539 -36.4 ± 5.9 -24.5 ± 3.6 6.1 ± 4.6 

ZINC000004899522 -33.8 ± 4.9 -24.5 ± 3.4 2.5 ± 5.8 

ZINC000253630002 -42.7 ± 4.6 -27.6 ± 3.0 7.3 ± 3.3 

ZINC000014728050 -31.7 ± 2.6 -21.1 ± 2.4 -1.8 ± 5.8 

ZINC000064568387 -41.9 ± 5.0 -35.2 ± 5.3 8.4 ± 3.2 

ZINC000004897405 -43.1 ± 5.4 -27.2 ± 4.9 7.9 ± 8.0 

ZINC000223270144 -38.1 ± 3.8 -23.9 ± 3.6 0.3 ± 6.5 

ZINC000096447388 -39.2 ± 6.7 -30.1 ± 7.5 0.9 ± 5.2 

ZINC000012119172 -31.7 ± 6.2 -17.5 ± 4.8 10.0 ± 2.8 

ZINC000000121038 -33.3 ± 5.4 -25.1 ± 4.0 6.7 ± 3.1 

ZINC000070216736 -26.6 ± 5.5 -16.7 ± 2.8 3.0 ± 3.4 

ZINC000663523562 -42.0 ± 6.3 -34.5 ± 4.5 4.0 ± 5.1 

ZINC000005273576 -29.1 ± 9.6 -17.2 ± 6.2 1.9 ± 7.8 
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Zinc ID Van der Waals 
(kcal/mol) 

Hydrophobic 
(kcal/mol) 

Electrostatic 
(kcal/mol) 

ZINC000064568512 -48.9 ± 4.9 -44.0 ± 3.8 9.5 ± 4.4 

ZINC000000632530 -35.0 ± 8.0 -31.0 ± 6.5 6.3 ± 2.3 

ZINC000261493176 -21.8 ± 9.4 -16.4 ± 8.1 4.6 ± 3.2 

ZINC000426359607 -40.4 ± 6.8 -33.9 ± 7.1 5.4 ± 4.4 

ZINC000263585674 -44.2 ± 5.9 -31.3 ± 4.8 6.4 ± 4.5 

ZINC000057774900 -35.7 ± 6.7 -25.1 ± 5.0 4.2 ± 5.1 

ZINC000089440373 -41.7 ± 6.8 -30.0 ± 5.3 -1.6 ± 6.0 

ZINC000019341151 -51.8 ± 6.1 -36.4 ± 5.3 3.6 ± 5.1 

ZINC000193716208 -28.8 ± 9.2 -24.5 ± 9.6 -3.4 ± 5.6 

ZINC000008876585 -44.2 ± 5.0 -25.3 ± 4.1 6.4 ± 4.6 

ZINC000012165443 -51.6 ± 8.2 -39.2 ± 6.9 5.2 ± 3.0 

ZINC000012990014 -31.3 ± 4.0 -17.3 ± 4.0 5.7 ± 4.7 

ZINC000001547992 -51.3 ± 7.6 -24.0 ± 3.1 3.0 ± 4.7 

ZINC000015680255 -45.0 ± 8.0 -27.4 ± 8.7 0.6 ± 4.5 

ZINC000005553602 -36.1 ± 5.8 -26.2 ± 7.3 4.5 ± 3.3 

    

                  Note. Top promising compounds are shown in bold. 
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The Protein Cα Root Mean Square Fluctuation Confirms the Stability of Compound 

Binding. 

Residue fluctuation was measured throughout the simulation and is presented by 

RMSF values in Figure 17. Higher RMSF values indicate more fluctuation of amino 

acids throughout the MD simulation. We see the largest fluctuations at the N and C 

terminals which is expected. Residues fluctuated similarly for each compound and the 

natural ligand with larger fluctuations found in loops between secondary structures which 

was observed in residues 40-53, 140-148, 152-155, 165-170, 180-200, and 275-290.  An 

amino acid sequence of the Mpro including secondary structure assignments is presented 

as Appendix Figure 2 which allows us to identify these loop regions. Key amino acids 

interacting within the binding pocket including Ser 46, leu141, Asn 142, Glu 166, 

Pro168, Ala191, Thr190, and Gln189 appear stable with RMSF values under 3 Å.  
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Figure 17 

Residue Fluctuation Plotted by RMSF 

 

Note.  Residue fluctuation plotted by RMSF (Cyan: Natural Ligand, Orange: ZINC000057312352, Light Grey: ZINC000663523562, 
Yellow: ZINC000064568512, Light Blue: ZINC000089440373, Green: ZINC00019341151 Dark Blue: ZINC000012165443 Red: 
ZINC000001547992 Dark Grey: ZINC000015680255) 
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Simulation Interaction Diagrams Reveal Key Binding Residues for Top Compounds 

Key residues supporting compound binding to Nsp15 for at least 30 % of the 

simulation were identified by the Desmond simulation interaction diagram (Figure 18). 

These interactions are expected to agree with docking score and MM-GBSA binding 

energy prediction value. As shown in Table 6, most of the predicted binding energy is 

composed of the Van der Waals and hydrophobic terms. Most of the interactions 

displayed in the simulation diagrams for Mpro were driven by hydrophobic, polar, and 

charged interactions. This agrees with known characteristics of residues found within the 

binding pocket including: Cys145, His4, Ser 46, leu141, Asn 142, Glu 166, Pro168, 

Ala191, Thr190, and Gln189 

Interactions supporting ZINC000057312352 binding include hydrophobic 

interactions with Met49 and Met165. Positive charge interactions included His41 for 34% 

of the simulation as well as Gln189 for 35% of the simulation. This compound had the 

most favorable predicted binding energy, with most of its energy contributions coming 

from the Van der Waals term.   

ZINC000663523562 has a single positive charge interaction with Gln189 for 34% 

of the simulation. ZINC000064568512 has a negatively charged interaction with Asp187 

for 30% while most of the compound remains solvent exposed. These compounds also 

received most of their predicted binding energy contribution from the Van der Waals 

term.  

Compound ZINC000089440373 interacts with the Mpro via positively charged 

interactions with His41 (37%) and Thr45 (42%) and negative charged interactions with 
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Glu166 through an interaction with a water molecule (39%) and Asp187 (35%). 

ZINC000019341151 interacts with Gly143 96 % of the simulation. Positively charged 

interactions supporting binding include with Ser144 (35%) and His164 (53%). A single 

negatively charged interaction with Glu166 through an interaction with a water molecule 

takes place for 38% of the simulation.  

Binding of ZINC000012165443 is supported by two hydrophobic interactions 

with Phe185 and Val186 for 58% of the simulation. Other residues involved in binding 

include a polar interaction with His164 (34%) and a positive charged interaction with 

Arg40 (44%). Half of this compound remains solvent exposed.  

ZINC000001547992 binding energy is mostly supported by Van der Waals 

interactions. This compound has two negatively charged interactions with Asp187 and 

Glu166. Asp187 interacts with the ligand directly for 50% of the simulation and through 

a water bridge for 32% of the simulation. Glu166 interacts with the ligand directly for 

82% of the simulation and through an interaction with water for 45% of the simulation. 

The compound also has two polar charged interactions with His41 (30%) and His164 

(33%).  

ZINC000015680255 has one hydrophobic interaction with Cys145 for 40% of the 

simulation. Three polar interactions with the protein include His41 in two separate areas 

of the compound for 52% and 47% of the simulation, Ser144 for 40% of the simulation, 

and Gln189 for 37% of the simulation. There is a single negatively charged interaction 

with Glu166 for 98% of the simulation. The binding energy for this compound is also 

supported heavily by Van der Waals interactions.  
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Figure 18 

2D Ligand Interaction Diagrams of Top 8 Compounds 
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Note. 2D ligand interaction diagrams from the MD trajectory for top eight compounds 
show the interactions supporting binding of top compounds. Residues displayed interacted 
with each ligand for a minimum of 30% of the simulation time. 

 

SwissADME Predicts Important Drug Discovery Parameters 

Predicted ADME properties including gastrointestinal absorption, blood brain 

barrier permeability, Lipinski rule of 5 violations, inhibition of five cytochrome P450 

enzymes, PAINS alerts, and Brenk alerts for the top eight compounds are presented in 

Table 7. A full description of each of these properties was presented previously in 

Chapter 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

67 

Table 7 

The Predicted ADME Properties for the Top 8 Best Compounds by the SwissSimilarity Server are Presented 

Note. Predicted properties include gastrointestinal absorption, blood brain barrier permeability, Cytochrome P450 enzyme inhibition, 

Lipinski Rule of five violations, PAINS alerts, and Brenk alerts. + indicates high GI absorption, BBB permeability, a Lipinski rule 
violation, inhibition of a cytochrome P450, a PAINS alert, or a Brenk alert. - indicates low GI absorption, no BBB permeability, no 
Lipinksi Rule Violations, no CYP inhibition, and no PAINS or Brenk alerts.

Compound GI 
absorption 

BBB 
Permeant 

Lipinski 
Rule 

Violations 

CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 PAINS 
Alerts 

Brenk 
Alerts 

ZINC000057312352 + + - - + - + - - - 

ZINC000663523562 + - - - + + + + - - 

ZINC000064568512 + - - + + + + + - - 

ZINC000089440373 + - - - + + - + - - 

ZINC000019341151 + - - + + + + + - - 

ZINC000012165443 + - - - + + + + - - 

ZINC000001547992 - - + - - - - - - - 

ZINC000015680255 + - - - + + + + - - 
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All compounds show high intestinal absorption properties apart from 

ZINC000001547992. This suggests most compounds would be suitable for oral delivery. 

Compound ZINC000057312352 was the only compound that showed potential for blood 

brain barrier permeability. As previously discussed, SARS-CoV-2 and other 

coronaviruses are more commonly found in the upper airways, lungs, mouth, and the 

gastrointestinal tract so blood brain barrier permeability is not necessary.   

Compounds targeting the Mpro show varying potential to be inhibitors for the five 

subtypes of cytochrome P450 enzymes (CYPs) including CYP1A2, CYP2C19, CYP2C9, 

CYP2D6, and CYP3A4. Two compounds, ZINC000064568512 and 

ZINC000019341151, show potential to inhibit all five of the CYPs in this analysis. It is 

likely these compounds would have trouble being metabolized and would likely interact 

with several other drugs which raises concern.  Compounds ZINC000663523562, 

ZINC000012165443, and ZINC000015680255 inhibit four out of the five CYP’s 

presented which is also concerning.  

The top compounds presented did not have any Lipinski rule of five violations 

apart from   ZINC000001547992 which has one violation. This compound has more than 

ten hydrogen bond acceptors. One Lipinski rule violation does not entirely rule out the 

potential for this compound to work as a drug. There were no PAINS or Brenk alerts for 

any of the compounds.  

In summary, compounds that show the ability to inhibit several CYP enzymes including 

ZINC000064568512, ZINC000019341151, ZINC000663523562, ZINC000012165443, 

and ZINC000015680255 require further examination to understand if they can be 
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metabolized in the body. These compounds should also be evaluated for potential drug-

drug interactions. Two compounds, ZINC000057312352 and ZINC000001547992, look 

the most promising in their ability to work in drug form.  

Conclusion 

We have presented eight promising compounds targeting the Mpro of SARS-CoV-

2. The results of our Molecular docking and MD simulations conclude that each top 

compound has a favorable predicted binding energy to the Mpro active site. SwissADME 

screening allowed us to identify any preliminary signs that these compounds may not 

succeed in drug form.  Two compounds: ZINC000057312352 and ZINC000001547992 

look the most promising with favorable binding energies and good predicted ADME 

properties. RMSD and RMSF values support stability of these compounds interacting 

with the Mpro binding pocket.
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Chapter 5  

Conclusion and Future Directions 

Conclusion  

 Since March of 2020 when SARS-CoV-2 was declared a pandemic, we have 

experienced the effects of this deadly virus across the globe. The development of 

vaccines has allowed us to return to some sense of normalcy, but the threat of a vaccine-

resistant variant, or another coronavirus remains. A small molecule inhibitor targeting 

conserved proteins of coronaviruses may improve the outlook of public health now and in 

the future. Our high throughput virtual screening resulted in several promising 

compounds for the conserved Nsp15 and Mpro protein targets of coronaviruses.  

 The compound performing best through all the analyses for Nsp15 was 

ZINC000247434422 with the most favorable predicted binding energy at -76.5±6.7 

kcal/mol, stability throughout the simulation, and a good outlook on important ADME 

properties. The other 3 top compounds also performed well overall and should continue 

to be considered for experimental analysis.  

 The Mpro screening resulted in 8 top compounds for further consideration as 

inhibitors.  Two compounds, ZINC000057312352 and ZINC000001547992, look the 

most promising with favorable binding energies and predicted ability to work in drug 

form. RMSD and RMSF values support stability of these compounds interacting with the 

Mpro binding pocket. Further assessment is needed to determine whether the other six 

promising compounds have potential to work as a small molecule inhibitor for this target. 

While their predicted binding energy remains favorable, it is important that the 
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compounds remain stable in complex with the target and structurally agree with ADME 

property parameters to be used as a drug.  

  While our results have narrowed down a large search of compounds targeting 

Nsp15 and Mpro, further experimental analysis is needed to fully characterize binding of 

these compounds to their targets. The entropic terms that were unaccounted for in our 

analysis should also be considered in future work.   

Future Directions  

 As previously mentioned, the computational methods used for these projects 

neglected the entropic terms of binding energy. To address this, I would consider using 

additional computational tools available to estimate the entropic properties of compound 

binding. The configurational entropy component of binding can be predicted by normal 

mode analysis (NMA) (Forouzesh & Mishra, 2021). NMA calculates vibrational modes 

as well as protein flexibility reliably, but at a large computational cost (Alexandrov, 

2005). To overcome these steep computational costs, many groups use a truncated 

version of their protein target. Using this method with MM-GBSA calculations would 

offer a more complete prediction of which compounds bind most favorably.  

 Statistical approaches for analyzing MD simulations vary but would be useful to 

verify these methods in future work. Clustering analyses and principal component 

analyses (PCA) are commonly applied. Clustering analyses would allow us to group 

similar molecular configurations found in the simulation, into groups in an unbiased 

manner (Shao et al., 2007). This method of separation would minimize variance in our 

predicted free energy calculations. A principal component analysis of each MD 
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simulation could offer insight into which conformational changes in the simulation are 

relevant versus those that are simulation-based fluctuations which are unlikely to be 

repeated. Repeating MD simulations is unpractical due to time and cost therefore these 

analyses are important for identifying outliers in the large amount of data produced by 

each simulation.  

In addition to considering other computational tools, compounds should be 

verified experimentally. Both Nsp15 and Mpro plasmids are commercially available for 

recombinant protein production (Altincekic et al., 2021). Each compound presented in 

this thesis is also available commercially. Nuclear magnetic resonance (NMR) 

spectroscopy would be a powerful tool in quantitatively measuring both binding affinity 

and the conformational changes that occur during binding. Chemical shift assignments 

are available for both the Nsp15 and Mpro proteins at https://covid19-nmr.de/ making 

these experiments even more accessible.  
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Appendix 

Figure A1 

Protein Information for Nsp15 Including the Amino Acid Sequence and Secondary 
Structure Assignment 

 

 

Figure A2 

Protein Information for Mpro Including the Amino Acid Sequence and Secondary 
Structure Assignment 
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